

Predicting intelligence from fMRI data of the human brain in a few minutes of scan time

Gabriele Lohmann^{*1,2}, Eric Lacosse^{2,3}, Thomas Ethofer¹, Vinod J. Kumar²,
Klaus Scheffler^{1,2}, and Jürgen Jost⁴

¹*Department of Biomed. Magn. Res. Imaging, University Hospital Tübingen, Germany*

²*Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany*

³*Max-Planck-Institute for Intelligent Systems, Tübingen, Germany*

⁴*Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany*

Abstract

In recent years, the prediction of individual behaviour from the fMRI-based functional connectome has become a major focus of research. The motivation behind this research is to find generalizable neuromarkers of cognitive functions. However, insufficient prediction accuracies and long scan time requirements are still unsolved issues. Here we propose a new machine learning algorithm for predicting intelligence scores of healthy human subjects from resting state (rsfMRI) or task-based fMRI (tfMRI). In a cohort of 390 unrelated test subjects of the Human Connectome Project, we found correlations between the observed and the predicted general intelligence of more than 50 percent in tfMRI, and of around 59 percent when results from two tasks are combined. Surprisingly, we found that the tfMRI data were significantly more predictive of intelligence than rsfMRI even though they were acquired at much shorter scan times (approximately 10 minutes versus 1 hour). Existing methods that we investigated in a benchmark comparison underperformed on tfMRI data and produced prediction accuracies well below our results. Our proposed algorithm differs from existing methods in that it achieves dimensionality reduction via ensemble learning and partial least squares regression rather than via brain parcellations or ICA decompositions. In addition, it introduces Ricci-Forman curvature as a novel type of edge weight.

Introduction

Many neurological and psychiatric conditions evade detection by standard anatomical MRI. There is a growing hope that functional MRI (fMRI) may help to fill this gap. In this context, the suitability of fMRI for predicting individual behaviour has been investigated in a number of recent studies [1–10].

*Corresponding author: lohmann@tuebingen.mpg.de

31 Predictive modelling generally proceeds in three stages [11]. First, a dimensionality reduction via
32 brain parcellations or ICA decomposition is performed. Second, interactions between the brain
33 parcels or components are estimated. Finally, a classifier or regressor is trained to predict be-
34 havioural traits or other quantities of interest. The various methods differ with respect to the
35 choice of the strategies used in those three stages, but some form of network modelling is common
36 to all [12, 13]. The methodological challenges and best practices are discussed in [14–18].

37 Here we introduce a new machine learning algorithm for predicting intelligence from fMRI, and
38 validate it on data of the Human Connectome Project (HCP) [19, 20]. Specifically, we investigate
39 the predictability of general intelligence as defined by Dubois et al. [21], and of fluid, crystalline,
40 and total intelligence as defined in the behavioural testing protocol of the Human Connectome
41 Project [22]. Human intelligence and its neural representations have been a focus of research for
42 many years, see e.g. [23–26]. However, our focus here is on the machine learning methodology of
43 intelligence prediction rather than on the topic of intelligence in itself. Thus, our proposed algorithm
44 is not intended to be limited to the prediction of intelligence. Rather, we view this as a proof of
45 concept for a wider range of potential applications [27, 28].

46 We call our algorithm VEGA (VoxEl-Graph machine learning Algorithm). VEGA differs in several
47 respects from the predictive modelling strategy that is generally adopted in other studies. First, it
48 does not perform brain parcellations or ICA decompositions for dimensionality reduction. Instead, it
49 employs ensemble learning and partial least squares regression to deal with the high dimensionality
50 of the data. We also use the novel concept of Ricci-Forman curvature to define a brain mask to
51 further constrain dimensionality. Second, VEGA works directly in voxel space, it does not require
52 a surface extraction as some other methods do. This may be advantageous in situations where
53 data quality is poor so that image segmentations and surface extractions may be problematic. This
54 is particularly relevant in clinical environments where data quality can be an issue. And finally,
55 VEGA is designed to work on both resting state (rsfMRI) as well as on task-based fMRI (tfMRI).
56 We will show that its performance on tfMRI is particularly encouraging even though the scan times
57 were very short.

58 Experimental data and preprocessing

59 We downloaded fMRI data of 390 unrelated subjects (202 female, 188 male, aged 22–36, median age
60 28) acquired at 3 Tesla by the Human Connectome Project (HCP), WU-Minn Consortium [19,20,29].
61 Only subjects for whom all necessary data sets, i.e. rsfMRI, tfMRI and intelligence test scores were
62 complete and fully available were included. We excluded data sets for which data quality problems
63 due to instability of the head coil were reported [30]. All subjects gave written, informed consent
64 according to the protocol by the Human Connectome Project consortium.

65 The rsfMRI data were acquired in two sessions on two separate days with two different phase
66 encoding directions (left-right and right-left) with spatial resolution $(2mm)^3$, multiband factor 8.

Overview of the algorithm VEGA

1. Split list of subjects into training and test for 6-fold crossvalidation.
2. For all subjects $s = 1, \dots, n$:
 - (a) Compute linear correlation matrix C_s .
 - (b) Compute Ricci-Forman curvature matrix R_s based on C_s .
3. Compute a curvature map from $R_s, s = 1, \dots, n$.
Voxelwise average across the curvature maps of all subjects in the training set.
Apply a threshold to obtain a core mask.
4. Repeat until convergence and average the resulting predictions at the end:
 - (a) Randomly select a list of edges with endpoints in the core mask.
 - (b) Partial least squares regression (PLS) using the subjects of the training set and the selected edges.
 - (c) Apply the parameters learned in the previous step to each subject in the test set to obtain predictions of intelligence.

Figure 1: Overview of the algorithm. The proposed algorithm VEGA consists of the four steps as depicted in this overview. A main difference to existing algorithm is that it handles high-dimensionality via ensemble learning, partial least squares and Ricci-Forman curvature maps rather than via brain parcellations or ICA decompositions. A detailed description of each step is given in the main text.

67 Each scan had 1200 volumes acquired at TR=0.72 seconds so that the total scan time across all four
68 sessions was approximately 58 minutes. The rsfMRI data were minimally preprocessed and cleaned
69 using FSL-FIX [31–33].

70 In addition, we downloaded minimally preprocessed tfMRI data from two tasks, namely the language
71 task and the working memory task [29]. The working memory task followed an N-back paradigm
72 where participants were presented with pictures of places, tools, faces and body parts. The language
73 paradigm consisted of a story comprehension task interleaved with a math task, see [34]. We chose
74 those two tasks because they appear to be more closely linked to intelligence than any of the other
75 tasks included in HCP. The tfMRI data were acquired in two sessions each (left-right and right-left
76 phase encodings). The language task had 316 volumes per session (total scan time ≈ 7.5 min). The
77 working memory task had 405 volumes per session (total scan time ≈ 10 min).

78 The tfMRI data were additionally subjected to a temporal highpass-filter (cutoff frequency 1/100
79 Hz) to remove baseline drifts. For both rsfMRI and tfMRI data, we reduced the spatial resolution
80 to $(3\text{mm})^3$ via trilinear interpolation to limit the computational load. Furthermore, to counteract
81 intersubject anatomical variability, we applied a spatial Gaussian filter using $\text{fwhm}=6\text{mm}$.

	PicVocab	ReadEng	CardSort	Flanker	ListSort	PMAT	PicSeq	ProcSpeed	VSPLIT	IWRD
G-factor	X	X	X	X	X	X	X	X	X	X
CogTotal	X	X	X	X	X	X	X	-	-	-
CogCrystal	X	X	-	-	-	-	-	-	-	-
CogFluid	-	-	X	X	X	X	X	-	-	-

Table 1: Components of the four measures of intelligence. The four measures result from averaging across the normalized test scores of the cognitive tests listed in this table. The acronyms are as in HCP [35]. For the G-factor, we used a weighted average of the ten test scores where the weights are as in [21], i.e. 0.624, 0.642, 0.364, 0.259, 0.451, 0.626, 0.354, 0.232, 0.578, 0.294 (in the same order as in the table).

82 Measures of Intelligence

83 Here we focused on four measures of intelligence that resulted from cognitive tests performed by
84 the Human Connectome Project (HCP). For ease of notation, we use the same acronyms as in
85 HCP to denote the various cognitive tests, see [22, 35]. The first two measures are fluid cognition
86 (CogFluidUnadj) and crystallized cognition (CogCrystalUnadj). They are defined via averaging
87 normalized scores of several tests as shown in table 1. The third measure (CogTotalUnadj) is a
88 combination of the first two. The fourth measure is a general intelligence score (G-factor). Here we
89 closely followed the work by Dubois et al. [21] who used a weighted average of normalized scores of
90 a wider range of cognitive tests. We used the same test scores and the same weights for the average.

91 **Potential confounds.** As in [21] we used multiple linear regression to regress out several potential
92 confounds from the intelligence scores, namely handedness, gender, age (*Age_in_Yrs*), brain
93 size (*FS_BrainSeg_Vol*) and the multiband reconstruction algorithm (*xfMRI_3T_ReconVrs*). To
94 avoid leakage from training to test, the multiple linear regression was fitted on the training data,
95 and the resulting weights were then used to remove the confounds in both training and test.

96 A new algorithm for predicting intelligence from fMRI

97 We propose a new algorithm called “VEGA” for predicting intelligence from fMRI data of the
98 human brain. It consists of four steps that are described in the following. For an overview, see
99 Figure 1.

100 Step 1 (Crossvalidation)

101 The set of $n = 390$ subjects is randomly split into six folds for crossvalidation. In each fold,
102 325 subjects are used for training a regression model that is subsequently tested on the remaining
103 65 subjects. This procedure is repeated for each of the six folds so that every subject is tested
104 exactly once. In our experiments, we used twenty different and randomly selected train/test splits.

105 **Step 2 (Connectivity matrices)**

106 For each subject $s = 1, \dots, n$ symmetric connectivity matrices C_s, R_s are computed using two differ-
 107 ent measures of connectivity. Both matrices are of dimension $k \times k$ where k denotes the number of
 108 voxels in a brain mask. In the experiments reported below, the mask covers the entire brain with
 109 $k = 55,856$ voxels, see Supplementary Figure 1.

110 **Linear correlation.** The first connectivity matrix C_s is based on the linear Pearson correlation
 111 coefficient. Its elements $c_{i,j}, i, j = 1, \dots, k$ record the linear correlation between the fMRI time series
 112 in voxels i and j where k is the number of voxels in the brain mask. The matrix C_s is initially
 113 dense, i.e. it is computed for every pair of voxels in the brain mask so that the number of edges
 114 is $k(k - 1)/2 \approx 1.6^9$. From this large set of edges, we randomly select 1 million edges to which all
 115 subsequent analysis steps involving $C_s, s = 1, \dots, n$ are restricted. The purpose of this step is to
 116 reduce the memory load and computational burden. Note that we preselect edges, not voxels. Since
 117 the number of preselected edges is very large, all voxels in the brain mask serve at least once as an
 118 endpoint to one of those edges. This strategy provides a dense coverage of the brain that allows us
 119 to visualize brain areas that are predictive of intelligence (Supplementary Figure 3).

120 **Ricci-Forman curvature.** Using the dense correlation matrix C_s computed in the previous step,
 121 a second connectivity matrix R_s is computed for every subject $s = 1, \dots, n$. It is based on the
 122 novel concept of Ricci-Forman curvature [36–38]. The motivation to apply this concept here is
 123 that it allows to attribute weights to edges that reflect their importance for the cohesiveness of a
 124 graph, and thus help to identify edges that are more reliable predictors. Ricci-Forman curvature
 125 has been previously applied to fMRI data [39], and more recently to diffusion weighted imaging
 126 (DWI) [40]. It defines a curvature for an edge e in a set of edges E as follows. Let $e = (v_1, v_2) \in E$
 127 and $e_{v_1}, e_{v_2} \in E$ be any edges adjacent to e at vertices v_1 and v_2 with edge weights $\omega(e)$ and node
 128 weights $\omega(v)$. Then the Ricci-Forman curvature Ric_F of edge e is defined as

$$\text{Ric}_F(e) = \omega(e) \left(\frac{\omega(v_1)}{\omega(e)} + \frac{\omega(v_2)}{\omega(e)} - \sum_{\substack{\omega(e_{v_1}) \sim e \\ \omega(e_{v_2}) \sim e}} \left(\frac{\omega(v_1)}{\sqrt{\omega(e)\omega(e_{v_1})}} + \frac{\omega(v_2)}{\sqrt{\omega(e)\omega(e_{v_2})}} \right) \right) \quad (1)$$

129 Figure 2 illustrates the geometric intuition behind this concept. Edges connecting vertices of large
 130 degree have strongly negative curvature values and may be interpreted as being most important
 131 for the cohesion of the network. For more information about the theoretical background of Ricci
 132 Forman curvature see [37, 38, 41].

133 In the present context, vertices correspond to voxels and have a constant weight of 1. The edges
 134 correspond to correlations between fMRI time series of those voxels. From equation 1 we see that
 135 the edge weights $\omega(e)$ must be positive so that the Pearson linear correlation coefficient cannot
 136 be directly used as an edge weight. We therefore define an edge weight function ω applied to the
 137 correlation coefficient x as $\omega(x) = \max(x, \varepsilon)$ where ε is a small positive constant. In our experiments,

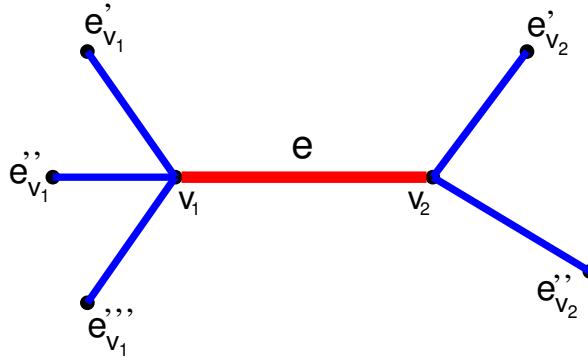


Figure 2: Illustration of Ricci-Forman curvature. Edge e with adjacent vertices v_1 and v_2 and parallel edges $\{e'_{v_1}, e''_{v_1}, e'''_{v_1}\}$ (adjacent to v_1) and $\{e'_{v_2}, e''_{v_2}\}$ (adjacent to v_2). The Ricci-Forman curvature of edge e is strongly negative if the edges parallel to its endpoints have large weights.

138 this constant was set to $\varepsilon = 1/k$ where k is the number of voxels in the brain mask. With these
 139 definitions, we now compute a dense Ricci curvature matrix R_s for every subject $s = 1, \dots, n$ using
 140 the corresponding correlation matrix C_s as input where each correlation value is first transformed
 141 via the weight function defined above. Note that the matrix R_s is symmetric and has $k(k - 1)/2$
 142 distinct edges.

143 Step 3 (Core mask)

144 Edges with strongly negative Ricci-Forman curvatures may be viewed as backbones of the correlational
 145 structure in the brain. We hypothesize that such edges may be particularly robust features
 146 for predicting intelligence. Here we use this idea to derive a new brain mask to which all subsequent
 147 analysis steps are constrained. This mask is obtained as follows.

148 First, we compute a “curvature map” separately for every subject. This is done by projecting
 149 all edges of R_s to a map in which a voxel value represents the average Ricci-Forman curvature of
 150 all edges whose endpoints touch this voxel. Second, a voxelwise average is computed across the
 151 curvature maps of all subjects in the training set. Finally, the resulting average map is thresholded
 152 using the median of its histogram as the cutoff. This yields the “core mask” to which all subsequent
 153 analysis steps are constrained. Supplementary Figure 2 shows an example.

154 Step 4 (Learning a regression model)

155 We use an ensemble learning approach in which multiple learners are trained independently using
 156 different subsets of the feature space [42–44]. More precisely, a large number of subsets of the
 157 feature space are randomly selected, and each subset is then used in a regression model to generate
 158 predictions of intelligence scores for the subjects of the test set. Finally, those predictions are
 159 averaged separately for each fold, see Supplementary Fig 3 for an illustration. In the experiments
 160 reported below, we found that 2000 subsets sufficed to reach convergence. In the following, those
 161 computations are described in more detail.

¹⁶² **Selection of edges from the core mask.** A subset of the feature space is obtained by randomly
¹⁶³ selecting m edges whose endpoints are required to be within the core mask. In the experiments
¹⁶⁴ reported below, the number of edges in the core mask was around 250,000 from which $m = 1000$
¹⁶⁵ edges were selected randomly for each subset. As we will show later, the VEGA algorithm is quite
¹⁶⁶ robust with regard to the setting of the hyperparameter m (Supplementary Figures 12,13,14).

