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Abstract 

Spatial genomic technologies can map gene expression in tissues, but provide limited potential for 

transcriptome-wide discovery approaches and application to fixed tissue samples. Here, we 

introduce the GeoMX Whole Transcriptome Atlas (WTA), a new technology for transcriptome-wide 

spatial profiling of tissues with cellular resolution. WTA significantly expands the Digital Spatial 

Profiling approach to enable in situ hybridisation against 18,190 genes at high-throughput using a 

sequencing readout. We applied WTA to generate the first spatial transcriptomic map of the fetal 

human neocortex, validating transcriptome-wide spatial profiling on formalin-fixed tissue material and 

demonstrating the spatial enrichment of autism gene expression in deep cortical layers. To 

demonstrate the value of WTA for cell atlasing, we integrated single-cell RNA-sequencing (scRNA-

seq) and WTA data to spatially map dozens of neural cell types and showed that WTA can be used 

to directly measure cell type specific transcriptomes in situ. Moreover, we developed computational 

tools for background correction of WTA data and accurate integration with scRNA-seq. Our results 

present WTA as a versatile transcriptome-wide discovery tool for cell atlasing and fixed tissue spatial 

transcriptomics. 

 

 

Introduction 

Spatial genomic technologies enable the analysis of the transcriptome and other molecular 

information in situ1. While spatial transcriptomic approaches are generally used to validate 

observations from single-cell RNA-sequencing (scRNA-seq), they can potentially serve as powerful 

discovery tools to explore human tissue architecture and pathology. To discover diverse cell states 

and spatiotemporal gene expression programmes regulating tissue development and function, it is 

essential that spatial technologies assay the whole transcriptome. Similarly, transcriptome-scale 

detection is required to characterise novel pathological processes in patient-derived tissue samples 

in situ. However, many existing spatial transcriptomic technologies are limited in assaying the whole 

transcriptome or poorly compatible with fixed clinical samples. 

Amongst spatial transcriptomic approaches, imaging methods based on cyclic RNA 

hybridisation (e.g. MER-FISH, ISS) can quantify mRNA transcripts at single-cell resolution in tissues, 

but are often limited to a few hundred pre-selected genes2,3. While thousands of transcripts can be 

resolved by performing high numbers of cycles4, the increased imaging time limits assay throughput 

to small tissue areas. Alternatively, spatially resolved RNA-seq methods that utilise array-based 

mRNA capture from tissues (e.g. 10x Visium, Slide-sequencing) can provide unbiased 

transcriptome-wide information at high throughput5–7. However, spatial RNA-seq methods sacrifice 
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cellular resolution as the arrays capture multiple cell types or anatomical structures at each spatial 

position. Moreover, RNA-seq methods are poorly applicable to formalin-fixed paraffin-embedded 

(FFPE) material that constitutes the majority of clinical tissue samples. 

The GeoMx Digital Spatial Profiling (DSP) method combines the strengths of imaging and 

sequencing approaches for spatial transcriptomic analysis8. DSP uses RNA hybridisation probes or 

antibodies labelled with photocleavable next generation sequencing (NGS) indexing tags. These 

indexing tags are captured from specific cell types or regions on tissue sections using microscopy-

guided photocleavage, and quantified using NGS. Hence, DSP achieves high-throughput 

quantification of mRNA targets with cell type resolution. Importantly, DSP works optimally on FFPE 

tissue material owing to probe hybridisation based mRNA detection. However, to date, DSP has 

been used to detect only up to 1,811 genes in a multiplexed manner in situ9–11 which is insufficient 

for unbiased characterization of complex tissues. 

 The fetal human neocortex shows a remarkable degree of spatial cellular organisation that 

underlies cortical development and function. Across the fetal cortex, diverse progenitor and 

differentiating cell types are organised into distinct cellular compartments along the cortical depth12. 

Multiple types of radial glial stem cells and intermediate progenitors reside in the deep germinal 

zones. These neural progenitors generate excitatory neuron and glial subtypes that migrate towards 

the superficial cortical plate and form the six layers of the adult neocortex. Despite extensive 

histological13,14 and scRNA-seq15,16 characterisation of fetal cortical cell types, we lack a 

comprehensive spatially resolved analysis of neocortical cellular architecture. 

 Here, we introduce the GeoMX Whole Transcriptome Atlas (WTA), a new technology for 

transcriptome-wide spatial profiling of fixed tissue samples. WTA significantly expands the DSP 

approach to enable in situ hybridisation against 18,190 genes at high-throughput using a sequencing 

readout. We apply WTA to generate the first spatial transcriptomic map of the fetal human neocortex, 

validating transcriptome-wide in situ profiling of FFPE tissue material and demonstrating the spatial 

enrichment of autism gene expression in deep cortical layers. To demonstrate the value of WTA for 

cell atlasing, we integrate scRNA-seq and WTA data to spatially map dozens of neural cell types. 

Moreover, we present new computational tools for background correction of WTA data and accurate 

integration with scRNA-seq. Finally, we show that WTA can directly measure cell type specific 

transcriptomes in situ. 

 

 

Results 

WTA profiling of the fetal human neocortex 

The WTA technology combines transcriptome-wide in situ hybridisation with a NGS readout to 

quantify spatial gene expression in tissue. To profile specific tissue features (e.g. anatomical regions) 

or cell types in situ, WTA is integrated into the DSP workflow8 (Fig. 1a). First, FFPE tissue sections 

are fluorescently labelled with 8visualisation markers9 via RNA fluorescent in situ hybridisation (FISH) 
or antibody staining select of tissue features or cell types. Second, WTA in situ hybridisation probes 

targeting 18,318 human transcripts (Supp. Table 1) are applied to tissues. Each probe is tagged with 

a photocleavable unique molecular identifier (UMI) for NGS. The WTA panel also includes 138 

negative control probes against ERCC sequences to estimate non-specific probe binding. Third, 

labelled tissue slides are processed on the DSP instrument, whereby users are guided by the 

visualisation markers to photocleave and collect WTA probe tags from selected regions of interest 

(ROIs). These ROIs are flexibly defined to target specific tissue features or cell types via manual or 

automated image segmentation. Finally, the WTA probe UMI counts from each ROI are obtained 

using NGS to provide spatially resolved transcriptome data. 

To validate transcriptome-wide spatial profiling by WTA, we profiled the cellular 

compartments of the developing human neocortex spanning the differentiation trajectory of cortical 
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cells (Fig. 1b). We assayed the temporal neocortex at 16 and 21 gestational weeks (GW), 

distinguishing cellular compartments on FFPE tissue sections based on anatomical landmarks and 

cell markers defined by smFISH: SOX2 labels neural progenitors with an enrichment in the 

ventricular zone (VZ), HOPX marks outer radial glia (oRGs) in the outer sub-ventricular zone (OSVZ), 

and EOMES labels intermediate progenitors (IPs) across both areas17. We profiled segmental bulk 

ROIs along the cortical depth, sampling across the germinal zones and the cortical plate (Fig. 1c-e, 

Supp. Fig. 1). 

Our WTA ROIs ranged between 0.012 and 0.39 mm2 in area and sampled between 35 and 

2,700 cells (median 1,070) as quantified by nuclear segmentation of DSP images (Supp. Fig. 2a). 

We detected the expression of 5,000 to 10,000 genes in the majority of ROIs across our samples 

(Fig. 1f) using a conservative detection threshold based on negative probe counts (Methods). The 

total number of genes detected with WTA was comparable to that previously detected with scRNA-

seq in the mid-gestational cortex16 (Supp. Fig. 2b). The WTA probe counts were highly reproducible 

between different donors (Fig. 1g) and consecutive tissue sections (Fig. 1h). These results show that 

WTA achieves transcriptome wide RNA detection in situ with high reproducibility. 

To determine the sensitivity of WTA for single-cell detection, we profiled different quantities 

of oRG cells from the OSVZ (Fig. 1i). In manually selected single oRG cells, we detected the 

expression of 574 genes per cell on average, these genes overlapped highly with known markers 

obtained from scRNA-seq profiles of oRGs16 (Fig. 1i). Using oRG-specific WTA via image 

segmentation, as introduced in the last results section, we detected more than 3,000 genes when 

profiling 6 or more oRG cells (Fig. 1i). Alternatively, we profiled small bulk ROIs in the VZ, which 

largely consists of ventricular radial glia (vRGs) and developing interneurons. We detected the 

expression of ~4,000 genes, including many vRG and interneuron markers, from as few as 10 cells 

(Supp. Fig. 2c). These data demonstrate that WTA can accurately profile transcriptomes with cellular 

resolution, yet it provides higher sensitivity of detection when several cells are used as input material. 

In the WTA assay, non-specific probe binding and incomplete transcript capture on tissue 

samples can lead to technical noise and obstruct accurate analysis. To estimate and reduce 

technical noise in WTA data, we developed the CountCorrect model (Fig. 1j) (Supp. Methods). 

CountCorrect estimates non-specific probe binding for each gene using a probabilistic generative 

model based on the negative control probes, analysis of which reveals that probe counts: (1) strongly 

correlate with total numbers of transcripts in a given ROI (⍴  = 0.91, s.d. = 0.046); and (2) vary per 

probe (Supp. Methods). CountCorrect estimates incomplete transcript capture (sampling noise) 

using a Poisson model and it infers specific probe binding, which is assumed to represent true gene 

expression (biological signal), using non-negative matrix factorisation (Supp. Methods). 

