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Abstract	13 
The	adaptation	of	weedy	plants	to	herbicide	is	both	a	significant	problem	in	agriculture	and	14 
a	model	for	the	study	of	rapid	adaptation	under	regimes	of	strong	selection.	Despite	recent	15 
advances	in	our	understanding	of	simple	genetic	changes	that	lead	to	resistance,	a	16 
significant	gap	remains	in	our	knowledge	of	resistance	controlled	by	many	loci	and	the	17 
evolutionary	factors	that	influence	the	maintenance	of	resistance	over	time.	Here,	we	18 
perform	a	multi-level	analysis	involving	whole	genome	sequencing	and	assembly,	19 
resequencing	and	gene	expression	analysis	to	both	uncover	putative	loci	involved	in	20 
nontarget	herbicide	resistance	and	to	examine	evolutionary	forces	underlying	the	21 
maintenance	of	resistance	in	natural	populations.	We	found	loci	involved	in	herbicide	22 
detoxification,	stress	sensing,	and	alterations	in	the	shikimate	acid	pathway	to	be	under	23 
selection,	and	confirmed	that	detoxification	is	responsible	for	glyphosate	resistance	using	a	24 
functional	assay.	Furthermore,	we	found	interchromosomal	linkage	disequilibrium	(ILD),	25 
most	likely	associated	with	epistatic	selection,	to	influence	NTSR	loci	found	on	separate	26 
chromosomes	thus	potentially	mediating	resistance	through	generations.	Additionally,	by	27 
combining	the	selection	screen,	differential	expression	and	LD	analysis,	we	identified	28 
fitness	cost	loci	that	are	strongly	linked	to	resistance	alleles,	indicating	the	role	of	genetic	29 
hitchhiking	in	maintaining	the	cost.	Overall,	our	work	strongly	suggests	that	NTSR	30 
glyphosate	resistance	in	I.	purpurea	is	conferred	by	multiple	genes	which	are	maintained	31 
through	generations	via	ILD,	and	that	the	fitness	cost	associated	with	resistance	in	this	32 
species	is	a	by-product	of	genetic-hitchhiking.	33 
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Introduction	38 
Pesticide	and	herbicide	use	has	reshaped	ecological	networks	and	induced	strong	selective	39 
pressures	in	the	anthropogenic	era.	How	species	may	adapt	to	strong	selection	is	a	40 
fundamental	question	in	evolution	with	great	importance	to	the	control	of	pesticide	41 
resistant	organisms.	A	striking	feature	of	pesticide	resistance	evolution	is	that	there	are	a	42 
number	of	different	genetic	solutions	that	can	lead	to	resistance1,2.	In	herbicide	resistant	43 
plants,	for	example,	resistance	can	be	due	to	single	gene	mutations,	often	found	in	the	44 
herbicide’s	target	protein	(target	site	resistance,	TSR),	or	due	to	changes	in	multiple	genes,	45 
often	underlying	nontarget	herbicide	resistance	(NTSR)	mechanisms3,4.	A	growing	body	of	46 
work	has	produced	a	better	understanding	of	resistance	controlled	by	single	genes	across	a	47 
variety	of	species3,5,6.	However,	we	currently	lack	a	deep	understanding	of	both	the	genetic	48 
basis	and	evolutionary	potential	of	nontarget	site	resistance	mechanisms	genome	wide7–9.		49 

This	is	due	in	part	to	the	broad	nature	of	nontarget	site	herbicide	resistance	mechanisms	50 
more	generally.	NTSR	can	be	caused	by	reduced	herbicide	uptake	or	penetration,	altered	51 
translocation	or	sequestration,	and/or	herbicide	detoxification10–12	--	mechanisms	that	52 
likely	rely	on	a	complex	genetic	basis8,13–15.	While	some	investigations	have	pinpointed	a	53 
single	gene	conferring	NTSR16,17,	gene	expression	surveys	or	whole	genome	re-sequencing	54 
assays	in	a	small	handful	of	resistant	weeds	are	beginning	to	shed	light	on	the	complexity	55 
of	nontarget	resistance	mechanisms18–20.	For	example,	in	both	Amaranthus	tuberculatus	56 
and	Ipomoea	purpurea,	a	number	of	different	loci	found	across	the	genome	--	whether	57 
structural,	regulatory,	or	both	--	exhibit	signs	of	selection	and	are	thus	putatively	involved	58 
in	resistance18–20.	Because	we	lack	a	deep	understanding	of	the	genetic	basis	of	NTSR	in	59 
most	weeds,	however,	we	lack	a	firm	grasp	on	the	underlying	forces	that	influence	the	60 
maintenance	of	resistance	in	natural	populations,	such	as	the	prevalence	of	alleles	that	may	61 
contribute	to	fitness	costs	of	resistance,	or	the	presence	of	interchromosomal	linkage	62 
disequilibrium	(ILD).	The	presence	of	ILD	between	unlinked	regions	of	the	genome	would	63 
implicate	the	potential	for	epistatic	interactions	between	alleles	underlying	either	64 
resistance	or	its	cost.		65 

Ipomoea	purpurea	is	a	common	agricultural	weed	in	the	southeast	and	Midwest	United	66 
States.	Populations	of	this	species,	which	have	consistently	been	exposed	to	glyphosate	67 
based	herbicides	since	the	late	1990’s21,22,	exhibit	varying	levels	of	herbicide	resistance,	68 
with	some	populations	exhibiting	low	and	others	high	survival	post-herbicide	69 
application21.	There	is	a	fitness	cost	associated	with	this	resistance:	resistant	populations	70 
show	lower	germination	and	deteriorated	seed	quality	compared	to	susceptible	71 
populations23.	Further,	populations	from	the	south	and	midwest	show	evidence	of	genetic	72 
admixture,	with	both	microsatellite	and	SNP	data	showing	low	genetic	differentiation	(FST	=	73 
0.11-0.14,24	and	recent	genetic	connectivity24).	RADseq	and	exome	sequencing	has	74 
identified	regions	of	the	genome	under	selection	and	thus	associated	with	herbicide	75 
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resistance.	These	regions	are	enriched	for	cytochrome	P450s,	glycosyltransferases,	and	76 
ABC	transporter	genes,	indicating	a	likely	role	of	herbicide	detoxification	in	conferring	77 
resistance20.	Despite	evidence	that	detoxification	underlies	resistance	in	this	species,	and	78 
suggestions	that	loci	found	on	different	chromosomes	contribute	to	resistance,	previous	79 
work	relied	on	low-coverage	RADseq	sequencing	without	the	benefit	of	a	contiguously	80 
assembled	genome.	Thus,	loci	that	may	contribute	to	NTSR	or	its	cost	were	likely	missed25,	81 
meaning	that	we	lack	a	thorough	understanding	of	NTSR,	the	genomic	context	of	NTSR	82 
alleles,	and	the	potential	for	relationships	among	NTSR	alleles	in	this	species	--	all	crucial	to	83 
understanding	the	evolution	of	resistance	more	broadly.	84 

Here,	we	implemented	a	genome-wide	selection	screen	using	whole-genome	resequencing	85 
of	natural	populations	along	with	a	gene	expression	survey	to	characterize	the	genetic	86 
architecture	of	glyphosate	resistance	and	its	cost	in	Ipomoea	purpurea.	We	complemented	87 
our	survey	with	a	functional	assay	to	test	the	potential	that	resistant	I.	purpurea	individuals	88 
detoxify	the	herbicide.	Given	previous	evidence	that	multiple	loci	likely	contribute	to	89 
herbicide	resistance	in	this	species,	and	evidence	of	fitness	cost	of	resistance,	we	made	two	90 
main	predictions	regarding	genome-wide	patterns	of	selection	associated	with	resistance	91 
in	I.	purpurea.	First,	we	expected	that	regions	of	the	genome	showing	high	differentiation	92 
and	marks	of	selection	when	comparing	herbicide	resistant	and	susceptible	individuals	93 
would	contain	loci	with	strong	functional	links	to	either	herbicide	resistance	or	its	cost.	94 
Second,	we	anticipated	that	linkage	disequilibrium,	the	non-random	association	of	alleles	at	95 
different	loci,	should	be	evident	among	regions	of	the	genome	housing	resistance	loci.	96 
Although	inter-chromosomal	linkage	disequilibrium	has	been	identified	in	other	systems	97 
assessing	ecologically	relevant	traits	such	as	mate	choice	and	coloration26–28,	it	is	unknown	98 
if	loci	underlying	herbicide	resistance	that	are	found	across	chromosomes	exhibit	long-99 
distance	or	inter-chromosomal	linkage	disequilibrium,	as	would	be	expected	if	adaptation	100 
to	herbicide	is	facilitated	by	multilocus	genotypes	favored	by	selection	(i.e.,	coadapted	gene	101 
complexes)29–31.	102 