¹⁶⁷ **Partial least squares regression.** Based on the m edges selected in the previous step, a linear
¹⁶⁸ model of the form

$$Y^{train} = X^{train}\beta + \varepsilon$$

¹⁶⁹ is set up to estimate the intelligence scores of the training set and learn the parameter β .

¹⁷⁰ Here X^{train} is an $n \times m$ matrix of predictors, Y^{train} is a vector of length n of intelligence scores and
¹⁷¹ ε an error term. The entries of X^{train} are correlation values extracted from $C_s, s = 1, \dots, n$ where
¹⁷² $n = 325$ is the number of subjects in the training set and m the number of randomly selected edges.

¹⁷³ Several types of linear models might be considered for this purpose, e.g. ordinary least squares
¹⁷⁴ regression (OLS) or its extensions such as Lasso, Ridge, and ElasticNet. Another option would be
¹⁷⁵ support vector regression [45]. Here we decided to use partial least squares regression (PLS) [46,47]
¹⁷⁶ because it is particularly well suited to handle problems where the predictors are highly collinear
¹⁷⁷ and where number of independent variables greatly exceeds the number of data points [48]. As
¹⁷⁸ noted above, we typically select $m = 1000$ edges, while the number of subjects in the training set
¹⁷⁹ is only $n = 325$ so that $m \gg n$. PLS projects both X and Y to a new space that maximizes their
¹⁸⁰ covariance so that the predictors are projected into directions that make them more relevant for
¹⁸¹ the prediction.

The PLS model is defined as

$$X = TP^T + E$$
$$Y = UQ^T + F$$

¹⁸² where T, U are projections of X and Y whose covariances are maximized. P, Q are their loading
¹⁸³ matrices, and the matrices E, F are error terms. The dimension of matrix P is $m \times p$ where
¹⁸⁴ p represents an intrinsic dimensionality. In the experiments reported below, we used $p = 10$.
¹⁸⁵ However, the results were quite robust with respect to the choice of this parameter (Supplementary
¹⁸⁶ Figures 12,13,14). The matrix Q is of dimension $m \times q$ where q is the number of columns in Y . In
¹⁸⁷ the present case, Y is a vector containing intelligence scores so that $q = 1$.

¹⁸⁸ There exist several methods for computing PLS. Here we implemented the SIMPLS algorithm [48].
¹⁸⁹ SIMPLS iteratively computes projections T, U and loading matrices P, Q together with a weight
¹⁹⁰ matrix R such that $\beta = RQ^T$ and hence $Y^{train} \approx X^{train}\beta$.

¹⁹¹ Prior to PLS regression, the matrices X^{train} and X^{test} are row and column-centered. For details on
¹⁹² this point, see equations 2,3,4 on the last page of the supplementary material. Likewise, the vector
¹⁹³ Y^{train} is mean-centered and its mean is used to center the test vector Y^{test} .

voxel space			grayordinate space		
label	correlation type	parcellation	label	parcellation	paradigm
PS	partial correlation	S	R-100	ICA-100	resting state
PP	partial correlation	P	R-300	ICA-300	resting state
CS	linear correlation	S	R-MMP	MMP	resting state
CP	linear correlation	P	L-MMP	MMP	language task
TS	tangent correlation	S	W-MMP	MMP	working memory task
TP	tangent correlation	P			

Table 2: Baseline methods included into the benchmark. Our proposed algorithm VEGA was tested against a battery of competing methods that are based on the CPM framework using various connectivity types and parcellation schemes as described in the text. The parcellations are denoted as *S* [49], *P* [50] and *MMP* [51]. For resting state data in grayordinate space, we also used *ICA* decompositions with 100 and 300 nodes (*ICA-100*, *ICA-300*). The correlation types are partial correlation, Pearson linear correlation and tangent correlation [14]. In grayordinate space, tangent correlation was used throughout. The labels correspond to those in Figures 3,6,5,4.

194 **Apply learned parameters to the test set.** Once β has been learned from the training data,
 195 predictions for the test subjects can be obtained using $Y^{test} \approx X^{test} \beta$. Finally, the predictions are
 196 averaged within each fold.

197 Benchmarks

198 We implemented a range of methods for benchmarking using the scikit-learn library [52, 53]. All
 199 methods are derived from the general framework called “connectome-based predictive modeling
 200 (CPM)” [3,5,6,54]. CPM reflects the state of the art in the field of predicting behaviour from fMRI
 201 data and can therefore serve as a useful point of reference.

202 The framework consists of the following processing steps. First, a dimensionality reduction is
 203 performed by some form of brain parcellation or ICA decomposition [55,56]. Second, a whole-brain
 204 connectivity pattern is calculated by correlating the fMRI activity time courses of every pair of
 205 parcels or components extracted in the first step. Third, a linear model relates this pattern to the
 206 behavioral score of interest. Finally, the model is applied to previously unseen data to generate a
 207 behavioral prediction.

208 The methods included into this benchmark differ with regard to the input data representation.
 209 The first set of benchmark methods expects input data represented in the voxel space. For these
 210 methods, we include two types of parcellations, namely the parcellations by Shen et al [49], and
 211 that by Power et al. [50].

212 The second set of benchmark methods expects input data to be represented in a surface represen-
 213 tation called “grayordinate space (CIFTI)” which is specific to the Human Connectome Project

214 (HCP). In grayordinate space, two types of dimensionality reduction are most common. The first
215 is the atlas-based multimodal parcellation (MMP) [51]. The second is derived from ICA decompo-
216 sitions so that a node is defined as an ICA component. ICA decompositions were included in our
217 benchmark because they were used in the “megatrawl” release [2], and are thus a highly relevant
218 reference in our context. However, analogous ICA decompositions are not available for task fMRI
219 data in the HCP database and were thus only included as a benchmark for resting state data.

220 Furthermore, we included three measures of connectivity. Those are partial correlation, Pearson
221 linear correlation and tangent correlation [57]. For all three measures, covariances are estimated
222 using the Ledoit Wolf method [58]. In grayordinate space, we only used the tangent correlation as
223 this was expected to produce the best results [14].

224 To establish the linear model, we used ridge regression throughout and relied on a generalized cross-
225 validation procedure over the training set to select the regularisation parameter [59]. This method
226 provided the best results over appropriate CPM alternatives and reinforced earlier observations
227 about its performance benefits [14]. Therefore, no feature selection step was performed as in [5].

228 For the benchmark we used the same fMRI input data as for the VEGA algorithm. The pre-
229 processing was done as follows. Detrending and a high-pass filter with a cutoff frequency of 1/100 Hz
230 was applied to remove baseline drifts. Images were standardized (zero mean with unit variance).
231 For the voxel-space methods, a spatial Gaussian smoothing using $fw\text{hm}=6\text{mm}$ was applied. To
232 extract parcellated time-series, preprocessed images were signal averaged within parcels defined by
233 either the 360 parcels of the MMP atlas [51], the 268 parcels atlas of [49] or the 264 parcel atlas
234 of [50]. In the latter case, parcels were defined as spheres with 5mm radii around the coordinates
235 specified in [50]. The brain atlases of [49, 50] are defined at a resolution of $(2\text{mm})^3$ so that no
236 downsampling of the fMRI data in the voxel-space was applied.

237 Table 2 gives an overview of all methods included into the benchmark.

238 Results

239 In our experiments, we used 390 subjects and 6-fold cross validations so that each training set
240 had 325 subjects, and each test set had 65 subjects. We recorded the Pearson linear correlation
241 and the predictive coefficient R^2 between the observed and the predicted intelligence scores where
242 $R^2 = 1 - SS_{res}/SS_{total}$. Here SS_{res} is the residual sum of squares, and SS_{total} is total sum
243 of squares. We also report the mean absolute error (MAE). We randomly defined 20 different
244 training/test splits resulting in $6 \times 20 = 120$ different correlation scores, R^2 and MAE values. We
245 used the same training/test splits for the benchmark methods described in the previous section.

246 Figures 3,4,5,6 show the resulting Pearson correlations between the observed and the predicted
247 intelligence scores for the G-factor, total, crystallized and fluid intelligence, respectively. The
248 corresponding R^2 values and mean absolute errors are in the supplementary material (Supplemen-

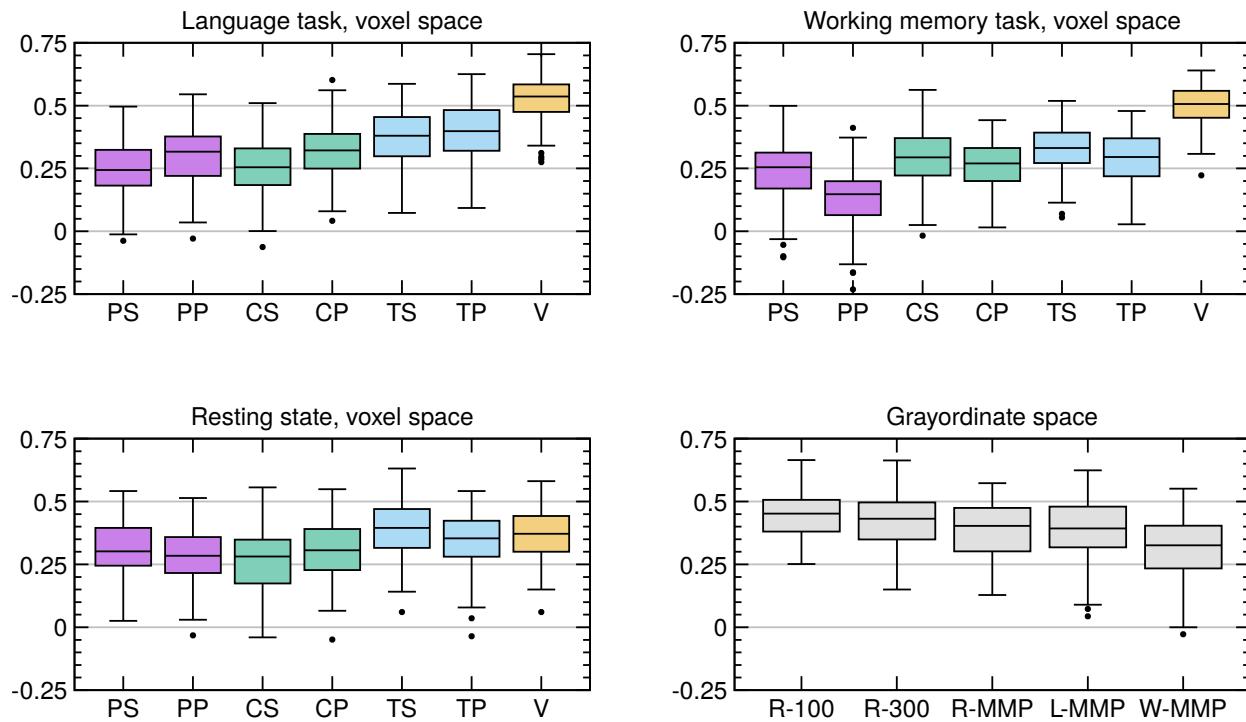


Figure 3: Correlations between observed and predicted G-factor. The boxplots show the Pearson linear correlations between the observed versus predicted intelligence scores of 65 test subjects resulting from 6-fold crossvalidations in 20 different train/test splits ($6 \times 20 = 120$ correlation values). The corresponding R^2 values are in the supplement. The results of the new method VEGA ('V') are shown in orange. It was tested against several competing methods using the same data and train/test splits, see table 2. Note that in the language and working memory tasks, VEGA outperformed all competing methods. In resting state data (voxel space), its accuracy is comparable to the best competing methods.

249 tary Figures 4,5,6,7). We first note that the results obtained by VEGA in the two task conditions
 250 were clearly better than the results in the resting state condition.

251 All results were obtained with $m = 1000, p = 10$ as hyperparameters where m denotes the number
 252 of edges randomly selected in each subset of the ensemble learning, and p denotes the intrinsic
 253 dimensionality of the PLS regression. We then investigated the influence of those two hyperparam-
 254 eters. We found that the results remained almost unchanged with $m = 100, 500, 1000, 2000, 5000$,
 255 and $p = 3, 10, 20, 50$. At $m = 100$ the prediction accuracy decreased, see Supplementary Fig-
 256 ures 12,13,14.

257 Figure 7 shows scatter plots from one of the twenty training/test splits obtained by VEGA. Here
 258 we also included an average of the results between the two tasks. A systematic evaluation of the
 259 effect of combining the two tasks is shown in Supplementary Figure 15. For example, the median
 260 correlation between observed and predicted G-factor improved to 0.587 ($R^2=0.294$). And the median
 261 correlation between the observed and predicted CogTotal improved to 0.526 ($R^2=0.241$).

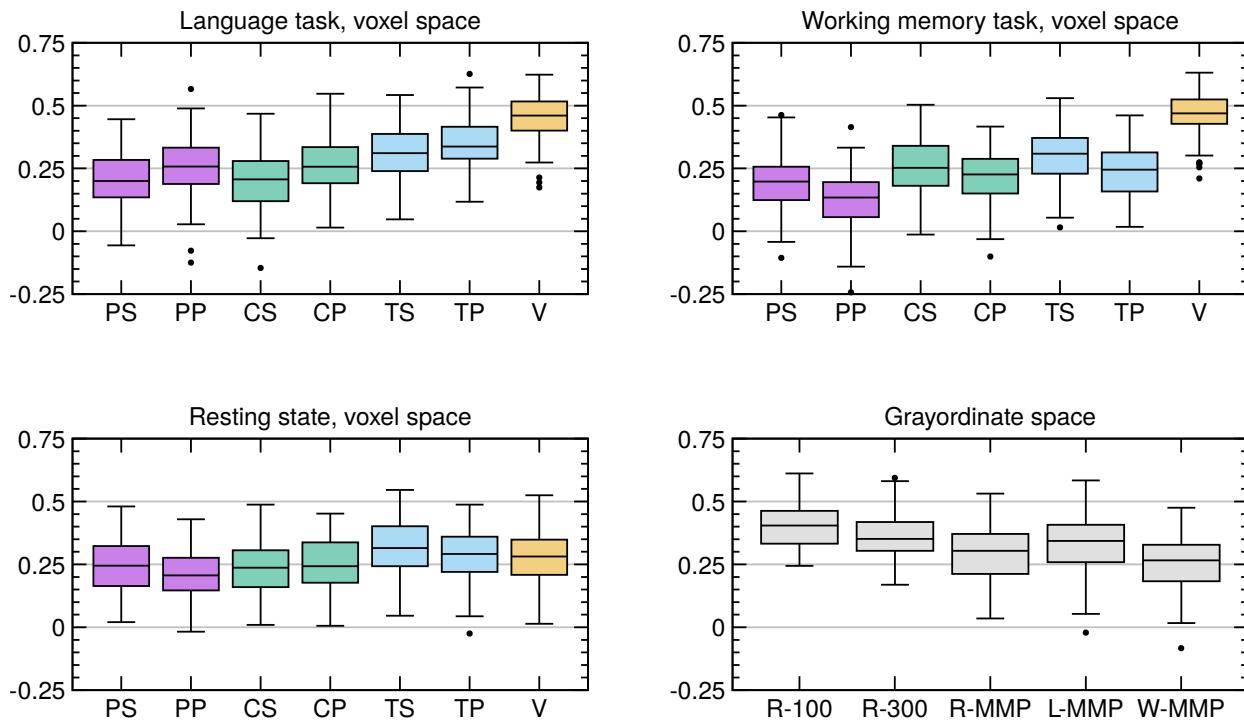


Figure 4: Correlations between observed and predicted CogTotal. Results for the CogTotal score, see caption of Figure 3 for more details.