Applied to our developing brain WTA data, CountCorrect noise estimates varied per gene 

and distributed slightly above the mean count of negative probes (Fig. 1j). CountCorrect removed 

57% of WTA probe counts on average across all genes, compared to 42% of counts that would be 

removed by the naive strategy of subtracting the average negative probe counts from each gene. To 

validate these results, we compared corrected WTA gene expression patterns to scRNA-seq 

measurements16. Reassuringly, 180 of the 200 most corrected genes (i.e. largest percentage of 

counts removed) in WTA data had low or no expression detected by scRNA-seq, and only 20 showed 

considerable expression (Supp. Fig. 2d, Supp. Table 1). In contrast, use of the naive correction 

strategy resulted in 55 genes with considerable expression in scRNA-seq data (Supp. Fig. 2d). 

Furthermore, we considered known cell type markers with moderate expression levels such as 

TBR1, CX3CR1 and CLDN5 (Supp. Fig. 2e) and found that their estimated background was lower 

than the average negative probe counts. Collectively, these observations suggest that CountCorrect 

estimates accurately reflect the underlying gene expression signal and provide a more robust 

approach to remove noise from WTA than naive strategies. Thus, for the remainder of this 

manuscript corrected counts are used, unless otherwise stated.  
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Figure 1: WTA in the fetal human brain. 

a, NanoString WTA experimental workflow. 

b, Diagrams illustrating the cellular architecture of the developing temporal neocortex. 

c-e, Experimental design shown for one 21 GW case. c, Fetal brain section stained for canonical cell type 

markers with RNAscope smFISH. White box shows the area enlarged in d. d, WTA bulk ROIs spanning the 

cellular differentiation and migration trajectory from the ventricle to the cortical plate. e, Close-up views of one 

strip of ROIs across the cortical depth.  
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f, Gene expression detection sensitivity in bulk ROIs. A limit of detection (LoD) threshold, defined for each ROI 

as the mean plus 2 standard deviations of the negative probe counts, was used. The two ROIs with lowest 

gene counts are from the subplate, which is more sparsely populated with cells than other tissue areas. 

g, Biological reproducibility, comparing transcriptome-wide expression between the most superficial cortical 

plate ROI in two 21 GW cases.  

h, Technical reproducibility, comparing transcriptome-wide expression between the most superficial cortical 

plate ROI in two adjacent sections of the same 21 GW case.  

i, Low input and sc-WTA. oRG cells marked by SOX2 and HOPX RNAscope smFISH, were targeted by ROIs 

of differing sizes in the OSVZ in order to assess detection sensitivity near and at single-cell level. (Top) across 

the range of 1-130 cells, the number of genes detected is correlated with the number of cells targeted. Even 

in single oRG cells (red arrow) (example images at bottom), 300-1200 genes were detected per cell: (Middle, 

left) violin plot showing number of genes detected, using the same LoD as in f. (Right) violin plot showing 

proportion of genes detected that were expressed in a scRNA-seq reference oRG transcriptome. Horizontal 

lines show quartiles. 

j, CountCorrect noise removal model, which separates WTA counts into biological signal and technical noise. 

Shown is the relationship between total counts for a gene and counts assigned to background, compared to 

the average negative probe counts.  

Scale bars: 5 mm (c), 2 mm (d), 1 mm (e, top panel), 50 μm (e, bottom panels), 10 μm (i). 
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Spatial mapping of cellular compartments and autism genes 

Next, we sought to validate whether WTA accurately maps spatial gene expression patterns in the 

fetal neocortex. Initially, we examined canonical marker genes for cell types known to be localised 

to different cellular compartments16,17. WTA recapitulated the known spatial expression patterns of 

cell type markers across bulk ROIs along the cortical depth (Fig. 2a, Supp. Fig. 3). In the germinal 

zones, the markers of vRG cells (HES1, CRYAB) were highly enriched in the VZ, while oRG markers 

(HOPX, PTN) were enriched in the OSVZ. Intermediate progenitors (IP) are present throughout the 

VZ-OSVZ and their markers were elevated in these compartments relative to the cortical plate. 

Markers of developing interneurons (DLX2) that are born in the ventral telencephalon and migrate 

into the neocortex through the deep germinal zones were observed in the VZ-ISVZ, while markers 

of mature interneurons (GABRB3) were enriched in the cortical plate. Maturing excitatory neuron 

markers (SATB2, SYT4) were detected along their migration path from the germinal zones into the 

cortical plate. In the superficial cortex, markers of subplate neurons (CRYM, TBR1) and deep 

excitatory layer neurons (SOX5, BCL11B) were localised to their respective compartments. Finally, 

we observed the major classes of glial cells previously reported at this stage, oligodendrocyte 

precursors (OLIG2)18 and microglia (AIF1)19, as well as endothelial cells (CLDN5) and pericytes 

(RGS5). Collectively, these observations show that WTA accurately resolves spatial gene 

expression in situ.  

We then examined whether WTA can discover spatial gene expression patterns and cellular 

compartments in an unbiased manner. We used SpatialDE20 to identify and cluster spatially varying 

genes into patterns across cortical bulk ROIs. SpatialDE analysis successfully resolved spatial gene 

expression clusters from WTA data corresponding to cellular compartments and their resident cell 

types in the neocortex (Fig. 2b, Supp. Fig. 4). A cluster spatially enriched in the VZ (module 6) 

expressed marker genes for vRGs and interneurons, while OSVZ clusters (modules 1 and 3) 

contained markers of oRGs and IPs. Clusters mapping to the subplate and deep cortical layers 

(modules 5 and 7) expressed matching neuronal subtype markers (Fig. 2b). These results show 

WTA data enables unbiased discovery of spatially variable genes and automated mapping of tissue 

regions. 

Finally, we applied WTA to spatially localise disease-related gene expression in the 

developing cortex. While previous studies have utilised bulk RNA-sequencing to identify the 

convergent expression of genes linked to autism spectrum disorder (ASD) in deep layer neurons21, 

the spatial expression pattern of most ASD genes has not been validated in situ. Here, we examined 

our WTA data to map the spatial expression of 102 ASD genes derived from a recent exome 

sequencing study22 in bulk ROIs across cortical depth. To provide ASD-specific context, we also 

examined the spatial expression of genes linked to brain size23 and IQ24, and a comprehensive set 

of neurodevelopmental disorder (NDD) genes25. The relative expression of each gene set (i.e. the 

expression mean of the gene set divided by the mean of all detected genes) showed that ASD gene 

expression was highly enriched in the sub- and cortical plate (Fig. 2c). While brain size and NDD 

genes were modestly enriched in deep and upper cortical plate, respectively, ASD genes significantly 

peaked in deep cortical layers with 50% higher expression than expected for a randomly chosen 

detected gene at both 16 and 21 GW (Fig. 2c, Supp. Fig. 5). These results provide the first high-

throughput spatial validation of ASD gene convergence in deep cortical layers and demonstrate the 

potential of WTA for mapping disease gene expression in situ.  
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Figure 2: WTA accurately maps spatial cell type markers and autism-related gene expression in the 

fetal cortex. 

a, z-scored expression of canonical cell type markers in bulk ROIs across the depth of the temporal cortex, 

shown for one technical replicate of 21 GW case 1.  

b, Modules of spatially varying genes identified with SpatialDE using both technical replicates of 21 GW case 

1. Three out of 12 modules are shown here. Highlighted in each are cell type markers showing the alignment 

of the expression profiles of these modules with known cortical compartments and resident cell types, namely: 

vRGs and interneurons in VZ; oRGs in OSVZ; and subplate and deep cortical neurons in SP-CP. Shown in 

light grey are 70 other genes in each module. 

c, Enrichment of ASD gene expression in subplate and deep cortical layers, using both technical replicates of 

21 GW case 1. The average expression of four gene sets - ASD22, brain size23, IQ24, and all 

neurodevelopmental disorders25 - was divided by the average expression of all genes in each ROI to obtain a 

relative expression score and spatial enrichment patterns for each. LoD was calculated by the mean plus 2 

standard deviations of the negative probe counts (10,653 genes total).  
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WTA and scRNA-seq integration maps cell types at scale 

Spatial mapping of resident cell types across complex tissues can offer new perspectives 

into cellular signalling, tissue development and function. The integration of single-cell and spatial 

transcriptomic data, where cell types are defined using scRNA-seq and then resolved across 

spatially assayed tissue locations, offers a scalable workflow to map cell types in situ26–28.  

Here, we sought to resolve cell types in WTA data and map their spatial distribution in the 

developing human neocortex. We computationally integrated our WTA dataset with a scRNA-seq 

reference of the mid-gestation human neocortex16 using the cell2location model27. (Fig. 3a, Supp. 

Fig. 6a). We derived reference cell type signatures from the scRNA-seq study, using the average 

gene expression profiles of annotated cell type clusters16. We then utilised cell2location to 

decompose the WTA transcript counts into these reference signatures, thereby estimating the 

abundance of each cell type in each ROI. To account for the noise in WTA data, we incorporated 

CountCorrect-based background correction into the cell2location model (Supp. Methods). The 

extended cell2location-WTA model spatially mapped cell types with higher accuracy than the original 

model, providing improved enrichment of cell types to their known cellular compartments (Supp. Fig. 

6b).  

Initially, we examined the spatial mapping of the 16 broad cell types annotated in the scRNA-

seq reference16. cell2location-WTA accurately mapped these broad cell types in the temporal 

neocortex at both 16 and 21 GW (Fig. 3b). vRG and oRG cells were mapped to the VZ and OSVZ 

respectively, while IPs and cycling progenitors (PgS, Pg2M) were located across the germinal zones. 

