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ABSTRACT

Highly multiplexed tissue imaging makes molecular analysis of single cells possible in a
preserved spatial context. However, reproducible analysis of the underlying data poses a substantial
computational challenge. Here we describe a modular and open-source computational pipeline
(MCMICRO) for performing the sequential steps needed to transform large, multi-channel whole
slide images into single-cell data. We demonstrate use of MCMICRO on images of different tissues
and tumors acquired using multiple imaging platforms, thereby providing a solid foundation for the

continued development of tissue imaging software.

MAIN

The recent introduction of highly multiplexed tissue imaging makes it possible to measure the
levels and localization of 20-100 antigens at subcellular resolution in a preserved 3D environment
(see Table S1 for references). In a research setting, multiplexed imaging provides new insight into
molecular properties of tissues and their spatial organization and, in a clinical setting, it promises to
augment traditional histopathological diagnosis of disease with the molecular information needed to
guide use of targeted and immuno-therapies'. Inadequate tools for image processing remain a
substantial barrier to the routine use of multiplexed tissue imaging, particularly in the case of whole-
slide imaging (WSI), in which specimens as large as 5 cm? are imaged in their entirety. Diagnostic
histopathology is based on WSI, and the FDA mandates it for medical applications>®. We have also
found that multiplexed WSI is essential for accurately quantifying the mesoscale structures that
organize tissues’. Whole-slide images can contain one terabyte of data, 10° to 10° cells, and involve
resolvable structures with spatial scales from 100 nm to over 1 cm. This represents a substantial
challenge for computational image analysis.

A goal common to almost all multiplexed tissue analyses is identifying cell locations,
phenotypes and states based on the levels and patterns of expression of protein markers. These are
usually detected using antibodies, often in conjunction with stains such as hematoxylin and eosin
(H&E). Image-based single-cell analysis is a natural complement to spatial and single-cell
transcriptomics®'% but faces four computational challenges: (i) image segmentation, the process of
subdividing images into areas comprising single cells, is difficult when normal tissue structures are
disrupted, cells are densely crowded, and nuclei have irregular morphologies — as in cancer; (ii) the
fundamental units of tissue organization are highly variable, and the essential data types are not well
defined; (i11)) WSI generates very large files that must be available for human inspection (a 50-plex 4
cm? image collected at 0.3um lateral resolution comprises over 400 GB of data); (iv) image

processing algorithms are simultaneously being developed by many research groups in parallel,
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using different programming languages (some proprietary, such as MATLAB) without consideration
of interoperability. Analogous challenges in genomics have been addressed by developing
computational pipelines that streamline multi-step data analyses and can also be scaled up to cloud
compute environments (e.g., Cumulus for sScRNAseq)'!. The use of pipelines involving software
containers (e.g., Docker!?) and workflow languages'? makes it possible for multiple research groups
to contribute to and iteratively improve complex computational tasks. In the case of tissue atlases,
such as the Human Tumor Atlas Network (HTAN)!4, multiple laboratories are faced with a common
set of data analysis challenges, a further motivation for a standardized computational framework.

In this paper we describe MCMICRO (Multiple Choice MICROscopy), a scalable, modular,
and open source image processing pipeline implemented in the Nextflow language!® that leverages
Docker/Singularity containers'>', We show that MCMICRO can process multiplexed data acquired
using at least six different imaging technologies (Table S1) and has attributes not found in existing
workflows (Table S2). These include the ability to select among competing algorithms at key steps
in the analysis and interactive training of machine learning models (this is particularly important for
image segmentation). In common with other bioinformatics pipelines, MCMICRO is designed to
complement rather than replace conventional desktop and server-deployed tools. A wide variety of
algorithms can be incorporated into the MCMICRO pipeline using containers, and the results can be
visualized using multiple software environments, including napari, QuPath, OMERO and histoCAT
(see Table S2 for details and references).

To create MCMICRO, we re-implemented as open-source software several algorithms
previously available in the proprietary language MATLAB (MCQuant for quantifying marker
intensities and computing morphology metrics'’, and S3segmenter for watershed segmentation'8,
spot detection, and local thresholding). We also containerized several open-source algorithms
(BaSiC! and Tlastik?®), and incorporated three algorithms and associated deep learning models
developed in our laboratories (UMAP/UnMicst, Coreograph and ASHLAR) (Fig. 1A; module names
in red). All algorithms were tuned to manage very large files (~ S00GB/image) and containerized to
abstract away language-specific dependencies (Methods). Source code, a user guide and other

training materials are available via GitHub (https://github.com/labsyspharm/mcmicro).