262 The boxplots of Figures 3,4,5,6 show that VEGA outperformed all benchmark methods in the two
 263 task conditions. To assess statistical significance, we additionally performed an inference for the
 264 generalization error based on the Z-transformed Pearson correlation scores. Note that standard
 265 t-tests are not valid in this context because the results are derived from the same pool of subjects
 266 so that independence assumptions are violated. Therefore, we used a modified t-test that corrects
 267 for this problem [60,61]. In comparing the two task-based results of VEGA against the best voxel-
 268 based benchmarks, we found that VEGA was indeed significantly better in all cases ($p < 0.025$).
 269 We then combined the two task-based results of VEGA and compared them against all benchmark
 270 methods including the ones obtained in the grayordinate space, and found that the VEGA result
 271 was significantly better throughout ($p < 0.015$).
 272 Furthermore, we investigated the effect of scan time on prediction accuracy in the resting state
 273 condition. For example, we found that the median correlation between observed and predicted
 274 G-factor declined slightly from 0.371 (full scan time, 58 min) to 0.360 and 0.347 when the scan time
 275 was cut in half (29 min for each session). And it declined to 0.286, 0.306, 0.294, 0.258 when the scan
 276 time was reduced even further (14.4 min for each run). For details, see Supplementary Figure 16.
 277 We then tested whether or not Ricci-Forman curvature actually helped to increase prediction ac-
 278 curacy. In the language task, we found that without Ricci-Forman curvature the results for the
 279 prediction of the G-factor (median correlations and median R^2) decreased from 0.54 (0.27) to 0.50
 280 (0.23). In the working memory task, it decreased from 0.51 (0.23) to 0.49 (0.20). For rsfMRI, it did

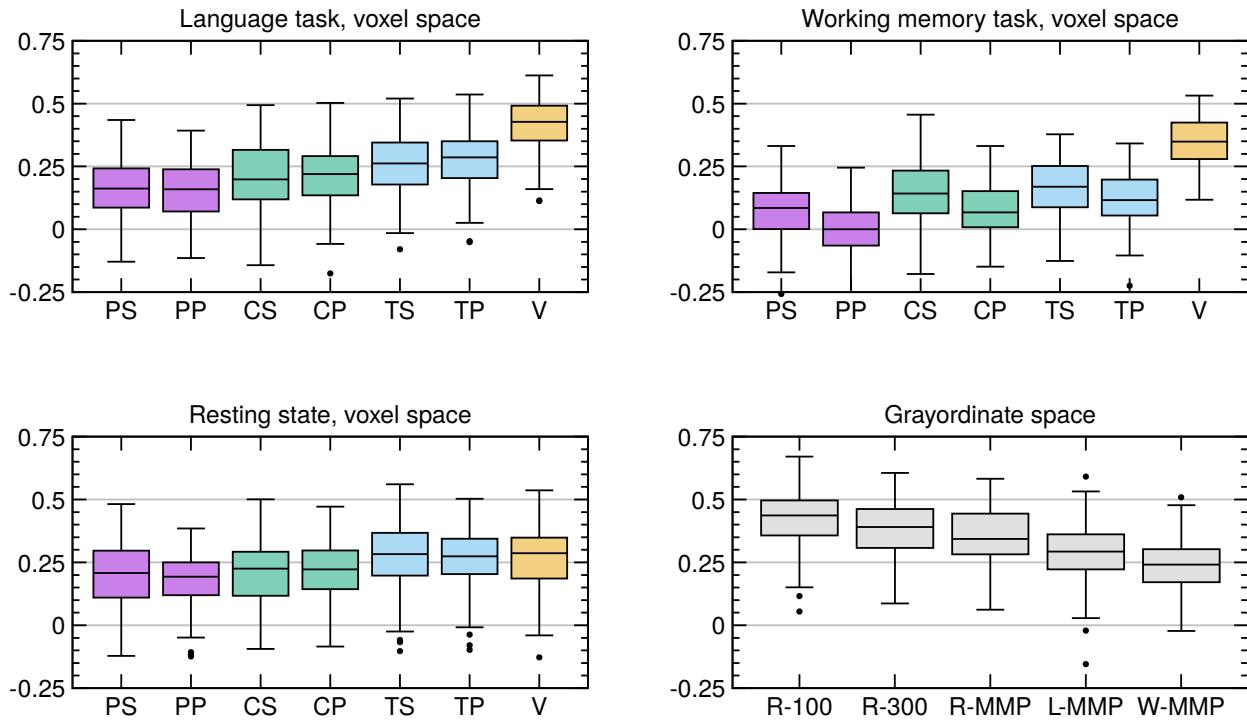


Figure 5: Correlations between observed and predicted CogCrystal. Results for the CogCrystal score, see caption of Figure 3 for more details.

281 not produce a better prediction. For details, see Supplementary Figure 17.

Finally, we investigated which brain areas are most relevant for predicting intelligence. Figure 8 shows these areas for the G-factor in the language task. Specifically, we compute the mean factor loadings of X that are recorded in the load matrix P . We distinguish between positive and negative factor loadings so that for each edge i , we have

$$wpos_i = \sum_{P_{i,j} > 0} P_{i,j}$$

$$wneg_i = \sum_{P_{i,j} < 0} P_{i,j}$$

282 where the index $j = 1, \dots, p$ denotes the latent factors. The weights $wpos_i, wneg_i$ are then mapped
 283 onto a positive and a negative weight map as shown in Figure 8. Supplementary Figures 18, 19
 284 show similar images for the working memory task and the resting state data.

285 Discussion

286 We have introduced a new machine learning method for predicting intelligence from fMRI data. In
 287 contrast to existing methods, it does not require a presegmentation or a brain atlas, nor does it
 288 depend on an ICA decomposition. Rather, it handles the high dimensionality and multicollinearity
 289 of the data via partial least squares regression and ensemble learning.

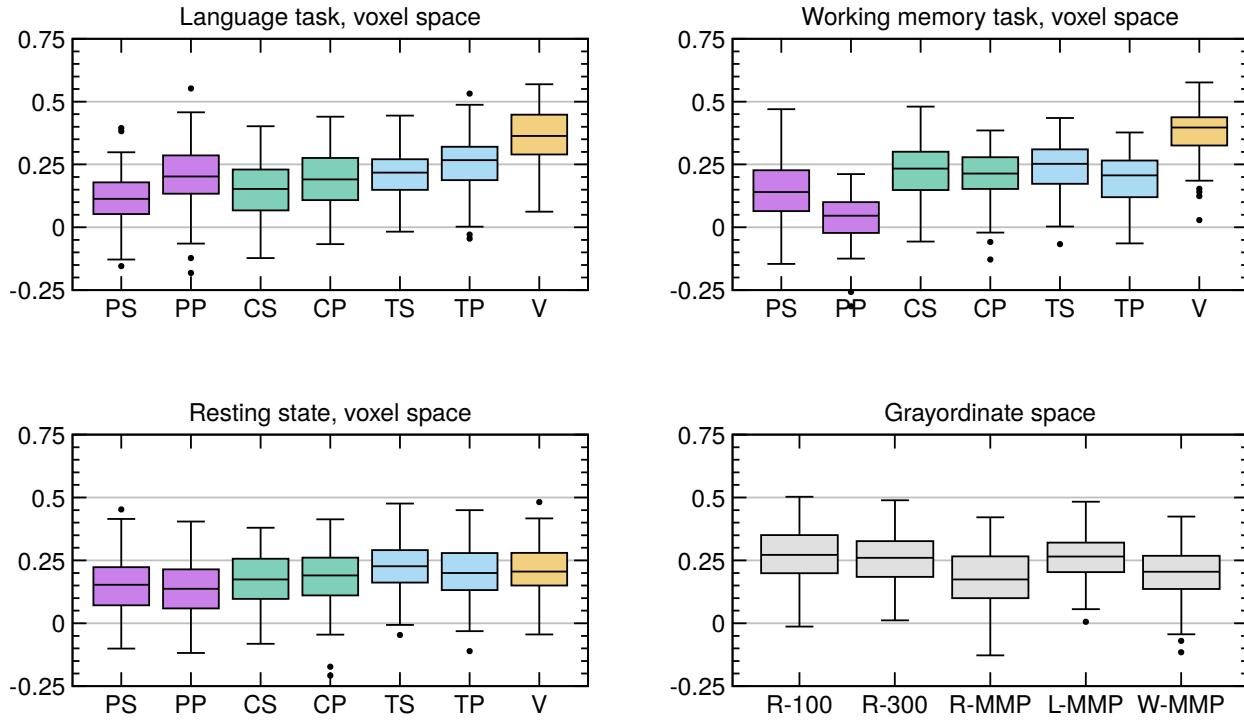


Figure 6: Correlations between observed and predicted CogFluid. Results for the CogFluid score, see caption of Figure 3 for more details.

290 Recently, Faskowitz et al. [62] have noted that the traditional metric of functional connectivity
 291 should be complemented by more complex edge weights and introduced an edge-centric measure.
 292 Here we have proposed Ricci-Forman-curvature as an alternative concept. It incorporates informa-
 293 tion from adjacent edges and helps to improve predictability by reducing dimensionality.

294 We implemented a range of existing methods for establishing a benchmark against which we com-
 295 pared our proposed method, see also [63]. We first note that the results in Fig 3(R-100) are approx-
 296 imately consistent with the results previously published by Dubois et al. [21]. Also in agreement
 297 with the literature, the benchmark showed that tangent correlation is generally superior to other
 298 measures of correlation [14]. Both observations demonstrate the replicability of earlier publications,
 299 and also the realism of our benchmark.

300 A comparison against the benchmark showed that the proposed algorithm VEGA offers a significant
 301 improvement in prediction accuracy in tfMRI data. This is remarkable because this improvement
 302 was achieved at a fraction of the scan time required for rsfMRI. Specifically, the scan time of
 303 the rsfMRI data was almost 1 hour, whereas the scan time for the language task was only about
 304 7.5 minutes, and for the working memory task was about 10 minutes. Dubois et al [21] report
 305 a noticeable decline in prediction accuracy when the scan time in rsfMRI was reduced to about
 306 30 minutes, an observation that is supported by our own data (Supplementary Fig. 16). This
 307 suggests that rsfMRI may be too unspecific to permit good prediction accuracies at scan times that
 308 will eventually be feasible in clinical applications.

309 Therefore, we believe that tfMRI may be a better choice for predicting individual behaviour provided
310 the task is suitable for the application at hand. This is in line with a new initiative for evaluating the
311 reliability of tfMRI data [64], and it agrees with Greene et al. [65] who reported that task-induced
312 brain state manipulation improves prediction of individual traits. Surprisingly, the methods included
313 in our benchmark failed to exploit the advantages of tfMRI data. We speculate that dimensionality
314 reduction via brain parcellations may be the primary reason for this failure. In essence, current
315 parcellation schemes may not be able to reflect the continuous nature of brain topography [66].

316 The brain areas most relevant for intelligence prediction in the language task appear biologically
317 plausible as success in intelligence testing is based on focused mental activity during specific tasks.
318 Indeed, the strongest result regarding factor loadings (Figure 8) was a negative relationship between
319 connectivity of brain areas typically associated with internally-oriented thought processes (i.e. mind
320 wandering [67]) and intelligence which concurs with the fact that such processes are rather disruptive
321 than helpful during cognitive tasks.

322 We conclude that the prediction of individual behaviour from fMRI data can be greatly improved
323 with the help of new strategies. In particular, dimensionality reduction via ensemble learning and
324 the use of task-based fMRI instead of rsfMRI appear to be the most important aspects in this
325 endeavour.

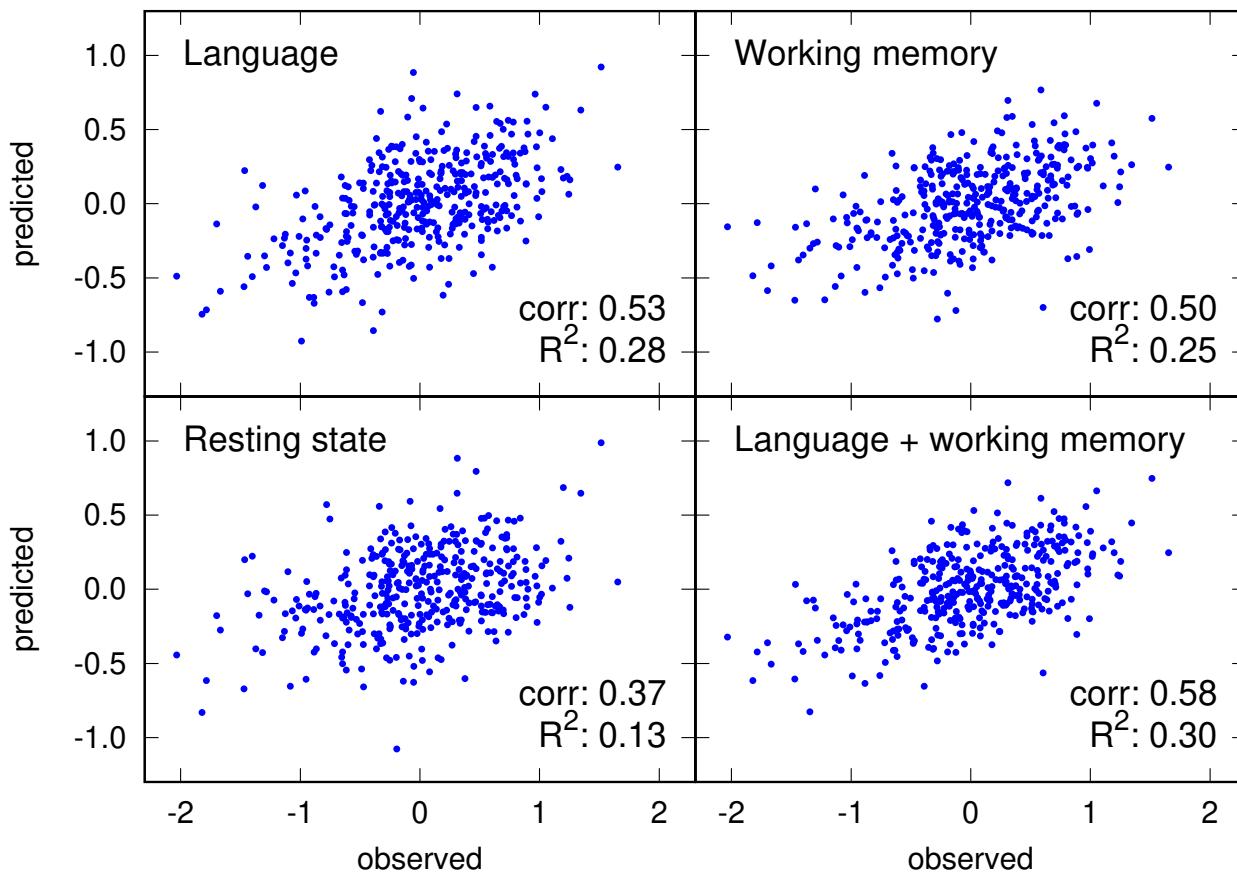


Figure 7: Scatter plots showing predictions of the G-factor. Scatter plots for the prediction of the G-factor obtained by the proposed algorithm VEGA are shown. Each dot represents one of the 390 test subjects. Note that the results from the two tasks are markedly better than that of the resting state. The average of the two tasks yields the best result. All four scatter plots are derived from the same training/test split.

