
phastSim: efficient simulation of sequence evolution for
pandemic-scale datasets

Nicola De Maio1*Y, William Boulton1Y, Lukas Weilguny1, Conor R. Walker1,2, Yatish
Turakhia3, Russell Corbett-Detig4,5, Nick Goldman1,

1 European Molecular Biology Laboratory, European Bioinformatics Institute,
Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
2 Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
3 Department of Electrical and Computer Engineering, University of California San
Diego, San Diego, CA 92093, USA
4 Department of Biomolecular Engineering, University of California Santa Cruz, Santa
Cruz, CA 95064, USA
5 Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA

YThese authors contributed equally to this work.
* Contact: demaio@ebi.ac.uk

Abstract

Sequence simulators are fundamental tools in bioinformatics, as they allow us to test
data processing and inference tools, as well as being part of some inference methods.
The ongoing surge in available sequence data is however testing the limits of our
bioinformatics software. One example is the large number of SARS-CoV-2 genomes
available, which are beyond the processing power of many methods, and simulating such
large datasets is also proving difficult. Here we present a new algorithm and software
for efficiently simulating sequence evolution along extremely large trees (e.g. > 100, 000
tips) when the branches of the tree are short, as is typical in genomic epidemiology. Our
algorithm is based on the Gillespie approach, and implements an efficient multi-layered
search tree structure that provides high computational efficiency by taking advantage of
the fact that only a small proportion of the genome is likely to mutate at each branch of
the considered phylogeny. Our open source software is available from
https://github.com/NicolaDM/phastSim and allows easy integration with other
Python packages as well as a variety of evolutionary models, including indel models and
new hypermutatability models that we developed to more realistically represent
SARS-CoV-2 genome evolution.

Author summary

One of the most influential responses to the SARS-CoV-2 pandemic has been the
widespread adoption of genome sequencing to keep track of viral spread and evolution.
This has resulted in vast availability of genomic sequence data, that, while extremely
useful and promising, is also increasingly hard to store and process efficiently. An
important task in the processing of this genetic data is simulation, that is, recreating
potential histories of past and future virus evolution, to benchmark data analysis
methods and make statistical inference. Here, we address the problem of efficiently
simulating large numbers of closely related genomes, similar to those sequenced during

September 23, 2021 1/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://github.com/NicolaDM/phastSim
https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

SARS-CoV-2 pandemic, or indeed to most scenarios in genomic epidemiology. We
develop a new algorithm to perform this task, that provides not only computational
efficiency, but also extreme flexibility in terms of possible evolutionary models, allowing
variation in mutation rates, non-stationary evolution, and indels; all phenomena that
play an important role in SARS-CoV-2 evolution, as well as many other real-life
epidemiological scenarios.

Introduction 1

Sequence evolution simulation is important for many aspects of bioinformatics [1]. Its 2

most ubiquitous applications are for testing and comparing the performance of various 3

essential tools (such as alignment, phylogenetic, and molecular evolution inference 4

software, see e.g. [2–4]). However, simulating sequence evolution is also often used for 5

testing hypotheses (e.g. [5]) and for inference, either for example through Approximate 6

Bayesian Computation [6, 7], see e.g. [8, 9], or, more recently, using deep learning, see 7

e.g. [10–12]. 8

Many simulators address the task of simulating gene trees, or ancestral 9

recombination graphs, as well as simulating evolution along these trees (e.g. [13–16]). 10

Instead, here we focus on the problem of generating sequences given an input tree, as 11

done by “phylogenetic” simulators (e.g. [17–19]). Realistic simulation of sequence 12

evolution along a phylogenetic tree is essential, for example, for assessing and improving 13

our methods for inference of SARS-CoV-2 phylogenies, which is a largely still open 14

problem [20]. One important factor is the large numbers of available genome sequences 15

for SARS-CoV-2 (> 3, 000, 000 in the GISAID database [21] as of September 2021). 16

Despite this, there are currently no available simulation frameworks capable of 17

simulating the scale and complex evolutionary features of SARS-CoV-2 and similar 18

genome datasets. For this reason, we focus on the issue of simulating realistic 19

substitution patterns for large datasets of closely related samples, as broadly observed 20

in genomic epidemiology sequence data, and for arbitrarily complex substitution and 21

indel models. 22

Here we show that sequence simulation for such large numbers of genomes is 23

exceedingly computationally demanding for existing software. Complex evolutionary 24

models, for example codon substitution models and rate variation, can cause significant 25

further slow-downs. Furthermore, many existing methods do not allow the simulation of 26

mutational patterns realistic for SARS-CoV-2, such as non-stationary and highly 27

variable mutational processes [22–24], or don’t allow the simulation of indels. We 28

propose a new approach to efficiently simulate the evolution of many closely related 29

genomes along a phylogenetic tree and under general sequence evolution models. Our 30

approach simulates one mutation (substitution or indel) at a time using the Gillespie 31

method [25], and is further tailored to reduce time and memory demand by efficiently 32

representing and storing information regarding non-mutated positions of the genome. 33

Furthermore, we use a multi-layered search tree structure to efficiently sample mutation 34

events along the genome even when each position has its own mutation rate, and to 35

efficiently traverse the phylogenetic tree and avoid redundant operations. Our approach 36

empowers extremely flexible and fine-grained evolutionary models. For example, 37

non-stationary models are specifiable, with each nucleotide position of the genome 38

assigned a distinct mutational profile, and each codon a distinct 39

nonsynonymous/synonymous rate ratio. Similarly flexible indel models are also 40

specifiable. 41

September 23, 2021 2/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

Materials and methods 42

We consider the problem of simulating evolution of a DNA (or RNA) sequence along a 43

specified input phylogenetic tree, and under a given evolutionary model. Our simulation 44

approach is based on the Gillespie method [25], as is typically used in molecular 45

evolution simulators [18, 19]. We assume that each position of the genome (either 46

nucleotide or codon) evolves independently of the others, and under a time-homogeneous 47

substitution process; that is, the rates of evolution at each position are initially specified 48

by the user or are sampled randomly by the simulator. We focus on the efficient 49

simulation of sequence evolution for large phylogenetic trees with short branches: we 50

assume that only a few mutations happen on each branch across the genome, which is 51