To facilitate benchmarking, development of new algorithms and model training, we also
generated a set of freely available reference images, the Exemplar Microscopy Images of Tissues and
Tumors (EMIT). EMIT comprises multiplexed CyCIF images of a tissue microarray (TMA) with
120 1.5 mm cores from 34 types of cancer, non-neoplastic diseases, and matched normal tissue

(Figure S1, https://synapse.org/EMIT). EMIT images were processed using MCMICRO (using the

Coreograph module) and all steps are documented on Synapse (https://synapse.org/EMIT).
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Clustering of normal tissues and cancers by type (with some variance, because specimens came from
different individuals) demonstrates that a wide range of specimens can be processed by MCMICRO
to generate meaningful single cell data (Figure S2).

Processing multiplexed WSI data starts with acquisition of individual image tiles in a
BioFormats-compatible format (level 1 data; Fig. 1A)2!; each tile is typically a megapixel
multichannel image, and as many as 10 tiles are required to cover a large tissue specimen at
subcellular resolution. Tiles are corrected for uneven illumination, stitched together, and registered
across channels to generate the first broadly useful type of data: a fully assembled, multichannel
mosaic image in OME-TIFF format (a class of level 2 data) (Fig. 1B). In a large mosaic whole-slide
image, length scales vary 103-fold from the smallest resolvable feature to the largest dimension.
Images are subjected to quality control, followed by segmentation. A segmentation mask (level 3
data), the next object computed by MCMICRO, is available for human inspection in conjunction
with underlying images to determine the quality of different segmentation approaches (Fig. 1C).

Following segmentation, the staining intensity in each channel is computed on a per-cell
basis to generate a Spatial Feature Table (level 4 data), which is analogous to a count table in
scRNAseq. In its simplest form, this table consists of the positions of cells and their integrated
staining intensities in each imaging channel (morphological data, such as size, eccentricity etc. are
additional table elements; Fig. 1D). The Spatial Feature Table can be visualized using tools designed
for high dimensional data such as tSNE or UMAP, processed to identify cell types, and used for
neighborhood or other types of analysis (Fig. 1D). It is also possible to skip segmentation altogether
and perform analysis directly on images; pixel-level deep learning has already shown promise in
clinical settings?>?%, and many algorithms have been generalized for use with multiplexed data.
Regardless of how data flows through MCMICRO, provenance is maintained by recording the
identities, version numbers and parameter settings for each module, enabling full reproducibility
(Fig. S3).

MCMICRO includes a newly developed tool for processing TMAs, which are widely used in
research, because they enable parallel analysis of many specimens. In a TMA, a single slide carries
dozens to hundreds of 0.3 to 2 mm diameter “cores". The Coreograph module in MCMICRO is
based on the U-Net deep learning architecture?. It finds the locations of individual cores and extracts
each core as a separate, multi-channel image (Fig. 1E), allowing all cores to be processed in parallel
by downstream modules. The robustness of the underlying neural network makes it possible for the
module to accurately identify cores even in highly distorted TMAs.

Image processing requires user interaction and frequent visual review (see CellProfiler, for

example?). To enable human-in-the-loop analysis, MCMICRO allows for training and parameter
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adjustment to take place locally, using subsets of a large mosaic image. This iterative approach is
particularly important for segmentation, since most contemporary algorithms rely on supervised
machine learning. An absence of well-defined objective functions and ground truth data makes
automated scoring of algorithms difficult, and different combinations of algorithms and models may
be optimal for different tissues. MCMICRO therefore incorporates multiple segmentation algorithms
(e.g., U-Net?* or ilastik?’), which can be executed in parallel and then compared (Fig. 1C).
Additional improvement in segmentation can be achieved with the help of the EMIT data repository

(https://synapse.org/EMIT), which includes a “classifier zoo” comprising a set of tissue-specific

random forest segmentation models for ilastik. These models aid generation of robust tissue-specific
segmentation masks and can also be subjected to further dataset-specific training.

