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9 Abstract

10 In recent years, the prediction of individual behaviour from the fMRI-based functional
11 connectome has become a major focus of research. The motivation behind this research is to find
12 generalizable neuromarkers of cognitive functions. However, insufficient prediction accuracies
13 and long scan time requirements are still unsolved issues. Here we propose a new machine
14 learning algorithm for predicting intelligence scores of healthy human subjects from resting state
15 (rsfMRI) or task-based fMRI (tfMRI). In a cohort of 390 unrelated test subjects of the Human
16 Connectome Project, we found correlations between the observed and the predicted general
17 intelligence of more than 50 percent in tfMRI, and of around 59 percent when results from
18 two tasks are combined. Surprisingly, we found that the tfMRI data were significantly more
19 predictive of intelligence than rsfMRI even though they were acquired at much shorter scan
20 times (approximately 10 minutes versus 1 hour). Existing methods that we investigated in a
21 benchmark comparison underperformed on tfMRI data and produced prediction accuracies well
2 below our results. Our proposed algorithm differs from existing methods in that it achieves
23 dimensionality reduction via ensemble learning and partial least squares regression rather than
24 via brain parcellations or ICA decompositions. In addition, it introduces Ricci-Forman curvature
25 as a novel type of edge weight.

» Introduction

27 Many neurological and psychiatric conditions evade detection by standard anatomical MRI. There
25 is a growing hope that functional MRI (fMRI) may help to fill this gap. In this context, the
20 suitability of fMRI for predicting individual behaviour has been investigated in a number of recent
30 studies [1-10].
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s Predictive modelling generally proceeds in three stages [11]. First, a dimensionality reduction via
32 brain parcellations or ICA decomposition is performed. Second, interactions between the brain
33 parcels or components are estimated. Finally, a classifier or regressor is trained to predict be-
3¢ havioural traits or other quantities of interest. The various methods differ with respect to the
35 choice of the strategies used in those three stages, but some form of network modelling is common

s to all [12,13]. The methodological challenges and best practices are discussed in [14-18].

s7 Here we introduce a new machine learning algorithm for predicting intelligence from fMRI, and
38 validate it on data of the Human Connectome Project (HCP) [19,20]. Specifically, we investigate
30 the predictability of general intelligence as defined by Dubois et al. [21], and of fluid, crystalline,
20 and total intelligence as defined in the behavioural testing protocol of the Human Connectome
s Project [22]. Human intelligence and its neural representations have been a focus of research for
22 many years, see e.g. [23-26]. However, our focus here is on the machine learning methodology of
43 intelligence prediction rather than on the topic of intelligence in itself. Thus, our proposed algorithm
a4 is not intended to be limited to the prediction of intelligence. Rather, we view this as a proof of

s concept for a wider range of potential applications [27,28].

s We call our algorithm VEGA (VoxEIl-Graph machine learning Algorithm). VEGA differs in several
47 respects from the predictive modelling strategy that is generally adopted in other studies. First, it
48 does not perform brain parcellations or ICA decompositions for dimensionality reduction. Instead, it
20 employs ensemble learning and partial least squares regression to deal with the high dimensionality
so of the data. We also use the novel concept of Ricci-Forman curvature to define a brain mask to
51 further constrain dimensionality. Second, VEGA works directly in voxel space, it does not require
52 a surface extraction as some other methods do. This may be advantageous in situations where
53 data quality is poor so that image segmentations and surface extractions may be problematic. This
s« is particularly relevant in clinical environments where data quality can be an issue. And finally,
ss. VEGA is designed to work on both resting state (rsfMRI) as well as on task-based fMRI (tfMRI).
s6  We will show that its performance on tfMRI is particularly encouraging even though the scan times

57 were very short.

s Experimental data and preprocessing

5o We downloaded fMRI data of 390 unrelated subjects (202 female, 188 male, aged 22-36, median age
0 28) acquired at 3 Tesla by the Human Connectome Project (HCP), WU-Minn Consortium [19,20,29].
61 Only subjects for whom all necessary data sets, i.e. rsfMRI, tfMRI and intelligence test scores were
62 complete and fully available were included. We excluded data sets for which data quality problems
63 due to instability of the head coil were reported [30]. All subjects gave written, informed consent

64 according to the protocol by the Human Connectome Project consortium.

es The rsfMRI data were acquired in two sessions on two separate days with two different phase

e encoding directions (left-right and right-left) with spatial resolution (2mm)?, multiband factor 8.
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1. Split list of subjects into training and test for 6-fold crossvalidation.

2. For all subjects s =1, ...,n:

(a) Compute linear correlation matrix Cs.

(b) Compute Ricci-Forman curvature matrix Rg based on Cs.