typical for genomic epidemiology, and in particular for SARS-CoV-2 [26]. 52

“Vanilla” approach 53

If we assume that evolutionary rates are homogeneous across the genome, it is simple to 54

use the Gillespie approach efficiently in this scenario by adopting an efficient 55

representation of ancestral genomes in terms of differences with respect to a root 56

genome [27]. As a very simplified example, let’s consider the case in which there is no 57

selective force at play, mutation rates are constant across the genome, there are no 58

indels, and all bases mutate into all other bases at the same rate (JC69 model [28] with 59

equal nucleotide frequencies). Throughout the manuscript, we will not assume 60

equilibrium or stationarity in sequence evolution, but instead assume that we are given 61

a genome at the root of the phylogeny, which we then evolve down the tree according to 62

given rates. 63

In this simplified “vanilla” scenario, the total mutation rate across the genome is 64

equal to the mutation rate for one base, 3r, times the genome length (which we assume 65

constant), L. Starting from the root and its genome, we visit each branch of the tree 66

one at the time in preorder traversal. For each branch of the tree, we consider its length 67

tb, and we recursively sample a time for the next mutation from an exponential 68

distribution with parameter
1

3rL
. If the sampled time t is over tb, we move to the next 69

branch. Otherwise, we decrease tb by t and we sample a mutation event. In the 70

considered scenario, this simply means sampling one position of the genome at random 71

(a random integer number 1 ≤ i ≤ L), and then a random allele b, different from the 72

current allele at position i, to mutate into. Additional steps are also required to keep 73

track of mutations which have already occurred and allow them to further mutate, for 74

example, possibly reversing a mutated allele back to the reference allele. We track each 75

sampled mutation by adding it to a list of mutations for the current branch. It is worth 76

noting however that there are more efficient ways to keep track of mutations that have 77

already occurred, which we discuss in subsequent sections. A pseudocode description of 78

the algorithm is given in Algorithm 1. So overall, the total cost of this “vanilla” 79

algorithm is constant in genome size, and is linear in the number of tips N . It does 80

however scale with the number of mutation events (total tree length) M = O(Nl) where 81

l is the average number of mutations per branch. The initialization step has cost O(N) 82

in order to read the phylogenetic tree, and further O(L) with more complex models in 83

order to keep track of the positions of different alleles. Performing the simulations has 84

cost O(M log(N) +M2 log(N)/N) = O(l2N log(N)); the main cost here is to screen 85

previous mutation events at each new mutation, and this can be significantly reduced as 86

explained in the next section. There is a caveat however. The default output of our 87

software phastSim is a text file where each sample name is followed by a list of 88

differences of the simulated sample genome with respect to the reference. We also allow 89

users to print a Newick format tree, annotated with the simulated mutation events. If, 90

September 23, 2021 3/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

however, we want to produce a file containing the full alignment, the memory and time 91

cost of the algorithm will become O(NL), since this is the size of the alignment. For 92

this reason, we provide the option for the user to generate a FASTA or PHYLIP 93

alignment output, but by default we only generate the more concise version consisting 94

of a list of differences, which usually leads to a very considerable reduction in time and 95

memory demand. 96

Algorithm 1 Vanilla algorithm for one phylogenetic branch.

Here evolution on one branch is considered. tb is initialized as the length of the considered
branch. r is the mutation rate from one nucleotide to any other nucleotide. L is genome
size. ref[i] is the reference allele at position i. “Node” is the child node of the currently
considered branch.

Sample t (the time to next mutation event) from an exponential distribution with

parameter
1

3rL
.

while t < tb do

Sample a random integer 0 < i ≤ L
if i is not a position previously mutated in an ancestor of Node then

a =ref[i].
else

a is the current allele for Node
end if

Sample a random new allele b 6= a.
Add mutation (i, a, b) to the list of mutations of Node.
Update current allele for Node at position i as b.
tb = tb − t

Sample t from an exponential distribution with parameter
1

3rL
.

end while

In classical implementations of sequence evolution simulators [17], for each node of 97

the tree we need to update each base of the genome one at the time, therefore incurring 98

in cost O(NL). Therefore, when the number of expected mutations is M � NL we 99

expect an advantage in using this approach. 100

A considerable limitation of the above “vanilla” approach is that we assume that 101

rates are the same across the genome, and this is hardly realistic [29, 30]. We 102

implemented a simple extension of this algorithm above which accounts for both an 103

arbitrary nucleotide substitution model (UNREST [31]), and for rate variation across 104

the genome in terms of a finite number of rate categories. To achieve this, we extended 105

the algorithm above to keep track of which positions of the genome have which rates. 106

This allows us to efficiently calculate total mutation rates for each class of sites, and to 107

efficiently sample sites within a class. 108

We also implemented a new model of rate variation in order to better fit the 109

patterns of hypermutability observed in SARS-CoV-2. In this model, small proportions 110

of hypermutable sites are given a (possibly much) higher mutation rate. At an 111

hypermutable site, only one specific mutation rate (from one nucleotide to one other 112

nucleotide) is enhanced. For example, one such site with hypermutability might have 113

only the G→T mutation rate increased 100-fold, while all other rates at that site remain 114

the same. This is to model the effects observed in SARS-CoV-2 which are possibly 115

attributable to APOBEC and ROS activity (or other still unclear mechanisms) [22, 23]. 116

However, as the number of site classes increases, and as the number of alleles 117

increase (for example when considering codon models), the efficiency of the extension of 118

the vanilla approach described above deteriorates, especially when each site of the 119