Interneurons (InCGE, InMGE) were enriched in the VZ-ISVZ. Excitatory neurons were also mapped 

accurately: newly born (ExN), maturing (ExM), maturing deep (ExDp1,2) and upper (ExM-U) layer 

excitatory neurons were positioned along the cortical depth according to their differentiation stage 

and laminar destinations. Moreover, we could detect changes in cell abundance across age (Fig. 

3b), as there were higher numbers of interneurons and differentiated excitatory neurons in the 

cortical plate at 21 GW, consistent with increased neuronal accumulation across fetal development12. 

Next, we used cell2location-WTA to map fine-grained cell subtypes in WTA data. This 

mapping resolved the spatial positions of 78 progenitor and neuronal subtypes annotated in the 

scRNA-seq reference16, assigning them to expected cellular compartments (Supp. Fig. 7). Amongst 

progenitors, mitotic and early differentiated vRG subtypes were mapped to the ventricular surface 

and adjacent areas in VZ, respectively (Fig. 3c), consistent with previous observations29 and smFISH 

validation (Fig. 3d). In contrast, more differentiated vRGs expressing neuronal markers16 were 

positioned away from the ventricle (Fig. 3c). Amongst neuronal subtypes, differentiating interneurons 

(InMGE_0,3) were located in the VZ-ISVZ while more mature PV and SST interneurons (InMGE_6,7) 

were mapped to the cortical plate (Fig. 3e). Deep layer excitatory neuronal subtypes annotated as 

subplate, layer 5/6 and layer 4/5 populations were also accurately mapped across cortical depth 

(Fig. 3e).  

Finally, we could also resolve the migration order of fine neuronal subtypes into the cortical 

plate. While it is well known that deep and upper layer excitatory neurons are sequentially generated 

over development and that they subsequently migrate into the cortical plate30, the precise migration 

order of fine subtypes within each lamina is less well characterised. We found that amongst maturing 

excitatory (ExM-U) neurons, layer 5/6 (ExM-U_4) and 2/3 (ExM-U_0,1) subtypes were observed at 

the cortical plate at 16 GW, while two distinct layer 2-4 subtypes (ExM-U_2,3) were observed only 

later at 21 GW (Fig. 3e), indicating their sequential migration order. Taken together, these results 

demonstrate that the integration of WTA and scRNA-seq can spatially map cell types at scale and 

resolve the locations of closely related subtypes in situ.   
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Figure 3: Spatial mapping of cortical cell types using integration of WTA and scRNA-seq data. 

a, cell2location-WTA workflow for spatial mapping of cell types illustrating the integration of WTA with a scRNA-

seq reference dataset of the developing cortex.  
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b, Spatial maps of broad cell types across the depth of the temporal cortex at 16 and 21 GW. 15,136 genes 

shared between the WTA and the scRNA-seq reference datasets were used for mapping, without prior marker 

selection. cell2location-WTA was used to estimate the absolute numbers of each cell type within each ROI, 

which were used to plot cell density per mm2 of tissue.  

c, Spatial mapping of mitotic and differentiating vRG cell states within the VZ-ISVZ. 

d, Validation of the ventricular localisation of mitotic vRGs by RNAscope smFISH. Histogram shows the 

quantification of MKI67+ VIM+ cells across indicated depth bins (white dashed lines) throughout the germinal 

zones. Scale bars, left 100 μm, right 10 μm. 
e, Mapping of neuronal subtypes reveals spatial localisation differences that reflect developing organisation of 

cortical layers and differentiation timing.  
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Cell type-specific WTA profiling 

The DSP technology can target specific cell types via image segmentation of fluorescent 

visualisation markers and spatially precise photocleavage of probe barcodes8. Here, we tested 

whether WTA can accurately capture cell type-specific transcriptomes in situ by profiling two different 

fetal neocortical progenitor populations, outer radial glial stem cells (oRGs) and intermediate 

progenitors (IPs). After WTA probe hybridisation and visualisation marker imaging, we used image 

segmentation to identify HOPX+ and EOMES+ areas of interest (AOIs) corresponding to the cell 

bodies of oRGs and IPs, respectively, in segmental ROIs across the 16 and 21 GW germinal zones 

(Fig. 4, Supp. Fig. 8). We sequentially collected WTA probe tags from the HOPX+ and EOMES+ AOIs 

within each ROI, as well as <reference rings'' surrounding the segmented cells and the residual area 
to assess the accuracy of cell type profiling (Fig. 4a). To facilitate comparison of cell type-specific 

and bulk WTA profiling, we placed segmented ROIs adjacent to those used for bulk profiling earlier 

in our study (Fig. 4a, Supp. Fig. 8a-b).  

The cell type-specific AOIs contained an estimated 100 to 400 nuclei each, where we 

detected the expression of 4,000-8,000 genes per AOI using a negative probe count based threshold 

(Fig. 4b). We employed the non-parametric Wilcoxon test to identify 542 differentially expressed 

genes between HOPX+ and EOMES+ AOIs processed by CountCorrect (Fig. 4c). In contrast, the 

same test applied to HOPX+ and EOMES+ clusters from the scRNA-seq data16 revealed 4,155 

differentially expressed genes. Comparison of the two sets revealed 343 genes in common, including 

many known cell type markers (Fig. 4c). Closer inspection of the genes that were identified as 

differentially expressed in scRNA-seq but not WTA revealed their enrichment in the relevant cell type 

specific AOI in WTA data (Fig. 4c, small panels). Finally, we identified fewer genes when we applied 

the same differential expression test to uncorrected WTA data (175 genes) and data corrected by 

subtracting the mean expression of negative probes (414 genes) (Supp. Fig. 9). Taken together, 

these results suggest that cell type profiling by WTA is consistent with scRNA-seq and is improved 

by CountCorrect.  

To further assess the cell-type specificity of WTA profiling, we quantified the cell type 

composition of our AOIs (HOPX+, EOMES+, reference rings, residual) and bulk ROIs using 

cell2location-WTA (Fig. 4d, Supp. Fig. 8c). Relative to bulk ROIs, HOPX+ AOIs were highly enriched 

for oRGs (11.6-fold), while EOMES+ AOIs contained elevated numbers of IPs (3.3-fold enrichment) 

and the related cycling progenitor subtypes PgS and PgG2M (6.1-fold, 5.4-fold). Consistently, the 

targeted cell types were depleted from the corresponding opposite segmental AOIs as well as the 

reference rings and the residual AOI space. While HOPX+ and EOMES+ AOIs were enriched to a 

lesser degree for maturing excitatory neurons and vRGs respectively (Fig. 4d), likely due to the 

challenging nature of segmentation in the densely packed germinal zones, the high level of 

enrichment for targeted cell types demonstrates that WTA can be used to capture transcriptomes 

from specific cell populations in situ.  

Finally, to assess whether WTA can be used to explore cell-cell communication, we 

examined whether it can validate the extracellular receptor-ligand interactions involving oRGs and 

IPs extracted from scRNA-seq data by the CellPhoneDB algorithm31. The majority of receptors and 

ligands expressed in oRG and IP clusters in scRNA-seq data16 were also detected in their respective 

WTA AOIs (Supp. Fig. 10a, Supp. Table 3). Focusing on oRGs, we found that the majority (113/124) 

of oRG-specific interactions identified in scRNA-seq data were also detected in WTA data (Supp. 

Fig. 10b), where the oRG receptors/ligands were expressed in HOPX+ AOIs and their interaction 

partners were expressed in HOPX- <background= AOIs in a complementary manner. These included 

previously documented interactions such as LIF-LIFR, PTN-PTPRZ1 and FGF2-FGFR217. Finally, 

we were able to validate interactions such as that between oRG-expressed HBEGF and interneuron-

expressed ERBB4 with RNAscope (Supp. Fig. 11a-b), which had not been mapped in situ previously. 

Overall, this shows that WTA can be used to comprehensively screen cell-cell interactions. 
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Figure 4: Cell type-specific WTA profiling. 

a, GeoMX custom image segmentation strategy. Bulk ROIs were segmented into cell type-specific masks on 

the basis of intensity thresholding of RNAscope smFISH staining. Rings of 5 μm radius surrounding masked 
cells provide a reference to assess efficiency and specificity of mask-oriented photocleavage. Scale bars, left 

2 mm, middle 1 mm, right 100 μm. 
b, Gene expression detection sensitivity in segmented AOIs for both technical replicates of 21 GW case 1. 

LoD was defined as the mean plus 2 standard deviations of the negative probe counts in an AOI, calculated 

using log2 counts. 

c, (Left) differential expression analysis between HOPX+ and EOMES+ AOIs using the nonparametric Wilcoxon 

Rank Sum test on corrected counts returns 542 genes (FDR < 0.05). (Right) position of oRG and IP markers 

from scRNA-seq16 showing their enrichment in HOPX+ and EOMES+ AOIs, respectively.  

d, Analysis of AOI cell composition by cell2location-WTA indicates strong enrichment of targeted cell 

populations: oRGs in HOPX+ AOIs; and IPs, PgS and PgG2M in EOMES+ AOIs. Shown is the mean 

decomposition of ten segmented ROIs for one technical replicate of 21 GW case 1, relative to neighbouring 

bulk ROI data. The two most superficial HOPX+ AOIs were excluded due to the lack of HOPX+ oRGs in the 

VZ.  
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Discussion 

Transcriptome-wide spatial profiling promises valuable insights into tissue architecture in health and 

disease. Here, we presented the NanoString WTA technology that can spatially resolve the 

expression of over 18,000 genes on fixed tissue samples. We demonstrated that WTA enables 

unbiased in situ identification of spatial gene expression patterns, including that of disease-related 

genes and cell-cell signalling molecules. Furthermore, WTA can be integrated with single-cell 

transcriptomics to comprehensively map fine cell types across complex tissues. Hence, the assay is 

not limited to the spatial validation of predefined cell type or disease biomarker panels and WTA can 

be employed as a discovery tool for cell atlasing and pathology.  