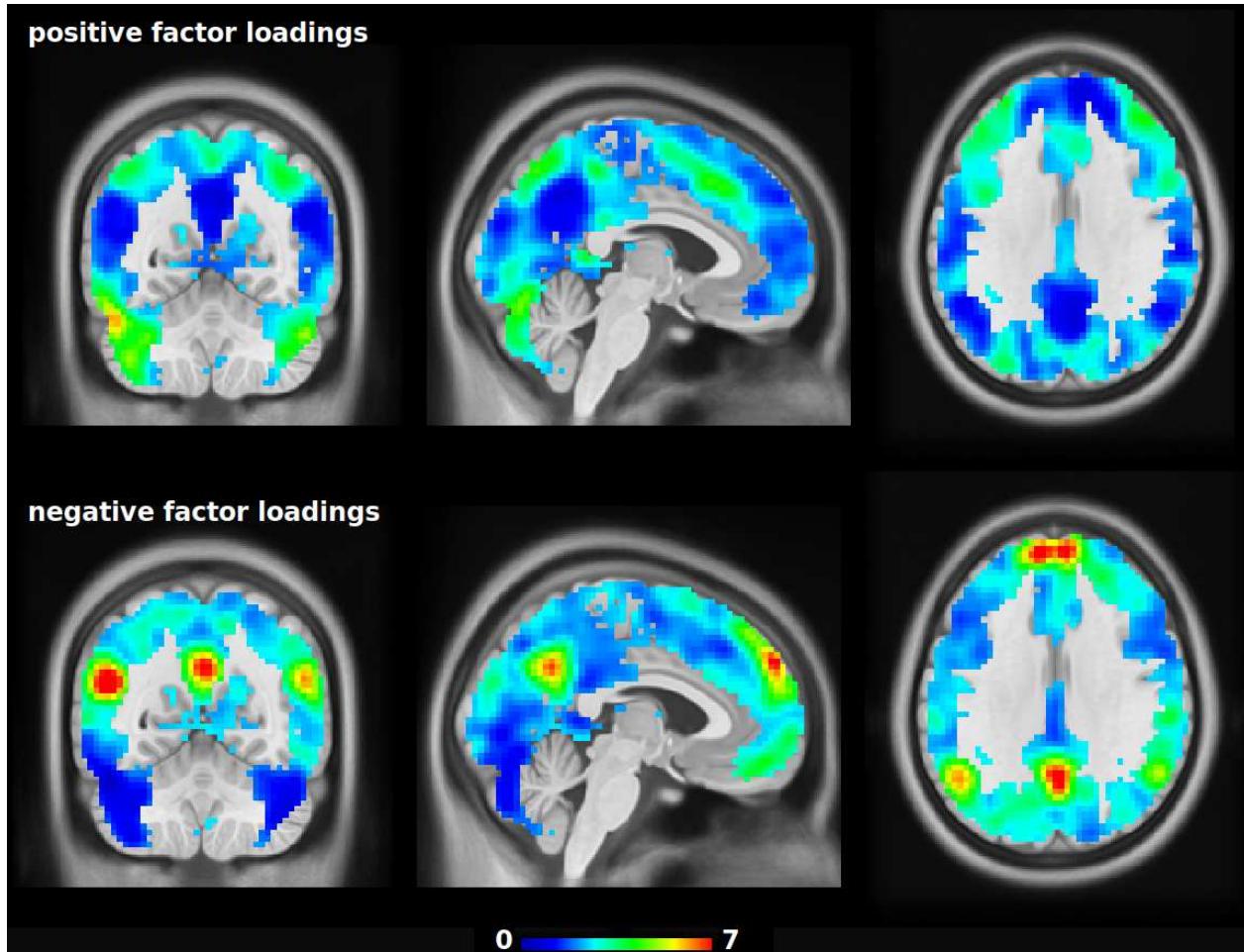


Figure 8: Predictive areas for general intelligence in the language task. The colors encode factor loadings (matrix P) estimated by partial least squares regression averaged over all folds. Strong positive loadings indicate areas where connectivity with other brain regions is positively correlated with general intelligence. Strong negative loadings indicate areas where connectivity with other brain regions is negatively correlated with general intelligence. For example, the negative loadings seem to highlight the default mode network (DMN). This suggests that a well connected DMN correlates with low general intelligence. A spatial Gaussian filter ($fw\text{hm}=7\text{mm}$) was applied for better visualization. Note that the colors only show relative weights, they do not have interpretable units.

326 Software

327 The software will be made public soon.

328 Acknowledgments

329 The project was partially funded by Reinhart Koselleck Project DFG SCHE 658/12.

330 Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investi-
331 gators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and
332 Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center
333 for Systems Neuroscience at Washington University.

334 References

335 [1] FX Castellanos, A Di Martino, RC Craddock, AD Mehta, and MP Milham. Clinical
336 applications of the functional connectome. *Neuroimage*, 80:527–540, 2013.
337 doi:10.1016/j.neuroimage.2013.04.083.

338 [2] S. Smith, T. Nichols, D. Vidaurre, A. Winkler, T.E.J. Behrens, M.F. Glasser, K. Ugurbil,
339 D.M. Barch, D. Van Essen, and K. Miller. A positive-negative mode of population covari-
340 ation links brain connectivity, demographics and behavior. *Nat Neurosci*, 18:1565–1567, 2015.
341 <https://doi.org/10.1038/nn.4125>.

342 [3] M. Rosenberg, E. Finn, D. Scheinost, X. Papademetris, X. Shen, R.T. Constable, and M. Chun.
343 A neuromarker of sustained attention from whole-brain functional connectivity. *Nat Neurosci*,
344 19:165–171, 2016. <https://doi.org/10.1038/nn.4179>.

345 [4] E.M. Gordon, T.O. Laumann, A.W. Gilmore, D.J. Newbold, D.J. Greene, J.J. Berg, M. Ortega,
346 C. Hoyt Drazen, C. Gratton, H. Sun, J.M. Hampton, R.S. Coalson, A. Nguyen, K.B. McDer-
347 mott, J.S. Shimony, A.Z. Snyder, B.L. Schlaggar, S.E. Petersen, S.M. Nelson, and N.U.F.
348 Dosenbach. Precision functional mapping of individual human brains. *Neuron*, 95(4):791–807,
349 2017.

350 [5] X. Shen, E.S. Finn, D. Scheinost, M.D. Rosenberg, M.M. Chun, X. Papademetris, and R.T.
351 Constable. Using connectome-based predictive modeling to predict individual behavior from
352 brain connectivity. *Nat Protoc*, 12(3):506–518, 2017. doi:10.1038/nprot.2016.178.

353 [6] R.E. Beaty, Y.N. Kenett, A.P. Christensen, M.D. Rosenberg, M. Benedek, Q. Chen, A. Fink,
354 J. Qiu, T.R. Kwapiel, M.J. Kane, and P.J. Silvia. Robust prediction of individual creative ability
355 from brain functional connectivity. *PNAS*, 115:1087–1092, 2018.

356 [7] J. Dubois, P. Galdi, Y. Han, L. Paul, and R. Adolphs. Resting-state functional brain connectiv-
357 ity best predicts the personality dimension of openness to experience. *Personality Neuroscience*,
358 1, 2018. doi:10.1017/pen.2018.8.

359 [8] A.A. Joshi, J. Li, H. Akrami, and R.M. Leahy. Predicting cognitive scores from resting fMRI
360 data and geometric features of the brain. In Elsa D. Angelini and Bennett A. Landman, editors,
361 *Medical Imaging 2019: Image Processing*, volume 10949, pages 619 – 625. International Society
362 for Optics and Photonics, SPIE, 2019.

363 [9] J. Chen, A. Tam, V. Kebets, C. Orban, L.Q.R. Ooi, S. Marek, N. Dosenbach, S. Eick-
364 hoff, D. Bzdok, A.J. Holmes, and et al. Shared and unique brain network fea-
365 tures predict cognition, personality and mental health in childhood. *bioRxiv*, 2020.
366 <https://doi.org/10.1101/2020.06.24.168724>.

367 [10] R. Kong, Q. Yang, E. Gordon, A. Xue, X. Yan, C. Orban, X. Zuo, N. Spreng, T. Ge, A. Holmes,
368 S. Eickhoff, and T. Yeo. Individual-specific areal-level parcellations improve functional connec-
369 tivity prediction of behavior. *bioRxiv*, 2021. <https://doi.org/10.1101/2021.01.16.426943>.

370 [11] U. Pervaiz, D. Vidaurre, M.W. Woolrich, and S.M. Smith. Optimising network modelling
371 methods for fMRI. *Neuroimage*, 211, 2020. <https://doi.org/10.1016/j.neuroimage.2020.116604>.

372 [12] D.S. Bassett, P. Zurn, and J.I. Gold. On the nature and use of models in network neuroscience.
373 *Nat Rev Neurosci*, 19:566–578, 2018. <https://doi.org/10.1038/s41583-018-0038-8>.

374 [13] S.E. Petersen and O. Sporns. Brain networks and cognitive architectures. *Neuron*, 88(1):207–
375 219, 2015. doi:10.1016/j.neuron.2015.09.027.

376 [14] K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham, B. Thirion, and G. Varoquaux.
377 Benchmarking functional connectome-based predictive models for resting-state fMRI. *Neu-
378 roImage*, 192:115–134, 2019. <https://doi.org/10.1016/j.neuroimage.2019.02.062>.

379 [15] D. Scheinost, S. Noble, C. Horien, A.S. Greene, E.M. Lake, M. Salehi, S. Gao, X. Shen,
380 D. O'Connor, D.S. Barron, S.W. Yip, M.D. Rosenberg, and R.T. Constable. Ten simple rules
381 for predictive modeling of individual differences in neuroimaging. *Neuroimage*, 193:35–45, 2019.
382 doi:10.1016/j.neuroimage.2019.02.057.

383 [16] G. Poldrack, R.A. and Huckins and G. Varoquaux. Establishment of best practices for evidence
384 for prediction. *JAMA Psychiatry*, Nov 2019. doi:10.1001/jamapsychiatry.2019.3671.

385 [17] S. Marek, B. Tervo-Clemmens, F.J. Calabro, and et al. Towards reproducible brain-wide
386 association studies. *bioRxiv*, 2020. <https://doi.org/10.1101/2020.08.21.257758>.

387 [18] M.P. Milham, J. Vogelstein, and T. Xu. Removing the Reliability Bottleneck in Functional
388 Magnetic Resonance Imaging Research to Achieve Clinical Utility. *JAMA Psychiatry*, 2021.
389 doi:10.1001/jamapsychiatry.2020.4272.

390 [19] D.C. Van Essen, S.M. Smith, D.M. Barch, T.E.J. Behrens, E. Yacoub, and K. Ugurbil. The
391 WU-Minn Human Connectome Project: An overview. *Neuroimage*, 80:62–79, 2013.

392 [20] M.F. Glasser, S.M. Smith, D.S. Marcus, J.L. Andersson, E.J. Auerbach, T.E. Behrens, T.S.
393 Coalson, M.P. Harms, M. Jenkinson, S. Moeller, E.C. Robinson, S.N. Sotiroopoulos, J. Xu,
394 E. Yacoub, K. Ugurbil, and D.C. Van Essen. The human connectome project's neuroimaging
395 approach. *Nature Neuroscience*, 19:1175–1187, 2016.

396 [21] J. Dubois, P. Galdi, L.K. Paul, and R. Adolphs. A distributed brain network predicts general in-
397 telligence from resting-state human neuroimaging data. *Phil. Trans. R. Soc. B*, 373(20170284),
398 2018. <http://dx.doi.org/10.1098/rstb.2017.0284>.

399 [22] <https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/behavioral-testing>.

400 [23] J. Duncan, R.J. Seitz, J. Kolodny, D. Bor, H. Herzog, A. Ahmed, F.N. Newell, and H. Emslie.
401 A neural basis for general intelligence. *Science*, 2000.

402 [24] J. Duncan. The structure of cognition: attentional episodes in mind and brain. *Neuron*,
403 80(1):35–50, 2013. doi:10.1016/j.neuron.2013.09.015.

404 [25] A. Hampshire, R.R. Highfield, B.L. Parkin, and A.M. Owen. Fractionating human intelligence.
405 *Neuron*, 76(6):1225–1237, 2012. <https://doi.org/10.1016/j.neuron.2012.06.022>.

406 [26] A.K. Barbey. Network neuroscience theory of human intelligence. *Trends in Cognitive Sciences*,
407 22(1):8–20, 2018. <https://doi.org/10.1016/j.tics.2017.10.001>.

408 [27] J.D.E. Gabrieli, S.S. Ghosh, and S. Whitfield-Gabrieli. Prediction as a humanitarian
409 and pragmatic contribution from human cognitive neuroscience. *Neuron*, 85(1), 2015.
410 doi:10.1016/j.neuron.2014.10.047.

411 [28] M. Helmstaedter. The mutual inspirations of machine learning and neuroscience. *Neuron*,
412 86:25–28, 2015. <https://doi.org/10.1016/j.neuron.2015.03.031>.

413 [29] D.M. Barch, G.C. Burgess, M.P. Harms, S.E. Petersen, B.L. Schlaggar, M. Corbetta, M.F.
414 Glasser, S. Curtiss, S. Dixit, C. Feldt, D. Nolan, E. Bryant, T. Hartley, O. Footer, J.M. Bjork,
415 R. Poldrack, S. Smith, H. Johansen-Berg, A.Z. Snyder, and D.C. Van Essen. Function in the
416 human connectome: task-fMRI and individual differences in behavior. *Neuroimage*, 80:169–189,
417 2013.

418 [30] JD Power. A simple but useful way to assess fMRI scan qualities. *Neuroimage*, 154:150–158,
419 2017. doi:10.1016/j.neuroimage.2016.08.009.

420 [31] L. Griffanti, G. Salimi-Khorshidi, C.F. Beckmann, E.J. Auerbach, G. Douaud, C.E. Sexton,
421 E. Zsoldos, K.P. Ebmeier, N. Filippini, C.E. Mackay, S. Moeller, J. Xu, E. Yacoub, G. Baselli,
422 K. Ugurbil, K.L. Miller, and S.M. Smith. ICA-based artefact removal and accelerated fMRI
423 acquisition for improved resting state network imaging. *NeuroImage*, 95:232–247, 2014.

425 [32] G. Salimi-Khorshidi, G. Douaud, C.F. Beckmann, M.F. Glasser, L. Griffanti, and S.M. Smith.
426 Automatic denoising of functional MRI data: combining independent component analysis and
427 hierarchical fusion of classifiers. *NeuroImage*, 90:449–468, 2014.

428 [33] M.F. Glasser, S.N. Sotiroopoulos, J.A. Wilson, T.S. Coalson, B. Fischl, J.L. Andersson, J. Xu,
429 S. Jbabdi, M. Webster, J. Polimeni, D.C. Van Essen, and M. Jenkinson. The minimal prepro-
430 cessing pipelines for the Human Connectome Project. *Neuroimage*, 80:105–124, 2013.

431 [34] J.R. Binder, W.L. Gross, J.B. Allendorfer, L. Bonilha, J. Chapin, J.C. Edwards, T.J.
432 Grabowski, J.T. Langfitt, D.W. Loring, M.J. Lowe, K. Koenig, P.S. Morgan, J.G. Ojemann,
433 C. Rorden, J.P. Szaflarski, M.E. Tivarus, and K.E. Weaver. Mapping anterior temporal lobe
434 language areas with fMRI: a multicenter normative study. *Neuroimage*, 54(2):1465–1475, 2011.

435 [35] <https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public->
436 [+Updated+for+the+1200+Subject+Release.](https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-)

437 [36] G. Perelman. The entropy formula for the Ricci flow and its geometric applications.
438 *arxiv:math.DG/0211159*, 2002.

439 [37] E. Saucan, A. Samal, M. Weber, and J. Jost. Discrete curvatures and network analysis. *Com-
440 munications in Mathematical and in Computer Chemistry (MATCH)*, 60(3):605–622, 2018.

441 [38] R.P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and A. Samal. Forman curvature for complex
442 networks. *Journal of Statistical Mechanics*, 2016(063206), 2016.

443 [39] M. Weber, J. Stelzer, E. Saucan, A. Naitsat, G. Lohmann, and J. Jost. Curvature-based methods
444 for brain network analysis. *arXiv*, 2017. arXiv:1707.00180 [q-bio.NC].

445 [40] H. Farooq, Y. Chen, T.T. Georgiou, A. Tannenbaum, and C. Lenglet. Network cur-
446 vature as a hallmark of brain structural connectivity. *Nature Comm.*, 10(4937), 2019.
447 doi.org/10.1038/s41467-019-12915-x.

448 [41] R. Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. *Discrete
449 & Computational Geometry*, 29(3):323–374, 2003.

450 [42] T.K. Ho. Random Subspace Method for Constructing Decision Forests. *IEEE Transactions
451 on Pattern Analysis and Machine Intelligence*, 20(8):832–844, 1998. doi:10.1109/34.709601.

452 [43] L.I. Kuncheva, J.J. Rodriguez, C.O. Plumpton, D.E.J. Linden, and S.J. Johnston. Ran-
453 dom Subspace Ensembles for fMRI Classification. *IEEE Transactions on Medical Imaging*,
454 29(2):531–542, 2010.

455 [44] R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: improving accuracy of classifier
456 ensembles by using random feature subsets. *Pattern Recognition*, 36(6):1291–1302, 2003.

457 [45] A.J. Smola and B. Schoelkopf. A tutorial on support vector regression. *Statistics and Com-
458 puting*, 14:199–222, 2004.

459 [46] S Wold, M. Sjöström, and L Eriksson. PLS-regression: a basic tool of chemometrics. *Chemometrics and Intelligent Lab Systems*, 58(2):109–130, 2001.

460

461 [47] A. Krishnan, L.J. Williams, A.R. McIntosh, and H. Abdi. Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. *Neuroimage*, 56:455–475, 2011.

462

463 [48] S. de Jong. SIMPLS: an alternative approach to partial least squares regression. *Chemometrics and Intelligent Lab Systems*, 18:251–263, 1993.

464

465 [49] X. Shen, F. Tokoglu, X. Papademetris, and R.T. Constable. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. *Neuroimage*, 82:403–415, 2013. doi:10.1016/j.neuroimage.2013.05.081.