	103 
Results	104 
	105 
A	chromosome-scale	genome	assembly	for	common	morning	glory	106 
We	assembled	a	reference	I.	purpurea	genome	to	test	these	hypotheses,	generating	the	first	107 
genome	sequence	for	this	common	and	noxious	weed.	We	generated	a	total	of	48	gigabases	108 
of	PacBio	Sequel	whole	genome	shotgun	data	(Supplemental	Figure	S1a).	Based	on	a	flow	109 
cytometry	genome	size	(Benaroya	Institute,	Seattle,	WA),	this	amounts	to	roughly	59X	110 
genome	coverage	for	an	estimated	haploid	genome	size	of	814	Mb.	We	used	34.79	111 
gigabases	of	trimmed	and	self-corrected	reads	for	assembly,	scaffolding	and	polishing,	112 
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which	produced	a	602	Mb	assembly	in	402	scaffolds	(434	contigs),	with	a	scaffold	N50	of	113 
5.77	Mb.		114 
	115 
We	performed	pseudomolecule	scaffolding	with	Phase	Genomics	Hi-C	map,	which	116 
collapsed	the	assembly	into	the	expected	15	haploid	chromosomes	(Supplemental	Figure	117 
S1b).	We	renamed	and	oriented	chromosomes	according	to	a	high	degree	of	synteny	with	118 
the	related	Ipomoea	nil	genome32	(Supplemental	Figure	S1c).	No	misjoins	were	identified	119 
and	broken	based	on	the	Hi-C	linkage	data.	BUSCO	scores	on	the	unannotated	assembly	120 
show	97.5%	completeness	against	the	Viridiplantae	odb10	gene	set	(Supplemental	Figure	121 
S1d).		122 
	123 
Approximately	63%	of	the	assembly	was	masked	as	repetitive	DNA,	with	a	significant	124 
proportion	of	recently-expanded	Long	Terminal	Repeat	(LTR)	retrotransposons	125 
(Supplemental	Figure	S1e).	Given	the	high	degree	of	synteny	with	I.	nil	genome,	the	126 
discrepancy	between	the	flow	cytometry	genome	size	(814	Mb)	and	the	assembled	size	127 
(602	Mb)	is	likely	due	to	young	retrotransposon	proliferation.	We	annotated	53,973	genes	128 
by	combining	ab	initio	gene	predictions	and	RNA	sequencing	data	from	leaf	tissue.	The	129 
assembly	shows	a	high	degree	of	synteny	with	several	genomes	in	the	Convolvulaceae	130 
family,	including	I.	nil,	I.	trifida,	and	I.	triloba	(Supplemental	Figure	S2).		131 
	132 

Detecting	loci	under	selection		133 
Whole-genome	analysis	of	69	individuals	identified	twenty-one	regions	across	the	genome	134 
exhibiting	signals	of	strong	genetic	differentiation	and	signs	of	selection	when	comparing	135 
herbicide	resistant	and	susceptible	populations	(Supplementary	TableS4).	These	regions	136 
exhibited	a	GST	and	Md-rank-P	in	the	top	5	percentile	(GST	>	0.284	and	Md-rank-P	>	5.69)	137 
with	the	Md-rank-P	being	a	composite	test	of	selection	that	incorporates	nucleotide	138 
diversity,	Tajima’s	D,	Fay	and	Wu’s	H,	and	H12.	This	strategy	identified	4.47	Mb	of	the	139 
genome	showing	signs	of	selection	associated	with	herbicide	resistance.	The	regions	under	140 
selection	were	located	across	nine	chromosomes,	varied	in	size	between	26kb-1272kb	141 
(Figure	1),	and	housed	358	genes,	202	of	which	could	be	functionally	annotated	142 
(Supplementary	TableS5).		143 
	144 
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	145 

Figure	1	Circos	plot	depicting	the	regions	of	the	genome	that	show	signs	of	selection	associated	146 
with	herbicide	resistance.	The	genome	assembly	resulted	in	15	scaffolds	which	are	represented	147 
here	by	grey	bars.	Values	of	GST	describing	the	differentiation	between	the	resistant	and	the	148 
susceptible	populations	are	depicted	by	black	bars,	and	the	Md-rank-P	values	identifying	signatures	149 
of	selection	are	presented	in	red	bars.	Regions	of	the	genome	that	exhibited	both	high	150 
differentiation	(GST	>	0.284)	and	a	significant	Md-rank-P	value	(Md-rank-P	>	5.69)	are	identified	by	151 
blue	boxes.	Black	lines	above	both	the	GST	and	Md-rank-P	represent	95%	most	extreme	genome-152 
wide	values	for	each	metric.	Blue	boxes	on	Chr5,	Chr6,	Chr10,	Chr13,	and	Chr14	represent	more	153 
than	one	region	under	selection.	154 

The	strongest	signal	of	selection	we	uncovered	was	found	within	a	233kb	region	of	155 
chromosome	10	(average	Md-rank-P	=	7.99;	average	GST	=	0.69,	Figure	2).	Within	this	156 
region	we	identified	8	copies	of	cytochrome	P450	genes	(CYP)	and	7	copies	of	157 
glycosyltransferases,	both	of	which	are	gene	families	previously	implicated	in	herbicide	158 
detoxification.	The	eight	cytochrome	P450s	belong	to	the	76A	family	(three	CYP76A1	and	159 
five	CYP76A2)	and	were	present	in	tandem	within	53kb.	Four	copies	of	the	cytochrome	160 
P450s	exhibited	multiple	non-synonymous	mutations	that	were	almost	fixed	in	the	161 
resistant	individuals	(allele	frequency	=	0.95).	Further,	two	of	the	eight	cytochrome	P450s	162 
(CYP76A2)	in	this	block	exhibited	either	a	premature	stop	codon	and/or	a	splice	site	donor	163 
variant	(G->C)	in	the	first	intron	(allele1	susceptible	frequency	=	0.68,	resistant	frequency	=	164 
0.05)	in	the	majority	of	the	susceptible	individuals.	The	seven	glycosyltransferases	were	165 
found	in	tandem;	one	glycosyltransferase	copy	showed	the	loss	of	a	stop	codon	(susceptible	166 
frequency	=	0.64,	resistance	frequency	=	0.05),	whereas	the	other	glycosyltransferases	167 
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exhibited	multiple	non-synonymous	mutations	close	to	fixation	in	the	resistant	individuals	168 
(resistant	frequency	=	0.05,	susceptible	frequency	=	0.60;	Supplementary	Figure	S3).	169 
Additionally,	the	block	of	glycosyltransferases	in	this	region	showed	evidence	of	a	hard	170 
sweep	(glycosyltransferases	H12	=	0.87).		171 

	172 

	173 
Figure	2	Region	of	Chromosome	10	showing	signs	of	selection.	Shown	is	the	(a)	GST	(upper)	and	174 
Md-rank-P	(lower)	for	the	resistant	individuals	which	was	estimated	using	statistics	shown	in	(b)	175 
clockwise	starting	from	upper	left,	pi,	Tajima’s	D,	H12	and	Fay	and	Wu’s	H.	Red	lines	indicate	176 
respective	values	for	the	resistant	populations.	Khaki	vertical	lines	represent	copies	of	177 
glycosyltransferases,	green	vertical	lines	are	the	cytochrome	P450,	and	the	grey	vertical	line	178 
represents	CTR1	(see	below).	The	black	dashed	line	in	(a)	represents	95	percentile	values.	179 
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On	chromosome	11,	we	found	a	6.4-7.1Mb	region	to	show	signs	of	selection	(average	Md-180 
rank-P	=	8.91;	average	GST	=	0.392)	with	six	copies	of	a	phosphate	transporter	gene	(PHO1),	181 
an	ABC	transporter	gene	(ABCB19),	and	a	sugar	transporter	gene	(ERD6),	all	containing	182 
almost	fixed	non-synonymous	mutations	in	resistant	individuals	(resistant	frequency	=	183 
0.99).	This	region	also	contained	two	copies	each	of	a	glycosyltransferase	and	a	cytochrome	184 
P450	gene	(CYP736A12	family,	Supplementary	TableS5).	185 