3. Compute a curvature map from Rs,s =1,...,n.
Voxelwise average across the curvature maps of all subjects in the training set.

Apply a threshold to obtain a core mask.

4. Repeat until convergence and average the resulting predictions at the end:

(a) Randomly select a list of edges with endpoints in the core mask.

(b) Partial least squares regression (PLS) using the subjects of the training set

and the selected edges.

(c) Apply the parameters learned in the previous step to each subject in the test set

to obtain predictions of intelligence.

Figure 1: Overview of the algorithm. The proposed algorithm VEGA consists of the four steps as
depicted in this overview. A main difference to existing algorithm is that it handles high-dimensionality
via ensemble learning, partial least squares and Ricci-Forman curvature maps rather than via brain

parcellations or ICA decompositions. A detailed description of each step is given in the main text.

67 Each scan hat 1200 volumes acquired at TR=0.72 seconds so that the total scan time across all four
68 sessions was approximately 58 minutes. The rsfMRI data were minimally preprocessed and cleaned
o using FSL-FIX [31-33].

70 In addition, we downloaded minimally preprocessed t{MRI data from two tasks, namely the language
71 task and the working memory task [29]. The working memory task followed an N-back paradigm
72 where participants were presented with pictures of places, tools, faces and body parts. The language
73 paradigm consisted of a story comprehension task interleaved with a math task, see [34]. We chose
74 those two tasks because they appear to be more closely linked to intelligence than any of the other
75 tasks included in HCP. The tfMRI data were acquired in two sessions each (left-right and right-left
76 phase encodings). The language task had 316 volumes per session (total scan time ~ 7.5 min). The

77 working memory task had 405 volumes per session (total scan time a~ 10 min).

7z The tfMRI data were additionally subjected to a temporal highpass-filter (cutoff frequency 1/100
70 Hz) to remove baseline drifts. For both rsfMRI and tfMRI data, we reduced the spatial resolution
90 to (3mm)? via trilinear interpolation to limit the computational load. Furthermore, to counteract

g1 intersubject anatomical variability, we applied a spatial Gaussian filter using fwhm=6mm.
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PicVocab ReadEng CardSort Flanker ListSort PMAT PicSeq ProcSpeed VSPLOT IWRD
G-factor X X X X X X X X X X
CogTotal X X X X X X X - - -
CogCrystal X X - - - - - - - -
CogFluid - - X X X X X - - -

Table 1: Components of the four measures of intelligence. The four measures result from
averaging across the normalized test scores of the cognitive tests listed in this table. The acronyms
are as in HCP [35]. For the G-factor, we used a weighted average of the ten test scores where the
weights are as in [21], i.e. 0.624, 0.642, 0.364, 0.259, 0.451, 0.626, 0.354, 0.232, 0.578, 0.294 (in the
same order as in the table).

Measures of Intelligence

Here we focused on four measures of intelligence that resulted from cognitive tests performed by
the Human Connectome Project (HCP). For ease of notation, we use the same acronyms as in
HCP to denote the various cognitive tests, see [22,35]. The first two measures are fluid cognition
(CogFluidUnadj) and crystallized cognition (CogCrystalUnadj). They are defined via averaging
normalized scores of several tests as shown in table 1. The third measure (CogTotalUnadj) is a
combination of the first two. The fourth measure is a general intelligence score (G-factor). Here we
closely followed the work by Dubois et al. [21] who used a weighted average of normalized scores of

a wider range of cognitive tests. We used the same test scores and the same weights for the average.

Potential confounds. As in [21] we used multiple linear regression to regress out several poten-
tial confounds from the intelligence scores, namely handedness, gender, age (Age_in_Yrs), brain
size (F'S_BrainSeg_Vol) and the multiband reconstruction algorithm (zfM RI_3T_ReconV'rs). To
avoid leakage from training to test, the multiple linear regression was fitted on the training data,

and the resulting weights were then used to remove the confounds in both training and test.

A new algorithm for predicting intelligence from fMRI

We propose a new algorithm called “VEGA” for predicting intelligence from fMRI data of the
human brain. It consists of four steps that are described in the following. For an overview, see

Figure 1.

Step 1 (Crossvalidation)

The set of n = 390 subjects is randomly split into six folds for crossvalidation. In each fold,
325 subjects are used for training a regression model that is subsequently tested on the remaining
65 subjects. This procedure is repeated for each of the six folds so that every subject is tested

exactly once. In our experiments, we used twenty different and randomly selected train/test splits.


https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435935; this version posted April 28, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s Step 2 (Connectivity matrices)

106 For each subject s = 1,...,n symmetric connectivity matrices Cs, Rs are computed using two differ-
107 ent measures of connectivity. Both matrices are of dimension k x k where k denotes the number of
108 voxels in a brain mask. In the experiments reported below, the mask covers the entire brain with

100k = 55,856 voxels, see Supplementary Figure 1.