466

467

468 [50] J.D. Power, A.L. Cohen, S.M. Nelson, G.S. Wig, K.A. Barnes, J.A. Church, A.C. Vogel, T.O. Laumann, F.M. Miezin, B.L. Schlaggar, and S.E. Petersen. Functional network organization of the human brain. *Neuron*, 72(4):665–678, 2011. <https://doi.org/10.1016/j.neuron.2011.09.006>.

469

470

471 [51] M.F. Glasser, T.S. Coalson, E.C. Robinson, C.D. Hacker, J. Harwell, E. Yacoub, K. Ugurbil, J. Andersson, C.F. Beckmann, M. Jenkinson, S.M. Smith, and D.C. Van Essen. A multi-modal parcellation of human cerebral cortex. *Nature*, 536:171–178, 2016. <https://doi.org/10.1038/nature18933>.

472

473

474

475 [52] A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion, and G. Varoquaux. Machine learning for neuroimaging with scikit-learn. *Front. Neuroinform*, 8, 2014. doi:10.3389/fninf.2014.00014.

476

477

478 [53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

479

480

481

482 [54] E.S. Finn, X. Shen, D. Scheinost, M.D. Rosenberg, J. Huang, M.M. Chun, X. Papademetris, and R.T. Constable. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. *Nature Neuroscience*, 18:1664–1671, 2015.

483

484

485 [55] S.B. Eickhoff, B.T.T. Yeo, and S. Genon. Imaging-based parcellations of the human brain. *Rev Neurosci*, 19:672–686, 2018. <https://doi.org/10.1038/s41583-018-0071-7>.

486

487 [56] C.F. Beckmann. Modelling with independent components. *Neuroimage*, 62:891–901, 2012.

488

489

490 [57] G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and B. Thirion. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In Jiang T., Navab N., Pluim J.P.W., and Viergever M.A. (eds), *Medical Image Computing and Computer-Assisted Intervention – MICCAI2010*, volume vol 6361 of *Lecture Notes in Computer Science*. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-15705-9_25.

491

492

493

494 [58] Y. Chen, A. Wiesel, Y.C. Eldar, and A.O. Hero. Shrinkage Algorithms for MMSE Covariance
495 Estimation. *IEEE Trans. on Sign. Proc.*, 58(10), 2010.

496 [59] G.H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing
497 a good ridge parameter. *Technometrics*, 21(2):215–223, 1979.

498 [60] C. Nadeau and Y. Bengio. Inference for the generalization error. *Machine Learning*, 52:239–281,
499 2003.

500 [61] R.R. Bouckaert and E. Frank. Evaluating the replicability of significance tests for comparing
501 learning algorithms. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*
502 (*PAKDD*), volume 3056 of *Lecture Notes in Computer Science*, pages 3–12. Springer, 2004.
503 doi:10.1007/978-3-540-24775-3_3.

504 [62] J. Faskowitz, F.Z. Esfahlani, Y. Jo, O. Sporns, and R.F. Betzel. Edge-centric functional
505 network representations of human cerebral cortex reveal overlapping system-level architecture.
506 *Nat Neurosci*, 23(12):1644–1654, 2020. doi:10.1038/s41593-020-00719-y.

507 [63] E. Lacosse, K. Scheffler, G. Lohmann, and G. Martius. Jumping over baselines with
508 new methods to predict activation maps from resting-state fMRI. *Sci Rep*, 11(1), 2021.
509 doi:10.1038/s41598-021-82681-8.

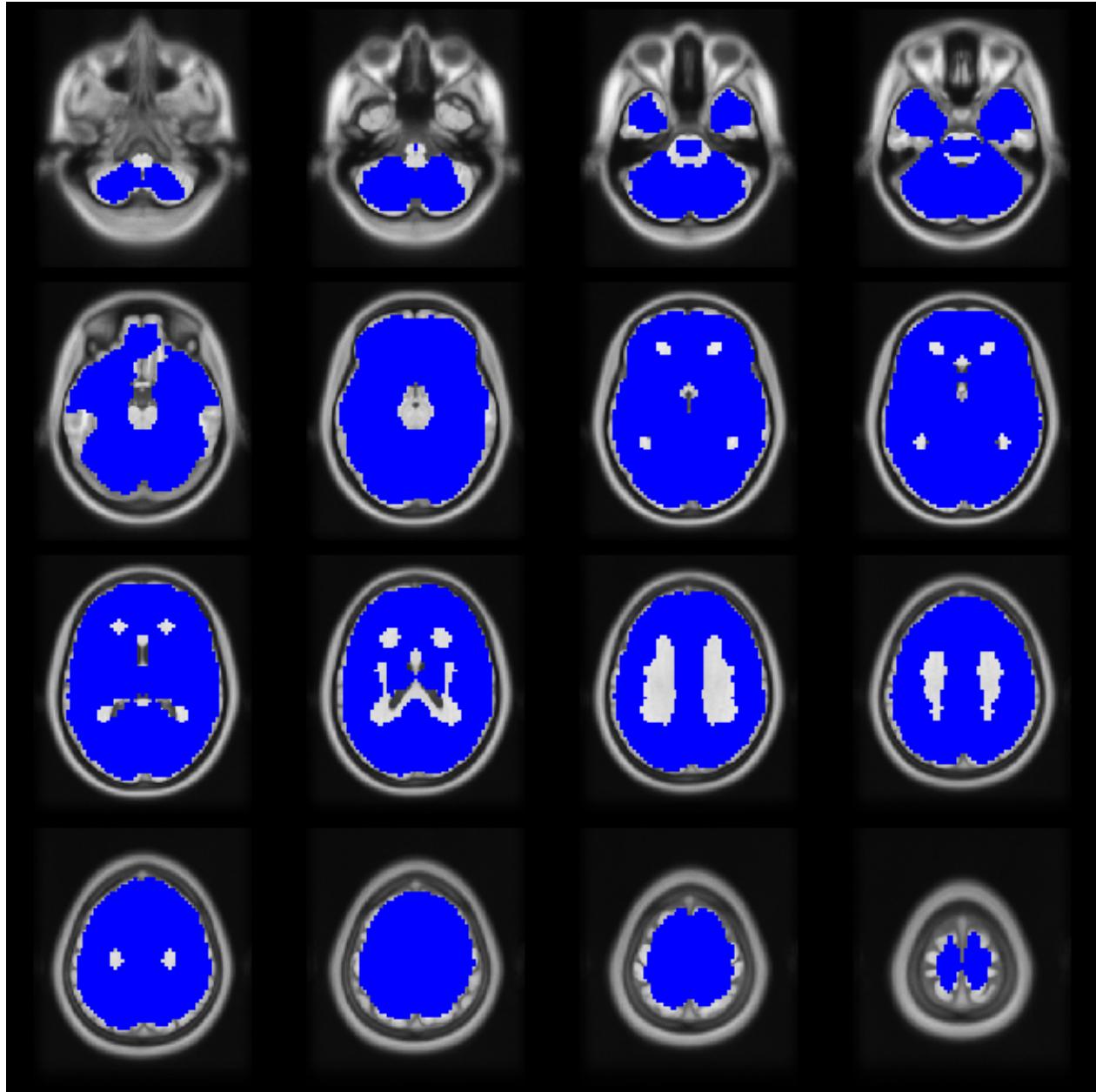
510 [64] D O'Connor, NV Potler, M Kovacs, T Xu, L Ai, J Pellman, T Vanderwal, LC Parra, S Cohen,
511 S Ghosh, J Escalera, N Grant-Villegas, Y Osman, A Bui, RC Craddock, and MP Milham.
512 The healthy brain network serial scanning initiative: a resource for evaluating inter-individual
513 differences and their reliabilities across scan conditions and sessions. *Gigascience*, 6(2):1–14,
514 2017. doi:10.1093/gigascience/giw011.

515 [65] A.S. Greene, S. Gao, D. Scheinost, and R.T. Constable. Task-induced brain state manip-
516 ulation improves prediction of individual traits. *Nature Communications*, 9(2807), 2018.
517 doi:10.1038/s41467-018-04920-3.

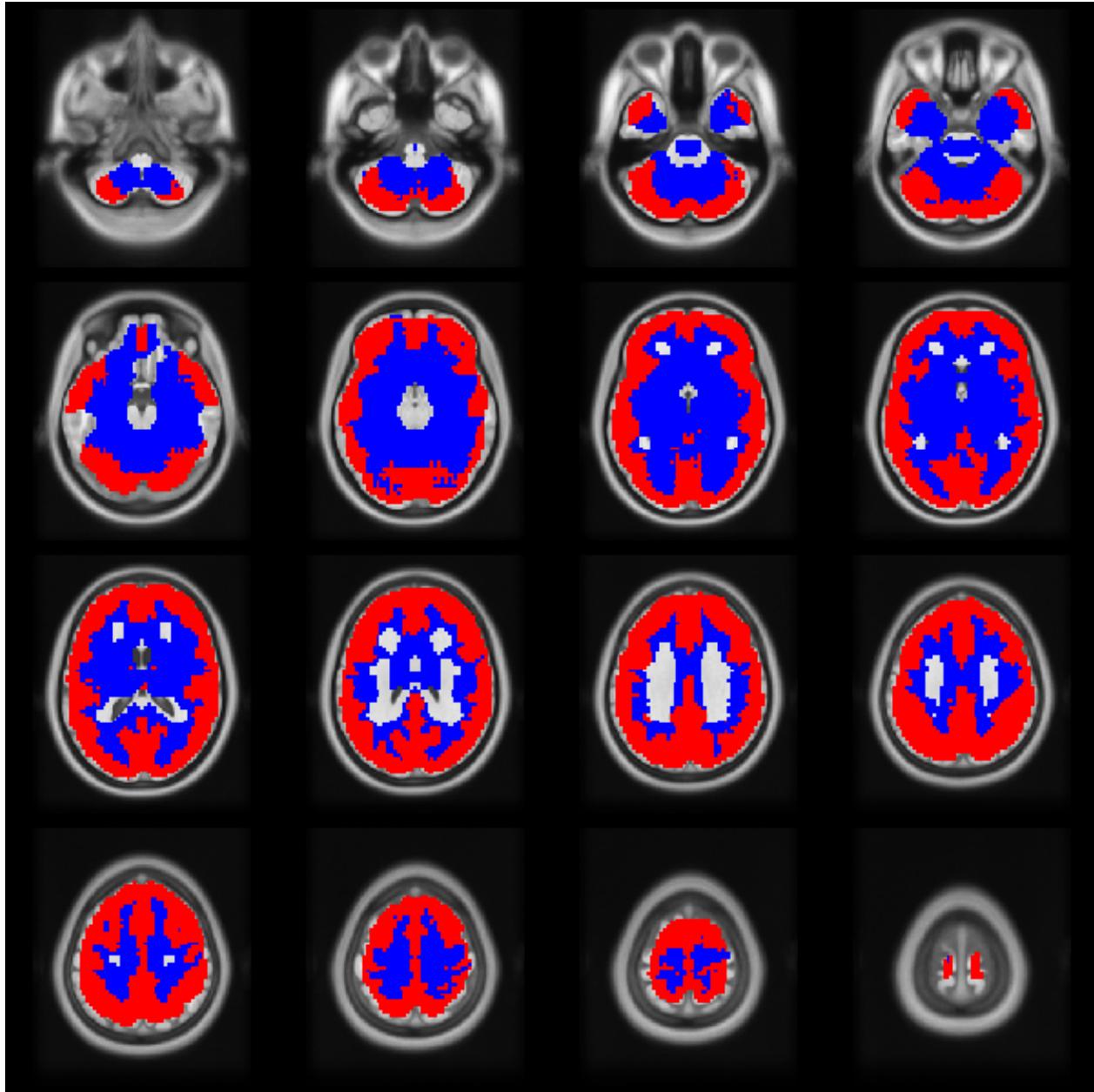
518 [66] A. Marquand, K. Haak, and C. Beckmann. Functional corticostriatal connection to-
519 ographies predict goal-directed behaviour in humans. *Nat Hum Behav*, 1(0146), 2017.
520 https://doi.org/10.1038/s41562-017-0146.

521 [67] J.M. Groot, G. Boayue, N.N. Csifcsak, W. Boekel, R. Huster, B.U. Forstmann, and M. Mittner.
522 Probing the neural signature of mind wandering with simultaneous fMRI-EEG and pupillom-
523 etry. *NeuroImage*, 224:117412, 2021. https://doi.org/10.1016/j.neuroimage.2020.117412.

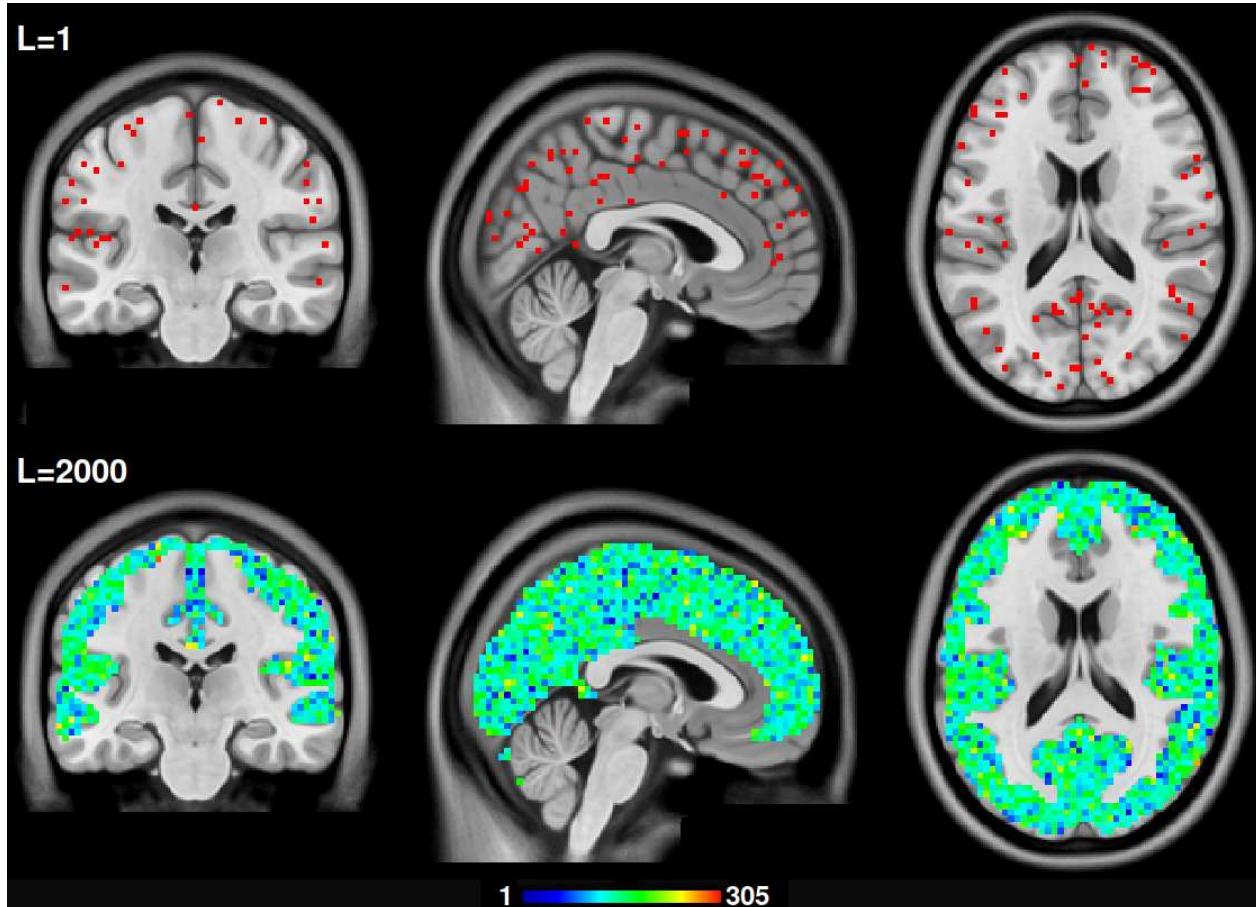
Supplementary Information



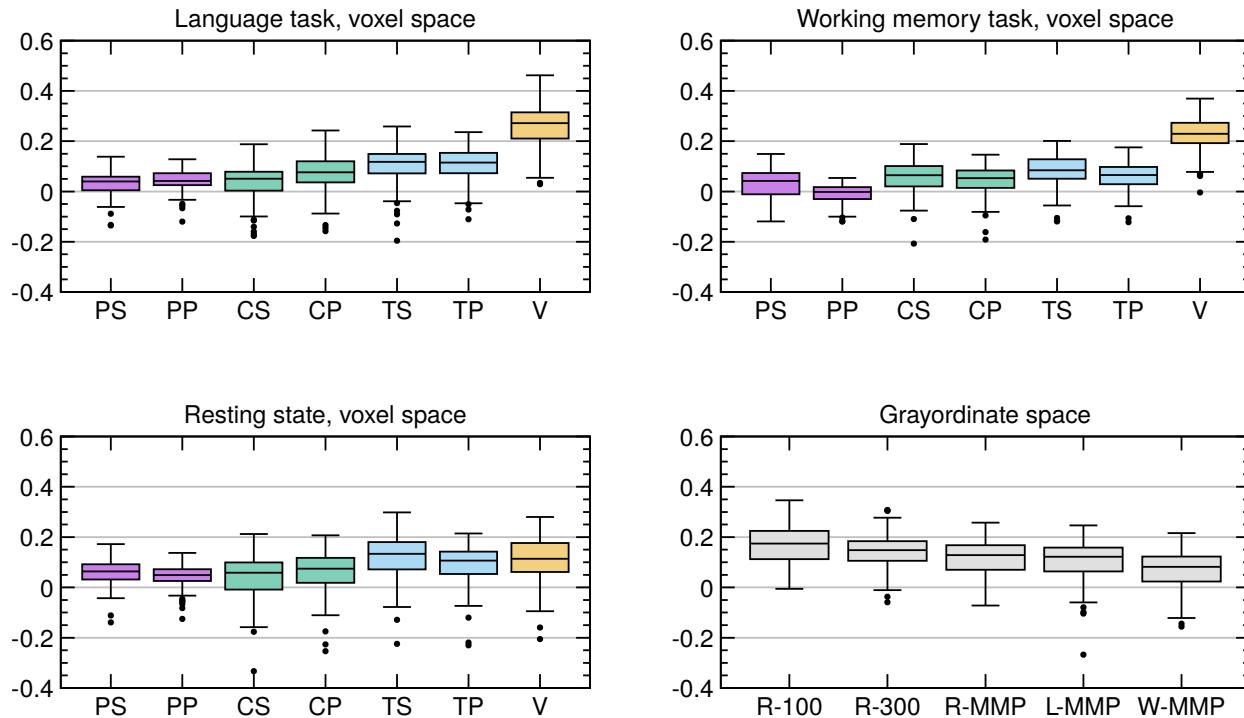
Supplementary Figure 1: The brain mask. The brain mask used for this study. It contains 55856 voxels.