We demonstrated diverse spatial transcriptomic applications of WTA, ranging from profiling 

large tissue compartments to single cells. While most spatial RNA-seq methods require profiling 

whole tissue sections in a gridded manner, the DSP methodology allows WTA to target tissue areas 

of diverse shapes or sizes or specific groups of cells. Here, we illustrated WTA profiling of segmental 

tissue regions to map tissue atlases at a coarse spatial resolution. We also demonstrated that WTA 

can capture cell type specific transcriptomes. In particular, cell type specific WTA can be readily 

applied as a discovery tool for pathology, where many cellular targets such as immune or tumor 

subtypes can be reliably identified by few biomarkers. This approach can also selectively profile the 

full transcriptomes of disease-relevant cell types at a lower cost than grid-sequencing entire tissue 

sections.  

We validated WTA in the developing human brain, creating the first spatial transcriptomic 

map of the fetal temporal cortex. There are several promising future directions for WTA profiling in 

developmental neuroscience. WTA can be scaled to profile multiple brain regions throughout 

embryonic and postnatal life, creating a spatial atlas of human brain development that could be 

readily integrated with scRNA-seq datasets15,32. Our spatial risk gene enrichment approach can also 

be extended accordingly to identify regional neural circuits or developmental stages relevant to the 

aetiology of neurodevelopmental disorders such as autism. Furthermore, WTA can be applied to 

archival tissue samples to identify cell type-specific aberrations in neurodevelopmental disorders. 

Similar to other genomic technologies, WTA experiments contain measurement noise. To 

de-noise WTA data, we formalised the generative process of WTA experiments in a statistical model 

called CountCorrect. This approach enabled us to control for these noise sources in downstream 

analyses and improve the identification of differential gene expressed genes and cell type 

decomposition. We envision that the statistical approach in CountCorrect could also be used in other 

high-throughput probe based technologies, such as in situ sequencing3.  

To accurately map cell types in WTA data, we incorporated CountCorrect into the 

cell2location spatial mapping algorithm27. The resulting cell2location-WTA model provides a scalable 

workflow to integrate scRNA-seq and WTA data and estimate the abundance of individual cell types 

in bulk or segmented WTA datasets. Hence, our approach can be applied to coarse spatial resolution 

WTA data, such as that from large tissue compartments, to map tissue atlases with higher cell type 

resolution.  

Our cell2location-WTA workflow offers several benefits as demonstrated in our human brain 

data. First, it provides a Bayesian framework to accurately map complex tissues with dozens of cell 

types and allows to distinguish fine-grained subtypes with subtle transcriptional differences. Second, 

it incorporates CountCorrect to accurately model the measurement sensitivity of WTA experiments 

and improve cell type mapping. Third, in addition to estimating cell proportions, it enables us to 

estimate absolute cell abundance. Finally, cell2location-WTA is computationally efficient and allows 

use of the full transcriptome WTA data without prior gene selection for spatial mapping. Hence, we 

expect cell2location-WTA will be applied to comprehensive tissue atlasing as well as clinical 

research where it can spatially resolve cellular changes in pathological conditions.  
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We envision future developments of CountCorrect to further improve noise removal and cell 

type mapping in WTA data. We also expect more robust models for analysing cell type specific WTA 

data that can yield more differentially expressed genes akin to scRNA-seq observations. In addition, 

as more WTA datasets become available, batch correction approaches will be required to combine 

data for unified analysis. 

Importantly, future work can integrate the image and transcriptome data from WTA 

measurements to correlate tissue and cell morphology with gene expression profiles. This can 

provide valuable insights into tissue development and function, and help identify molecular 

processes that organise tissue architecture. Furthermore, it could identify morphological correlates 

of molecular disease signatures and thus generate imaging biomarkers to inform about a patient9s 
disease state from imaging data alone. 

In summary, we presented WTA as a versatile transcriptome-wide discovery tool for cell 

atlasing and fixed tissue spatial transcriptomics. We expect WTA to be widely applicable to tissue 

mapping and analysis of clinical tissue samples.  

 

 

Methods 

Human tissue 

Formalin-fixed paraffin-embedded (FFPE) blocks of second trimester human fetal brain were 

obtained from the Human Developmental Biology Resource, Newcastle, UK (REC 18/NE/0290). 

 

RNAscope in situ hybridisation 

Sections were cut from FFPE blocks at a thickness of 5 μm using a Leica microtome, placed onto 
SuperFrost Plus slides (VWR), and baked overnight at 55°C to dry and ensure adhesion. Tissue 

sections were then processed using a Leica BOND RX to automate staining with the RNAscope 

Multiplex Fluorescent Reagent Kit v2 Assay (Advanced Cell Diagnostics, Bio-Techne), according to 

the manufacturers9 instructions. Automated processing included baking at 60°C for 30 minutes and 
dewaxing, as well as heat-induced epitope retrieval at 95°C for 15 minutes in buffer ER2 and 

digestion with Protease III for 15 minutes. 

For visualising markers prior to NanoString GeoMX profiling, 3-plex RNAscope was 

developed using tyramide signal amplification with Opal 570, Opal 620, and Opal 690 dyes (Akoya 

Biosciences). No nuclear stain was applied at this stage. 

For validation staining, 3-plex or 4-plex RNAscope stains were developed using Opal 520, 

Opal 570, and Opal 650 dyes (Akoya Biosciences), as well as TSA-biotin and streptavidin-

conjugated Atto 425 (Sigma). Nuclei were counterstained with DAPI at 167 ng/ml. 

 

Confocal imaging 

Imaging of validation RNAscope-stained slides was performed using a Perkin Elmer Opera Phenix 

High-Content Screening System, in confocal mode with 1 μm z-step size, using 20× (NA 0.16, 0.299 

μm/pixel) or 40× (NA 1.1, 0.149 μm/pixel) water-immersion objectives. Channels: DAPI (excitation 

375 nm, emission 435-480 nm), Atto 425 (ex. 425 nm, em. 463-501 nm), Opal 520 (ex. 488 nm, em. 

500-550 nm), Opal 570 (ex. 561 nm, em. 70-630 nm), Opal 650 (ex. 640 nm, em. 650-760 nm). 

 

GeoMX Whole Transcriptome Atlas slide preparation 

In addition to the use of RNase-free reagents, surfaces, equipment, and staining containers were 

cleaned using RNase AWAY Surface Decontaminant (Thermo Scientific) throughout slide 

processing. 

Following RNAscope staining, slides were processed according to the NanoString GeoMX 

RNA assay protocol (MAN-10087-02). Sections were briefly rinsed in nuclease-free water, and then 
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post-fixed in 10% neutral-buffered formalin for 5 minutes. Fixation was quenched by incubation in 

0.1 M glycine, 0.1 M Tris, twice for 5 minutes each, followed by 5 minutes washing in PBS, whereafter 

probes were applied immediately, again according to the assay protocol. 

The Whole Transcriptome Atlas (WTA) probe reagent (For Research Use Only) was diluted 

in pre-equilibrated buffer R to a final probe concentration of 4 nM and added to each slide, which 

was covered with a Hybrislip cover (Grace Bio-Labs) and incubated for 15 hours at 37°C in a HybEZ 

II System, humidified with 2× SSC (saline-sodium citrate) buffer. The following day, slides were de-

coverslipped by brief rinsing in 2× SSC with 0.05% Tween-20, and then washed twice for 25 minutes 

each in 2× SSC, 50% formamide at 37°C, and twice for 5 minutes each in 2× SSC at room 

temperature. 

Following washing, slides were counterstained with the DNA dye SYTO13. A SYTO13 stock 

(5 μM) was clarified by centrifugation at 13,000 g for 2 minutes, and then diluted to 500 nM in buffer 
W prior to staining in the dark for 30 minutes. Finally, slides were washed twice for 3 minutes each 

in 2× SSC buffer. 

 

GeoMX ROI collection and segmentation 

Slides were covered with buffer S and loaded into the GeoMX DSP instrument. Regions of interest 

(ROIs) were selected using the polygon tool; a subset of annotated ROIs were then exported for cell 

segmentation. 

ROIs were segmented into AOIs (areas of interest) based upon staining for the intermediate 

progenitor marker EOMES and the outer radial glia marker HOPX, using a custom Rare Cell ImageJ 

script applied independently to the two respective image channels. The resulting masks were 

combined and then used to produce the reference ring and residual masks using a custom Contour 

ImageJ script. At the time of experimentation, the script did not support segmentation of multiple 

populations. As a result, the independent population masks were combined in Adobe Photoshop 

using Exclude and Subtract layering to remove any minor regions of overlap, which would prevent 

import into the GeoMX DSP. 

Following collection of sequencing tag-containing aspirates, wells were dried either at room 

temperature overnight or at 65°C for 45 mins in a heating block, and then re-suspended in 10 μl of 
nuclease-free water (Ambion), in order to minimise any differences due to ambient evaporation. 