10 Linear correlation. The first connectivity matrix Cs is based on the linear Pearson correlation
m  coefficient. Its elements c; j,i,7 = 1, ...k record the linear correlation between the fMRI time series
12 in voxels ¢ and j where k£ is the number of voxels in the brain mask. The matrix C; is initially
u3 dense, i.e. it is computed for every pair of voxels in the brain mask so that the number of edges
ne is k(k —1)/2 =~ 1.6°. From this large set of edges, we randomly select 1 million edges to which all
s subsequent analysis steps involving Cs,s = 1,...,n are restricted. The purpose of this step is to
16 reduce the memory load and computational burden. Note that we preselect edges, not voxels. Since
17 the number of preselected edges is very large, all voxels in the brain mask serve at least once as an
us endpoint to one of those edges. This strategy provides a dense coverage of the brain that allows us

u9 to visualize brain areas that are predictive of intelligence (Supplementary Figure 3).

120 Ricci-Forman curvature. Using the dense correlation matrix Cs computed in the previous step,
121 a second connectivity matrix R, is computed for every subject s = 1,...,n. It is based on the
122 novel concept of Ricci-Forman curvature [36-38]. The motivation to apply this concept here is
123 that it allows to attribute weights to edges that reflect their importance for the cohesiveness of a
124 graph, and thus help to identify edges that are more reliable predictors. Ricci-Forman curvature
125 has been previously applied to fMRI data [39], and more recently to diffusion weighted imaging
e (DWI) [40]. It defines a curvature for an edge e in a set of edges E as follows. Let e = (vi,v2) € E
17 and ey, e, € F be any edges adjacent to e at vertices v; and ve with edge weights w(e) and node

18 weights w(v). Then the Ricci-Forman curvature Ricg of edge e is defined as

Ricr(e) = w(e) w(v1) n w(v) Z

w(v1) w(v2)
o) Tl ’ < ) @

120 Figure 2 illustrates the geometric intuition behind this concept. Edges connecting vertices of large
130 degree have strongly negative curvature values and may be interpreted as being most important
131 for the cohesion of the network. For more information about the theoretical background of Ricci

12 Forman curvature see [37,38,41].

133 In the present context, vertices correspond to voxels and have a constant weight of 1. The edges
134 correspond to correlations between fMRI time series of those voxels. From equation 1 we see that
135 the edge weights w(e) must be positive so that the Pearson linear correlation coefficient cannot
136 be directly used as an edge weight. We therefore define an edge weight function w applied to the

137 correlation coefficient = as w(z) = max(z, €) where ¢ is a small positive constant. In our experiments,
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Figure 2: Illustration of Ricci-Forman curvature. FEdge e with adjacent vertices vi and vs
" 1 A 1

and parallel edges {e,, ,ell e} (adjacent to vy) and {e]_,el } (adjacent to vy). The Ricci-Forman

V17 TV TV V2 TU2

curvature of edge e is strongly negative if the edges parallel to its endpoints have large weights.

1s  this constant was set to € = 1/k where k is the number of voxels in the brain mask. With these
130 definitions, we now compute a dense Ricci curvature matrix R, for every subject s = 1,...,n using
1o the corresponding correlation matrix Cs as input where each correlation value is first transformed
11 via the weight function defined above. Note that the matrix Ry is symmetric and has k(k — 1)/2

142 distinct edges.

113 Step 3 (Core mask)

e Edges with strongly negative Ricci-Forman curvatures may be viewed as backbones of the correla-
15 tional structure in the brain. We hypothesize that such edges may be particularly robust features
us for predicting intelligence. Here we use this idea to derive a new brain mask to which all subsequent

147 analysis steps are constrained. This mask is obtained as follows.

us  First, we compute a “curvature map” separately for every subject. This is done by projecting
1o all edges of Rs to a map in which a voxel value represents the average Ricci-Forman curvature of
10 all edges whose endpoints touch this voxel. Second, a voxelwise average is computed across the
151 curvature maps of all subjects in the training set. Finally, the resulting average map is thresholded
152 using the median of its histogram as the cutoff. This yields the “core mask” to which all subsequent

153 analysis steps are constrained. Supplementary Figure 2 shows an example.