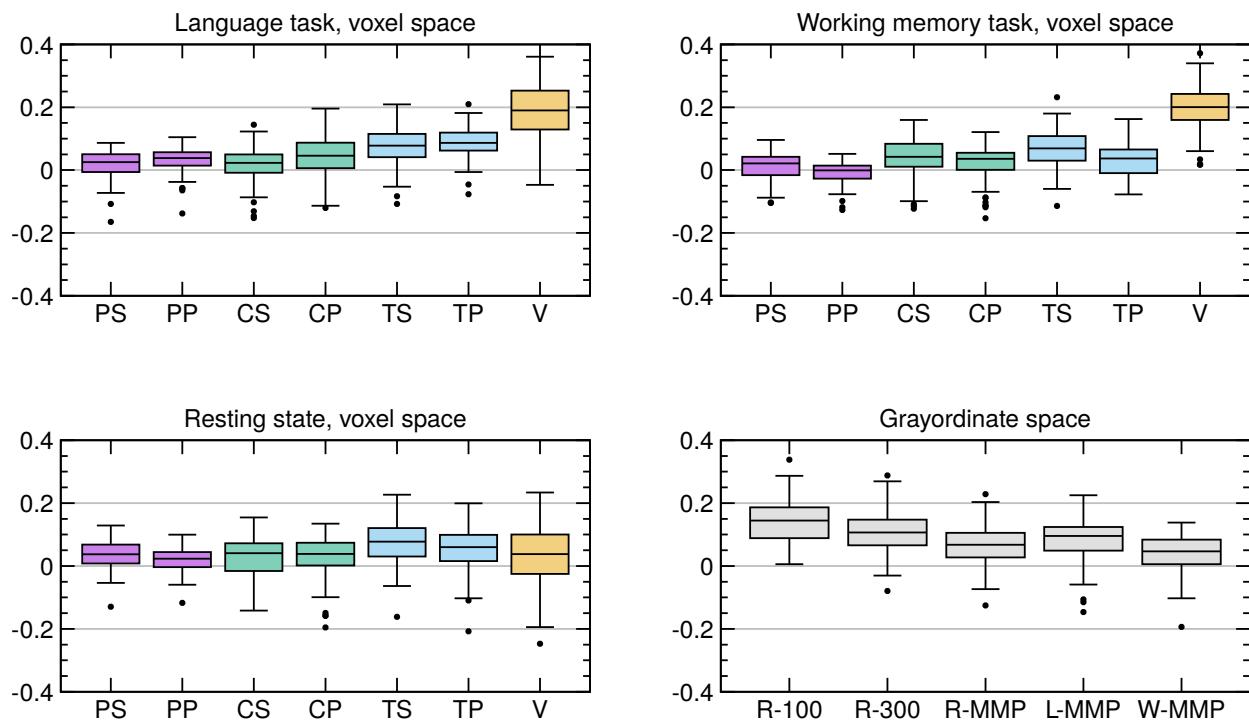
Supplementary Figure 2: The coremap computed using Ricci-Forman curvature. The red areas show the coremap computed by thresholding the Ricci-Forman curvature map superimposed on the original brain mask shown in blue. Here, an average of the coremaps across all folds in one of the 20 train-test splits is shown. It was computed for predicting the G-factor from the fMRI data of the language task.



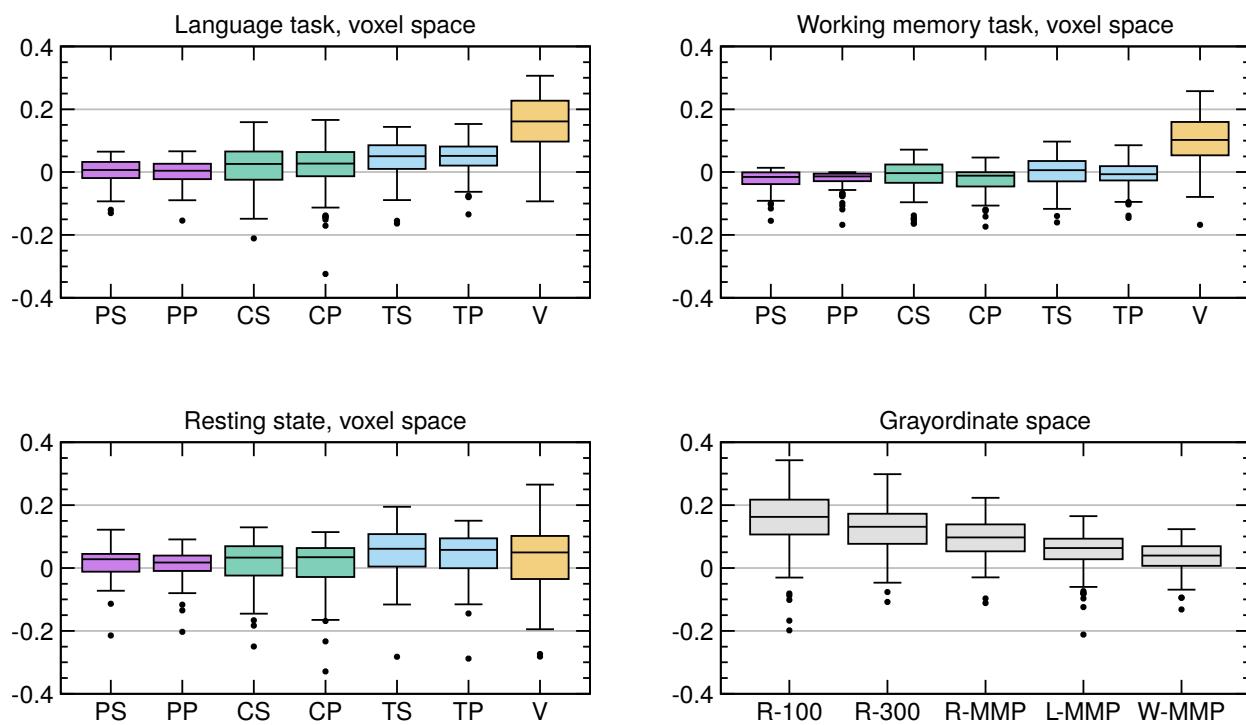
Supplementary Figure 3: Ensemble learning. The top image shows voxels that are endpoints in one subset ($L=1$) of 1000 randomly selected edges used for ensemble learning. The bottom images shows the number of times voxels are visited in 2000 such subsets ($L=2000$). During ensemble learning, each subset is used in a regression model to derive predictions of intelligence scores. For each subject in the test set, the resulting 2000 predictions are averaged to reach a final prediction of intelligence. In this example, voxels were visited about 143 times on average ($\mu = 143.22, \sigma = 36.03$). Note that the distribution of the voxels is constrained by the coremap derived from the Ricci-Forman curvature.



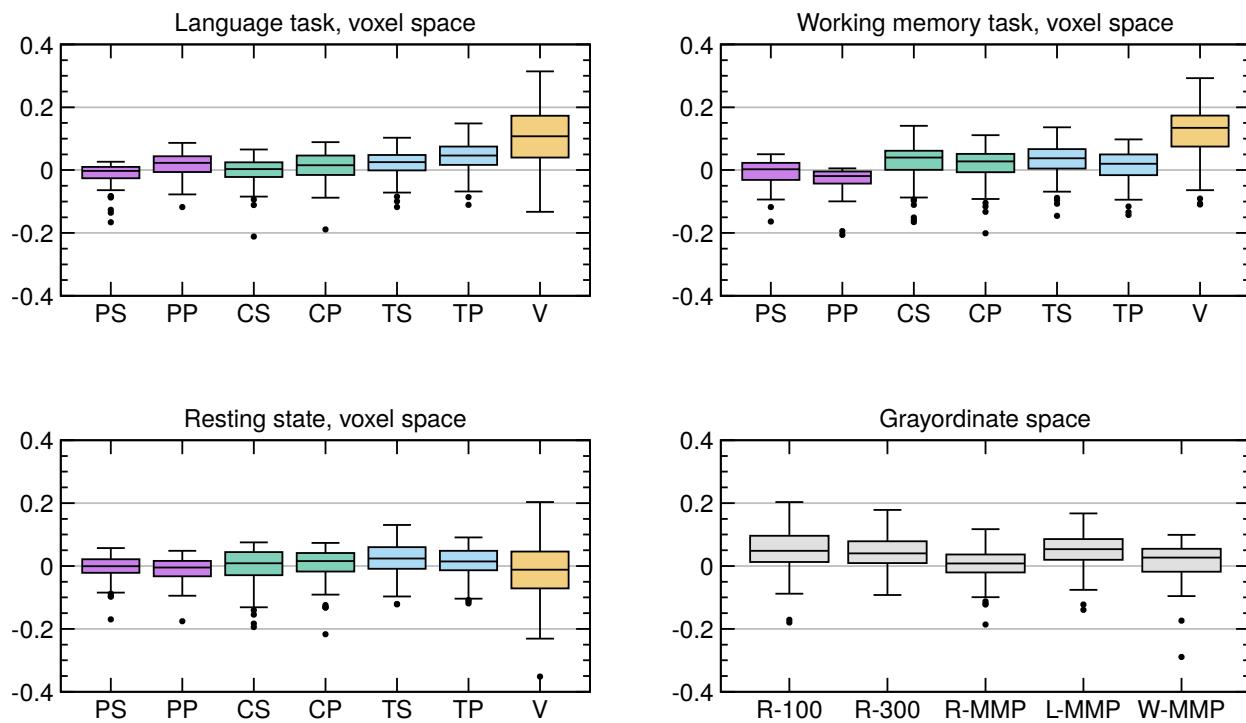
Supplementary Figure 4: R^2 between observed and predicted G-factor. The boxplots show the coefficient of determination R^2 between the observed versus predicted IQ scores of 65 test subjects resulting from 6-fold crossvalidations in 20 different train/test splits ($6 \times 20 = 120$ correlation values). The corresponding R^2 values are in the supplement. The results of the new proposed method VEGA ('V') are shown in orange. It was tested against several competing methods as listed in table?? using the same data and train/test splits. Note that in the language and working memory tasks, the proposed method outperformed all competing methods. In resting state data, its accuracy is comparable to the best competing methods.



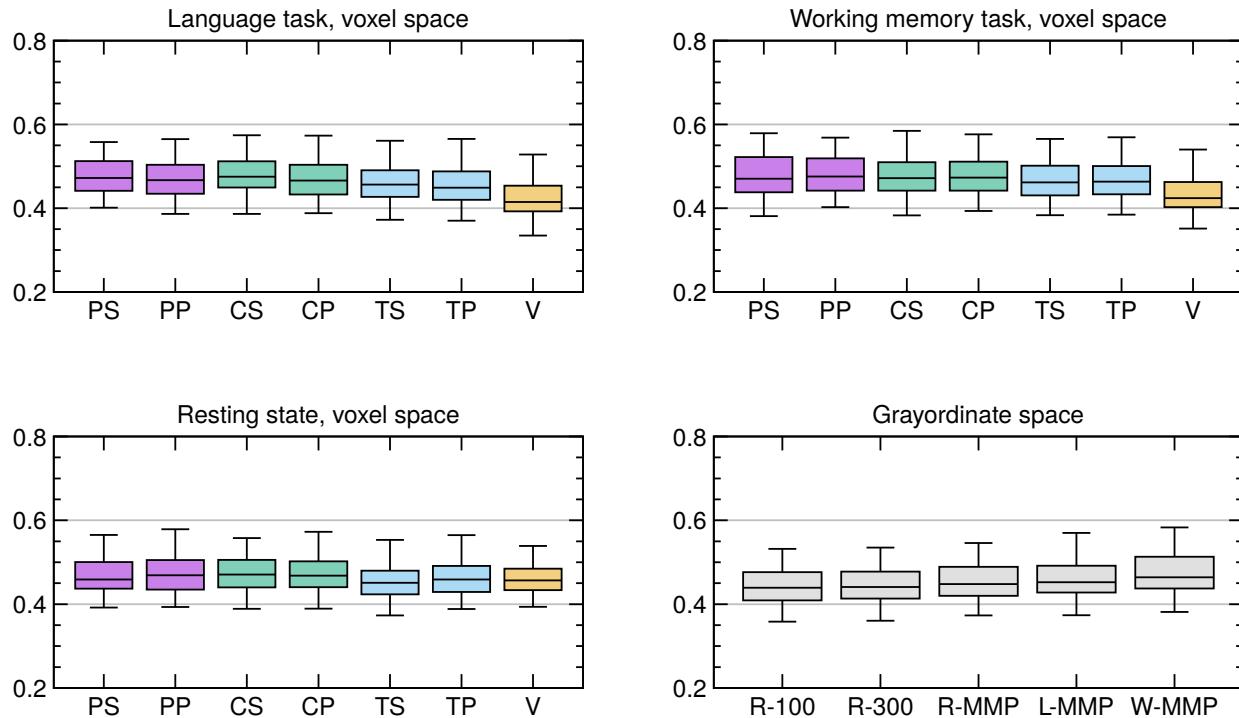
Supplementary Figure 5: R^2 between observed and predicted CogTotal. Results for the CogTotal score, see caption of Supplementary Figure 4 for more details.