Another	region	of	note	showing	strong	signals	of	selection	was	found	on	chromosome	6	186 
(average	Md-rank-P	=	6.55;	average	GST	=	0.782,	Figure	1),	with	evidence	of	strong	187 
differentiation	continuing	further	upstream	and	downstream	(40.23Mb	-	40.81Mb;	mean	188 
GST	=	0.727).	Within	the	extended	downstream	region,	we	found	ethylene	responsive	189 
transcription	factor	(ERF4)	and	multiple	copies	of	serine/threonine	kinases,	genes	that	are	190 
involved	in	the	signal	transduction	in	response	to	various	biotic	and	abiotic	stresses33–37.	191 
Within	this	region	we	also	identified	loci	that	are	likely	related	to	the	cost	of	resistance	in	192 
this	species,	expanded	upon	further	in	‘Signs	of	selection	on	potential	cost	loci’	below.	193 

Across	the	other	regions	exhibiting	signs	of	selection,	we	found	multiple	environmental	194 
stress	response	genes	(Supplemental	TableS4):	serine/threonine-protein	kinase	CTR1	195 
(chr10)	involved	in	stress	signalling,	LOG3	(chr	4),	associated	with	drought	stress	196 
response38,	the	GT-3B	transcription	factor	(chr	6)	which	is	responsible	for	inducing	197 
response	to	salt39,	tubby-like	F-box	protein	5	(TULP5),	AP2-like	ethylene-responsive	198 
transcription	factor	PLT1,	AT-hook	motif	nuclear-localized	protein	24	(AHL24)40,	and	199 
several	homologs	of	FRS	related	sequence	(FRS)	and	E3	ubiquitin-protein	ligases,	genes	200 
involved	in	response	to	oxidative	stress34,37.	Of	special	note,	we	uncovered	a	gene	involved	201 
in	the	shikimate	acid	pathway	on	chromosome	10	--	the	bifunctional	3-dehydroquinate	202 
dehydratase/shikimate	dehydrogenase	(DHD/SHD)	gene,	which	is	responsible	for	203 
converting	dehydroquinate	to	shikimate41.	This	latter	gene	is	notable	in	that	it	is	a	part	of	204 
the	shikimic	acid	pathway,	which	is	the	biochemical	pathway	inhibited	by	glyphosate42.	205 

Overall,	our	selection	screen	using	a	WGS	resequencing	approach	identified	highly	206 
differentiated	regions	under	selection,	with	these	regions	containing	genes	involved	in	207 
herbicide	detoxification	(cytochromeP450s,	glycosyltransferases,	ABC	and	phosphate	208 
transporters),	the	shikimate	acid	pathway	(DHD/SHD),	environmental	sensing	209 
(serine/threonine	kinases),	and	stress	response	genes	(ERFs,	PLT1,	E3	ubiquitin-protein	210 
ligase,	FRSs,	TULP5,	AHL24,	LOG3,	GT-3B	transcription	factor).	Thus,	our	study	expands	on	211 
our	previous	work	which	found	detoxification	genes	to	be	under	selection20	by	providing	212 
strong	evidence	that	glyphosate	resistance	in	I.	purpurea	is	controlled	by	a	polygenic	NTSR	213 
mechanism	likely	involving	herbicide	detoxification,	response	to	environmental	stimuli	and	214 
stress,	and	components	of	the	shikimate	acid	pathway,	which	is	the	biochemical	pathway	215 
inhibited	by	glyphosate.	216 
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Gene	expression	differences	implicate	herbicide	detoxification	217 
We	compared	gene	expression	between	herbicide	treated	resistant	and	susceptible	plants	218 
and	found	support	for	the	idea	that	herbicide	detoxification,	plant	signalling,	and	stress	219 
response	underlies	resistance.	Of	the	250	differentially	expressed	genes	(111	upregulated	220 
and	139	downregulated;	Supplementary	TableS6),	we	found	cytochrome	P450s,	221 
glycosyltransferases,	and	glutathione	S-transferase	genes	(Figure	3a)	to	be	differentially	222 
regulated	between	resistant	and	susceptible	plants.	Two	copies	of	the	cytochrome	P450	223 
family	CYP82D7	were	significantly	upregulated	in	the	resistant	individuals	(logFC:	2.05	and	224 
1.35),	along	with	two	copies	of	UDP-glycosyltransferases	(UGT87A2	and	UGT88B1)	and	a	225 
glutathione	S-transferase	(GST).	We	additionally	found	a	cytochrome	P450	(CYP82C4)	and	226 
a	glycosyltransferase	(UGT89B2)	downregulated	in	the	resistant	individuals.	227 

We	likewise	uncovered	differences	in	the	expression	of	genes	associated	with	228 
environmental	stress	responses.	Among	notable	genes	were	ethylene	responsive	229 
transcription	factors	(ERF003,	ERF107,	TINY43,44),	serine/threonine	kinase	BLUS145,	E3	230 
Ubiquitin	protein	ligase	PUB2334,	NAC	domain	containing	protein	7246,	and	WRKY	231 
transcription	factors	(WRKY4,	WRKY31,	WRKY7547–49)	(Figure	3a).	Homologs	of	these	232 
genes	(ERF4,	PLT1,	CTR1,	PRP4,	HT1,	B120,	RHC1A,	RF298,	NAC92,	NAC25,	WRKY22;	233 
Supplementary	TableS5)	were	also	under	selection	when	comparing	herbicide	resistant	234 
and	susceptible	populations.		235 

In	the	control	(non-herbicide)	environment,	we	found	623	differentially	expressed	genes	236 
when	comparing	resistant	and	susceptible	individuals	(319	upregulated	and	304	237 
downregulated;	Supplementary	TableS7).	We	identified	multiple	copies	of	cytochrome	238 
P450s,	glycosyltransferases,	and	ABC	transporters	that	were	differentially	expressed,	239 
indicating	that	glyphosate	resistance	through	detoxification	is	constitutive,	and	not	240 
induced,	in	this	species.	Interestingly,	the	specific	cytochrome	P450s	and	241 
glycosyltransferase	genes	that	exhibited	signs	of	selection	from	our	whole-genome	scan	242 
were	not	the	same	as	those	that	exhibited	differential	expression,	which	could	be	due	to	the	243 
non-simultaneous	nature	of	the	gene	transcription	response	to	glyphosate50,	or	could	244 
represent	a	transcriptional	sampling	stage	caveat.		245 
	246 
	247 
	248 
	249 
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	250 
Figure	3	Gene	expression	variation	associated	with	herbicide	resistance,	and	results	of	a	functional	251 
assay	supporting	the	idea	that	resistance	in	I.	purpurea	is	due	to	detoxification.	(a)	Loci	associated	252 
with	glyphosate	resistance	identified	by	differential	expression	analysis	with	P-value	<	0.0005.	253 
Color	key	represents	log2	fold-change	values.	(b)	Least	square	means	of	above-ground	biomass	254 
according	to	treatment	(malathion,	glyphosate,	glyphosate	plus	malathion,	and	a	control	(no	255 
treatment))	and	(c)	summarized	according	to	resistance	type	(R/S).	Letters	in	(b)	and	(c)	indicate	256 
significant	differences	between	treatment	environments.	The	addition	of	the	cytochrome	P450	257 
inhibitor	malathion	reverses	glyphosate	resistance	(glyphosate	vs	glyphosate+malathion,	contrast	258 
estimate	=	0.379,	t-ratio	=	2.946,	p-value	=	0.019),	with	the	resistant	individuals	showing	the	same	259 
phenotype	as	the	susceptible	individuals	in	the	presence	of	glyphosate	and	malathion	but	not	in	the	260 
presence	of	glyphosate	only.	261 