15+ Step 4 (Learning a regression model)

155 We use an ensemble learning approach in which multiple learners are trained independently using
16 different subsets of the feature space [42-44]. More precisely, a large number of subsets of the
157 feature space are randomly selected, and each subset is then used in a regression model to generate
158 predictions of intelligence scores for the subjects of the test set. Finally, those predictions are
150 averaged separately for each fold, see Supplementary Fig 3 for an illustration. In the experiments
160 reported below, we found that 2000 subsets sufficed to reach convergence. In the following, those

161 computations are described in more detail.
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162 Selection of edges from the core mask. A subset of the feature space is obtained by randomly
163 selecting m edges whose endpoints are required to be within the core mask. In the experiments
164 reported below, the number of edges in the core mask was around 250,000 from which m = 1000
165 edges were selected randomly for each subset. As we will show later, the VEGA algorithm is quite

166 robust with regard to the setting of the hyperparameter m (Supplementary Figures 12,13,14).

167 Partial least squares regression. Based on the m edges selected in the previous step, a linear
168 model of the form
Ytraz'n — Xtrainﬁ te

160 is set up to estimate the intelligence scores of the training set and learn the parameter 5.

o Here X% is an n x m matrix of predictors, Y™ is a vector of length n of intelligence scores and
11 € an error term. The entries of X% are correlation values extracted from Cy, s = 1,...,n where

172 n = 325 is the number of subjects in the training set and m the number of randomly selected edges.

173 Several types of linear models might be considered for this purpose, e.g. ordinary least squares
174 regression (OLS) or its extensions such as Lasso, Ridge, and ElasticNet. Another option would be
175 support vector regression [45]. Here we decided to use partial least squares regression (PLS) [46,47]
176 because it is particularly well suited to handle problems where the predictors are highly collinear
177 and where number of independent variables greatly exceeds the number of data points [48]. As
178 noted above, we typically select m = 1000 edges, while the number of subjects in the training set
179 is only n = 325 so that m > n. PLS projects both X and Y to a new space that maximizes their
180 covariance so that the predictors are projected into directions that make them more relevant for

181 the prediction.

The PLS model is defined as

X=TP"+E
Y =UQT + F

182 where T, U are projections of X and Y whose covariances are maximized. P, are their loading
183 matrices, and the matrices F, F are error terms. The dimension of matrix P is m X p where
18¢ p represents an intrinsic dimensionality. In the experiments reported below, we used p = 10.
155 However, the results were quite robust with respect to the choice of this parameter (Supplementary
16 Figures 12,13,14). The matrix @ is of dimension m x ¢ where ¢ is the number of columns in Y. In

187 the present case, Y is a vector containing intelligence scores so that ¢ = 1.

188 There exist several methods for computing PLS. Here we implemented the SIMPLS algorithm [48].
180 SIMPLS iteratively computes projections T',U and loading matrices P, Q) together with a weight
1o matrix R such that § = RQT and hence Yren ~ Xtrain g,

11 Prior to PLS regression, the matrices X" and X! are row and column-centered. For details on

192 this point, see equations 2,3,4 on the last page of the supplementary material. Likewise, the vector

Ytrain

103 is mean-centered and its mean is used to center the test vector Y5t
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voxel space grayordinate space
label | correlation type parcellation || label parcellation | paradigm
PS | partial correlation S R-100 ICA-100 | resting state
PP | partial correlation P R-300 ICA-300 | resting state

CS |linear correlation R-MMP MMP resting state
L-MMP MMP language task

W-MMP MMP working memory task

CP | linear correlation

TS | tangent correlation

U w» U owm

TP | tangent correlation

Table 2: Baseline methods included into the benchmark. Our proposed algorithm VEGA
was tested against a battery of competing methods that are based on the CPM framework using
various connectivity types and parcellation schemes as described in the text. The parcellations are
denoted as S [49], P [50] and MMP [51]. For resting state data in grayordinate space, we also used
ICA decompositions with 100 and 300 nodes (ICA-100, ICA-300). The correlation types are partial
correlation, Pearson linear correlation and tangent correlation [14]. In grayordinate space, tangent
correlation was used throughout. The labels correspond to those in Figures 3,6,5,4.

Apply learned parameters to the test set. Once [ has been learned from the training data,
predictions for the test subjects can be obtained using Y ~ X't 3. Finally, the predictions are

averaged within each fold.

Benchmarks

We implemented a range of methods for benchmarking using the scikit-learn library [52,53]. All
methods are derived from the general framework called “connectome-based predictive modeling
(CPM)” [3,5,6,54]. CPM reflects the state of the art in the field of predicting behaviour from fMRI

data and can therefore serve as a useful point of reference.

The framework consists of the following processing steps. First, a dimensionality reduction is
performed by some form of brain parcellation or ICA decomposition [55,56]. Second, a whole-brain
connectivity pattern is calculated by correlating the fMRI activity time courses of every pair of
parcels or components extracted in the first step. Third, a linear model relates this pattern to the
behavioral score of interest. Finally, the model is applied to previously unseen data to generate a

behavioral prediction.

The methods included into this benchmark differ with regard to the input data representation.
The first set of benchmark methods expects input data represented in the voxel space. For these
methods, we include two types of parcellations, namely the parcellations by Shen et al [49], and
that by Power et al. [50].