 

Library preparation and sequencing 

ROI-derived oligos were each uniquely dual-indexed using the i5 x i7 system (Illumina). A 4 μl aliquot 
of each re-suspended ROI aspirate containing the photocleaved oligos was amplified in a PCR 

reaction containing 1 μM i5 and i7 primers and 1× NSTG PCR Master Mix. UDG digestion was carried 

out at 37°C for 30 min, and then deactivated at 50°C prior to denaturation at 95°C for 3 minutes, and 

18 cycles of amplification: 95°C for 15 seconds, 65°C for 1 minute, 68°C for 30 seconds. Final 

extension was conducted at 68°C for 5 minutes. 

Prior to purification, PCR reactions were pooled into two mixtures, separating 8large9 and 
8small9 ROIs. The large pool included geometric ROIs (excluding the sensitivity-assaying series 

featured in Supp. Fig. 2c) and the residual area from segmented ROIs. The small pool included all 

EOMES+ and HOPX+ segmented populations, associated reference rings, and the small geometric 

ROIs omitted from the large pool. The two pools of PCR reactions were each purified with two rounds 

of AMPure XP beads (Beckman Coulter) at 1.2× sample volume of beads. 

Large-ROI and small-ROI libraries were quantified using an Agilent 2100 Bioanalyzer and 

High Sensitivity DNA Kit; integration of the 161 bp amplicon peak indicated concentrations of 13 nM 

and 21 nM, respectively. The libraries were pooled in a biased manner designed to target the large 

ROI pool with two-thirds of reads, and sequenced with 50PE reads across both lanes of an Illumina 

NovaSeq 6000 S2 flow cell at a concentration of 400 pM, with 5% PhiX spike-in, yielding 2.4 billion 

reads. 
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NanoString GeoMX data processing 

DSP sequencing data were processed with the GeoMx NGS Pipeline (DND). After sequencing, 

reads were trimmed, merged, and aligned to a list of indexing oligos to identify the source probe. 

The unique molecular identifier (UMI) region of each read was used to remove PCR duplicates and 

duplicate reads, thus converting reads into digital counts. 

 

Number of detected genes 

The limit of detection (LoD) in an ROI was defined based on the mean and standard deviation (s.d.) 

of log2-normalised negative probe counts. On the log scale the calculation is: LoD = mean + (2 × 

s.d.). For the raw negative probe counts this corresponds to: LoD = mean × s.d.2. We used this LoD 

threshold to produce Figures 1f,i. To count the total number of detected genes in cortical tissue 

across geometric ROIs at 21 GW, we used all geometric ROIs from biological case 1, as well as 16 

cortical ROIs from case 2. A gene was counted as detected only if it exceeded the LoD in at least 3 

of those ROIs. For the interaction analysis in AOIs and Supp. Fig. 10a, we similarly counted a gene 

as detected only if it exceeded the LoD threshold in at least 3 AOIs out of all HOPX+ and EOMES+ 

AOIs. 

A gene was counted as detected in the reference scRNA-seq dataset, if its average UMI 

counts exceeded 0.02 in a cell type cluster. We used this threshold to count the total number of 

detected genes in the dataset, as well as the receptor/ligand genes detected for Supp. Fig. 10a. 

 

Reproducibility 

To calculate technical and biological reproducibility in ROIs for Fig. 1g-h, we chose the most 

superficial geometric ROI in the cortical plate on all slides. The Pearson correlation values were 

calculated on log2 counts-per-million (CPM). To calculate the reproducibility of AOIs in Supp. Fig. 

8d, we chose the second to outermost AOI on the chosen trajectory, at approximately cortical depth 

0.3. Again, Pearson correlation values were calculated on log2 CPM. 

 

Corrected counts, Standardised counts (z-score), relative expression 

Excluding the results in Fig. 1 and Supp. Fig. 8d, all analysis was carried out using the corrected 

counts from CountCorrect as a starting point (see Supp. Methods). 

We calculated standardised counts/z-scores for Fig. 2a-b using the z-score function in the 

scipy.stats package. For each calculation we included samples from the same ventricular zone to 

cortical plate trajectory. The basis for the calculation was log2 counts-per-million. We took the mean 

of the standardised counts for Supp. Fig. 5a. 

Relative expression for Fig. 2c and Supp. Fig. 5a was calculated as the ratio between mean 

CPM of genes in the relevant gene set and mean CPM of all detected genes on the chosen strip of 

21 GW AOIs on both technical replicates. 

 

Spatially varying genes and gene clusters 

We used the NaiveDE and SpatialDE python package to obtain significantly varying genes and 

cluster them into patterns. Following the spatialDE workflow, ROI counts were first stabilised using 

the NaiveDE <stabilize= function, followed by normalisation for the total number of counts in an ROI 

using the NaiveDE <regress_out= function. Finally, spatially varying genes were obtained using the 
SpatialDE <run= function. This identified 4,303 spatially varying genes with a q-value below 0.05. We 

chose to cluster all genes with at least moderate evidence of spatial variation (16,161 genes with 

SpatialDE qval < 0.5) into patterns using SpatialDE <spatial_patterns= function, with the length scale 
parameter <l= set to 0.9. This cutoff of qval < 0.5 for clustering, was taken from the main SpatialDE 

tutorial on github. We set the <expected number of patterns parameter= to 3, 5, 7, 10, 12 and 15 
patterns in exploratory analysis. After inspecting the results, 12 patterns were chosen as the most 

detailed and representative of tissue biology based on our prior knowledge of cell type numbers and 
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positioning in the developing cortex. Two of the 12 patterns were removed from further analysis. The 

first one contained 0 genes, the second one only contained technical outlier gene probes with very 

low counts in all but one ROI. Fig. 2b shows the 70 genes with highest SpatialDE membership score 

for each pattern in light grey, as well as common a priori chosen cell type marker genes. 

 

Cell type mapping 

We used our adapted version of the cell2location-WTA method (details in Supp. Methods and the 

cell2location manuscript27) to obtain cell number estimates for each ROI/AOI in Figures 2 and 4d, as 

well as Supp. Figures 6, 7 and 8c. We constructed cell type reference expression profiles by 

averaging the counts in each cell type cluster in the reference study16,27, resulting in 16 profiles for 

the main types and 78 profiles for the subtypes. We supplied raw (i.e. unnormalised, uncorrected) 

Nanostring WTA counts to the algorithm. Both the reference expression profiles and the WTA data 

were subset to 15,136 common genes. Further parameter settings for the cell2location algorithm 

were as follows:  

- Training iterations: 50,000 

- Learning rate: 0.001 

- Prior on cells per location: Mean for each ROI was specified as the nuclei counts estimated 

by the Nanostring software for each ROI, based on DAPI stains on the image. Standard 

deviation was set to 10% of the mean (CV, representing prior strength, of 0.1). 

- Prior on cell types per location: Mean of 6. Default CV of 1. 

- Cell type combinations per location: Mean of 5. Default CV of 1. 

- Prior on difference between technologies: Mean of 0.5. SD of 0.125. CV of 0.25 for both. 

 

Differential expression analysis between HOPX+ and EOMES+ AOIs 

A reference list of differentially expressed genes was compiled by performing a Wilcoxon rank sum 

test between relevant cell clusters in the single-cell RNAseq reference dataset16 and selecting genes 

with an FDR < 0.05 and log2 fold-change greater than 1. Cell clusters corresponding to the HOPX+ 

AOIs were oRGs, as well as two HOPX-expressing progenitor subclusters, denoted as 'PgG2M_0' 

and 'PgS_4' in the original study. Cell clusters corresponding to EOMES+ AOIs were IPs, as well as 

all remaining PgG2M and PgS subclusters, since they express EOMES in the scRNA-seq data. 

 

Cell-cell interaction analysis  

CellphoneDB31 was used as a database for ligand-receptor interactions. Ligands and receptors were 

classified as detected/undetected as explained in the previous section on <Number of detected 

genes=. Importantly, for multi-subunit ligands or receptors we required all corresponding transcripts 

to be detected to count the ligand or receptor as overall detected. We ran the CellphoneDB algorithm 

on the reference single-cell RNAseq dataset to extract putative oRG interactions. Interactions with a 

p-value below 0.05 were counted as significant, as this is suggested in the CellPhoneDB algorithm 

by default. An interaction was counted as detected in WTA data if both the oRG ligand/receptor was 

detected in HOPX+ AOIs and the ligand/receptor from other cell types in the background AOIs (i.e. 

residual and EOMES+ AOIs). 

 

Image analysis  

ERBB4 smFISH signal (Supp. Fig 11b) was quantified across a strip of the ventricle-cortical depth 

using ilastik33. A pixel classifier was trained to extract the borders of the tissue section at the 

ventricular zone (VZ) and the cortical plate (CP); a second pixel classifier was trained to identify 

ERBB4 RNAscope signal puncta. For all detected signals, distances from the signal centroid to the 

nearest VZ edge and nearest CP edge were measured, and the relative depth of the signal on the 

VZ-CP trajectory was calculated. Signals were binned according to this relative depth into 30 bins 

across the VZ-CP trajectory; only the first 12 representing depth 0 to 0.4 are presented. 
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Data availability 
WTA experiment data and sample metadata are presented as Supp. Tables 4 and 5, respectively. 