September 23, 2021 4/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

genome is given different evolutionary rates. For this reason, we developed a more 120

complex algorithm that remains efficient in light of rate variation, with only a small 121

efficiency sacrifice relative to the vanilla method in the scenario of no rate variation. We 122

allow phastSim users to choose between the vanilla approach or the more complex one, 123

that we call “hierarchical” and describe below. Advanced features, for example 124

simulation of indels, are only implemented with the hierarchical algorithm. 125

“Hierarchical” approach 126

Binary search “genome” tree 127

We first describe the structure and algorithm that allow us to efficiently sample a 128

mutation event along the genome when each position might have a distinct mutation 129

rate. This structure needs to be efficiently updatable following a mutation event; in fact, 130

a mutation event changes the allele at a position of the genome, and therefore also its 131

mutation rate. This is very similar to the problem of sampling from a categorical 132

distribution with many elements, where the probabilities can be slightly modified at 133

each sample [32]. A Huffman tree [33] would be close to optimal for this task, however, 134

here we implement a binary search tree, which has a slightly higher expected cost [32] 135

but allows us to more efficiently model blocks of contiguous nucleotides, and therefore 136

to efficiently simulate indels. 137

In our “genome” search tree (which is distinct from, and should not be confused 138

with, the phylogenetic tree), each node corresponds to a contiguous block of nucleotides 139

along the genome. The root node represents the whole genome, and contains a rate 140

value corresponding to the global mutation rate of the whole genome. The two children 141

of the root correspond to the first and the second half of the genome, respectively. 142

There is no overlap between the regions considered by each child node, and their union 143

gives the region considered by the parent node. Consequently, the sum of the rates of 144

the children of a node is equal to the rate of the node. Given this structure, we also 145

refer to this binary search tree as the “genome” tree. A terminal node of the genome 146

tree corresponds to one unit of the genome, either a base or a codon, depending on the 147

model we choose for simulations. A terminal node contains not only information about 148

the position of the unit along the genome, but also the reference allele at this position 149

and the mutation rates associated with it, to allow sampling of a specific mutation event 150

at the given position/node. A graphical representation of an example genome tree is 151

depicted in Fig 1. 152

Sampling a mutation time is done as in the vanilla approach: sampling from an 153

exponential distribution with parameters determined by the total mutation rate at the 154

root of the genome tree. Then, to sample a specific substitution event at a specific 155

genome position, we first sample a random value uniformly in [0, 1) and multiply it by 156

the total mutation rate R. Then, we traverse the tree from the root to the terminal node 157

corresponding to the mutated position, which takes log(L) time. Finally, once reaching 158

the corresponding terminal node (genome position) we choose a random substitution 159

event affecting this position and correspondingly a new allele a for this position. An 160

example mutation sampling is depicted in Fig 1. A pseudocode description of this 161

algorithm is given in Algorithm 2. The cost of this approach is linear in the number of 162

alleles, making it much more efficient than classical simulation methods based on matrix 163

exponentiation when large state spaces (e.g. codon models) are considered. 164

Furthermore, the computation cost for simulating under a codon model can be further 165

reduced by considering that typically a codon model only allows a maximum of 9 166

substitution events from any codon, so at each terminal node we only need to consider a 167

maximum of 9 events and rates at any time. Thanks to this, the cost of running a 168

codon model with this approach is similar to the cost of running a nucleotide model. 169

September 23, 2021 5/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

1 2

3 4 5

A C

G G T
[1,2]

[1,3] [4,5]

[1,5]

A->C 0.1

A->G 0.2

A->T 0.1

0.4

C->A 0.05

C->G 0.2

C->T 1.0

1.25

1.65

G->A 0.5

G->C 0.1

G->T 0.9

1.5

3.15

G->A 0.5

G->C 0.1

G->T 4.0

4.6

T->A 0.0

T->C 0.3

T->G 0.05

0.35

4.95

8.1

R=4.7

R=1.55

R=1.55

Mutation G->T at

position 4 sampled.

Fig 1. Example genome tree and genome tree search. An example genome
search tree for ancestral genome ACGGT. Blue nodes are terminal and red nodes are
internal. Inside each node we represent on top the genome positions represented by the
node; at the center inside terminal nodes we show the allele of the node; at the bottom
of nodes is their total rate. Under each terminal node we show the example relevant
mutation rates. The black arrows show an example sampling of one mutation event. A
parameter R is assigned an initial random number sampled uniformly between 0 and
the total rate 8.1, in this case it is R = 4.7. As we move downward, the value of R can
decrease, as described in Algorithm 2, determining which site will mutate and how.
Here, an initial R = 4.7 results in the sampling of a G→T mutation at genome position
4.

September 23, 2021 6/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

Algorithm 2 Sampling of a substitution event along a genome tree, and updating the
genome tree.

We assume we are given node “Root”, the root of a genome tree structure. For any
given genome node, “Node”, Node.rate represents the corresponding total subtree rate.
Node.children represents the list of its child nodes (2 children for internal nodes, 0
for terminal nodes). Node.parent is the parent node of “Node”. Node.allele is its
current allele. Node.rates (which is only allocated for terminal nodes) represents the
2-dimensional matrix of mutation rates (from any allele to any other allele) at the given
position, and for simplicity here we assume that a rate of an allele into itself (a matrix
diagonal entry) is 0; for codon models, for efficiency the rows of the matrix are only
allocated and filled when they are needed for the first time. Node.position (only defined
for terminal nodes) refers to the genome position represented by the node. The list
“mutations” is used to record the mutation events simulated on the considered phylogenetic
branch. The function “sample(rates)” samples a rate from a list proportional to its value.
We are also given a random number 0 ≤ R <Root.rate for which we want to sample the
corresponding mutation event.

Node=Root
while Node is not terminal do
for Child in Node.children do

if Child.rate< R then

R = R−Child.rate
else

Node.rate=Node.rate−Child.rate
Node=Child
break

end if

end for

end while

oldAllele=Node.allele
Node.allele=sample(Node.rates[oldAllele])
mutations.append([Node.position,oldAllele,Node.allele])
Node.rate=

∑
b
Node.rates[Node.allele][b]

NewRate=Node.rate
while Node.parent is not null do
Node=Node.parent
Node.rate=Node.rate+NewRate
NewRate=Node.rate

end while

As mentioned before, once a mutation event is sampled, we need to modify the 170

sampling process so that the change in allele at the mutated position is taken into 171

account, since this change usually affects local and global mutation rates (a rare 172

exception is for example when substitution rates are all equal). Modifying our genome 173

tree following a substitution event is both simple and efficient: we simply need to 174

modify the rates and allele at the mutated terminal node, and then update the rate of 175

all ancestors of this terminal node accordingly. Algorithm 2 for example describes how 176

to sample a substitution event from a genome tree as well as how to update the genome 177

tree accordingly. Again, this can be done in log(L) time for each new substitution event 178

sampled. However, while this is efficient for simulating evolution along a temporal line, 179

that is, along a single branch of the phylogeny descendant from the root, it becomes 180

inefficient for simulating evolution along a phylogenetic tree. This is because, if we 181

modify the tree, then we cannot use it as it is for the sibling nodes. In other words, 182