Functional	assay	supports	herbicide	detoxification	as	a	mechanism	of	resistance	262 
We	performed	an	assay	to	determine	if	the	functional	mechanism	of	resistance	in	I.	263 
purpurea	was	herbicide	detoxification	(following17,51–54).	We	applied	malathion,	a	pesticide	264 
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that	inhibits	cytochrome	P450s,	to	multiple	resistant	and	susceptible	I.	purpurea	265 
individuals	from	the	same	populations	used	in	the	WGS	re-sequencing	and	gene	expression	266 
studies.	The	expectation	that	malathion	would	act	to	inhibit	I.	purpurea	cytochrome	P450s	267 
was	met;	we	found	a	significant	overall	treatment	effect	(F-value	=	59.33,	df	=	3,	p	<	0.0001;	268 
Fig	3b)	with	individuals	treated	with	both	glyphosate	and	malathion	showing	lower	269 
biomass	compared	individuals	treated	with	either	malathion,	glyphosate,	or	untreated	270 
controls	(Fig	3b;	Supplemental	TableS8).	271 

As	expected,	resistant	individuals	showed	significantly	greater	biomass	compared	to	the	272 
susceptible	individuals	in	the	presence	of	glyphosate	(F-value	=	4.81,	df	=	1,	P-value	=	0.03;	273 
Figure	3c).	However,	the	biomass	of	resistant	individuals	in	the	presence	of	both	malathion	274 
and	glyphosate	was	significantly	lower	than	that	of	resistant	individuals	treated	only	with	275 
glyphosate	(resistant	plants,	malathion+glyphosate	vs	glyphosate:	t	=	3.65,	df	=	78,	p-value	276 
=	0.001),	indicating	that	the	presence	of	malathion	reduces	the	resistance	response.	In	fact,	277 
the	presence	of	both	malathion	and	glyphosate	led	to	similar	(and	low)	remaining	biomass	278 
of	both	resistant	and	susceptible	individuals	(malathion+glyphosate	treatment:	resistant	vs	279 
susceptible	plants:	t	=	0.15,	df	=	32,	p-value	=	0.88).	This	shows	that	the	presence	of	a	280 
cytochrome	P450	inhibitor	lowers	the	level	of	glyphosate	resistance	in	I.	purpurea	plants,	281 
supporting	the	idea	that	modification	to	the	detoxification	pathway	underlies	glyphosate	282 
resistance	in	this	species.	283 

	284 

Role	of	long-distance	and	interchromosomal	linkage	disequilibrium	in	maintaining	285 
NTSR	alleles	286 
Our	whole-genome	scan	identified	regions	under	selection	containing	genes	involved	in	287 
environmental	sensing,	stress	responses,	and	herbicide	detoxification.	This	broad	scan	288 
implicates	a	polygenic	basis	of	resistance	in	I.	purpurea	and	shows	that	multiple	regions	of	289 
the	genome	likely	contribute	to	resistance.	We	thus	sought	to	determine	if	there	was	290 
evidence	of	linkage	disequilibrium	between	these	regions,	which	would	potentially	suggest	291 
either	epistatic	interactions	among	alleles	or	the	inheritance	of	coadapted	gene	292 
complexes29,55.	We	calculated	a	measure	of	linkage	disequilibrium	(r2)	between	long-293 
distance	and	interchromosomal	SNPs	that	showed	the	most	extreme	level	of	differentiation	294 
and	selection	(98th	percentile,	GST	>	0.39)	--	regions	on	Chromosome	4,	6	(two	regions,	295 
hereon	referred	to	as	6.1	and	6.2),	10	and	11,	and	compared	it	to	the	whole-genome	296 
measure.	We	found	that	the	five	regions	under	selection	showed	islands	of	elevated	297 
interchromosomal	linkage	disequilibrium	(Supplementary	TableS9)	in	a	backdrop	of	nearly	298 
zero	genome-wide	ILD	(background	interchromosomal	r2	mean	=	0.00096;	Figure	4).	299 
Additionally,	the	five	regions	with	high	differentiation	under	selection	also	showed	higher	300 
linkage	(99th	percentile	ILD	=	0.23	±	0.0004	SE)	in	comparison	to	the	five	random	highly	301 
differentiated	regions	of	the	same	size	that	are	not	under	selection	(99th	percentile	ILD	=	302 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.04.04.438381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438381
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

0.13	±	0.0003	SE).	The	region	under	selection	on	Chr10	exhibited	the	strongest	linkage	to	303 
other	chromosomal	regions	under	selection	(99%	ILD	Chr4-Chr10	=	0.256,	Chr6.1-Chr10	=	304 
0.257,	Chr6.2-Chr10	=	0.22,	Chr11-Chr10	=	0.17).		305 

Interestingly,	the	highest	r2	values	(within	the	top	1	percentile)	within	these	regions	was	306 
observed	for	putative	resistance	genes	identified	above.	For	instance,	multiple	307 
glycosyltransferases	and	cytochrome	P450s	under	selection	on	Chr10	showed	high	ILD	308 
with	SNPs	on	Chr11	(Supplementary	TableS10).	Multiple	cytochrome	P450	genes	309 
(CYP76A2)	on	Chr10	showed	a	high	value	of	ILD	with	an	uncharacterized	protein	and	a	310 
region	upstream	of	GT-3B	on	Chr6.1	(range	of	r2	=	0.256-0.278,	Supplementary	TableS10)	311 
as	well	as	the	intergenic	region	between	the	transcription	factors	SPL1	and	DOF1.4,	both	of	312 
which	are	responsible	for	plant	growth	and	development,	on	Chr6.2	(range	of	r2	=	0.249-313 
0.288),	perhaps	indicating	that	this	region	on	Chr6	may	influence	the	regulation	of	the	314 
CYP76A2	on	Chr10	in	some	way.	Furthermore,	the	highest	linkage	between	Chr4	and	other	315 
chromosomes	(range	of	r2	=	0.167-0.274)	was	observed	for	a	SNP	just	upstream	of	LOG3	on	316 
Chr4	(Supplementary	TableS9).	Thus,	the	identified	resistance	alleles	within	these	five	317 
highly	differentiated	regions	show	signs	of	linkage	and	perhaps	evidence	of	epistatic	318 
selection.		319 

Local	regions	of	strong	long-distance	linkage	disequilibrium	and	ILD	within	species	might	320 
be	aided	by	demographic	processes	like	population	structure55,56,	genetic	drift57,	or	could	321 
be	due	to	other	processes	like	selection28,58.	Furthermore,	epistatic	interactions	among	loci	322 
wherein	adaptive	alleles	at	two	independent	loci	will	be	inherited	together	can	generate	323 
linkage	disequilibrium28,58–60.	Given	that	our	sampling	design	included	multiple	resistant	324 
and	susceptible	populations	from	varied	locations,	low	population	differentiation	among	325 
populations,	and	evidence	of	recent	migration	between	them	(Supplementary	Figure	S4),	it	326 
is	unlikely	that	the	observed	ILD	is	due	entirely	to	demographic	processes.	Moreover,	we	327 
observed	the	strongest	ILD	between	regions	under	selection	harboring	resistance	328 
associated	genes,	indicating	the	potential	role	of	selection	in	maintaining	the	observed	ILD.	329 
Thus,	our	finding	suggests	that	the	highly	differentiated	regions	under	selection	containing	330 
candidate	loci	for	glyphosate	resistance	are	linked,	indicating	the	potential	role	of	epistatic	331 
selection	in	maintaining	resistance.	332 

	333 
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	334 
Figure	4	Long-distance	linkage	disequilibrium	and	ILD	among	the	five	highly	differentiated	(GST	>	335 
0.39)	regions	under	selection	associated	with	glyphosate	resistance.	The	five	intervals	displayed	336 
islands	of	increased	linkage	disequilibrium	as	estimated	by	r2	for	SNPs	separated	by	at	least	1	kb	in	337 
and	between	broad	regions	under	selection.	The	white	lines	represent	absence	of	SNPs	(missing	338 
data)	whereas	the	black	boxes	represent	linkage	between	the	five	selection	intervals.	r2	values	are	339 
averaged	over	two-dimensional	bins	of	10	x	10	kb.		340 