 

Code availability 
CountCorrect python package: https://github.com/BayraktarLab/CountCorrect 

CountCorrect-Model in pymc3: 

https://github.com/BayraktarLab/CountCorrect/tree/main/countcorrect/ProbeCounts__GeneralMod

el.py 

Notebook for CountCorrect Model: 

https://github.com/BayraktarLab/CountCorrect/blob/main/BackgroundCorrection.ipynb 

cell2location-WTA Model: 

https://github.com/BayraktarLab/cell2location/blob/master/cell2location/models/LocationModelWTA

.py 

Notebook for cell2location-WTA Model: 

https://github.com/BayraktarLab/cell2location/blob/master/docs/notebooks/cell2loation_for_Nanostr

ingWTA.ipynb 
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Supplementary data 

Supplementary figures S1 to S11. 

SupplementaryTable1-Top200-MostCorrected-Genes shows the top 200 genes with the highest 

fraction of counts removed for 21GW biological case 1, technical replicate 1, according to the 

CountCorrect model (sheet 1) and the naive strategy (sheet 2). Included are also the total and mean 

WTA counts on the section for each gene. 

SupplementaryTable2_SpatialDE shows output of spatialDE spatially variable gene estimation 

ordered by q-value (sheet 1) for 21 GW biological case 1, technical replicate1. Sheet 2 shows 

classification of genes into each of the 12 modules. 

SupplementaryTable3_Interactions shows all cellPhoneDB receptors and ligands with their 

corresponding detection in the WTA AOIs or scRNAseq clusters (sheets 1 and 2). The oRG specific 

interactions detected in WTA are on sheet 3, with undetected interactions on sheet 4 and interactions 

with genes not included in the WTA panel in sheet 5. 

SupplementaryTable4_WTA-Experiment_ProbeCounts contains the UMI counts for each probe. 

It contains both gene probes and negative control probes (called NegProbe-WTX) for all samples in 

this study. 

SupplementaryTable5_WTA-Experiment_Metadata contains the metadata for each ROI/AOI 

profiled with WTA. Rows in this file are in the same order as columns in Supp. Table 4 and can also 

be matched by comparing the row and column identifiers respectively. 
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Supplementary Figures 

 
Supp. Figure 1: Experimental design showing all assayed fetal brain samples.  

Experimental design shown for all three cases, including two technical replicates (adjacent tissue sections) of 

21 GW case 1. Left of each panel, fetal brain sections stained for canonical cell type markers with 3-plex 

RNAscope smFISH. Scale bar, 5 mm. Right, magnified view. Scale bar, 1 mm. white boxes represent individual 

NanoString ROIs. V, ventricle; CP, cortical plate.  
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Supp. Figure 2: WTA detection sensitivity and de-noising by CountCorrect 

a, Comparison of ROI size with captured nuclei number across geometric ROIs. Shown are all three cases, 

including two technical replicates of 21 GW case 1. 

b, Genes detected by WTA versus genes detected by scRNA-seq of the mid-gestational cortex16. 

c, Gene expression detection sensitivity in small geometric ROIs of varying sizes in the ventricular zone. 

Around 4,000 genes were detected above a negative probe count threshold from as few as 10 cells, including 
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many markers of the dominant cell types in the region, vRGs and INs. Reference cell type markers were 

extracted from Polioudakis et al.16 using Seurat find markers. 

d, scRNA-seq average expression (across 16 main cell types) of 200 most highly corrected genes by 

CountCorrect and the naive strategy. The CountCorrect gene set is more lowly expressed on average and 

includes fewer genes with considerable expression (above 0.1 counts). 

e, Example correction patterns for (Top) known cell type markers and (Bottom) putative unexpressed genes 

(at most 0.01 counts in at most one cell type in scRNA-seq). CountCorrect corrections are more conservative 

for known cell type markers and more stringent for putative unexpressed genes. TBR1 is a subplate/deep layer 

neuron marker, CLDN5 marks endothelial cells, CX3CR1 corresponds to microglia. 

 

 

 

 

 
Supp. Figure 3: Marker gene expression across bulk WTA ROIs. 

Expression of canonical cell type markers across one strip of ROIs, shown as counts per mm2 for one technical 

replicate of 21 GW case 1.  
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Supp. Figure 4: Classification of genes in the 21 GW developing cortex into spatial expression modules 

by SpatialDE. 

These were classified into 12 modules, many of which bear resemblance to specific major cell types. Two 

modules (8 and 10) were removed, because one contained no genes and one only contained genes below the 

limit of detection. See also Supp. Table 2. 
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Supp. Figure 5: Spatial expression of ASD genes measured by WTA.  

a, Autism-related genes are spatially enriched in the subplate-deep cortical layers at both 16 GW (left) and 21 

GW (right), as shown by both relative expression (top) and mean z-score (bottom). 

b, Spatially resolved expression of individual ASD genes at 21 GW, depicted as z-scores relative to all genes. 

Colours indicate clusters obtained from average linkage hierarchical clustering on the gene-gene correlation 

matrix.  
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Supp. Figure 6: Integration of WTA with a scRNA-seq reference dataset using cell2location-WTA. 

a, UMAP plot of the scRNA-seq reference dataset used for decomposition of ROIs/AOIs, including all broad 

cell types of the developing neocortex at 17-18 GW16. 

b, Comparison of spatial mapping of broad cell types at 21 GW using cell2location, designed for 10X Visium 

data, and the newly adapted cell2location-WTA, which incorporates background correction by CountCorrect. 

cell2location-WTA provides a far more accurate mapping of broad cell types in WTA data than the 

cell2location-Visium model, such as the specific enrichment of progenitors (vRG, oRG, IP) in the germinal 

zones and maturing neurons (ExM-U) in the cortical plate.  
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Supp. Figure 7: Spatial mapping of fine cell subtypes. 

Mapping by cell2location-WTA of all 78 cell subtypes in the scRNA-seq reference dataset16 at 16 GW (left) 

and 21 GW (right).  
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Supp. Figure 8: AOI segmentation across all samples. 

a-b, GeoMX custom image segmentation strategy shown for all three slides featuring segmented ROIs: two 

technical replicates (adjacent sections) of 21 GW case 1 (a); and 16 GW case 1 (b). Scale bars, left of each 

panel 5 mm, right 1 mm. 

c, Analysis of AOI cell composition at 16 GW by cell2location-WTA indicates strong enrichment of targeted 

cell populations: oRGs in HOPX+ AOIs; and IPs, PgS and PgG2M in EOMES+ AOIs. Shown is the mean 

decomposition of ten segmented ROIs, relative to neighbouring bulk ROI data. The four most superficial 

HOPX+ AOIs were excluded due to the lack of HOPX+ oRGs in the VZ. 

d, Technical reproducibility within AOIs, comparing transcriptome-wide expression between HOPX+ AOIs (left) 

and between EOMES+ AOIs (right). Top, comparison of two AOIs from the same slide; bottom, comparison of 

AOIs in the same position on adjacent slides. All comparisons used AOIs from the densest part of the OSVZ. 
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Supp. Figure 9: Comparison of differential expression methods on cell type specific WTA data. 

(Top row) volcano plots of differential expression results using the nonparametric Wilcoxon Test on raw counts 

(left), the nonparametric Wilcoxon Test on corrected counts (middle), or our probabilistic generative model 

(right). (Middle and bottom rows) placement of oRG and IP markers, respectively, extracted from scRNA-seq16 

onto the above plots. The Wilcoxon Rank Sum Test on corrected counts was selected over the probabilistic 

generative model (PGM), due to the strong dependence of the latter on parameter choices. The PGM results 

in this figure were produced with the overdispersion parameter set to 0.001, which increases the number of 

differentially expressed genes over the default choices, as further discussed in the Supp. Methods. 
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Supp. Figure 10: Cell interaction analysis using cell type specific WTA.  

a, Stacked bar plot showing the detection of CellPhoneDB receptors or ligands in WTA and the scRNA-seq 

reference. All CellPhoneDB genes detected in one or both of the RNAseq reference and the Nanostring WTA 

probe panel are considered. For RNAseq a receptor/ligand was judged to be detected if it had at least 0.02 
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mean counts in the IP or oRG cluster. For WTA, detection was defined as exceeding the limit of detection in 

at least 2 of 20 AOIs, defined as the mean plus 2.5 standard deviations of negative probe counts calculated 

on a log2 scale. Unique WTA genes were filtered in two ways to exclude bleedthrough from other cell types. 

Firstly, requiring the gene to be expressed more highly in HOPX+/EOMES+ AOIs than in reference rings in 

more than 50% of ROIs; second, additionally requiring the gene to be undetected in all cell types in RNAseq 

data. Using the most stringent filtering for the WTA ligands/receptors, the Jaccard index would be 0.70 for 

EOMES+ AOIs/IP cluster and 0.66 for HOPX+ AOIs/oRG cluster.  

b, oRG specific interactions in scRNA-seq and WTA. From the initial set of 124 interactions enriched in oRGs 

(cellPhoneDB p-value < 0.05) 113 were detected in WTA. Out of 11 missing interactions, six included receptors 

or ligands that were not part of the WTA probe panel leaving only five interactions that included genes that 

were profiled, but not detected in WTA (Supp. Table 3). The plot shows the 94 interactions between oRGs and 

other cell types (i.e. oRG-oRG interactions not shown). Central dotplots show WTA expression derived from 

21 GW biological case 1, technical replicate 1 HOPX+ AOIs and background (residuals and EOMES+ AOIs). 

Outer dotplots on left and right show z-scored expression of interaction partners 1 and 2, respectively, in 

scRNA-seq data16. 