September 23, 2021 7/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

when we reach a split in the phylogenetic tree, and we have two children of the same 183

phylogenetic node, we need to pass the same genome tree of the phylogenetic parent 184

node to both phylogenetic children. However, we can’t only pass a pointer to the same 185

tree to both children, because evolving along one branch leading to one sibling would 186

modify the genome tree also for the other sibling. If we take the approach of duplicating 187

the genome tree at each phylogenetic split, we end up with a cost O(NL), which we are 188

trying to avoid. For this reason, we devise an alternative, hierarchical, multi-layered 189

approach to evolving a genome tree, described below. Later on in the text we also 190

describe the extension of our approach and of the genome tree structure to simulate 191

indels. 192

Hierarchical, multi-layer evolving genome tree 193

In order to use our genome tree structure to sample mutations along a phylogenetic tree, 194

we add a further “vertical” dimension to it. At each branch of the phylogenetic tree, 195

instead of modifying a genome tree, we take the approach of building on it, without 196

modifying the starting genome tree nodes, so that the original genome tree is not lost 197

but instead is preserved at “layer 0” of our multi-layer structure. When we sample a 198

mutation, we create a few new genome tree nodes in the corresponding layer of the 199

structure, instead of not an entire new genome tree. By doing this, we can effectively 200

adapt a (multi-layer) genome tree as new mutations are sampled without losing the 201

original genome tree. This means that when we can pass the same genome tree to two 202

children of a phylogenetic node without needing to duplicate the genome tree structure. 203

Instead, we simply remove (de-allocate, or ignore) the genome tree nodes that have been 204

added to other layers by the descendants of the first child node, and pass the same 205

genome tree structure to the two considered child nodes. A graphical representation of 206

an example multi-layer genome tree and its evolution is given in Fig 2. 207

We start with a genome tree at the phylogenetic root node; additional nodes are 208

then added at further layers. A genome tree layer n represents the genome nodes 209

specific to a particular depth of the phylogenetic tree; phylogenetic nodes closer to the 210

root (in terms of number of branches that need to be traversed from the root) will be 211

associated with a lower n, and those more distant from the root with higher n. All the 212

initial nodes of the original genome tree belong to layer 0, the layer corresponding to 213

the phylogenetic root. Then, as we move from the phylogenetic root to its first child, we 214

add nodes to the tree in layer 1, representing the consequences of mutation events 215

happening along the branch between the phylogenetic root and the first child. Nodes in 216

layer 0 only point to nodes in layer 0, and never to nodes in other layers. More 217

generally, nodes in layer n only point to nodes in layers m ≤ n. Every time the 218

multi-layer genome tree is passed from phylogenetic parent (layer n) to child (layer 219

n+ 1), new nodes are added to the corresponding layer (n+ 1) if mutation events occur 220

on the corresponding phylogenetic branch. 221

We traverse the phylogenetic tree in preorder traversal, so, starting from the root, we 222

move to the first child, to which we pass the initial genome tree, add new layers, then 223

do the same for this child’s children. For each new mutation occurring on this 224

phylogenetic branch connecting the root and its first child, we traverse the genome tree, 225

and every time we would modify the genome tree (to update the mutation rates 226

following a change of allele at a position) we instead create new genome tree nodes in 227

the child layer. Once we have traversed the whole phylogenetic subtree of the first child 228

of the root, we have to move to second child of the root. This operation does not incur 229

the cost of duplicating any part of the genome tree, as we only need to pass to the 230

second child the pointer to the root of layer 0 of the hierarchical genome tree. Similarly, 231

at any internal phylogenetic node at layer n, to both children we pass the pointer to the 232

root of layer n of the genome tree. The only additional step which might be required is 233

September 23, 2021 8/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

L0

L1

P

L
R

P

L
R

L0

L1

P

L
R

L0

L1

P

L
R

L0

L1

P

L
R

L0

L1

P

L
R

L0

L1

A B

C D

E F

Fig 2. Example of multi-layer genome tree and its evolution. We track the
evolution of the multi-layer genome tree starting from the genome tree of Fig 1. Colors
for the genome tree are the same as in Fig 1. In green, on the left side of each panel, we
show an extract of the phylogenetic tree containing three nodes (“P” for parent, which
in this example is the root of the phylogeny, and “L” and “R” for left and right node).
“L” has further descendants, but we don’t show them here and only focus on this triplet
of nodes as an example. The orange arrow along the phylogenetic tree shows the current
step of the preorder traversal being considered by the given panel. Black arrows show
past steps. Vertical dashed black lines in the multi-layer genome tree connect nodes
that represent the same portions of the genome but that are in different layers. “L0”
stands for “Layer 0” and “L1” for “Layer 1”. A At the phylogenetic root “P” we
initialize the genome tree for layer 0. B As we move to child “L”, a new substitution is
sampled (as in Fig 1) and 3 corresponding genome nodes are created in layer 1. These
nodes correspond to the nodes in the original genome tree whose rate is affected by the
new mutation. C As we traverse the subtree of the descendants of L, new nodes and
mutations might be added in the layers below. D We are finished traversing the subtree
of the descendants of L, and we return to L, at which point all nodes in layer below 1
have either been removed or have become irrelevant. E We return to P, at which point
the genome tree nodes previously added layer 1 are also ignored or deleted. F We move
from P to R, and in doing so new mutation events might be sampled and the
corresponding genome nodes might be added to layer 1 (new genome tree nodes
corresponding to 1 new substitution are shown in the new layer 1).