To demonstrate the technology-agnostic capabilities of MCMICRO, we collected data from a
single FFPE tonsil specimen at four different institutions using four imaging technologies: CODEX
and CyCIF, which are immunofluorescence-based; mIHC, which uses multiplexed
immunohistochemistry; and H&E staining (Fig. 2A). We also analyzed mxIF and publicly available
Imaging Mass Cytometry (IMC) and MIBI data (Table S2). To show that MCMICRO does not have
specific hardware dependencies, data processing was performed using cloud compute nodes
provided either by Amazon Web Services (AWS) or the Google Cloud Platform and also using a
Linux-based institutional cluster running the SLURM workload manager. MCMICRO provides
detailed information on time, memory and CPU usage, making it straightforward to provision
necessary computational resources (Fig. S4).

Image tiles from a variety of microscopes were subjected to stitching, registration and
illumination correction using ASHLAR and BaSiC to generate mosaic level 2 image data that was
visually inspected on a local workstation using napari and in the cloud using OMERO (Fig. 2A).
Images were then segmented and staining intensities were computed on a per-cell basis using
MCQuant. Cell types were visualized in the tissue context for epithelial cells of the tonsil mucosa
(Keratin+/panCK+), cytotoxic T cells (CD8+) and B cells (CD20+) (Fig. 2B). Visual inspection of
stitched and registered CyCIF, CODEX and mIHC images and derived data revealed accurate image
stitching and registration, facilitating the creation of reasonable segmentation masks and the
generation of correctly formatted Spatial Feature Tables. The results of cell type calling were similar
(Fig. 2C), and when data from all three technologies were combined and visualized using tSNE,
cells were separated by marker expression not imaging technology (Fig 2D). These findings
demonstrate consistency in image acquisition and data processing.

A few algorithms in MCMICRO (e.g., Ashlar and BaSIC) are tissue and technology agnostic

and can be used on diverse types of data with little, if any, tuning or modification. The performance
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of other algorithms (e.g., UnMicst and Ilastik) is dependent on the properties of their learned models,
which often work well for some tissues and not for others. MCMICRO facilitates identification of
effective algorithms and models by executing different segmentation approaches in parallel,
followed by comparison of the resulting masks. We expect continued innovation in the area of image
segmentation, as well as addition of algorithms for automated quality control of images and
identification of cell types based on marker intensities and cell morphologies. However, we do not
anticipate that users will need to manage an endless proliferation of novel methods: multiple research
consortia are actively working together on evaluation efforts (analogous to Dream Challenges?®)
aimed at creating best practices for highly-multiplexed image analysis. MCMICRO provides the
technical foundation for such evaluations and for widespread distribution of the results. MCMICRO
is also being used by the HTAN consortium to rigorously compare different image acquisition
technologies.

In conclusion, the MCMICRO pipeline described here provides a foundation for community-
wide development of FAIR (findable, accessible, interoperable and reusable)?’ workflows for
analysis of large tissue images currently being generated by multiple international consortia and
many individual laboratories. MCMICRO works with any acquisition technology that generates Bio-
Formats/OME-compatible images, including the six technologies described above. The pipeline is
based on widely accepted software standards and interoperates with any programming language
through the use of software containers, making it easy to add new modules. The result is a user-
friendly end-to-end pipeline that executes computation-intensive processes in the cloud, while
enabling parameter optimization, training and quality control to be performed locally and

interactively.
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194 METHODS

195  Tissue samples

196 A de-identified tonsil specimen from a 4-year old Caucasian female was procured from the
197  Cooperative Human Tissue Network (CHTN), Western Division, as part of the Human Tumor Atlas
198  (HTAN) SARDANA trans-network project (TNP). Regulatory documents including Institutional
199  Review Board (IRB) protocols, data use agreements and tissue use agreements were in place to

200  ensure regulatory compliance. Standard protocols for tissue procurement and fixation were followed;
201  adetailed protocol can be found at the link provided in Table 1. Sections were cut from a common
202  formalin-fixed paraffin embedded (FFPE) block at a thickness of 5 um and mounted onto Superfrost
203  Plus glass microscope slides (Fisher Scientific, 12-550-15) for CyCIF and mIHC or mounted on

204  poly-L-Lysine (PLL) coated coverslips (Electron Microscopy Sciences, 72204-01; slides and FFPE
205  sections prepared following instructions in the Akoya Biosciences CODEX User Manual Rev B.0,
206  Chapter 3. Coverslip Preparation and Tissue Processing) for CODEX. A set of FFPE tissue sections
207  was received by participating HTAN Centers, as indicated in Table 1, allowing Centers to generate a
208  comparable spatial cell census using each Center’s imaging method of choice. CHTN performed
209  hematoxylin and eosin (H&E) staining on the first section which was subsequently imaged at