 

 

 
Supp. Figure 11: Spatial validation of the HBEGF-ERBB4 interaction.  

a, Validation by RNAscope smFISH of HBEGF expression in HOPX+ VIM+ oRGs in the OSVZ at 21 GW. Scale 

bars, left 200 μm, right 20 μm. 
b, Validation of spatial expression of ERBB4 in superficial germinal zones by spot quantification of RNAscope 

smFISH. ERBB4 is co-expressed with the developing interneuron marker DLX1. Scale bars, left 500 μm, right 
10 μm. 
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1 Nanostring WTA Generative Model

Here we present our generative model of both expression signal and measurement
noise for the Nanostring WTA platform.

We assume that measurement noise is composed of “sampling noise”, arising
from incomplete detection of all RNA molecules in a sample, and “background
noise” arising from non-specific binding of each probe to non-target transcripts.
Sampling noise can be accurately modelled with a Poisson distribution for UMI
count data if the number of targeted genes is large and the detection probability
is low [12]. Both assumptions are fulfilled in Nanostring WTA data. Additional
variability, for example arising from biological heterogeneity not accounted for in
the model, can be modelled with a Negative Binomial distribution [12]. Unlike
the Poisson distribution that has a variance equal to the mean, the Negative
Binomial distribution can include an additional gene-specific variance, vg.

For an ROI or AOI with a single cell, WTA UMI counts, Xrg, would thus
arise from a simple Negative Binomial distribution:

Xrg ∼ NegBinom(µ = xrg, σ
2 = xrg + vg) (1)

, where the first subscript r denotes ROIs/AOIs and the second subscript g
denotes genes.

For an ROI with mr cells/nuclei, the mean changes by a factor of mr and
the variance by a factor m2

r:

Xrg ∼ NegBinom(µ = mrxrg, σ
2 = m2

rxrg +m2
rvg) (2)

We then decompose the mean into two parts given by the sum of specific,
Arg, and non-specific probe binding, Brg:
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mrxrg = Arg +Brg (3)

Since we typically will not have enough samples to estimate the extra variance
vg for each gene accurately, we pool information across all genes with similar
expression. We achieve this by drawing all vg from a common prior Gamma
distribution. This distribution has a variance and a mean that scales linearly
with the average expected real counts of each gene, per nuclei, which we call rg.

First, rg is given by:

ȳr =
N∑

n=1

Yrn/N (4)

rg = (Xrg − ȳr)/mr (5)

, where Yrn are the negative probe counts.
Next vg is defined as:

vg ∼ Gamma(µ = rg ∗ lvg , σ = rg ∗ lvg ∗ CV (vg)) (6)

with CV (vg) = 0.01 and the following linear scaling parameters lvg
:

lvg
∼ Gamma(µlvg

= 0.01, σ = µlvg
) (7)

We aim to avoid biologically unlikely models in which all gene expression is
explained by extra noise, i.e. high and different overdispersion values for each
gene. This is why we choose small prior values of 0.01 for CV (vg) and µlvg

.
We now describe our model for non-specific binding. The counts fromN=138

negative probes can provide a first estimate of the background noise in each
ROI/AOI. We note that negative probe counts increase linearly with the total
number of RNA counts in a sample (figure 2, 3), with a different linear slope for
each negative probe (figure 4). With lr defined as the total number of counts
in an ROI, an appropriate model for the negative probe counts Yrn would thus
be:

Yrn ∼ Poisson(yrn) (8)

yrn = lrcn (9)

cn ∼ Gamma(µc, σc) (10)

, where the subscript n denotes negative probe counts.
The empirical mean of negative probe counts normalized by total counts is

given by:

ȳ′n =
R∑

1

Yrn/R/lr (11)

where R is the total number of ROIs.
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[a] [b] [c]

Figure 1: [a] An example of counts for one negative probe across different
ROIs/AOIs (different slides indicated by different colours). This example probe
is the one with highest counts overall. A strong linear relationship with total
counts in each ROI/AOI is evident. The slope is 590 counts per 107 total counts.
[b] An example of counts for one negative probe across different ROIs/AOIs
(different slides indicated by different colours). This example probe is the one
with lowest counts overall. A linear relationship with total counts in each
ROI/AOI is evident. The slope is 45 counts per 107 total counts. [c] The
distribution of linear slopes for all negative probes.

We use it to define our expectations for µc and σc:

mean(µc) =
N∑

1

ȳ′n/N (12)

mean(σc) =
N∑

1

(ȳ′n − mean(µc))/(N − 1) (13)

We use these values to initialize the prior distribution parameters for µc and
σc. Since we cannot be sure that the negative probe counts are an accurate
representation of non-specific binding that also holds true for gene probes, we
add an additional uncertainty corresponding to a coefficient of variation of 0.25:

µc ∼ Gamma(µ = mean(µc), σ = mean(µc) ∗ 0.25) (14)

σc ∼ Gamma(µ = mean(σc), σ = mean(σc) ∗ 0.25) (15)

We then assume that non-specific binding of gene probes results from the
same generative process as binding of negative probes, and can be modelled as:

Brg = lrbg (16)

bg ∼ Gamma(µc, σc) (17)

For the specific-binding component Arg we build on existing methods in the
field of single-cell transcriptomics (e.g. [5, 6, 7, 9, 11]), which assume that gene
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expression can be accurately described in a low-dimensional space. Biologically
this assumption rests on the existence of discrete cell types and transcriptional
modules of highly correlated genes. We chose non-negative matrix factorization
with 15 factors, f , as our dimensionality reduction method, so that Arg is given
by:

Arg = mregwrfhfg (18)

, where wrf are the weights for the 15 factors in each ROI/AOI, hfg are gene
loading values for each factor and eg is a gene scaling factor that is useful for
interpreting the model, as we show below. The components have hierarchical
priors given by:

eg ∼ Gamma(µ = µe
g, σ = σe

g) (19)

wrf ∼ Gamma(µf = µw
f , σf = σw

f ) (20)

µw
f ∼ Gamma(mean(µw

f ) = 0.05, sd(µw
f ) = mean(µw

f ) ∗ 0.4) (21)

σw
f ∼ Gamma(mean(σw

f ) = 0.1, sd(µw
f ) = mean(σw

f ) ∗ 0.5) (22)

hfg ∼ Dirichlet(0.1) (23)

Our prior parameter choices for the wrf and hfg components, result in sparse
matrices, i.e. most entries of wrf and hfg are expected to be 0. This choice
of prior parameters gives higher weight to simple and biologically meaningful
solutions with few active components. Moreover, the identified components are
each active in only a few ROIs and contain only a fraction of the total number
of genes in the probe panel. In turn it avoids complex and biologically unlikely
solutions, where gene expression is explained with a large number of ubiquitously
expressed, whole-transcriptome components. Importantly, the hierarchical prior
distribution of wrf should result in automatic relevance detection as in [10], so
that if a given dataset is fit much better with a large number of factors, the
prior mean for wrf will converge on a larger value and most or all factors can
be ”switched on” (i.e. obtain non-zero weights).

Given the Dirichlet distribution for the gene loadings the following relation
holds for all genes:

F=15∑

f=1

hfg = 1 (24)

Consequently, differences in total gene expression can be modelled with the
eg parameter instead of hfg. The prior mean for eg should be set so that the
expected mean of each gene in the Arg matrix corresponds to the sample mean
in the data Xrg minus the expected background Brg, i.e. we require:

E[Arg] = Xrg − E[Brg] (25)

= Xrg − ȳr (26)
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We do this by first considering the expected mean of the Arg matrix:

E[Arg] = E[mregwrfhfg] (27)

= E[mreg

F=15∑

f=1

wrfhfg] (28)

= mrE[eg]
F=15∑

f=1

E[wrf ]E[hfg] (29)

= mrE[eg]
F=15∑

f=1

mean(µw
f )E[hfg] (30)

= mrE[eg]mean(µ
w
f )

F=15∑

f=1

E[hfg] (31)

= mrE[eg]mean(µ
w
f ) (32)

, where we used equation 24 to move from 29 to 30. Now equating 26 and 32
and rearranging we obtain the appropriate mean for the prior distribution of eg:

Xrg − ȳr = = mrE[eg]µµw
(33)

E[eg] =
Xrg − ȳr
mrµµw

(34)

µeg =
Xrg − ȳr
mrµµw

(35)

We set the CV for the eg prior distribution to 0.25:

σeg = µeg ∗ 0.25 (36)

We show later that this CV parameter has a large effect on the model.
Together with the background CV in equation (14) it determines to what extend
we rely on the negative probe counts to estimate the magnitude of non-specific
binding. A CV of 0 would not allow the model to converge to any other solution
that then trivial solution of estimating a real expression and background based
on the mean negative probe counts. A value of 1 or larger would give almost no
weight to the negative probe counts and would estimate the magnitude of specific
and non-specific binding based solely on the best fitting non-negative matrix
factorization. We find that a value of 0.25 falls between those two extremes (see
section 7 on robustness).

2 Prior predictive check

We confirmed numerically that the prior values we have specified for eg result
in a prior distribution that corresponds well to the values for Xrg found in the
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real data. Figure 2 shows the prior sample mean of Xrg for each gene on the
x-axis and the real mean counts across ROIs on the y-axis. Since the two values
match up for all genes our prior specifications of Xrg, we conclude that the
specific (Arg) and non-specific binding binding component in our model (Brg)
are consistent with the data.