Signs	of	selection	on	potential	cost	loci	341 
Our	scan	of	regions	associated	with	herbicide	resistance,	paired	with	a	transcriptome	342 
survey,	identified	potential	alleles	with	strong	functional	connections	to	the	previously	343 
identified	fitness	cost	in	resistant	I.	purpurea.	We	found	alternate	alleles	close	to	fixation	in	344 
each	population	type	within	the	585kb	highly	differentiated	region	on	chromosome	6	345 
(40.23Mb	-	40.81Mb;	mean	GST	=	0.727,	Figure	5a).	This	region	contained	the	nuclear	346 
fission	defective	6	(NFD6)	and	NAC	transcription	factor	25	(NAC25)	genes,	both	of	which	347 
function	in	seed	development.	NAC25,	a	gene	that	is	required	for	normal	seed	development	348 
and	morphology	61,	exhibited	two	missense	variants	in	the	resistant	individuals	(mutant	349 
allele	resistant	frequency	=	0.91,	susceptible	frequency	=	0.23).	Additionally,	NFD6,	a	350 
protein	required	for	nuclear	fusion	in	the	embryo	sac	during	the	production	of	the	female	351 
gametophyte62,	contained	six	missense	variants	in	the	resistant	individuals	(mutant	allele	352 
resistant	frequency	=	0.88,	susceptible	frequency	=	0.21).	The	resistant	haplotype	of	this	353 
gene	also	contained	10	SNPs	in	the	promoter	region	which	could	potentially	alter	its	354 
expression.	Indeed,	we	found	this	protein	to	be	downregulated	in	the	presence	of	the	355 
herbicide,	with	a	log-fold	change	of	-3.52	in	resistant	individuals	as	compared	to	the	356 
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susceptible	individuals	(Figure	5b).	Thus,	our	data	suggest	that	these	genes	may	be	357 
responsible	for	the	lower	and	abnormal	germination	leading	to	the	observed	fitness	cost	in	358 
this	species	23).		359 

Interestingly,	this	highly	differentiated	region	containing	these	seed	development	genes	is	360 
strongly	linked	to	other	regions	under	selection	that	harbor	resistance	alleles	(99%	ILD	361 
value	=	0.22;	Figure	4),	indicating	the	potential	role	of	linkage	disequilibrium	in	362 
maintaining	the	cost.	More	specifically,	NFD6	is	within	83	kb	from,	and	thus	physically	363 
linked	to	(r2	=	0.70),	the	potential	regulatory	region	on	Chr6.2	that	exhibits	364 
interchromosomal	long	distance	linkage	disequilibrium	with	the	CYP76A2	gene	on	Chr10	365 
(ILD	=	0.27).	Further,	the	NAC25	gene	is	found	in	close	proximity	to	serine/threonine	366 
kinases	on	Chr6.2	(i.e.,	82	kb	away),	indicating	another	potential	gene	involved	in	the	cost	367 
phenotype	is	in	physical	linkage	(r2	=	0.67)	with	potential	NTSR	loci.	368 
	369 

	370 
Figure	5	Loci	associated	with	the	cost	of	glyphosate	resistance	identified	by	the	(a)	whole-genome	371 
selection-scan	and	differential	expression	analysis	in	the	(b)	absence	and	(c)	presence	of	herbicide.	372 
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Top	panel	of	(a)	represents	GST	between	the	resistant	and	the	susceptible	populations,	mid	panel	is	373 
the	Md-rank-P	value,	and	the	lower	panel	represents	the	allele	frequency.	Salmon	vertical	lines	374 
represent	NFD6	and	NAC25,	in	that	order.	Red	and	blue	represent	resistant	and	susceptible	375 
populations,	respectively.	Black	horizontal	dotted	lines	represent	95	percentile	values	while	376 
vertical	lines	represent	regions	with	GST	above	0.6.	The	differentially	expressed	cost	genes	shown	377 
here	were	chosen	based	on	their	functional	annotation	and	had	FDR	<	0.005	and	P-value	<	0.00005.	378 
Color	key	represents	log2	fold-change	values.		379 

In	addition	to	the	potential	cost	loci	identified	from	the	WGS	screen,	our	gene	expression	380 
analyses	in	the	absence	of	herbicide	(i.e.	the	environment	in	which	fitness	costs	are	381 
assessed)	comparing	resistant	and	susceptible	individuals	identified	five	differentially	382 
expressed	gene	that	play	a	role	in	fertilization	and	seed	maturation	and	are	thus	potentially	383 
related	to	the	cost	(Supplementary	TableS6).	Of	special	interest,	the	bud-site	selection	384 
protein	31	(BUD31)	was	found	to	be	highly	upregulated	(logFC	=	7.22)	in	resistant	plants	in	385 
the	absence	of	herbicide,	whereas	its	homologue	BUD13	was	highly	significantly	386 
downregulated	in	resistant	individuals	in	the	presence	of	herbicide	(logFC	=	-11.39).	387 
BUD13	is	involved	in	pre-mRNA	splicing	in	embryos	and	is	critical	for	early	embryo	388 
development63.		389 

In	the	control	environment,	two	genes	downregulated	in	the	resistant	individuals	--	NFD4	390 
(logFC	=	-3.61)	and	Agamous-like	MADS-box	protein	AGL61	(AGL61;	logFC	=	-4.98)	--	are	391 
involved	in	megagametogenesis.	The	NFD4	gene,	like	NFD6,	is	responsible	for	ovule	polar	392 
nuclei	fusion	during	female	karyogamy62,	whereas	AGL61	is	required	for	the	central	cell	393 
development	and	differentiation64.	A	loss	of	function	mutation	in	AGL61	has	been	shown	to	394 
cause	abnormal	morphology	and	over	50%	seed	abortion	upon	fertilization	in	395 
Arabidopsis64.	We	also	identified	a	callose	synthase	2	(CALS2)	to	be	strongly	396 
downregulated	in	resistant	individuals	(logFC	=	-8.72);	another	member	of	the	callose	397 
synthase	family	(CALS5)	has	been	shown	to	be	responsible	for	pollen	viability65.	Finally,	we	398 
also	found	that	E3	ubiquitin-protein	ligase	BRE1	(HUB1),	a	protein	involved	in	seed	399 
germination,	was	strongly	downregulated	among	the	resistant	individuals	(logFC	=	-8.27).	400 
HUB1	has	been	shown	to	control	chromatin	remodeling	during	seed	development	and	401 
leads	to	alterations	in	seed	dormancy66.		402 

Interestingly,	three	of	these	five	candidate	genes	(AGL61,	CALS2,	HUB1),	and	homologues	of	403 
other	two	(BUD13	and	NFD6)	were	also	significantly	downregulated	in	the	resistant	404 
populations	in	the	presence	of	herbicide	(Supplementary	TableS6).	These	candidate	cost	405 
genes	are	all	essential	for	plant	reproduction	and	are	highly	downregulated	(except	406 
BUD31)	in	the	resistant	population	in	both	the	absence	and	presence	of	the	herbicide,	and	407 
thus	could	potentially	explain	the	phenotypic	costs	of	glyphosate	resistance	in	I.	purpurea	408 
seen	by	Van	Etten	and	colleagues23.	409 

	410 
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Discussion	411 

While	there	is	an	increasing	appreciation	for	the	role	of	nontarget	site	mechanisms	412 
underlying	herbicide	resistance	in	agricultural	weeds12,67–69,	there	are	strikingly	few	413 
comprehensive	whole	genome	assays	of	resistant	weeds	suggesting	that	the	entirety	of	the	414 
NTSR	response	is	rarely	captured.	Our	study	using	a	sequenced	and	assembled	genome,	415 
whole	genome	resequencing	of	natural	populations,	and	a	gene	expression	survey	offers	a	416 
unique	opportunity	to	identify	loci	associated	with	NTSR	and	to	further	investigate	the	417 
evolutionary	forces	that	underlie	the	maintenance	and	expected	evolutionary	trajectory	of	418 
resistance	alleles	in	natural	populations.		419 