210  Harvard Medical School (HMS).

211 For the EMIT dataset, human tissue specimens (from 42 patients) were used to construct a
212 multi-tissue microarray (HTMA427) under an excess (discarded) tissue protocol approved by the
213 IRB at Brigham and Women's Hospital (BWH IRB 2018P001627). Two 1.5 mm diameter cores

214  were acquired from each of 60 tissue regions with the goal of acquiring one or two examples of as
215  many tumors as possible (with matched normal tissue from the same resection when that was

216  feasible), as a well several non-neoplastic medical diseases involving acute inflammation (e.g.

217  diverticulitis and appendicitis), and secondary lymphoid tissues such as tonsil, spleen and lymph
218  nodes. Overall, the TMA contained 120 cores plus 3 additional “marker cores,” which are cores

219  added to the TMA in a manner that makes it possible to orient the TMA in images.

220

221  Table 1. Sample information.

Section Number | Section Center Assay
Thickness
(hm)
WD-75684-01 5 Cooperative Human Tissue Network H&E
WD-75684-02 5 Harvard Medical School CyCIF
WD-75684-05 5 Broad Institute CODEX
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WD-75684-08 5 Harvard Medical School CyCIF

WD-75684-12 5 Oregon Health & Science University mIHC

222

223  CyCIF staining and imaging

224  The CyCIF method involves iterative cycles of antibody incubation, imaging and fluorophore

225  inactivation as described previously’. A detailed protocol can be found on protocols.io as shown in
226  Table 2. CyCIF images are 36-plex whole-slide images collected using a 20x magnification, 0.75
227  NA objective with 2 x 2 pixel binning, yielding images of pixel size at 0.65 um/pixel. The image
228  comprises 416 and 350 image tiles for WD-75684-02 and WD-75684-08, respectively, each with
229  four channels, one of which is always Hoechst to stain DNA in the nucleus.

230

231  Table 2. List of protocols. As a part of the HTAN effort, all protocols and methods are deposited on

232  Protocols.io.

Category Center Protocols.io link

Protocol CHTN Tissue Procurement and Fixation in 10% NBF

(Biospecimen) https://www.protocols.io/view/tissue-procurement-fixation-with-
10-nbf-6y4hfyw

Protocol HMS H&E

(Characterization) wx.doi.org/10.17504/protocols.io.bsi8nchw

Protocol HMS FFPE Tissue Pre-treatment Before t-CyCIF on Leica Bond RX

(Characterization) https://www.protocols.io/view/ffpe-tissue-pre-treatment-before-t-

cycif-on-leica-bji2kkge

Protocol HMS Tissue Cyclic Immunofluorescence (t-CyCIF)

(Characterization) https://www.protocols.io/view/tissue-cyclic-

immunofluorescence-t-cycif-bjiukkew

Protocol Broad CODEX

(Characterization) https://www.protocols.io/private/FAD1B1BA64C011EB8S8A990A5
8A9FEAC2A/

Protocol OHSU Multiplexed Immunohistochemistry (mIHC)

(Characterization) https://www.protocols.io/view/mihc-staining-ohsu-coussens-lab-