September 23, 2021 9/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

the de-allocation of nodes in layer n+ 1 as we move from one node to its sibling (thanks 234

to our preorder traversal, the nodes currently in and below this layer will not be used 235

again), but this step at most only slows simulations by a small constant factor. 236

At the start of the simulations for each branch, moving from layer n to n+ 1, we 237

first create a new genome root node for layer n+ 1. This root initially points to the 238

same children as the genome root at layer n, and it also has the same total rate. After 239

creating a new layer root, we sample mutation events for the current phylogenetic 240

branch. To sample mutations, we follow the binary search tree determined by the root 241

of layer n+ 1. As a new mutation event is picked, we either create new layer n+ 1 242

nodes, or modify existing layer n+ 1 nodes. When sampling a new mutation, every time 243

we reach a node in the genome tree, we either modify the rate of the node, if it’s in layer 244

n+ 1, or we create a new layer n+ 1 node, if the original node was in a different layer. 245

The new node is given at first the same children as the original node. When a terminal 246

node is reached, we calculate its new rates (unless they have already been created before 247

for some other node in the phylogenetic tree, in which case we just retrieve them from a 248

dictionary) and total rate, and we pass the new total rate to its parent node, which uses 249

it to update its own total rate, and so on. In total, the cost of sampling a new mutation 250

event and updating the multi-layered structure is O(log(L)). A sketch of the mutation 251

sampling process and multi-layer genome tree update is given in Algorithm 3. The total 252

cost of the algorithm is then O(L+N +M log(L)), where the addendum L is due to 253

the initial creation of the layer 0 genome tree, and N is due to the tree traversing 254

process. In a scenario like SARS-CoV-2 genomic epidemiology, this can lead to dramatic 255

reduction in computational demand compared to the standard O(NL) in the field, since 256

M appears typically not distant from N [22–24]. We give a summary of the global 257

hierarchical method in Algorithm 4. 258

September 23, 2021 10/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

Algorithm 3 SampleMutation(Node,Layer,R): Sampling of a mutation event along a
multi-layer genome tree.

This function is initially run on the root node “Root” of a genome tree for layer “Layer”.
Parameters are as in Algorithm 2; in addition, Node.layer represents the layer of the
considered node. While below we simplify a few details, in reality we don’t recalculate
rates at every mutation, but we only calculate them the first time they are needed, and
then store them in dictionaries.

if Node.layer 6=Layer then
create a new node NewNode copy of Node
NewNode.layer=Layer
Node=NewNode

end if

if Node is terminal then
sample mutation event from Node.allele using Node.rates and R.
expand if needed Node.rates, and update Node.rate and Node.allele
return Node

else

for c in Length(Node.children) do
Child=Node.children[c]
if Child.rate< R then

R = R−Child.rate
else

Node.rate=Node.rate−Child.rate
NewChild=SampleMutation(Child,Layer,R) {note that SampleMutation is the
current function, so this function is called recursively}
Node.children[c]=NewChild
Node.rate=Node.rate+NewChild.rate
return Node

end if

end for

end if

September 23, 2021 11/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

Algorithm 4 SimulatePhyloNode(Node,GenomeNode,Layer): Hierarchical algorithm
for simulating sequence evolution along a branch of the phylogenetic tree.

Here evolution on a branch of the phylogenetic tree is considered. The branch is
passed through Node, which represents the child node of the branch. The branch
length is Node.length. Simulation of the whole phylogeny is performed by calling
SimulatePhyloNode(Root,GenomeRoot,0), where Root is the root of the phylogenetic
tree (we assume Root.length=0) and GenomeRoot is the root of the initial genome
tree for layer 0. This layer 0 genome tree is created by considering the genome of the
phylogenetic root, which is typically either sampled at random or read from a reference
genome.

Sample t (the time to next mutation event) from an exponential distribution with
parameter 1/GenomeNode.rate
CurrentTime= t
while CurrentTime<Node.length do

Sample a random uniform vaule 0 ≤ R <GenomeNode.rate
GenomeNode=SampleMutation(GenomeNode,Layer,R) {note that this is the func-
tion defined by Algorithm 3}
Sample t (the time to the next mutation event) from an exponential distribution
with parameter 1/GenomeNode.rate
CurrentTime=CurrentTime+t

end while

for Child in Node.children do

run SimulatePhyloNode(Node,GenomeNode,Layer+1) {note that this function is
the one defined in the current Algorithm, which is therefore recursive in nature}

end for

if needed, de-allocate all nodes of layer Layer from GenomeNode down to its descen-
dants. {Because genome nodes with layer Layer are descendant only from nodes with
layer Layer, we do not need to traverse the whole multi-layer genome tree, but only
its layer Layer.}

Indels 259

We further extended the multi-layer genome tree approach to efficiently simulate 260

insertions and deletions. Each leaf on the genome tree is assigned a deletion rate, 261

insertion rate, and substitution rate, denoted Rd, Ri, and Rs respectively, and the total 262

mutation rate for the leaf will be Rd +Ri +Rs. The substitution rate Rs itself is the 263

sum of all substitution rates from the current allele of the leaf. Insertions are modeled 264

as occurring on the right (3′ end) of the sampled position; to model insertion at the 5′ 265

end of the genome, a dummy terminal genome tree node is employed representing the 266

leftmost end of the genome, and is initialized with Rs = Rd = 0 but with non-zero Ri. 267

Just as with the substitution rates, which can be site specific, Rd and Ri can be drawn 268

from a gamma distribution, or can be constant across the genome. When a mutation 269

event is sampled at a node, it will be sampled as a deletion, an insertion, or a 270

substitution proportionally to Rd, Ri and Rs. 271

Our software allows for indels with lengths drawn from a number of parametric 272

distributions following the options allowed with INDELible, see Table 1 for an overview 273

of the various distributions that have been implemented. Sampled indels have always 274

length ≥ 1. 275

September 23, 2021 12/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

Table 1. Indel length distribution options

Distribution Parameters P(X = n), n > 0

Geometric p (1− p)n−1p

Negative Binomial p, k
(

k+n−1

n

)

(1− p)n−1pk

Zeta a n−a/ζ(a)

Lavalette a, k (kn

k−n+1
)−a for n ≤ k

Discrete vector v vn

Below we explain in more detail the algorithm used to efficiently simulate insertions 276

and deletions using multi-layered genome trees. In short, insertion events are simulated 277

by adding new small subtrees to the genome tree in the current layer. Deletion events 278

are instead simulated by setting substitution and indel rates to 0 in deleted nodes. 279