Our	results	show	detoxification	underlies	resistance	in	I.	purpurea.	Detoxification	is	420 
hypothesized	to	involve	three	steps	--	uptake	of	the	herbicide	by	phosphate	transporters,	421 
chemical	modification	(i.e.	the	addition	of	an	OH	and	sugar	group	by	cytochrome	P450s	and	422 
glycosyltransferases,	respectively),	and	transport	to	vacuoles	by	ABC	transporters	and	423 
other	sugar	transporters	where	the	molecule	is	stored	and/or	inactivated12,18.	We	found	424 
evidence	of	selection	on	all	genes	involved	in	this	pathway.	We	also	found	evidence	of	425 
selection	(and	in	some	cases,	differential	expression)	of	genes	involved	in	plant	signalling	426 
and	environmental	stress	(i.e.,	serine/threonine	kinases,	ERFs,	E3-Ubiquitin	Ligases,	FRSs,	427 
LOG3,	GT-3B,	TULP5)	as	well	as	genes	involved	in	the	shikimate	acid	pathway	(DHD/SHD).	428 
Our	results	thus	expand	what	we	currently	know	about	the	detoxification	NTSR	mechanism	429 
in	this	species	to	include	plant	signalling	and	stress	responses,	both	of	which	are	either	430 
hypothesized	7	or	shown	to	be	involved	in	herbicide	resistance70–73.	While	we	do	not	431 
currently	have	functional	genomics	resources	for	this	species,	our	study	using	a	432 
cytochrome	P450	inhibitor	verifies	that	resistant	I.	purpurea	individuals	have	the	ability	to	433 
detoxify	the	herbicide.	The	next	step	in	understanding	resistance	in	I.	purpurea	involves	434 
determining	the	contribution	of	each	of	the	candidate	loci	under	selection	(and/or	showing	435 
differential	regulation)	to	both	resistance	and	its	associated	cost.	With	future	development	436 
of	genome	editing	protocols	for	I.	purpurea,	we	will	be	able	to	experimentally	test	the	437 
function	of	loci	hypothesized	to	be	contributing	to	herbicide	resistance.	438 

Due	to	the	involvement	of	multiple	genes	involved	in	the	herbicide	detoxification	pathway,	439 
and	evidence	for	selection	on	regions	of	the	genome	found	on	separate	chromosomes,	we	440 
hypothesized	that	multiple	loci	would	show	evidence	of	ILD,	perhaps	indicating	epistatic	441 
selection	between	alleles	or	co-inheritance.	Our	results	support	this	hypothesis.	Foremost,	442 
in	contrast	to	low	background	ILD,	long-distance	linkage	disequilibrium	and	ILD	were	high	443 
among	intervals	under	selection,	and	consistently	differentiated	between	the	resistant	and	444 
susceptible	types	across	multiple	populations.	The	strongest	linkage	was	observed	445 
between	putative	resistance	genes	that	exhibited	signs	of	selection.	This	linkage	could	446 
quickly	become	very	steep	in	the	presence	of	epistatic	interactions	among	loci74,	as	would	447 
be	the	case	if	genes	underlying	NTSR	worked	in	concert	to	produce	the	resistance	448 
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phenotype.	Indeed,	we	found	high	ILD	values	between	regulatory	regions	and	resistance	449 
alleles,	and	between	intervals	harboring	genes	involved	in	the	same	molecular	pathways	450 
(e.g.	detoxification,	and	stress	signaling	and	response).		451 

Although	linkage	should	become	decoupled	over	time	due	to	recombination	and	gene	flow,	452 
the	ongoing	selection	for	herbicide	resistance	could	slow	down	this	decoupling	between	453 
these	functionally	interacting	genes75.	Even	given	gene	flow	between	these	populations	24,	454 
co-adaptation	and	epistasis	could	lead	to	the	fixation	of	the	resistance	alleles	given	strong	455 
selection76	or	weaker	recombination	rate	77.	Thus,	long-distance	linkage	disequilibrium	and	456 
ILD	aided	with	epistatic	selection	could	act	to	maintain	resistance	through	generations	in	457 
natural	populations.		458 

One	evolutionary	force	that	should	counteract	the	continued	evolution	of	resistance	is	the	459 
potential	for	fitness	costs	of	resistance,	either	due	to	the	pleiotropic	effects	of	resistance	460 
alleles	themselves	or	due	to	negative	fitness	effects	of	loci	that	are	linked	to	resistance	loci.	461 
While	costs	are	central	to	theories	of	resistance	evolution78–81,	there	are	currently	no	462 
examples,	to	our	knowledge,	in	which	the	loci	underlying	fitness	costs	of	nontarget	site	463 
resistance	have	been	identified.	Our	results	suggest	candidate	loci	associated	with	the	464 
previously	identified	cost	of	glyphosate	resistance.	Specifically,	we	found	a	highly	465 
differentiated	region	on	Chr6	that	exhibited	alternate	alleles	in	resistant	and	susceptible	466 
populations,	and	found	this	region	to	contain	loci	required	for	normal	seed	development	467 
and	maturation	(NAC25,	NFD6).	One	of	these	genes,	NFD6,	was	differentially	regulated	in	468 
the	resistant	individuals,	further	supporting	its	role	in	the	low	seed	quality,	and	thus	fitness	469 
cost,	that	we	have	previously	described23.		470 

Additionally,	our	results	strongly	suggest	genetic	hitchhiking	may	act	to	maintain	the	cost	471 
in	this	species.	Both	NAC25	and	NFD6	are	physically	linked	on	chromosome	6	to	the	regions	472 
under	selection	containing	serine-threonine	kinase	genes	and	a	regulatory	region	that	is	473 
itself	exhibiting	ILD	to	the	CYP76A2	gene	on	chromosome	10.	Although	recombination	474 
should	decouple	cost	alleles	that	are	physically	linked	to	resistance	alleles,	these	loci	would	475 
not	completely	decouple	if	the	recombination	rate	(c)	is	much	lower	than	the	selection	476 
coefficient	(s)	(i.e.,	c<<s,82.	The	requirement	that	c<<s	is	not	improbable	given	the	close	477 
proximity	of	cost	and	resistance	loci	(<	85kb)	and	the	strong	ongoing	selection	for	478 
herbicide	resistance.	Furthermore,	if	the	ratio	c/s	<	10-4,	the	hitchhiking	would	almost	be	479 
complete	and	the	cost	alleles	could	become	fixed	in	the	populations83.	Alternatively,	it	is	480 
possible	that	new	compensatory	mutations	arising	in	the	population	could	increase	in	481 
frequency	over	time	due	to	selection,	decoupling	the	cost	and	resistance	alleles	and	thus	482 
reducing	fitness	cost	associated	with	glyphosate	resistance84,85.	483 

Overall,	our	work	identified	the	potential	genetic	basis	of	NTSR	glyphosate	resistance	in	I.	484 
purpurea	--	our	whole	genome	and	transcriptome	assays	strongly	support	the	role	of	485 
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detoxification	conferring	herbicide	resistance	in	this	species,	and	we	additionally	identified	486 
a	role	for	plant	sensing	and	stress	along	with	components	of	the	shikimate	acid	pathway.	487 
Interestingly,	we	show	that	NTSR	glyphosate	resistance	in	I.	purpurea	is	conferred	by	488 
multiple	loci	which	are	maintained	through	generations	via	ILD.	We	also	provide	strong	489 
evidence	to	support	the	idea	that	fitness	costs	may	be	due	to	loci	in	strong	linkage	with	490 
resistance	loci.	Our	work	highlights	the	importance	of	multi-level,	multi-population	study	491 
in	identifying	the	genetic	mechanisms	underlying	polygenic	defense	traits,	and	for	492 
understanding	the	complex	genetic-interplay	between	defense	and	cost.	493 
	494 
Methods	495 
Genome	sequencing,	assembly,	and	annotation:	We	used	an	I.	purpurea	line	originally	496 
sampled	from	an	agricultural	field	in	Orange	County,	NC,	in	1985	by	M.	Rausher	(i.e.,	prior	497 
to	the	widespread	use	of	glyphosate)	and	selfed	for	>18	generations	in	the	lab	for	genome	498 
sequencing	(seeds	of	this	line	‘Fred/C’	are	available	upon	request).	High	molecular	weight	499 
DNA	was	isolated	from	flash-frozen	leaf	tissue	using	a	modified	large-volume	CTAB	500 
protocol86	and	sequenced	on	a	PacBio	Sequel	at	the	University	of	Georgia.	Raw	PacBio	501 
subreads	from	9	cells	of	Sequel	chemistry	were	error-corrected	with	Canu	(v1.7.1)87	with	502 
default	parameters	for	raw	PacBio	reads	(--pacbio-raw).	The	corrected	and	trimmed	reads	503 
from	Canu	were	assembled	with	Flye	(v2.4-release)88	and	anchored	onto	pseudomolecules	504 
by	nearly	81	million	read	pairs	of	Phase	Genomics	Hi-C	(Seattle,	WA)	of	leaf	tissue	using	505 
Sau3AI	cutsites.	Within-genome	and	across-genome	synteny	was	visualized	using	the	CoGE	506 
SynMap	platform89,	with	DAGChainer	options	“-D20	-A	5”,	as	well	as	with	jcvi	with	default	507 
parameters	(https://github.com/tanghaibao/jcvi).	Ipomoea	purpurea	pseudomolecules	508 
were	numbered	and	oriented	according	to	chromosome	synteny	against	Ipomoea	nil	509 
pseudomolecules	(Supplemental	Figure	S2).		510 