sop-tnp-sardana-bcdpis5n

233
234  CODEX staining and imaging

235  Coverslips were prepared following the FFPE tissue staining protocols in the Akoya Biosciences

236  CODEX User Manual (Sections 5.4 — 5.6). Briefly, 5 um FFPE tissue sections were cut onto PLL-


https://www.protocols.io/view/tissue-procurement-fixation-with-10-nbf-6y4hfyw
https://www.protocols.io/view/tissue-procurement-fixation-with-10-nbf-6y4hfyw
https://www.protocols.io/view/ffpe-tissue-pre-treatment-before-t-cycif-on-leica-bji2kkge
https://www.protocols.io/view/ffpe-tissue-pre-treatment-before-t-cycif-on-leica-bji2kkge
https://www.protocols.io/view/tissue-cyclic-immunofluorescence-t-cycif-bjiukkew
https://www.protocols.io/view/tissue-cyclic-immunofluorescence-t-cycif-bjiukkew
https://www.protocols.io/private/FAD1B1BA64C011EB8A990A58A9FEAC2A/
https://www.protocols.io/private/FAD1B1BA64C011EB8A990A58A9FEAC2A/
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.protocols.io_view_mihc-2Dstaining-2Dohsu-2Dcoussens-2Dlab-2Dsop-2Dtnp-2Dsardana-2Dbcdpis5n&d=DwMFAg&c=WO-RGvefibhHBZq3fL85hQ&r=4Jik23j-HfqOmPKFDEqU82KzdurIWVYAOIyYKqCgpe4&m=oQ405nbvci0BsGpZEwWTTepVEWouI8DtEuh-i_Xml-I&s=AcqQNRERa4tOmqxr45_9C3nS9NDgdXNJlp8ctkTrGXc&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.protocols.io_view_mihc-2Dstaining-2Dohsu-2Dcoussens-2Dlab-2Dsop-2Dtnp-2Dsardana-2Dbcdpis5n&d=DwMFAg&c=WO-RGvefibhHBZq3fL85hQ&r=4Jik23j-HfqOmPKFDEqU82KzdurIWVYAOIyYKqCgpe4&m=oQ405nbvci0BsGpZEwWTTepVEWouI8DtEuh-i_Xml-I&s=AcqQNRERa4tOmqxr45_9C3nS9NDgdXNJlp8ctkTrGXc&e=
https://doi.org/10.1101/2021.03.15.435473
http://creativecommons.org/licenses/by-nc-nd/4.0/

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435473; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

coated coverslips and baked for 20-25 minutes at 55 °C. Sections were cooled briefly before
deparaffinization and were washed for 5 minutes each as follows: twice in xylene, twice in 100%
ethanol, once in 90%, 70%, 50%, and 30% ethanol, and twice in deionized water. Sections were
moved to 1x Citrate Buffer (Vector Laboratories, H-3300) and antigen retrieval was performed in a
Tinto Retriever Pressure Cooker (BioSB, BSB 7008) at high pressure for 20 minutes. Sections were
briefly washed in deionized water before being left to incubate in deionized water at room
temperature for 10 minutes. Sections were briefly washed twice in Hydration Buffer (Akoya), then
were left to incubate in Staining Buffer (Akoya) at room temperature for 20-30 minutes. 200
uL/section of Antibody Cocktail was prepared according to manufacturer instructions. Sections were
covered with the 200 pL Antibody Cocktail and left to incubate at room temperature for 3 hours in a
humidity chamber. Sections were washed twice in Staining Buffer for 2 minutes, and then fixed with
a mixture of 1.6% PFA in Storage Buffer (Akoya) for 10 minutes. Sections were briefly washed
three times in 1x PBS, and then washed in ice-cold methanol for 5 minutes before being washed
again three times in 1x PBS. Sections were stained with 190 pL. of a mixture of 20 puL Fixative
Reagent (Akoya) and 1 mL 1x PBS, after which they were left to incubate at room temperature for
20 minutes. Sections were briefly washed three times in 1X PBS and were stored in Storage Buffer

at 4 °C until the assay was ready to be run.

Running the CODEX Assay

A 96-well plate of reporter stains with Nuclear Stain (Akoya) was prepared according to Akoya
Biosciences CODEX User Manual (Sections 7.1 — 7.2). Stained Tissue sections were loaded onto the
CODEX Stage Insert (Akoya) and the Reporter Plate was loaded into the CODEX Machine. The on-
screen prompts were followed and the section was manually stained with a 1:2000 Nuclear Stain in
1x CODEX Buffer (Akoya) for 5 minutes before proceeding with following the on-screen prompts.
Imaging was performed on a Zeiss Axio Observer with Colibri 7 light source. Emission filters were
BP 450/40, BP 550/100, BP 525/50, BP 630/75, BP 647/70, BP 690/50, and TBP 425/29 + 514/31 +
632/100 and dichroic mirrors were QBS 405 + 492 + 575 + 653, TFT 450 + 520 + 605, TFT 395 +
495 + 610, and TBS 405 + 493 + 575, all from Zeiss. Overview scans were performed at 10x
magnification, after which 5 x 5 field of view regions were acquired using a Plan-Apochromat
20x/0.8 M27 Air objective (Zeiss, 420650-9902-000). 20x magnification images were acquired with
a 212 x 212 nm pixel size using software autofocus repeated every tile before acquiring a 17 plane z-

stack with 0.49 um spacing. Tiles were stitched using a 10% overlap.
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mIHC staining and imaging

The multiplex immunohistochemistry (mIHC) platform described herein involves wet and dry-lab
techniques that have been robustly developed to interrogate the tumor immune microenvironment in
situ. mIHC involves a cyclic staining process optimized for FFPE tissues with panels of antibodies
(12-29 per panel) designed to interrogate both lymphoid and myeloid compartments of the immune

system as well as cellular functional states, as previously described?®%.