The second set of benchmark methods expects input data to be represented in a surface represen-

tation called “ grayordinate space (CIFTI)” which is specific to the Human Connectome Project
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2u (HCP). In grayordinate space, two types of dimensionality reduction are most common. The first
215 is the atlas-based multimodal parcellation (MMP) [51]. The second is derived from ICA decompo-
216 sitions so that a node is defined as an ICA component. ICA decompositions were included in our
217 benchmark because they were used in the “megatrawl” release [2], and are thus a highly relevant
218 reference in our context. However, analogous ICA decompositions are not available for task fMRI

210 data in the HCP database and were thus only included as a benchmark for resting state data.

20 Furthermore, we included three measures of connectivity. Those are partial correlation, Pearson
21 linear correlation and tangent correlation [57]. For all three measures, covariances are estimated
22 using the Ledoit Wolf method [58]. In grayordinate space, we only used the tangent correlation as

223 this was expected to produce the best results [14].

24 'To establish the linear model, we used ridge regression throughout and relied on a generalized cross-
225 validation procedure over the training set to select the regularisation parameter [59]. This method
26 provided the best results over appropriate CPM alternatives and reinforced earlier observations

227 about its performance benefits [14]. Therefore, no feature selection step was performed as in [5].

28 For the benchmark we used the same fMRI input data as for the VEGA algorithm. The pre-
220 processing was done as follows. Detrending and a high-pass filter with a cutoff frequency of 1/100 Hz
230 was applied to remove baseline drifts. Images were standardized (zero mean with unit variance).
21 For the voxel-space methods, a spatial Gaussian smoothing using fwhm=6mm was applied. To
232 extract parcellated time-series, preprocessed images were signal averaged within parcels defined by
233 either the 360 parcels of the MMP atlas [51], the 268 parcels atlas of [49] or the 264 parcel atlas
234 of [50]. In the latter case, parcels were defined as spheres with 5mm radii around the coordinates
235 specified in [50]. The brain atlases of [49,50] are defined at a resolution of (2mm)? so that no

236 downsampling of the fMRI data in the voxel-space was applied.

237 Table 2 gives an overview of all methods included into the benchmark.

2 Results

230 In our experiments, we used 390 subjects and 6-fold cross validations so that each training set
240 had 325 subjects, and each test set had 65 subjects. We recorded the Pearson linear correlation
21 and the predictive coefficient R? between the observed and the predicted intelligence scores where
w2 R?> =1-— SSres/SStotar. Here SSyes is the residual sum of squares, and SSyq is total sum
23 of squares. We also report the mean absolute error (MAE). We randomly defined 20 different
o training/test splits resulting in 6 x 20 = 120 different correlation scores, R? and MAE values. We

25 used the same training/test splits for the benchmark methods described in the previous section.

26 Figures 3,4,5,6 show the resulting Pearson correlations between the observed and the predicted
27 intelligence scores for the G-factor, total, crystallized and fluid intelligence, respectively. The

25 corresponding R? values and mean absolute errors are in the supplementary material (Supplemen-


https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435935; this version posted April 28, 2021. The copyright holder for this preprint (which

249

251

252

254

255

256

257

258

259

260

261

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Language task, voxel space Working memory task, voxel space
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Figure 3: Correlations between observed and predicted G-factor. The boxplots show the
Pearson linear correlations between the observed versus predicted intelligence scores of 65 test subjects
resulting from 6-fold crossvalidations in 20 different train/test splits (6 x 20 = 120 correlation values).
The corresponding R? values are in the supplement. The results of the new method VEGA ("V’) are
shown in orange. It was tested against several competing methods using the same data and train/test
splits, see table 2. Note that in the language and working memory tasks, VEGA outperformed
all competing methods. In resting state data (voxel space), its accuracy is comparable to the best

competing methods.

tary Figures 4,5,6,7). We first note that the results obtained by VEGA in the two task conditions

were clearly better than the results in the resting state condition.

All results were obtained with m = 1000, p = 10 as hyperparameters where m denotes the number
of edges randomly selected in each subset of the ensemble learning, and p denotes the intrinsic
dimensionality of the PLS regression. We then investigated the influence of those two hyperparam-
eters. We found that the results remained almost unchanged with m = 100, 500, 1000, 2000, 5000,
and p = 3,10,20,50. At m = 100 the prediction accuracy decreased, see Supplementary Fig-
ures 12,13,14.