Raw	50nt	single-end	RNA-seq	reads	were	aligned	using	STAR	(v.2.7.0)90	with	511 
default	single-pass	parameters.	Repetitive	elements	were	first	annotated	with	512 
RepeatModeler	(v1.0.11).	Long	Terminal	Repeat	(LTR)	retrotransposons	were	annotated	513 
with	LTRharvest	(v1.6.1)	with	options	-similar	85	-mindistltr	1000	-maxdistltr	15000	-514 
mintsd	5	-maxtsd	20”.	RepeatModeler	annotations	were	combined	with	all	Viridiplantae	515 
repeats	from	Repbase	and	used	as	a	species-specific	repeat	database	built	using	516 
RepeatModeler	with	default	options.		517 

Genome	annotation	was	performed	using	a	diverse	set	of	evidence.	First,	a	set	of	12	518 
RNA-seq	libraries	from	leaf	tissue	was	aligned	with	STAR	(v2.7.0),	and	transcripts	519 
assembled	with	Stringtie	(v2.1.3).	MAKER291	was	initially	run	with	evidence	from	the	RNA-520 
seq	alignments,	as	well	as	peptides	from	I.	trifida,	I.	triloba,	and	I.	nil.	The	resulting	gene	set	521 
was	used	to	train	SNAP	(v2013-11-29).	AUGUSTUS	(v3.3.2)	was	trained	with	evidence	from	522 
BUSCO	(v4.1.0)	against	the	eudicot	odb10	set.	with	default	options.	MAKER2	was	re-run	523 
with	the	ab	initio	SNAP	and	AUGUSTUS	training	sets,	in	addition	to	the	homologous	protein	524 
and	RNA-seq	evidence,	to	build	a	final	gene	annotation	set.	525 
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	526 
Sampling	and	sequencing:	We	selected	eight	populations	to	investigate	the	genetic	basis	of	527 
glyphosate	resistance	and	its	cost	following20--	4	low	resistance,	from	here	on	referred	to	528 
as	the	susceptible	population	(S:	<20%	population	survival	at	1X	the	field	dose	of	529 
RoundUp)	and	4	high	resistance	populations	(R:	>70%	population	survival	at	1X	the	field	530 
dose	of	RoundUp),	from	here	on	referred	to	as	the	resistant	populations	(Supplementary	531 
TableS1).	Seeds	from	10	maternal	lines	per	population	were	germinated,	except	for	one	532 
susceptible	population	(RB),	wherein	9	maternal	lines	were	used.	We	extracted	DNA	from	533 
leaf	tissue	using	the	Qiagen	Plant	DNeasy	kit.	150	paired-end	sequencing	was	performed	534 
using	Illumina	HiSeq4000	and	NovaSeq6000	using	three	and	two	lanes,	respectively.	We	535 
sequenced	two	populations	at	high	coverage	(at	least	25X)	and	the	remaining	six	536 
populations	at	low	coverage	(10X).	Two	populations	(WG,	resistant	and	RB,	susceptible)	537 
were	run	on	one	lane	of	HiSeq6000	and	NovaSeq6000	each	whereas	the	other	lane	had	the	538 
remaining	six	populations.	This	yielded	a	total	of	3,300,397,148,700	bases	with	average	539 
coverage	of	28.84X	for	WG	and	RB.	Coverage	of	the	other	six	populations	has	an	average	of	540 
14.66X.		541 
	542 
Variant	calling:	We	aligned	the	reads	to	our	draft	genome	using	BWA	mem	v0.7.1592	with	543 
parameter	-M.	Since	the	same	sample	was	sequenced	using	multiple	platforms	(HiSeq	and	544 
NovaSeq),	the	alignment	files	were	merged	and	duplicate	reads	were	marked	using	the	545 
MarkDuplicate	tool	of	Picard	v2.8.1	(http://broadinstitute.github.io/picard).	Next,	we	546 
prepared	a	database	of	true	known	variants,	required	for	base	recalibration.	This	database	547 
was	created	using	data	from	the	top	eighteen	individuals	with	the	highest	read	counts,	548 
upon	which	variant	call	was	performed	using	the	HaplotypeCaller	tool	of	GATK	v4.193.	Low	549 
confidence	variants	were	filtered	out	using	the	VariantFiltration	tool	of	GATK	v4.193	(15	<	550 
DP	<	60;	ReadPosRankSum	<	-8.0;	QD	<	2.0;	FS	>	60.0;	SOR	>	3.0;	MQ	<	40.0;	MQRankSum	<	551 
-12.5)	and	only	the	high	confidence	variants	were	used	in	the	dataset.	This	was	used	to	552 
recalibrate	base	qualities	using	GATK	v4.1	tools	BaseRecalibrator	and	ApplyBQSR93.	553 
Variants	were	called	individually	on	all	the	individuals	using	the	HaplotypeCaller	tool	of	554 
GATK	v4.193	using	parameters	-ERC	GVCF	--min-pruning	1	--min-dangling-branch-length	1.	555 
The	variants	from	each	individual	were	combined	to	one	variant	file	(a	raw	cohort	variant	556 
file)	using	the	tools	GenomicsDBImport,	GenotypeGVCFs,	and	GatherVcfs93,	with	invariants	557 
included.	Next,	multiple	rounds	of	filtration	were	performed	on	this	variant	dataset	to	filter	558 
out	potential	false	positives.	First,	using	the	GATK	v4.1	tools	VariantFiltration	and	559 
SelectVariants	we	filtered	the	variants	using	the	parameters	QD<1.5,	DP<10	and	DP>2000,	560 
FS>80,	SOR>5,	MQ<40,	MQRankSum<	-6	and	MQRankSum>6,	and	ReadPosRankSum<	-4	561 
and	ReadPosRankSum>	493.	For	the	next	round	of	filtration,	we	removed	variants	that	had	562 
genotype	depth	more	than	twice	the	563 
average	and	heterozygosity	more	than	0.8	using	the	het	packages	from	VCFtools	v0.1.1594.	564 
In	the	third	round	of	filtration,	we	filtered	variants	that	had	quality	above	20,	had	no	565 
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missing	information,	a	minor	allele	frequency	of	0.05,	and	a	minimum	mean	depth	of	10	566 
(vcftools	--minQ	20	--max-missing	1.0	--maf	0.05	--min-meanDP	10)94.	Finally,	we	filtered	567 
using	BCFtools	(v1.7)95	to	keep	only	bi-allelic	SNPs	(bcftools	view	-m2	-M2	-v	snps).	This	568 
gave	us	a	total	of	3,942,549	high	confidence	SNPs.	These	SNPs	were	used	for	downstream	569 
analyses.	570 
	571 
We	performed	a	PCA	analysis	using	the	allele	frequencies	of	all	the	SNPs	to	investigate	the	572 
population	structure	using	the	package	bigsnpr	v.1.4.496	in	R,	and	found	that	the	573 
populations	did	not	segregate	into	two	separate	genetic	clusters	(Supplementary	Figure	574 
S4a-b).	Further,	we	repeated	this	analysis	for	SNPs	from	regions	under	selection	(see	575 
below)	to	test	whether	we	observe	the	same	population	structure	patterns.	We	observed	576 
that	these	separated	into	distinct	resistant	and	susceptible	groups,	with	the	exception	of	a	577 
resistant	population,	BI,	which	clustered	between	the	susceptible	and	other	resistant	578 
populations	(Supplementary	Figure	S4c).	Thus	for	the	purposes	of	this	study,	we	dropped	579 
the	BI	population	from	further	analysis.		580 
	581 
Selection	analysis:	We	split	the	high	confidence	variant	dataset	obtained	into	‘resistant’	and	582 
‘susceptible’	variant	dataset	using	vcf-subset	of	VCFtools	v0.1.1594.	The	‘resistant’	and	583 
‘susceptible’	variant	datasets	contained	30	and	39	individuals,	respectively	(Table	S1).	We	584 
then	used	these	datasets	to	calculate	diversity	and	selection	statistics	GST97,	pi,	Tajima’s	D98,	585 
Fu	and	Way’s	H99	using	a	custom	script	from	100	in	a	300SNP	window,	for	both	the	dataset.	586 