Pipeline implementation

MCMICRO was implemented in Nextflow, which was chosen for its natural integration with
container technologies such as Docker and Singularity, its automatic provenance tracking and
parallelization of image processing tasks, and its ability to specify module dependencies that may

change at runtime'.

Illumination correction

BaSiC is a Fiji / ImageJ plugin for background and shading correction, producing high accuracy
while requiring only a few input images'®. We containerized the tool, allowing it to be executed

without an explicit installation of ImageJ.

Image stitching and registration using Ashlar

Cycle-based highly multiplexed microscopy produces multi-channel images of fixed cells using a
standard four/five-color microscope. Registration of the images across successive cycles is made
straightforward by the addition of a nuclear counterstain in every cycle. Given a set of slightly
overlapping images covering a tissue, we correct for mechanical stage positioning error intrinsic to
all microscopes using Ashlar (Alignment by Simultaneous Harmonization of Layer/Adjacency
Registration), a Python package for efficient mosaicing and registration of highly multiplexed
imagery>’. The overall strategy of Ashlar is as follows: (i) align tile images from the first cycle edge-
to-edge with their nearest neighbors (mosaicing) using phase correlation on the nuclear marker
channel; (i1) for the second and subsequent cycles, align each tile to the greatest overlapping tile
from the first cycle (registration), using phase correlation on the nuclear marker channel, and retain
the corrected stage coordinates, rather than the actual merged images; (iii) use the corrected
coordinates to assemble a single image covering the entire imaged area, including all channels from
all cycles. This approach minimizes the compounding of alignment errors across tiles and cycles as

well as temporary storage requirements for intermediate results.
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Coreograph

Coreograph’s function is to split, or ‘dearray’, a stitched TMA image into separate image stacks per
core. It employs a semantic segmentation preprocessing step to assist with identifying cores that are
dimmed or fragmented, which is a common issue. We trained a deep, fully connected network on
two classes — core tissue and background — using the popular UNet** architecture for semantic
segmentation. Training data consisted of cores that were well-separated, as well as cores that were
merged and/or fragmented, which allowed for handling situations where sample integrity was highly
heterogeneous. Once cores had been accentuated in the form of probability maps, they were cropped
from the stitched image based on their median diameter and saved as a TIFF stack. In situations
where the cores were too clumped, the median diameter was used to set the size of a Laplacian of

Gaussian (LoG) kernel in order to identify local maxima from the probability maps.

UnMicst (U-Net model for identifying cells and segmenting tissue)

UnMicst is a preprocessing module in MCMICRO that aids in improving downstream segmentation
accuracy by generating per-class probability maps to classify each pixel with a certain amount of
confidence. Analogous to Coreograph, it employs a UNet architecture (see above). Previously, a
similar UNet model was trained for nuclei segmentation to recognize two classes in Hoechst 33342 -
stained tonsil tissue (nuclei contours and background). Here, we train a 3-class model to extract
nuclei centers, nuclei contours, and background from manually annotated lung, tonsil, prostate and
other tissues in order to ascribe a variety of nuclei shapes. Realistic augmentations, in addition to
conventional on-the-fly transformations, were included by deliberately defocusing the image and
increasing the exposure time of the camera to simulate focus and contrast augmentations,
respectively. Training was performed using a batch size of 24 with the Adam Optimizer and a
learning rate of 0.00003 until the accuracy converged. Segmentation accuracy was estimated by
counting the fraction of cells in a held out test set that passed a sweeping Intersection of Union

(IOU) threshold.

Tlastik tissue segmentation

Similar to UnMicst, Ilastik assigns each pixel a probability of belonging to predetermined classes
(e.g., cell nucleus, membrane, background). MCMICRO relies on Ilastik’s pixel classification
module for training and subsequent batch-processing using a random forest classifier. Ilastik
classifier training in MCMICRO is completed in several steps. First, regions of interest (ROIs) with a
user-defined width and height are randomly cropped from the WSI. Second, the ROIs are manually

annotated by the user on a local machine via Ilastik’s graphical user interface (GUI). Third, to ensure
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tissue portions are accurately represented in cropped images, Otsu’s method is used to identify a
global threshold across the WSI for a particular channel of interest (e.g., nuclear staining). Finally,
the user exports the cropped sections that contain the desired proportion of pixels above the
previously determined threshold. Upon completion of the random forest training, whole slide
classifier predictions are deployed in headless mode (no GUI) for batch processing of large data sets

within MCMICRO.