Figure 7 shows scatter plots from one of the twenty training/test splits obtained by VEGA. Here
we also included an average of the results between the two tasks. A systematic evaluation of the
effect of combining the two tasks is shown in Supplementary Figure 15. For example, the median
correlation between observed and predicted G-factor improved to 0.587 (R2=0.294). And the median
correlation between the observed and predicted CogTotal improved to 0.526 (R%=0.241).
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Figure 4: Correlations between observed and predicted CogTotal. Results for the CogTotal

score, see caption of Figure 3 for more details.

The boxplots of Figures 3,4,5,6 show that VEGA outperformed all benchmark methods in the two
task conditions. To assess statistical significance, we additionally performed an inference for the
generalization error based on the Z-transformed Pearson correlation scores. Note that standard
t-tests are not valid in this context because the results are derived from the same pool of subjects
so that independence assumptions are violated. Therefore, we used a modified t-test that corrects
for this problem [60,61]. In comparing the two task-based results of VEGA against the best voxel-
based benchmarks, we found that VEGA was indeed significantly better in all cases (p < 0.025).
We then combined the two task-based results of VEGA and compared them against all benchmark
methods including the ones obtained in the grayordinate space, and found that the VEGA result
was significantly better throughout (p < 0.015).

Furthermore, we investigated the effect of scan time on prediction accuracy in the resting state
condition. For example, we found that the median correlation between observed and predicted
G-factor declined slightly from 0.371 (full scan time, 58 min) to 0.360 and 0.347 when the scan time
was cut in half (29 min for each session). And it declined to 0.286, 0.306, 0.294, 0.258 when the scan

time was reduced even further (14.4 min for each run). For details, see Supplementary Figure 16.

We then tested whether or not Ricci-Forman curvature actually helped to increase prediction ac-
curacy. In the language task, we found that without Ricci-Forman curvature the results for the
prediction of the G-factor (median correlations and median R2) decreased from 0.54 (0.27) to 0.50
(0.23). In the working memory task, it decreased from 0.51 (0.23) to 0.49 (0.20). For rsfMRI, it did
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Figure 5: Correlations between observed and predicted CogCrystal. Results for the
CogCrystal score, see caption of Figure 3 for more details.

not produce a better prediction. For details, see Supplementary Figure 17.

Finally, we investigated which brain areas are most relevant for predicting intelligence. Figure 8
shows these areas for the G-factor in the language task. Specifically, we compute the mean factor
loadings of X that are recorded in the load matrix P. We distinguish between positive and negative

factor loadings so that for each edge ¢, we have

wWPos; = Z P ;

P; ;>0
wneg = 3" P,
P; ;<0
where the index j = 1,...p denotes the latent factors. The weights wpos;, wneg; are then mapped
onto a positive and a negative weight map as shown in Figure 8. Supplementary Figures 18, 19

show similar images for the working memory task and the resting state data.

Discussion

We have introduced a new machine learning method for predicting intelligence from fMRI data. In
contrast to existing methods, it does not require a presegmentation or a brain atlas, nor does it
depend on an ICA decomposition. Rather, it handles the high dimensionality and multicollinearity

of the data via partial least squares regression and ensemble learning.
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Recently, Faskowitz et al. [62] have noted that the traditional metric of functional connectivity
should be complemented by more complex edge weights and introduced an edge-centric measure.
Here we have proposed Ricci-Forman-curvature as an alternative concept. It incorporates informa-

tion from adjacent edges and helps to improve predictability by reducing dimensionality.

We implemented a range of existing methods for establishing a benchmark against which we com-
pared our proposed method, see also [63]. We first note that the results in Fig 3(R-100) are approx-
imately consistent with the results previously published by Dubois et al. [21]. Also in agreement
with the literature, the benchmark showed that tangent correlation is generally superior to other
measures of correlation [14]. Both observations demonstrate the replicability of earlier publications,

and also the realism of our benchmark.

A comparison against the benchmark showed that the proposed algorithm VEGA offers a significant
improvement in prediction accuracy in tfMRI data. This is remarkable because this improvement
was achieved at a fraction of the scan time required for rsfMRI. Specifically, the scan time of
the rsfMRI data was almost 1 hour, whereas the scan time for the language task was only about
7.5 minutes, and for the working memory task is was about 10 minutes. Dubois et al [21] report
a noticeable decline in prediction accuracy when the scan time in rsfMRI was reduced to about
30 minutes, an observation that is supported by our own data (Supplementary Fig. 16). This
suggests that rsfMRI may be too unspecific to permit good prediction accuracies at scan times that

will eventually be feasible in clinical applications.
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s0  Therefore, we believe that tfMRI may be a better choice for predicting individual behaviour provided
s10  the task is suitable for the application at hand. This is in line with a new initiative for evaluating the
su  reliability of tfMRI data [64], and it agrees with Greene et al. [65] who reported that task-induced
312 brain state manipulation improves prediction of individual traits. Surprisingly, the methods included
313 in our benchmark failed to exploit the advantages of tfMRI data. We speculate that dimensionality
sie reduction via brain parcellations may be the primary reason for this failure. In essence, current

s1is parcellation schemes may not be able to reflect the continuous nature of brain topography [66].

si6  The brain areas most relevant for intelligence prediction in the language task appear biologically
317 plausible as success in intelligence testing is based on focused mental activity during specific tasks.
sis Indeed, the strongest result regarding factor loadings (Figure 8) was a negative relationship between
s19  connectivity of brain areas typically associated with internally-oriented thought processes (i.e. mind
s20  wandering [67]) and intelligence which concurs with the fact that such processes are rather disruptive

sz than helpful during cognitive tasks.