Furthermore,	to	detect	hard	sweep	we	phased	the	variants	using	beagle	version	5.1101	587 
which	was	then	used	to	calculate	the	haplotype	homozygosity	statistic	(H12,	a	measure	of	588 
haplotype	homozygosity	that	detects	both	hard	and	soft	sweeps)	using	the	scripts	589 
provided102.	For	regions	above	95	percentile	GST,	we	calculated	a	composite	rank	based	590 
statistic	(Md-rank-P)	which	was	computed	as	the	Mahalanobis	distance	on	the	negative	591 
log10	transformation	of	raw	statistics	into	rank	P-values103.	This	Md-rank-P	was	calculated	592 
using	pi,	Tajima’s	D,	Fu	and	Way’s	H,	and	H12.	To	identify	potential	regions	of	selection	we	593 
chose	bins	with	greater	than	95	percentile	Md-rank-P.		594 
	595 
Linkage	analysis:	We	calculated	linkage	disequilibrium	(r2)	at	three	different	levels.	First,	to	596 
estimate	the	background	genome-wide	long-distance	(and	interchromosomal)	linkage	597 
disequilibrium	(ILD),	we	calculated	r2	values	for	5842	SNPs	separated	by	at	least	100kb	598 
using	VCFtools	v0.1.1594	(--thin	100000	--interchrom-hap-r2).	Second,	we	estimated	the	r2	599 
for	SNPs	separated	by	at	least	1kb	in	and	between	broad	regions	(0.75Mb	upstream	and	600 
downstream)	around	the	five	focused	regions	(with	GST	>	0.39)	under	selection	using	601 
VCFtools	v0.1.1594.	Lastly,	since	one	would	expect	higher	linkage	between	regions	with	602 
high	differentiation,	we	also	randomly	chose	five	regions	with	high	differentiation	603 
(showing	no	signs	of	selection)	of	similar	lengths	as	the	five	focused	regions	above	and	604 
compared	its	linkage	values	to	those	regions.		605 
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	606 
RNA-Seq:	To	identify	transcripts	associated	with	glyphosate	resistance	and	its	potential	607 
cost,	we	sequenced	transcriptomes	of	17	individuals	belonging	to	four	different	treatments;	608 
resistant	control	(Rc),	susceptible	control	(Sc),	resistant	herbicide	sprayed	(Rh),	and	609 
susceptible	herbicide	sprayed	(Sh).	Each	treatment	had	multiple	individuals	(Rc-2,	Sc-2,	610 
Rh-6,	Sh-7;	Supplementary	TableS2).	The	seeds	were	grown	in	a	controlled	environment	611 
(growth	chamber)	to	reduce	variation	due	to	environmental	differences.	20	days	after	612 
planting,	we	sprayed	glyphosate	(concentration	of	1.52	kg	ai/ha)	on	the	Rh	and	Sh	613 
treatment	plants	and	collected	the	second	and	fourth	leaf	for	RNA	extractions	8	hours	post-614 
spray.	These	were	flash	frozen	using	liquid	nitrogen	and	stored	at	-80℃.	We	extracted	RNA	615 
using	Qiagen	RNeasy	Plant	mini	kit	with	the	optional	DNase	digestion	step.	This	was	then	616 
sequenced	using	Illumina	NovaSeq	6000	at	150bp	paired-end	sequencing.	A	total	of	617 
132,551,535,000	bp	were	obtained.		618 
	619 
Differential	gene	expression	--	We	processed	the	raw	reads	obtained	to	remove	adapters	620 
using	cutadapt	v1.18104	and	then	mapped	them	to	the	de-novo	assembled	genome	(--621 
sjdbOverhang	149	--outSAMtype	BAM	SortedByCoordinate	Unsorted)	using	STAR	v2.7.590.	622 
Next,	using	HTSeq	v0.11.1105,	we	counted	read	counts	for	each	gene.	These	read	counts	623 
were	then	used	to	filter	out	lowly	expressed	transcripts	using	the	Bioconductor	package	624 
edgeR	version	3.18.1106	such	that	transcripts	were	retained	only	if	they	had	greater	than	625 
0.5	counts-per-million	in	at	least	two	samples	(Rc	vs	Sc)	and	four	samples	(Rh	vs	Sh).	The	626 
libraries	were	then	normalized	in	edgeR	(using	the	trimmed	mean	of	M-values	method)	627 
followed	by	differential	gene	expression	analysis	using	the	classic	pairwise	comparison	of	628 
edgeR	version	3.18.1.	We	extracted	the	significance	of	differentially	expressed	transcripts	629 
(DETs)	with	FDR	<=	0.05.	This	was	done	for	two	contrasts,	Rh	vs	Sh	(total	sample	size	=	13;	630 
Rh	=	6,	Sh	=	7)	and	Rc	vs	Sc	(total	sample	size	4;	Rc	=	2,	Sc	=	2).	The	first	contrast	informs	us	631 
of	the	genes	that	are	regulated	in	response	to	the	herbicide,	and	how	this	gene	regulation	632 
differs	between	the	resistant	and	the	susceptible	populations,	whereas	the	latter	informs	633 
us	of	the	baseline	expression	difference	due	to	glyphosate	resistance	between	the	two	634 
populations.	635 
	636 
Malathion	Experiment:	On	May	15th,	2019,	we	planted	a	total	of	180	replicate	seeds	from	637 
multiple	resistant	and	susceptible	populations	(Supplementary	TableS3)	in	Cone-Tainers	638 
(Stewe	and	Sons).	These	were	allowed	to	grow	for	30	days,	after	which	we	subjected	them	639 
to	one	of	the	four	treatment	environments--malathion	(7.81	ml/L	according	to	640 
manufacturer’s	recommendations),	glyphosate	(3.4	kg	ai/ha),	glyphosate	and	malathion,	641 
and	a	control.	Twenty-five	days	post	treatment	spray,	we	recorded	death	as	a	metric	trait	642 
(dead/almost	dead	or	green	and	healthy),	and	harvested	the	plants.	These	were	dried	for	3	643 
days	at	70C	and	weighed	for	an	estimate	of	dry	above	ground-biomass.		644 
	645 
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Using	this	data,	we	assessed	whether	biomass	was	significantly	altered	by	the	different	646 
treatments.	First,	we	normalized	the	above-ground	biomass	using	the	transformTukey	647 
function	from	Rcompanion	v.2.0.0107.	We	then	used	a	generalized	linear	model	(lm	648 
function108	with	as	normalized	biomass	as	the	dependent	variable	and	population	Type	649 
(R/S)	and	treatment	as	the	independent	variables.	We	assessed	the	significance	of	the	650 
variables	using	the	Anova	function	of	the	car	package	v.3.0.10109,	and	performed	a	pairwise	651 
comparison	between	groups	using	the	lsmeans	function	from	package	lsmeans	v2.30.0110,	652 
adjusted	for	multiple	tests	using	tukey	correction.	Using	the	same	general	model,	we	also	653 
compared	whether	biomass	was	significantly	different	between	treatments	for	each	654 
population	type.	To	control	for	the	differences	in	the	plant	size	we	standardized	the	655 
biomass	of	the	individuals	by	the	average	biomass	of	the	respective	maternal	line	in	the	656 
control	treatment,	and	then	normalized	it	as	above.	657 
	658 
Data	Availability	659 
The	datasets	generated	during	and/or	analysed	during	the	current	study	have	been	660 
deposited	in	GeneBank	database	under	the	project	XXX	,	which	are	publicly	accessible	at	661 
XXX.	662 
The	I.	purpurea	genome	assembly	and	annotation	are	available	in	the	CoGe	platform	-	663 
https://genomevolution.org/coge/GenomeInfo.pl?gid=58735	.	664 
	665 
Code	Availability	666 
The	custom	codes	used	in	this	study	are	deposited	in	GitHub	667 
(https://github.com/gsonal802/IP_GS.git).	668 
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