Watershed segmentation via S3segmenter

We implemented S3segmenter, a custom marker-controlled watershed algorithm to identify nuclei
from the probability maps generated by UnMicst and Ilastik. Watershed markers are obtained by
convolving a LoG kernel, followed by a local maxima search across the image to identify seed
points. The size of the LoG kernel and local maxima compression are tunable parameters dependent
on the expected nuclei diameters in the image. As a byproduct, this method identifies false positive
segments in the image background. These false positives were excluded by comparing their
intensities to an Otsu-derived threshold calculated either on the raw image or on the probability map.
S3segmenter currently offers three alternative methods for cytoplasm segmentation. First, traditional
nonoverlapping rings (annuli) with user-defined radius are used around each nucleus. Second, a
Euclidean distance transform is computed around each nucleus and masked with a user-specified
channel, reflecting the overall shape of the whole tissue sample. An autofluorescence channel can be
chosen if the signal-to-image background ratio is sufficiently high. Third, the cytoplasm is
segmented using a marker-controlled watershed on the grayscale-weighted distance transform, where
the segmented nuclei are markers and the grayscale-weighted distance transform is approximated by
adding scaled versions of the distance transform and raw image together. This method is
conceptually similar to that found in the CellProfiler Identify Secondary Objects module®.
S3segmenter is also capable of detecting puncta by convolving a small LoG kernel across the image
and identifying local maxima. Once nuclei and cytoplasm segmentation are complete, labelled masks
for each region are exported as 32-bit tiff images. Two channel tiff stacks consisting of the mask

outlines and raw image are also saved so that segmentation accuracy can be easily visually assessed.

MCQuant

Semantic segmentation in MCMICRO produces 32-bit masks, which are used to quantify pixel
intensity (i.e., protein expression) on multiplexed WSI for cytoplasm and nuclei. Quantification in
MCMICRO is carried out using scikit-image, a popular Python-based image analysis library, and

values of cellular spatial features are calculated for unique cells (cytoplasm and nuclei), in addition
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to their mean pixel intensity (protein expression). The resulting spatial feature tables are exported as
CSV files for subsequent data analysis analogous to histoCAT!?, which is implemented in

MATLAB.

Data availability statement

All software and code that produced the findings of the study, including all main and supplemental
figures, are available at https://github.com/labsyspharm/mcmicro.

All EMIT images are available at https://synapse.org/EMIT and all exemplar and tonsil images are
available at https://synapse.org/MCMICRO images.
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Fig. 1: MCMICRO pipeline overview. Modules highlighted in bold red are developed and/or
containerized in-house. (A) A schematic representation of a canonical workflow for end-to-end
image processing of multiplexed whole-slide and TMA using MCMICRO. Shown is a flow of inputs
(pink rectangles) from imaging technologies (yellow rectangles) through image processing steps
(white rectangles) that are implemented in software modules (puzzle pieces) to produce key data
types (green rectangles). Data flows associated with the whole slide and TMA are represented with
black and red arrows, respectively. Quality control is highlighted with a dashed border. (B-E)
Highlights of individual software modules incorporated into MCMICRO. B ASHLAR is used to
stitch and register individual CyCIF image tiles with subcellular accuracy (yellow zoom-in). This
panel depicts a 484 tile (22 x 22) t-CyCIF, whole-slide, mosaic image of a human colorectal cancer
in four channels: Hoechst 33342-stained nuclear DNA (blue), a-smooth muscle actin (a-SMA; red),
the Ki-67 proliferation marker (green) and cytokeratin (white). An interactive on-line visualization of
these data can be found at: https://www.cycif.org/data/tnp-2020/0sd-crc-case-1-ffpe-cycif-stack. C
Two different segmentation masks computed by UnMicst (blue) and Ilastik (red) overlaid on an
image of nuclei from an EMIT TMA core. D A schematic of the first rows and columns of a Spatial
Feature Table used for visualization using tSNE. E A CyCIF image of an EMIT TMA de-arrayed
using Coreograph to identify individual cores, which are subsequential extracted and analyzed in
high-resolution. Below, a five-color image of a single lung adenocarcinoma core is shown for
channels corresponding to Hoechst 33342-stained DNA (white), cytokeratin (orange), the immune-