32 We conclude that the prediction of individual behaviour from fMRI data can be greatly improved
323 with the help of new strategies. In particular, dimensionality reduction via ensemble learning and
324 the use of task-based fMRI instead of rsfMRI appear to be the most important aspects in this

5 endeavour.
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Figure 7: Scatter plots showing predictions of the G-factor. Scatter plots for the prediction
of the G-factor obtained by the proposed algorithm VEGA are shown. Each dot represents one of
the 390 test subjects. Note that the results from the two tasks are markedly better than that of the
resting state. The average of the two tasks yields the best result. All four scatter plots are derived
from the same training/test split.
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positive factor loadings

o By =

negative factor loadings

Figure 8: Predictive areas for general intelligence in the language task. The colors encode
factor loadings (matrix P) estimated by partial least squares regression averaged over all folds. Strong
positive loadings indicate areas where connectivity with other brain regions is positively correlated
with general intelligence. Strong negative loadings indicate areas where connectivity with other brain
regions is negatively correlated with general intelligence. For example, the negative loadings seem to
highlight the default mode network (DMN). This suggests that a well connected DMN correlates with
low general intelligence. A spatial Gaussian filter (fwhm=7mm) was applied for better visualization.

Note that the colors only show relative weights, they do not have interpretable units.
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2 Software

327 The software will be made public soon.
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Supplementary Figure 1: The brain mask. The brain mask used for this study. It contains
55856 voxels.
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Supplementary Figure 2: The coremap computed using Ricci-Forman curvature. The red

areas show the coremap computed by thresholding the Ricci-Forman curvature map superimposed on
the original brain mask shown in blue. Here, an average of the coremaps across all folds in one of the
20 train-test splits is shown. It was computed for predicting the G-factor from the fMRI data of the

language task.
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L=2000

Supplementary Figure 3: Ensemble learning. The top image shows voxels that are endpoints
in one subset (L=1) of 1000 randomly selected edges used for ensemble learning. The bottom images
shows the number of times voxels are visited in 2000 such subsets (L=2000). During ensemble learning,
each subset is used in a regression model to derive predictions of intelligence scores. For each subject
in the test set, the resulting 2000 predictions are averaged to reach a final prediction of intelligence.
In this example, voxels were visited about 143 times on average (p = 143.22,0 = 36.03). Note that

the distribution of the voxels is constrained by the coremap derived from the Ricci-Forman curvature.

26


https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435935; this version posted April 28, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Language task, voxel space Working memory task, voxel space
0.6 T T T T T ] 0.6 T T T T T ]
0.4F . 0.4F .
0.2F 3 02k =
Lo L e EZAT%%%%%z
oF—T— [ A oF = ]
; J_ + + . : _L . r L J_ + . . ]
0.2 . - -0.2 . : -
0 4: ! | ! | ! ! L 0 4: ! | ! | ! ! L
’ PS PP CS CP TS TP V ' PS PP CS CP TS TP \Y
Resting state, voxel space Grayordinate space
0.6 T T T T T | — 0.6 T T T T T .
0.4F - 0.4F .
0.2 :— T - 02F % S T
0 Z‘ T : f % T oF oL T
-0.2F : . C -0.2F . * g
0 4: l l 1 l l l L 0 4: l l l l l .
’ PS PP CS CP TS TP V ' R-100 R-300 R-MMP L-MMP W-MMP

Supplementary Figure 4: R? between observed and predicted G-factor. The boxplots show
the coefficient of determination R?> between the observed versus predicted IQ scores of 65 test subjects
resulting from 6-fold crossvalidations in 20 different train/test splits (6 x 20 = 120 correlation values).
The corresponding R? values are in the supplement. The results of the new proposed method VEGA
(’V’) are shown in orange. It was tested against several competing methods as listed in table?? using
the same data and train/test splits. Note that in the language and working memory tasks, the proposed
method outperformed all competing methods. In resting state data, its accuracy is comparable to the

best competing methods.
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Supplementary Figure 5: R? between observed and predicted CogTotal. Results for the

CogTotal score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 6: R? between observed and predicted CogCrystal. Results for the