Figure 2: Using 19 pcws biological and technical replicate 1, the figure shows
the mean counts of each gene in the data on the y-axis, plotted against its prior
expected expression on the x-axis. Both values are normalized for nuclei counts.
By inspection values match up for each gene, so our prior expectations for the
specific (Arg) and non-specific binding binding component in our model (Brg)
are consistent with the data.

3 Inference

We implemented the model described in section 1 in the pymc3 probabilistic
programming language [8]. We then used mean-field Automatic Differentiation
Variational Inference (ADVI) [4] implemented in the pymc3 framework to obtain
the approximate posterior distribution of the parameters in our model. Like
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other variational inference algorithms, ADVI reframes the inference procedure
as an optimization problem by defining a family of approximating distributions
for the latent variables and minimizing their KL-divergence to the posterior by
maximizing the expectation lower bound (ELBO). Briefly, ADVI firstly employs
effective transformations of the latent parameters, so that their distributions can
be accurately modeled by factorized, standardized Gaussian distribution in the
transformed space. Secondly, it uses MCMC to obtain expectations of the ELBO
at each step, which can then be used in stochastic optimization methods. Pymc3
only requires the specification of the model, an optimizer, learning rate, and
iteration number to perform ADVI. In our case, we chose the ADAM optimizer,
a learning rate of 0.001 and 300,000 iterations. We ran the optimization on
each of the 4 data batches (corresponding to 4 experiment slides) separately.
We visually checked for convergence of the ADVI optimization by plotting the
objective function (ELBO) over all 300,000 iterations, as well as the last 10,000
iterations, for which we show an example in figures 3 and 4 for the 19 pcw
biological case 1, technical replicate 1.

Figure 3: Example of optimization
history across all 300,000 iterations.
19 pcw biological case 1, technical
replicate1.

Figure 4: Example of optimization
history across the last 10,000
iterations. 19 pcw biological case
1, technical replicate 1

4 Posterior approximation

For all downstream applications we use 1,000 samples from the ADVI distribution
to approximate each parameter’s posterior distribution. We then obtain the
mean and variance of each parameter from the sample mean and variance across
all 1,000 samples.

5 Denoising

There are two different approaches to obtain a denoised dataset, which we call
Ẋrg and Ẍrg.
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We can either subtract expected background counts from the count matrix:

Ẋrg = Xrg − E(Brg) (37)

Or define corrected counts as the expected low-rank representation of real
counts Arg:

Ẍrg = E(Arg) (38)

The latter approach can remove sampling noise on top of background counts,
but may also remove some biological variation.

By default we use the first approach in our CountCorrect method, round all
values to integer values and clip values at a minimum of 0.

6 Differential expression analysis

The ADVI method returns an approximation for the full posterior distribution
so that for downstream analysis tasks, such as differential expression analysis,
we could in principle not only use the mean estimates - which are returned by
our CountCorrect method - but also the variance to construct a more accurate
differential expression method. Previous work in single-cell transcriptomics
analysis [1] followed such a strategy that combined a probabilistic generative
model and variational inference to perform differential expression analysis. We
also constructed such a method to work on the full ADVI posterior distribution,
but found it to be less robust than simply using the mean estimates returned by
CountCorrect in combination with a standard Wilcoxon test (see next section
on robustness). For completeness we still explain our differential expression
method below.

Our goal is to determine the probability, pg, that the log2-fold change in
expression, rga,b, between ROI a and b for a gene g is greater than a certain

threshold δ, based on the CPM normalized Ẍrg matrix:

ẌCPM
rg =

106 ∗ Ẍrg∑G
g=1 Ẍrg

(39)

rga,b = log2Ẍ
CPM
ag − log2Ẍ

CPM
bg (40)

Mg
1 : |rga,b| > δ (41)

pg = p(Mg
1 |Ẍag, Ẍbg) (42)

If a and b are not single ROIs, but two groups of ROIs, we consider the
difference in mean gene expression across the two groups instead. We calculate
the probability distribution for rga,b numerically based on the 1,000 samples

from the Ẍrg posterior distribution. Similarly, we then calculate a probability
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that the log2-fold change is greater than a certain threshold by summing the
probability density above this threshold (i.e. the number of samples above this
threshold, divided by the total number of samples). For calculating the expected
false-discovery rate (FDR) we use the formula from [2]:

F̂DRd =

∑d
i=1(1− p̂(i))

d
(43)

,where p̂(i) are the probabilities of differential expression for all genes in decreasing
order and d is the rank of the probability for which we calculate the corresponding
FDR.

In principle, both Ẍrg and Ẋrg could be used for this method. Notably,

we use the low-rank representation of real counts Ẍrg from equation 38 for this

purpose and not the subtraction method, Ẋrg from equation 37. This is because

Ẋrg would only model uncertainty in the background and thus underestimate
the uncertainty in the real counts.

7 Robustness

We compared three methods of differential expression analysis with respect to
their robustness to parameter changes in the generative model and chose the
CountCorrect+Wilcoxon test method presented in the main text, because it
emerged as the most robust. The differential expression analysis was performed
between HOPX+ and EOMES+ AOIs from biological case 1, technical replicate
1 as described in the main text. The three methods we considered were:

1. Wilcoxon-CC1: Using the Wilcoxon test on CountCorrect cpm-normalized
counts.

2. Wilcoxon-CC2: Using the Wilcoxon test on CountCorrect cpm-normalized
counts, but with CountCorrect using equation 38 instead of the 37 to
return denoised counts.

3. PGM-CC2: using the probabilistic generative model approach described
in the previous section.

The four parameters we varied were:

1. n-factors: The number of factors used in non-negative matrix factorization,
as defined in equation . Be default this value is set to 15. We swept through
values 5,10,15,20 and 50.

2. µlvg
: The mean of the prior distribution for the lvg

overdispersion parameter
in equation . Since the coefficient of variation of the prior distribution is
fixed at 1 this parameter also affects the variance of the prior distribution.
By default this value is set to 0.01. We swept through values 0.001 to
0.25.
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3. CV-background: The coefficient of variation of prior background mean µc

and variance σc, as defined in equations and . Be default this value is set
to 1. We swept through values 0.01 to 25.

4. CV-expression: The coefficient of variation for the prior distribution of
the eg parameter, as defined in equation . The default value is 1. We
swept through values of 0.01 to 1.

The results of this analysis are shown in figures 7 to 10. Only one parameter,
”CV-expression”, resulted in large changes in the number of differentially expressed
genes detected with the Wilcoxon-CC1 method as shown in figure ??. In
particular, if the prior uncertainty in the real expression is increased, the number
of differentially expressed genes increases. We found that this is a direct result
of the model estimating a higher average background level than suggested by
the negative probes since the prior expected real expression is related to the
background in equation 35. The ”CV-expression” parameter can thus be set to
higher values if the user has little confidence in the negative probe counts to
represent the real magnitude of the background in the experiment. We decided
to choose a moderate value of 0.25, so that overall our default settings for the
CountCorrect model are as shown in section 1: n-factors = 15, µlvg

= 0.01,
CV-background = 0.25, CV-expression = 0.25

8 Cell2location-WTA Model

The cell2location model[3] for cell type mapping decomposes location-level gene
expression counts into a set of predefined signatures of reference cell types,
taking into account both technology differences and location and gene specific
background noise. In the following we explain our adaption to the cell2location
model developed for spatial transcriptomics data, such as Visium and Slide-Seq
V2, using the notation from the original cell2location publication. Specifically,
in the standard cell2location model gene expression counts dsg are assumed to
follow a Negative Binomial distribution:

dsg ∼ NegBinom(µsg, αg) (44)

with a mean µsg given by:

µsg = mg(
∑

f

wsf gfg) + ls + sg (45)

, where mg is a gene specific scaling parameter that adjusts for differences
between technologies, gfg is a matrix of reference signatures, usually obtained
from single-cell RNAseq data, wsf are regression weights for each reference
signature and ls is a ”spot”- dependent (in Visium data/Slide-Seq V2) i.e.
location dependent background term and sg is a gene-specific background term.

To obtain the cell2location-wta method, we now only change the gene specific
background term to scale with the total number of counts ts:
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[a]

[b]

[c]

[d]

Figure 5: [a], [b], [c]: For our chosen differential expression method (Wilcoxon-
CC1), the number of returned genes does not vary much as the number of
factors, the prior uncertainty in the background noise or the overdispersion
paramter is varied. [d] However, for all methods, the number of returned
genes increases when we rely less on prior knowledge (negative probe counts)
to determine the real expression level and more on the structure found in the
data.
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µrg = mg(
∑

f

wrf gfg) + ls + sg ∗ ts (46)

ts thus corresponds to lr in the CountCorrect method and the corresponding
prior distribution for sg is identical to the distribution for bg in equation 17:

sg ∼ Gamma(µc, σc) (47)

Finally, cell2location-wta, like CountCorrect, uses the negative probe counts
to find µc and σc as described in equations 8 to 3.

For further details on the cell2location method we refer the reader to the
cell2location publication [3].

9 Code Availability

The CountCorrect method is implemented as a python package and includes
tutorials: https://github.com/BayraktarLab/CountCorrect The cell2location-
WTA model is integrated into the cell2location package https://github.com/
BayraktarLab/cell2location/blob/master/cell2location/models/LocationModelWTA.

py, so that it can be used by specifying it as a non-default model choice in the
main cell2location workflow as explained in a corresponding notebook that is
available on the cell2location github repository as well: https://github.com/
BayraktarLab/cell2location/blob/master/docs/notebooks/cell2loation_

for_NanostringWTA.ipynb
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