Insertion Algorithm 280

The algorithms for simulating insertions and deletions mostly proceed as the one 281

simulating substitutions (Algorithm 3) in that we traverse the genome tree to find the 282

terminal node “Leaf” affected by the next sampled mutation. We then sample the type 283

of the next mutation event (insertion, deletion, or substitution) proportional to the 284

corresponding mutation rates Ri, Rd and Rs of “Leaf”. The process for simulating a 285

substitution remains the same as before. If instead a new insertion event is simulated, 286

we sample a length l for the inserted material from the corresponding prior distribution, 287

and then add a new subtree to the genome tree as detailed in Algorithms 5 and 6. 288

Algorithm 5 insertNode(Node, l): this function inserts a new genome subtree at the
given terminal genome tree node “Node” at which the insertion is sampled, given the
insertion length l. We assume that Node is part of the current layer, and that new nodes
are created at the current layer.

insertionRootNode = populateGenomeTree(l) {This calls algorithm 6 to generate an
insertion subtree of size l.}
Create a new genome tree internal node newInternalNode
newInternalNode.parent = Node.parent
Replace Node with newInternalNode as child of Node.parent .
Node.parent = newInternalNode
insertionRootNode.parent = newInternalNode
newInternalNode.children = [Node, insertionRootNode]
newInternalNode.rate = Node.rate + insertionRootNode.rate

Note that the addition of new subtrees to the genome tree will typically make it less 289

balanced, and a potentially less efficient search tree. In typical scenarios considered 290

here, that is, when divergence is low and all genomes are closely related to the root, the 291

effect of this imbalance on the overall search-efficiency of the genome tree will be 292

extremely minor. 293

Deletion Algorithm 294

If the next mutation event at Leaf will instead be a deletion, again, we first sample a 295

deletion length l, and then we proceed to set to 0 the total mutation rate for node Leaf 296

and its following l − 1 positions of the genome in the current layer, ignoring positions 297

September 23, 2021 13/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

Algorithm 6 populateGenomeTree(l): this function recursively creates a new genome
subtree for a given insertion of length l, and returns the root node of the subtree.

Create a new node genome tree node Node.
if l == 1 then

Sample Node.allele from a prior distribution (typically the reference nucleotide or
codon frequencies).
Sample mutation rates Ri, Rd, Rs for Node.
Node.rate=Ri +Rd +Rs

else

leftL = int(l/2)
rightL = l-leftL
leftNode = populateGenomeTree(leftL)
rightNode = populateGenomeTree(rightL)
leftNode.parent=Node
rightNode.parent=Node
Node.children = [leftNode, rightNode]
Node.rate = leftNode.rate + rightNode.rate

end if

return Node

that are already deleted. The main subtlety of this approach is to avoid traversing the 298

whole genome tree (incurring a cost of O(L) operations), to delete these l characters. 299

Algorithm 7 below performs this task efficiently employing at most O(l log(L)) 300

operations. This algorithm returns the number of characters deleted. If Leaf represents 301

a position near the 3′ end of the genome, the sampled deletion length might overflow 302

past the end of the genome, and so fewer than l positions might be effectively deleted. 303

September 23, 2021 14/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

Algorithm 7 deleteNodes(Rand,GenomeNode,Layer,RemainingDeletions): recursive
algorithm for deleting nodes of the genome tree following a deletion event. It returns
the number of positions deleted. “Rand” is the random number that has been used
to sample the deletion event - here it’s used to direct the search to the first deleted
positions and the following ones.

if GenomeNode.isTerminal then
{Skip gap characters and only delete nodes with a non-gap symbol.}
if GenomeNode.allele 6= “-” then

GenomeNode.allele = “-”
GenomeNode.rate = 0
return 1

else

return 0
end if

else

deletedPositions = 0
totalRate = 0
for Child in GenomeNode.children do

if RemainingDeletions == 0 then

return 0
end if

if Rand > child.rate then

Rand = Rand - child.rate
else

if child.layer 6= Layer then
create newChild, copy of child in layer Layer.

else

newChild=child
end if

newDeletions = deleteNodes(Rand, newChild, Layer, RemainingDeletions)
RemainingDeletions = RemainingDeletions - newDeletions
deletedPositions = deletedPositions + newDeletions
totalRate = totalRate + newChild.rate

end if

end for

GenomeNode.rate = totalRate
return deletedPositions

end if

Further details of the implementation 304

Substitution models 305

Thanks to our algorithm, we can allow any substitution model without incurring a 306

dramatic increase in computational demand, and without risking numerical instability 307

(which can sometimes be a problem with classical matrix exponentiation approaches). 308

Users can easily specify different nucleotide substitution matrices (e.g. JC [28], 309

HKY [34], or GTR [6]). By default, we adopt the most general nucleotide substitution 310

model, UNREST [31], using as default rates those we estimated from SARS-CoV-2 [22]. 311

We also implemented codon models, which, with our hierarchical approach, come at 312

only a small additional computational demand compared to nucleotide models. To 313

define substitution rates of codon models, we use an extension of the GY94 [35] model, 314

September 23, 2021 15/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

and separately model the nucleotide mutation process and the amino acid selection one. 315

Unlike GY94 (which assumes an HKY nucleotide mutation process), we allow any 316

general nucleotide mutation process as defined by an UNREST matrix. Then, 317

nonsynonymous mutations rates are modified by a single factor ω (see next section for 318

variation of ω across codons). Under this model, a substitution from codon c1 to codon 319

c2 therefore has rate: 320

rc1→c2
=































mn1→n2
, if c1 and c2 are synonymous and differ only by

nucleotides n1 and n2 at a position ,

ωmn1→n2
, if c1 and c2 are non-synonymous and differ only by

nucleotides n1 and n2 at a position ,

0 , if c1 and c2 differ by more than one nucleotide ,

(1)

where mn1→n2
is the mutation rate from nucleotide n1 to nucleotide n2. 321

We don’t allow, at this stage, instantaneous multi-nucleotide mutation events, or 322

amino acid substitution models, but we plan to address them in future extensions. A 323

description of currently implemented models and a comparison with those in other 324

similar simulation software is given in Table 2. 325

Table 2. A comparison of features of different sequence evolution simulation

software packages

phastSim Seq-Gen [17] INDELible [18] pyvolve [36]

Indels Yes No Yes No
Nucleotide Models ≤ UNREST ≤ GTR ≤ UNREST ≤ GTR
Codon Models Extended GY94 No GY94-style GY94-style