cell marker CD45 (green), a-SMA (magenta) and Ki-67 (red)).
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Fig. 2: Comparison of images of human tonsil collected using three different technologies and
processed using MCMICRO. A. Serial sections of a single tissue block imaged using H&E, 11-
marker CODEX, 27-marker CyCIF, and 16-marker mIHC. The sectioning plan shows the position of
each 5 um section within the block: H&E section 1, CyCIF section 2, CODEX section 5 and mIHC
section 12. Images show selected channels as follows: Hoechst 33342 (blue), CD20 (orange),
Keratin (green), and CDS8 (red). The CODEX image shows only a specific region (red border) of the
specimen visible in whole-slide images to the right. B. Higher magnification images of the data
above highlighting individual cells and segmentation masks generated with UnMicst. C. Centroids of
the single cell mask for CODEX, CyCIF and mIHC are colored by marker expression to identify cell
types. Epithelial cells of the tonsil mucosa stain positive for pan-cytokeratin (green), cytotoxic T
cells stain positive for CDS (red); and B cells stain positive for CD20 (blue). D. t-SNE of combined
CODEX, CyCIF and mIHC data demonstrating clustering by marker expression (left) but not
imaging technology (right).
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509  Figure S1. The EMIT dataset spanning 123 tissue cores across 34 cancer, non-neoplastic

510 diseases, and normal tissue type. A. CyCIF whole slide image of EMIT visualizing Hoechst

511  33342-stained nuclear DNA (white), Keratin (orange), MART1 (cyan), CD45 (green) and SMA
512 (purple). B. A zoom-in view of a metastatic melanoma (left, red box) and a lung adenocarcinoma
513 (right, blue box) core. The highest zoom level is highlighted with white boxes in the corresponding
514  low magnification images.
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516 PC1 (26% of variance)

517  Figure S2. Principal component analysis (PCA) of Spatial Feature Tables derived from EMIT
518  images. A. represents normal tissues and B. cancer tissues. Independent cores cluster to a substantial
519  degree by tissue or cancer type; some variation is expected because tumors had different grades and
520  derive from different individuals. Data from the following antibodies was used to generate the data:
521 CD73, MART]I, KI67, pan-cytokeratin, CD45, ECAD, a-SMA, CD32, CDKNI1A, CCNA2,

522 CDKNIC, CDKNI1B, CCNDI, cPARP, CCNB1, PCNA and CDK2.
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FIGURE S3

Nextflow workflow report
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Figure S3. Nextflow enables reproducible data processing using the provenance module. A.
Nextflow report provides detailed documentation for used resources, directories, repositories
(including commit hash) and the corresponding execution times. The report is browser based and
interactive. B-D. Provenance reconstruction enabled by recording each executed command (.sh) and
its output (.log). Representative examples of a command and its output are shown in (C) and (D),

respectively.
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Figure S4. Detailed insight into the computational resources required by each module,
generated by Nextflow. The data is viewed as an interactive browser-based report. A. CPU usage is
recorded as either % single core CPU usage (visualized) or % CPUs allocated. B. Physical memory
usage is recorded as either RAM only (visualized), RAM + Disk swap or % RAM allocated. C. Job
duration is recorded as either execution time (visualized) or % time allocated. D. Input/Output (I/O)

records both read (visualized) and written bytes.
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543  Table S1: Highly multiplexed imaging methods

Non-cyclic metal-based | Cyclic fluorescence imaging Cyclic immune-
histochemistry
cyclic-stained single-stained
Immuno-SABER® MICSSS?®
4i°

544

545  Table S1: Orange labeled methods were successfully processed by MCMICRO on publicly available
546  datasets. Green labeled methods are additionally tested on images unique to this study with detailed
547  description in the documentation.
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549  Table S2: Available open-source tools for image processing, analysis and visualization
550

Software Scalable | Whole Stitching Modular | Segmentation | Analysis
slide and
processing | registration

MCMICRO

Cytokit!”

starfish!!

histoCAT!?

napari'® Visualization tool
OMERO'7 | Visualization tool
Minerval® Visualization tool

W
W
N =

Table S2: List of open-source tools available for highly multiplexed image processing.

W
W
W
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