CogCrystal score, see caption of Supplementary Figure 4 for more details.
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Working memory task, voxel space

Supplementary Figure 7: R? between observed and predicted CogFluid. Results for the

CogFluid score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 8: Mean absolute error (M AE) between observed and predicted

G-factor. The boxplots show the mean absolute error between the observed versus predicted 1(Q) scores

of 65 test subjects resulting from 6-fold crossvalidations in 20 different train/test splits (6 x 20 = 120

correlation values). The corresponding R? values are in the supplement. The results of the proposed

method VEGA ("V’) are shown in orange. It was tested against several competing methods as listed

in table?? using the same data and train/test splits. Note that in the language and working memory

tasks, the proposed method outperformed all competing methods. In resting state data, its accuracy

is comparable to the best competing methods.
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Supplementary Figure 9: MAE between observed and predicted CogTotal. Results for the
CogTotal score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 10: MAE between observed and predicted CogCrystal. Results for

the CogCrystal score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 11: MAE between observed and predicted CogFluid. Results for
the CogFluid score, see caption of Supplementary Figure 4 for more details.
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Language task, G-factor, varying hyperparameters
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Supplementary Figure 12: Prediction accuracy with various hyperparameter settings.
The plot shows correlations between observed and predicted G-factors using the language task. The
left boxplots (A) shows a variation of the parameter m = 100,500, 2000, 5000, with p = 10 fixed. The
right plot (B) shows a variation of the parameter p = 3,5,10,50 with m = 1000 fixed.

35


https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435935; this version posted April 28, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Working memory task, G-factor, varying hyperparameters
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Supplementary Figure 13: Prediction accuracy with various hyperparameter settings.

Same as Supplementary Figure 12, but for the working memory task.
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Resting state, G-factor, varying hyperparameters
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Supplementary Figure 14: Prediction accuracy with various hyperparameter settings.

Same as Supplementary Figure 12, but for resting state fMRI.
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Supplementary Figure 15: Combining two tasks. Prediction accuracy improves when the results
from the two tasks (language and working memory) are combined. The boxplots show Pearson linear

correlation and predictive R? between observed and predicted intelligence scores.
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Supplementary Figure 16: The effect of scan time on prediction accuracy (resting state).
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The boxplots show the reduction in predictive R? as scan time is reduced. The leftmost boxplot
shows the results with the complete scan time (= 58 min). The next two boxplots (S1,52) show the
results for session 1 and 2 (29 min each). The four rightmost boxplots show the results for each of the
four runs, i.e. session 1 with LR-phase encoding, session 1 with RL-phase encoding, session 2 with
LR-phase encoding, session 2 with RL-phase encoding (14.4 min each).
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Supplementary Figure 17: The effect of Ricci-Forman curvature maps on prediction
accuracy. The thresholded curvature maps were helpful in providing more accurate predictions of
the G-factor in task-fMRI, but not in resting state fMRI. The boxplots LG+ and LG- show R? values
for the language task with and without curvature maps, respectively. Likewise, WM+, WM-, RS+,
RS- show R? values for the working memory task and rs-fMRI with and without the thresholded

curvature map.
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Supplementary Figure 18: Predictive areas for general intelligence in the working mem-
ory task. The colors encode factor loadings (matrix P) estimated by partial least squares regression.
Strong positive loadings indicate areas where connectivity with other brain regions is positively corre-
lated with general intelligence. Strong negative loadings indicate areas where connectivity with other
brain regions is negatively correlated with general intelligence. The colors only show relative weights,
they do not have interpretable units.
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positive factor loadings

Supplementary Figure 19: Predictive areas for general intelligence in resting state. The
colors encode factor loadings (matrix P) estimated by partial least squares regression. Strong positive
loadings indicate areas where connectivity with other brain regions is positively correlated with general
intelligence. Strong negative loadings indicate areas where connectivity with other brain regions is
negatively correlated with general intelligence. The colors only show relative weights, they do not

have interpretable units.

42


https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435935; this version posted April 28, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s2  Row-column centering

Let X" he the n x m training matrix. Let p denote its total mean value, i.e.

1 .
_ X'tr.azn 2
p=d X (2)

]

s and let Xf;”‘”” denote the mean values across column vectors j = 1,...,m, and X"*" the mean

526 values across row vectors i = 1,...,n.

Then the matrix X" is centered as follows:
)’fztj‘jain _ Xir]am o ngf.rain . X-tjrain + 4 (3)
And the test matrix X% is centered as follows:

Xf,ejSt _ X;E’ejst . X;E.est . X?ain +u (4)

train,
J
522 But the row means X!** are derived from the test matrix because they correspond to individual

sz Note that the total mean p and the column means X are derived from the training matrix.

520 subjects.
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