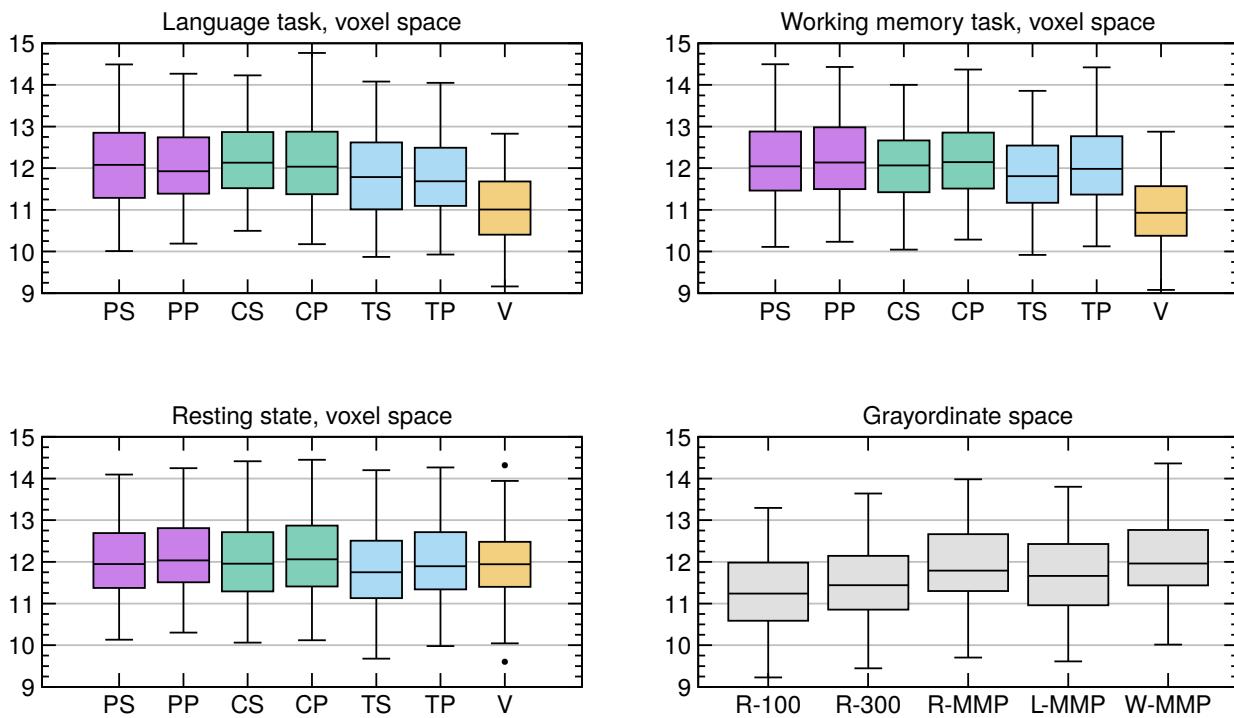
Supplementary Figure 6: R^2 between observed and predicted CogCrystal. Results for the CogCrystal score, see caption of Supplementary Figure 4 for more details.



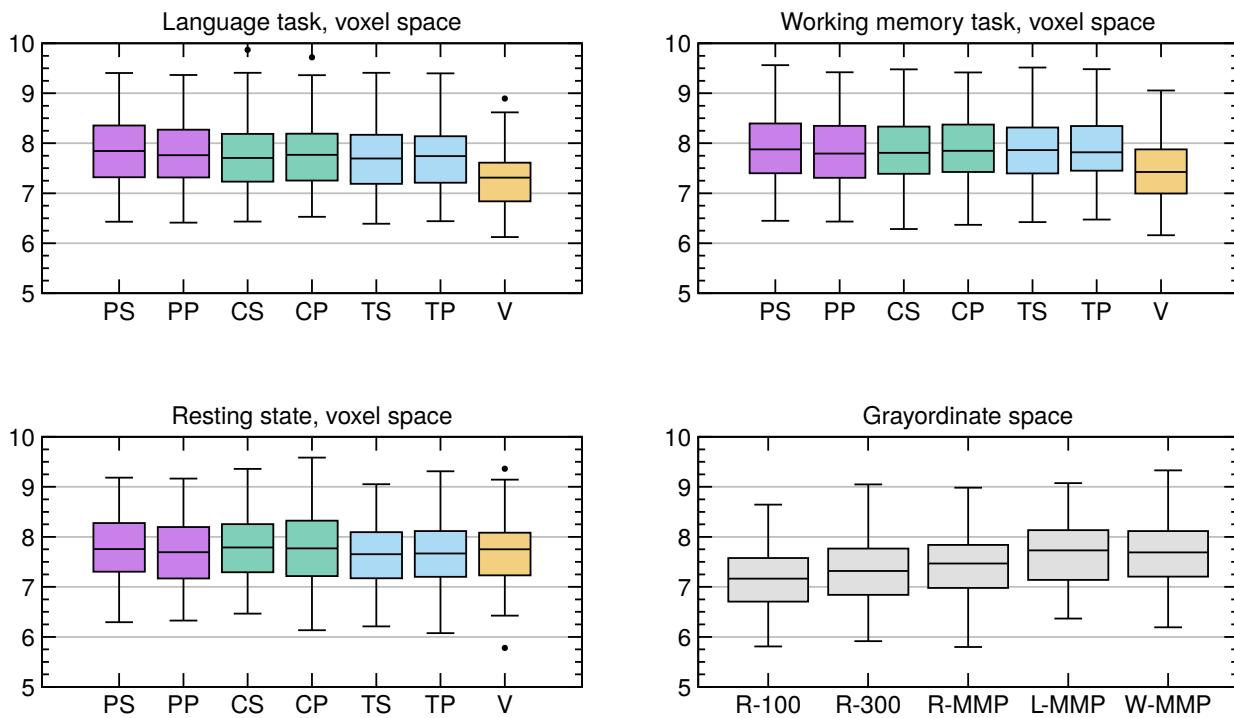
Supplementary Figure 7: R^2 between observed and predicted CogFluid. Results for the CogFluid score, see caption of Supplementary Figure 4 for more details.



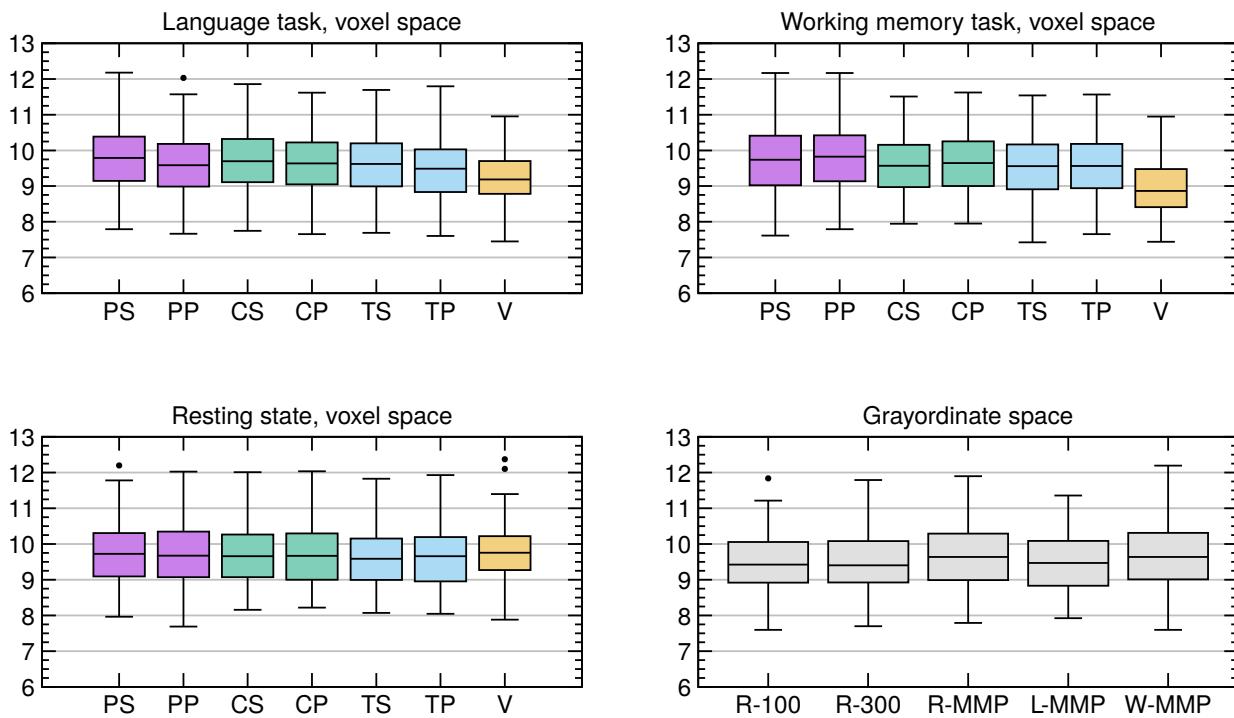
Supplementary Figure 8: Mean absolute error (MAE) between observed and predicted G-factor. The boxplots show the mean absolute error between the observed versus predicted IQ scores of 65 test subjects resulting from 6-fold crossvalidations in 20 different train/test splits ($6 \times 20 = 120$ correlation values). The corresponding R^2 values are in the supplement. The results of the proposed method VEGA ('V') are shown in orange. It was tested against several competing methods as listed in table?? using the same data and train/test splits. Note that in the language and working memory tasks, the proposed method outperformed all competing methods. In resting state data, its accuracy is comparable to the best competing methods.



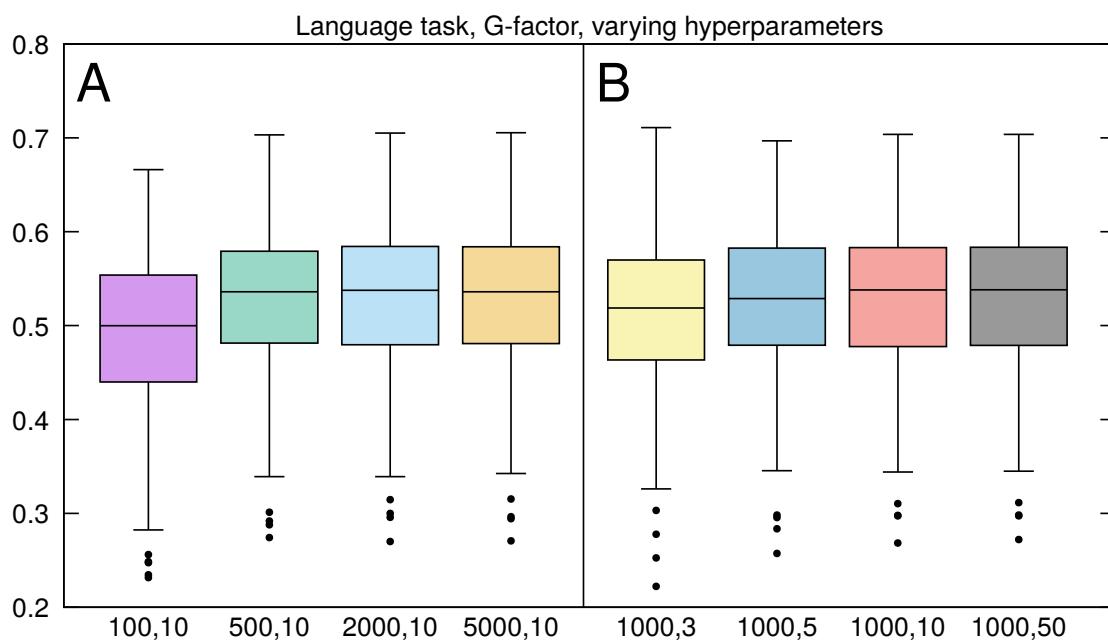
Supplementary Figure 9: MAE between observed and predicted CogTotal. Results for the CogTotal score, see caption of Supplementary Figure 4 for more details.



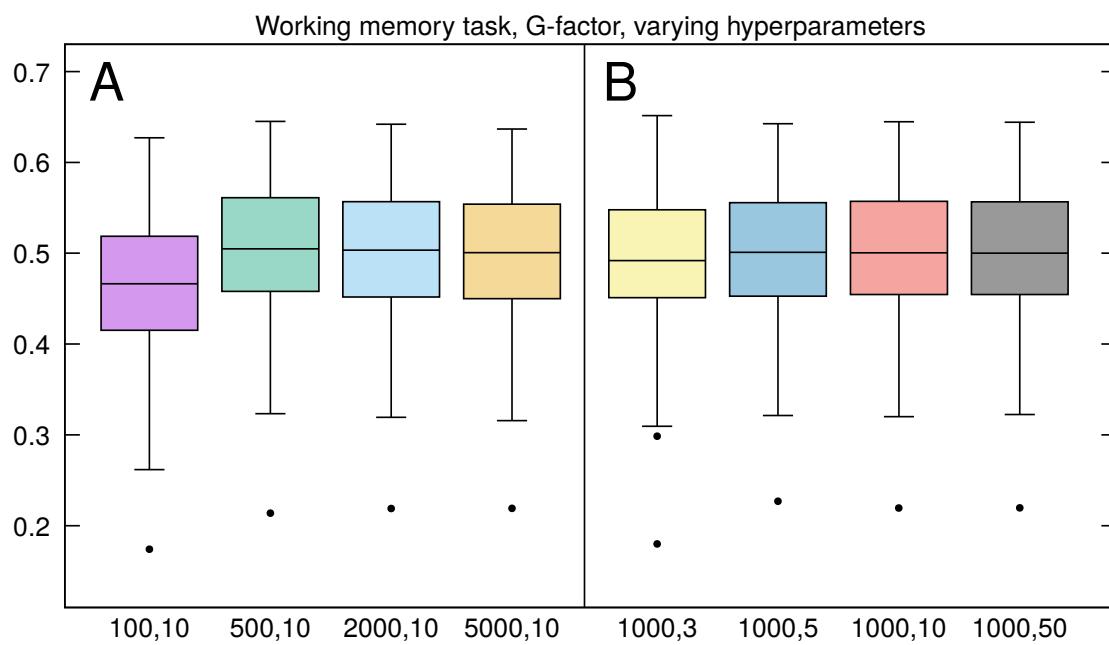
Supplementary Figure 10: MAE between observed and predicted CogCrystal. Results for the CogCrystal score, see caption of Supplementary Figure 4 for more details.



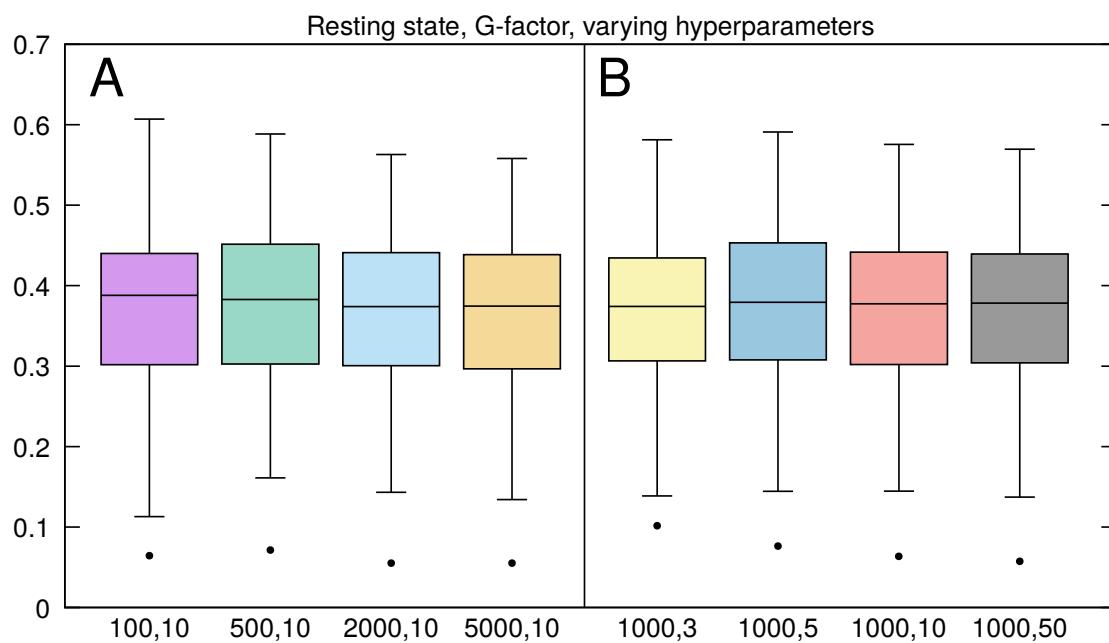
Supplementary Figure 11: MAE between observed and predicted CogFluid. Results for the CogFluid score, see caption of Supplementary Figure 4 for more details.