Amino Acid Models No Yes Yes Yes
Hypermutability Yes No No No

Models of rate variation 326

We consider four types of variation in rates across the genome. These types can be used 327

in combination, or separately, as required. 328

The first type of variation is changes in the position-specific mutation rate across the 329

genome. Every nucleotide position i in the genome (even when using a codon model) is 330

assigned its own mutation rate scaling factor γi. This means that, at position i, the 331

mutation rate from any nucleotide n1 to any other nucleotide n2 becomes γimn1→n2
. 332

We allow two ways to sample values of γi for each i. One way is to sample them from a 333

continuous Gamma distribution with parameters Γ(α, α), with α specified by the user; 334

this results in each genome position having a distinct γi. Alternatively, we allow the 335

definition of discrete categories, with a finite number of categories, each with its own 336

proportion of sites and γ rate. 337

The second type of variation we model is variation in ω, with each codon position i 338

across the genome being given its own ωi. As with γi, values of ωi can either be 339

sampled from a continuous Gamma or a finite categorical distribution. 340

Lastly, to accommodate the strong variation in mutation rates observed in 341

SARS-CoV-2 [22, 23] attributable to APOBEC, ADAR, or ROS activity, we introduce a 342

new model of rate variation. This model allows, for a certain position, to have one 343

specific mutation rate (from one specific nucleotide to another specific nucleotide) 344

enhanced by a certain amount µ. In this case we only allow a categorical distribution, 345

with the first category having no enhancement (µ = 1) and the other categories having 346

September 23, 2021 16/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

µ > 1. For any nucleotide position i that is assigned a hypermutable category and 347

therefore has µi > 1, we then sample uniformly a start nucleotide ns and a destination 348

nucleotide nd. The mutation rates mi
n1→n2

for position i then become: 349

mi

n1→n2
=

{

γimn1→n2
, if n1 6= ns or n2 6= nd ,

γiµimn1→n2
, otherwise .

(2)

Rate normalization 350

We assume that, for the given input phylogenetic tree, branch lengths represent 351

expected numbers of substitutions per nucleotide - no matter if a nucleotide or a codon 352

model is used. However, as mutations accumulate across the phylogeny, the total 353

mutation rate of the genome might slightly change. This is because we allow 354

substitution models that are not reversible and not at equilibrium. Therefore, we always 355

consider the mutation rates at the root genome to normalize the mutation rates. This 356

means that while branch lengths near the root accurately represent the expected 357

numbers of substitutions per nucleotide, lower down the tree this might slightly change. 358

Output formats 359

As default, our software creates an output file where it stores information about which 360

genome position evolved under which rate. It also creates a file where each tip name is 361

listed together with the mutations it contains that distinguish its genome from the 362

reference genome. In scenarios similar to SARS-CoV-2 datasets (where each genome is 363

very similar to the reference), this format requires much less space and time to generate 364

than FASTA or PHYLIP formats (see the “vanilla” approach subsection). 365

An optional output format that our software can create is a tree in Newick format, 366

where each branch of the input phylogeny is annotated with a list of mutation events 367

that occurred on that branch. This format is richer than the others, as it provides 368

information regarding each mutation event, even those that might be over-written by 369

other mutations at the same position; it is also more efficient than multiple sequence 370

alignment formats in the scenario of short branch lengths considered here. We also 371

allow a binary analogue of this annotated Newick tree, called a MAT (mutation 372

annotated tree) [37], which is compatible with the phylogenetic software UShER [27]. 373

Finally, we also allow the creation of unaligned FASTA output. However, note that 374

the creation of a FASTA file costs O(NL) in time and space. In the case simulations are 375

performed without indels, we also allow the generation of a PHYLIP format alignment 376

output. 377

Python package 378

Our software phastSim is implemented as a Python package, and can be found at 379

https://github.com/NicolaDM/phastSim or 380

https://pypi.org/project/phastSim/. phastSim uses the ETE3 library [38] to 381

robustly read input trees in different variants of the Newick format. 382

Results 383

SARS-CoV-2 scenario 384

To assess the performance of our approach compared to existing evolutionary simulators, 385

we consider different scenarios typical for genomic epidemiology. First, we consider the 386

simulation of a scenario similar to SARS-CoV-2 evolution. We simulate trees with a 387

September 23, 2021 17/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://github.com/NicolaDM/phastSim
https://pypi.org/project/phastSim/
https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

custom script and under a Yule process with birth rate equal to genome length (29,903), 388

so to have in the order of one mutation per branch. Evolution is simulated under an 389

UNREST model [31] with rates inferred from SARS-CoV-2 data [22] where possible (for 390

phastSim, pyvolve [36] and INDELible [18]) and a GTR model [6] otherwise (for 391

Seq-Gen [17]). We run INDELible both using method 1 (“INDELible-m1”, which uses 392

matrix exponentiation to model substitutions) and method 2 (“INDELible-m2”, which 393

instead uses the Gillespie approach for the same task). For now we ignore sequence rate 394

variation. While phastSim and pyvolve are both Python implementations, therefore 395

sharing similar benefits (high compatibility with other packages and ease of extensions) 396

and draw-backs (reduced efficiency compared to some other languages), we see that the 397

two approaches have dramatically different computational demands (Fig 3): simulating 398

50 sequences under pyvolve requires on average more time than simulating 500,000 in 399

phastSim. We can also see that INDELible-m2 is marginally more efficient than 400

INDELible-m1 in this scenario, due to the low number of mutations per branch. 401

However, while phastSim and INDELible-m2 are both similar Gillespie approaches, 402

simulating 5,000 sequences with INDELible-m2 requires slightly more time than 403

simulating 500,000 sequences in phastSim (Fig 3), despite the fact that INDELible is 404

coded in C++. Seq-Gen appears to be very efficient, but it’s still more than one order 405

of magnitude slower than phastSim on large phylogenetic trees in this scenario. Also 406

note that, for large trees considered here, we can reduce computational demand in 407

phastSim by more than 5-fold by not producing a FASTA output alignment; this way 408

we can also save very significant amounts of memory demand. Regarding small trees 409