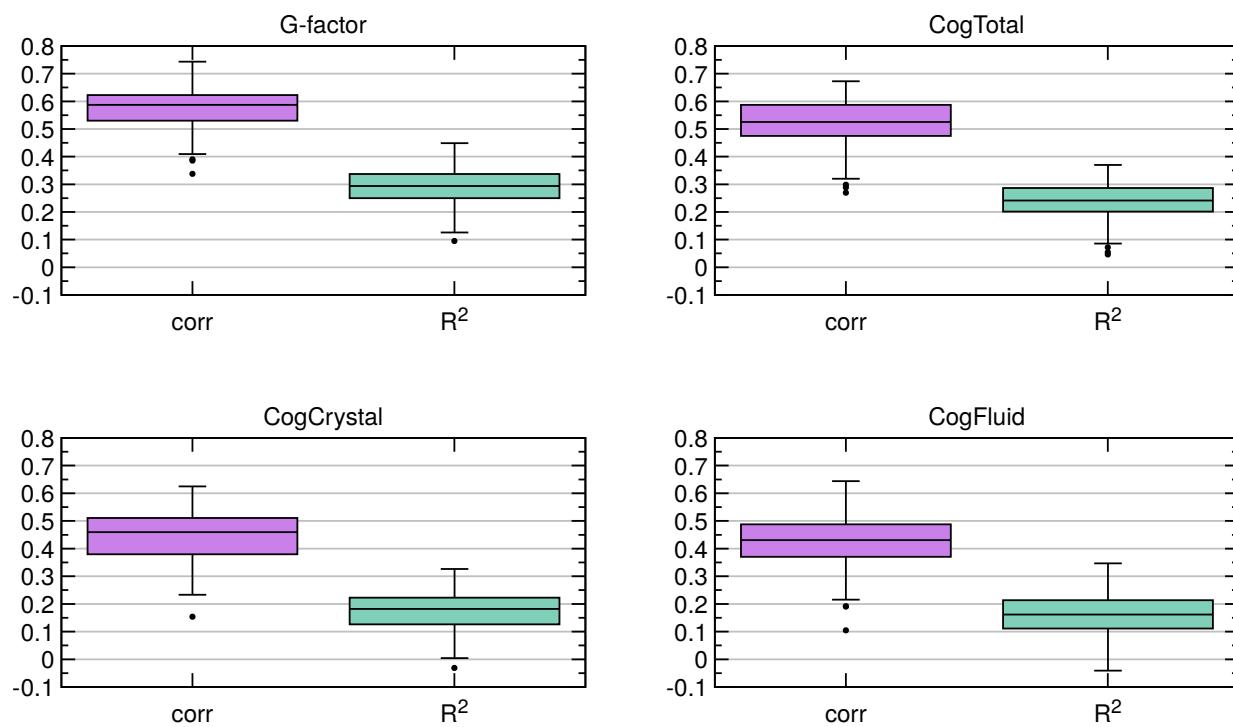
Supplementary Figure 12: Prediction accuracy with various hyperparameter settings.
The plot shows correlations between observed and predicted G-factors using the language task. The left boxplots (A) shows a variation of the parameter $m = 100, 500, 2000, 5000$, with $p = 10$ fixed. The right plot (B) shows a variation of the parameter $p = 3, 5, 10, 50$ with $m = 1000$ fixed.



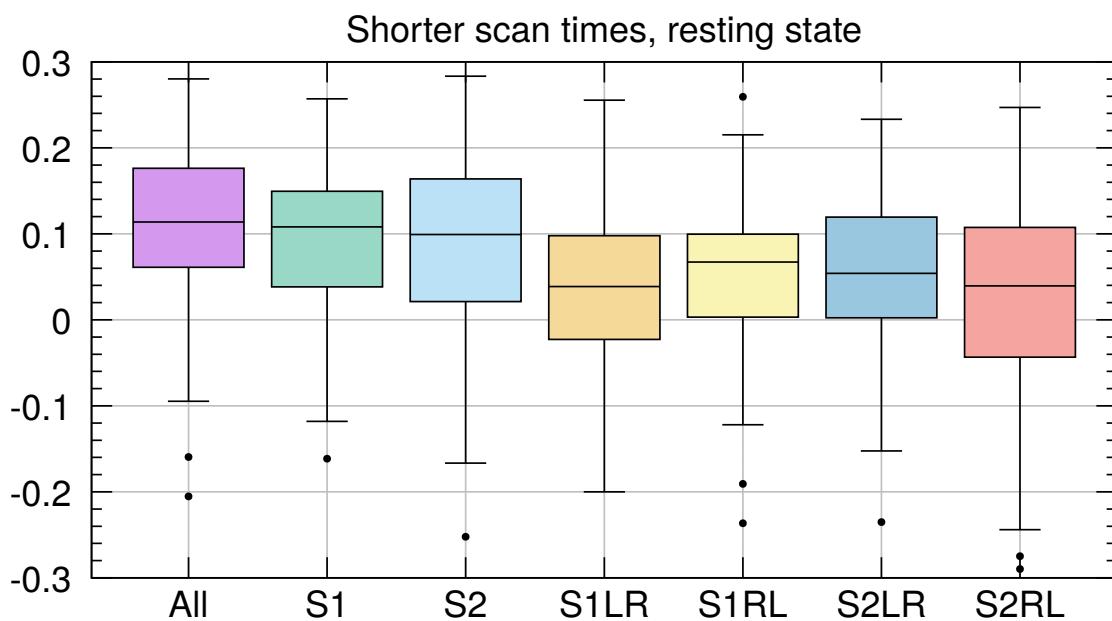
Supplementary Figure 13: Prediction accuracy with various hyperparameter settings.
Same as Supplementary Figure 12, but for the working memory task.



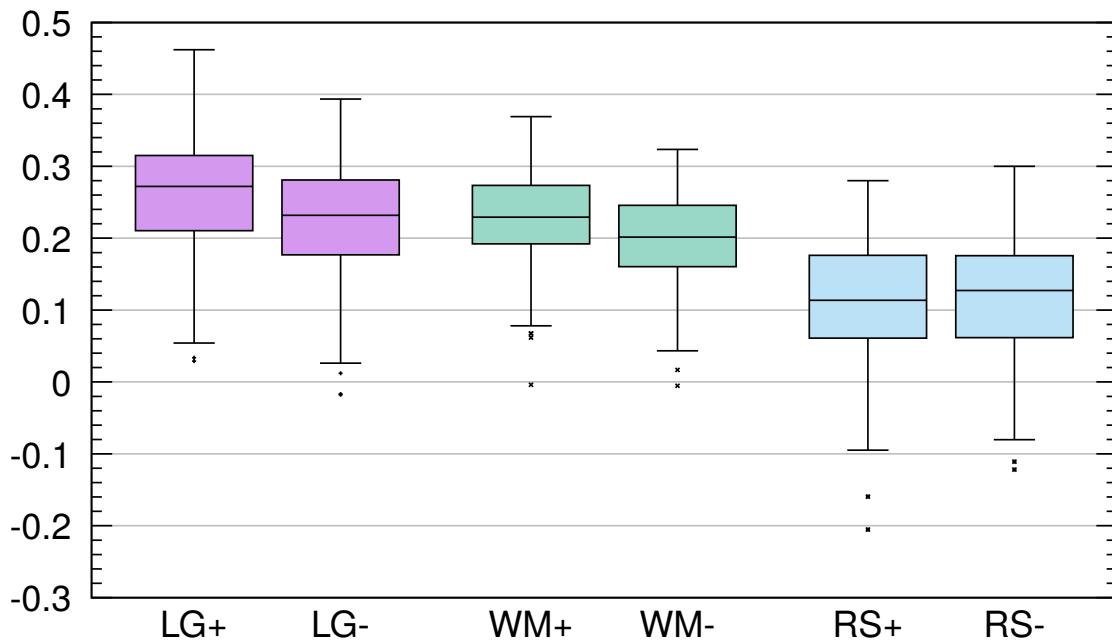
Supplementary Figure 14: Prediction accuracy with various hyperparameter settings.
Same as Supplementary Figure 12, but for resting state fMRI.



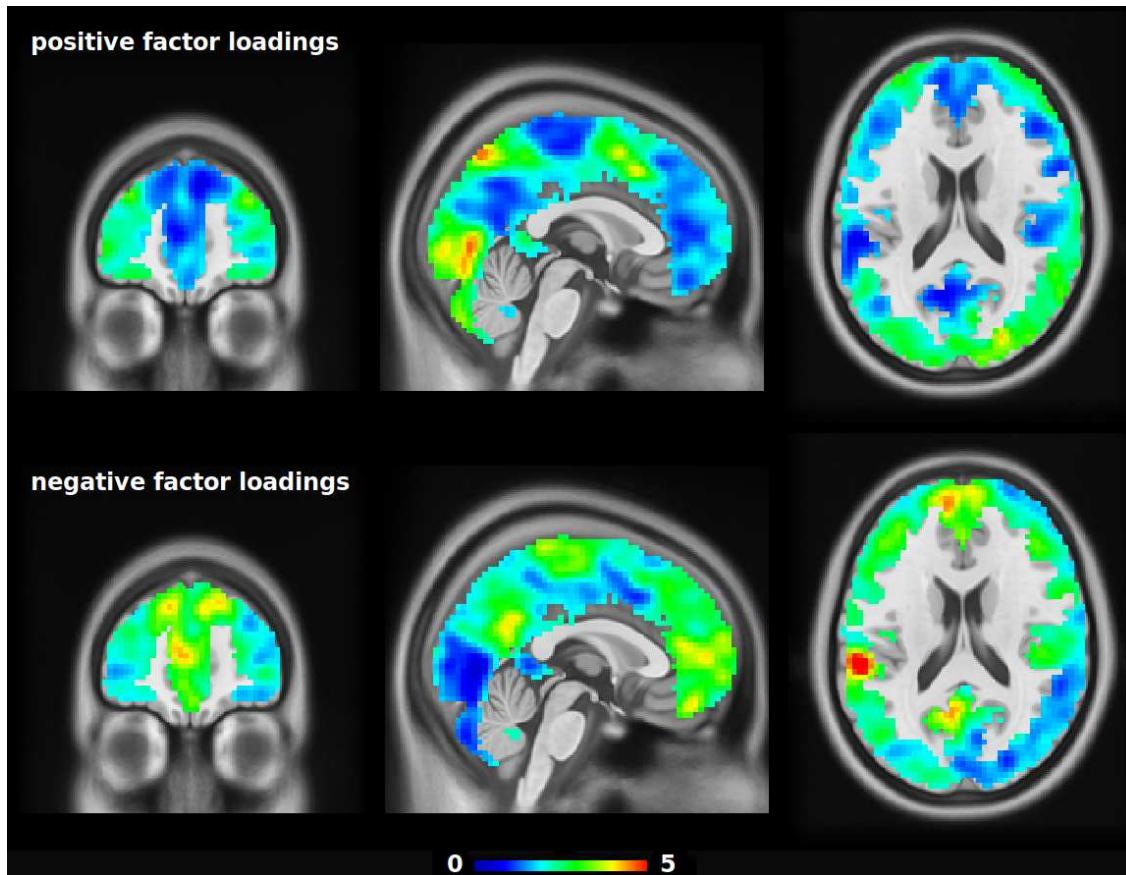
Supplementary Figure 15: Combining two tasks. Prediction accuracy improves when the results from the two tasks (language and working memory) are combined. The boxplots show Pearson linear correlation and predictive R^2 between observed and predicted intelligence scores.



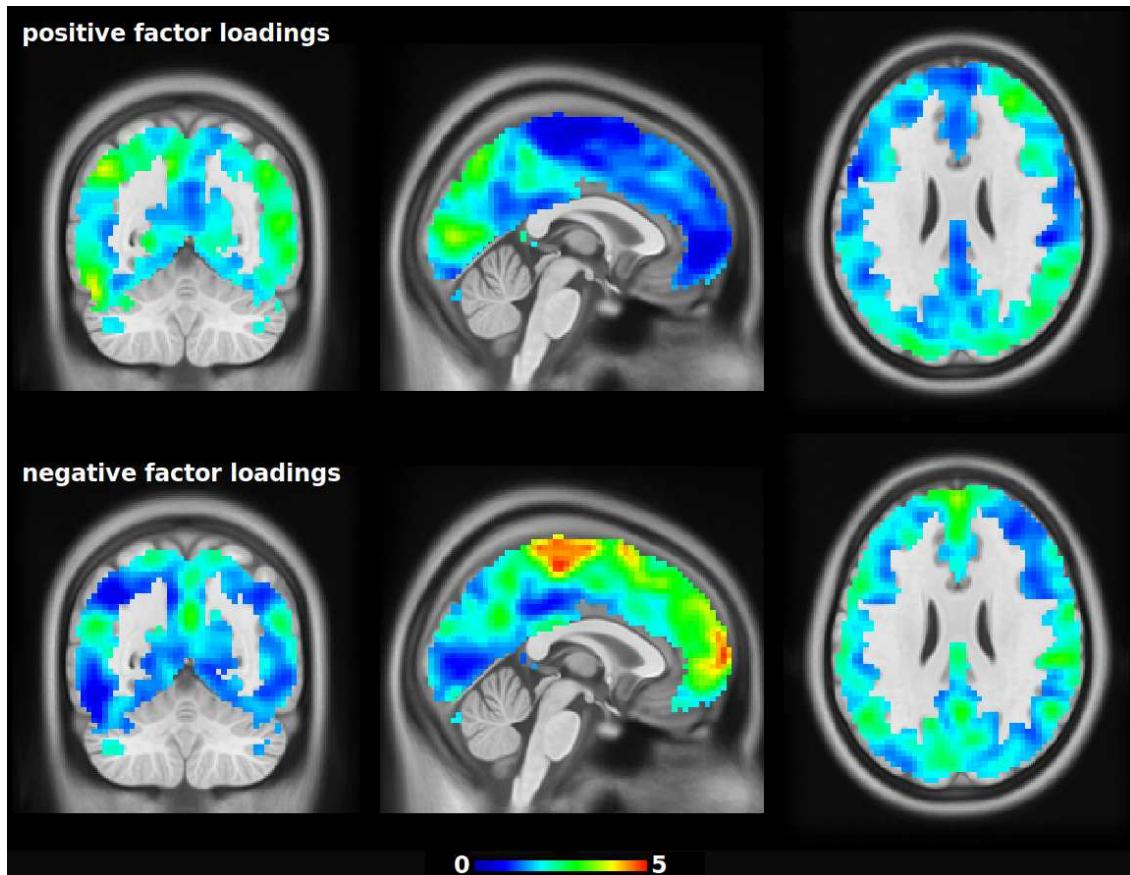
Supplementary Figure 16: The effect of scan time on prediction accuracy (resting state).
The boxplots show the reduction in predictive R^2 as scan time is reduced. The leftmost boxplot shows the results with the complete scan time (≈ 58 min). The next two boxplots (S1, S2) show the results for session 1 and 2 (29 min each). The four rightmost boxplots show the results for each of the four runs, i.e. session 1 with LR-phase encoding, session 1 with RL-phase encoding, session 2 with LR-phase encoding, session 2 with RL-phase encoding (14.4 min each).



Supplementary Figure 17: The effect of Ricci-Forman curvature maps on prediction accuracy. The thresholded curvature maps were helpful in providing more accurate predictions of the G -factor in task-fMRI, but not in resting state fMRI. The boxplots LG+ and LG- show R^2 values for the language task with and without curvature maps, respectively. Likewise, WM+, WM-, RS+, RS- show R^2 values for the working memory task and rs-fMRI with and without the thresholded curvature map.



Supplementary Figure 18: Predictive areas for general intelligence in the working memory task. The colors encode factor loadings (matrix P) estimated by partial least squares regression. Strong positive loadings indicate areas where connectivity with other brain regions is positively correlated with general intelligence. Strong negative loadings indicate areas where connectivity with other brain regions is negatively correlated with general intelligence. The colors only show relative weights, they do not have interpretable units.



Supplementary Figure 19: Predictive areas for general intelligence in resting state. The colors encode factor loadings (matrix P) estimated by partial least squares regression. Strong positive loadings indicate areas where connectivity with other brain regions is positively correlated with general intelligence. Strong negative loadings indicate areas where connectivity with other brain regions is negatively correlated with general intelligence. The colors only show relative weights, they do not have interpretable units.

524 **Row-column centering**

Let X^{train} be the $n \times m$ training matrix. Let μ denote its total mean value, i.e.

$$\mu = \frac{1}{nm} \sum_{i,j} X_{i,j}^{train} \quad (2)$$

525 and let $X_{.j}^{train}$ denote the mean values across column vectors $j = 1, \dots, m$, and $X_{i.}^{train}$ the mean
526 values across row vectors $i = 1, \dots, n$.

Then the matrix X^{train} is centered as follows:

$$\hat{X}_{i,j}^{train} = X_{i,j}^{train} - X_{i.}^{train} - X_{.j}^{train} + \mu \quad (3)$$

And the test matrix X^{test} is centered as follows:

$$\hat{X}_{i,j}^{test} = X_{i,j}^{test} - X_{i.}^{test} - X_{.j}^{train} + \mu \quad (4)$$

527 Note that the total mean μ and the column means $X_{.j}^{train}$ are derived from the training matrix.
528 But the row means $X_{i.}^{test}$ are derived from the test matrix because they correspond to individual
529 subjects.