(< 104 tips) most of the demand in phastSim is associated with initializing the 410

simulations (loading packages and initializing the genome tree structure); these 411

initialization costs do not depend on tree size, and instead depend on genome size, and 412

they are why phastSim is relatively less efficient on small trees. If simulation on small 413

trees are indeed of interest, these initialization costs could be reduced by re-using the 414

same genome tree structure over multiple replicates, or, in the case of simple 415

evolutionary models, by using our “vanilla” simulation approach. 416

Bacterial scenario 417

To demonstrate a scenario in which we are interested in simulating bacterial genome 418

evolution within one outbreak, we use the E. Coli reference genome 419

(https://www.ncbi.nlm.nih.gov/nuccore/U00096.3 [40], 4,641,652 nucleotides) as 420

our root genome sequence. For now we still focus on the simple scenario of a nucleotide 421

model without rate variation. We again assume a scenario typical for genomic 422

epidemiology, that the birth rate of the simulated tree is equal to the genome length. 423

The number of mutations simulated is therefore comparable to the number of branches 424

in the tree. 425

As genome size increases, time and memory demand of traditional simulators is 426

expected to grow linearly. Indeed, we now see that Seq-Gen takes considerably more 427

time to simulate the same number of genomes than in the SARS-CoV-2 scenario (Fig 4). 428

phastSim also has an increased computational demand, but only in terms of the initial 429

step of generating an initial genome tree. This initial cost is linear with respect to 430

genome length, but does not increase with the number of samples or with the number of 431

mutations simulated. In total, in this scenario phastSim can simulate sequence evolution 432

along trees with more than 1000 times more samples than Seq-Gen. A further reduction 433

in computational demand, in particular in terms of the initial cost of generating a 434

genome tree, can be obtained by using the “vanilla” algorithm (Fig 4), which however 435

comes at the cost of narrowing the choice of evolutionary models to less complex ones. 436

September 23, 2021 18/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/nuccore/U00096.3
https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

101 102 103 104 105

Number of tips

0

10

20

30

40

50
Ti

m
e

(s
ec

on
ds

)

Comparison of Simulation Running Times
tree generation
phastSim
phastSim+Fasta
pyvolve
SeqGen
INDELible-m1
INDELible-m2

Fig 3. Comparison of running times of different simulators in a scenario

similar to SARS-CoV-2 data. On the Y axis we show the number of seconds it
takes to perform simulations using different software. On the X axis is the number of
tips simulated. Each boxplot represents ten replicates. We do not run the most
demanding simulators when each replicate would take substantially more than 1 minute
to run. In blue is the computational demand for generating the random trees with a
customised version of NGESH [39] distributed within the phastSim package; sequence
simulation is performed conditional on these simulated trees. In red is the time to run
phastSim with a concise output, and in orange is the time for phastSim with
additionally generating a FASTA format output. In green is the demand of pyvolve, and
in purple of Seq-Gen. In yellow and brown are respectively the time for running
INDELible with method 1 (matrix exponentiation) and method 2 (Gillespie approach).

September 23, 2021 19/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

10
0

10
00

10
^4

10
^5

10
^6

Number of tips

0

50

100

150

200

250

300

350

400

Ti
m

e
(s

ec
on

ds
)

Comparison of Simulation Running times

phastSim
phastSim vanilla
SeqGen

Fig 4. Comparison of running times of different simulators in a scenario

similar to E. Coli outbreak data. On the Y axis we show the number of seconds it
takes to perform simulations using different software. On the X axis is the number of
tips simulated. Each boxplot represents ten replicates. We do not run Seq-Gen for more
than 1000 tips due to high computational demand. In red is the time to run phastSim,
and in orange is the time for phastSim with the “vanilla” approach. In purple is the
time demand of Seq-Gen.

Evolutionary and Indel models 437

One of the advantages of the approach we present here is that simulating evolution 438

under increasingly complex models comes at almost no additional computational cost 439

(Fig 5). It can be seen, for example, that INDELible-m1 and Seq-Gen incur a 440

significantly higher cost when using a continuous variation in mutation rate, and that 441

INDELible-m2 is more demanding when simulating discrete rate categories. 442

Surprisingly, running INDELible with a codon model appears to come with no 443

additional computational demand, similarly to phastSim (Fig 5). For these comparisons 444

we have considered the SARS-CoV-2 simulation scenario. 445

Our algorithm also allows efficient simulation of insertion and deletion events 446

(indels). Among the other simulators considered here, only INDELible can simulate 447

indels. In the SARS-CoV-2 scenario, phastSim can simulate substitutions and indels for 448

considerably larger phylogenies (about 10 times larger) than INDELible for the same 449

computational run time (Fig 6). 450

The impact of branch lengths 451

Probably the main limiting factor in the applicability of the approach presented here 452

are tree branch lengths. Since the demand of our approach is affected linearly by the 453

number of mutation events, and as we scale up the length of the tree we need to 454

simulate more mutation events, then the length of the phylogenetic branches will 455

significantly affect the performance of our approach. We can see that, in the 456

SARS-CoV-2 scenario, the impact is not strictly linear (Fig 7). This is because there 457

are additional factors which contribute to phastSim demand in addition to the number 458

of mutation events. For example, one also has to consider the time to initialize the 459

genome tree, which is linear in genome size, as well as the time to read, initialize, and 460

traverse the input phylogenetic tree, which are linear in the number of tips. 461

September 23, 2021 20/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

nu
cle

oti
de

nu
c+

10
cat

nu
c+

alp
ha

cod
on

cod
on

+10
cat

cod
on

+alp
ha

Evolutionary model

1

0

1

2

3

4

5

6

7

8
Ti

m
e

(s
ec

on
ds

)
Comparison of Simulation Running times

phastSim (20,000 tips)
SeqGen (1,000 tips)
INDELible-m1 (10 tips)
INDELible-m2 (100 tips)

Fig 5. Comparison of running times of different simulators in a

SARS-CoV-2 scenario using different evolutionary models. On the Y axis we
show the number of seconds it takes to perform simulations using different software. On
the X axis is the model used for simulations: “nucleotide” is a nucleotide substitution
model without variation; “nuc+10cat” is a nucleotide model with 10 rate categories;
“nuc+alpha” is a nucleotide model with continuous variation in rate (each site has a
distinct rate sampled from a Gamma distribution); “codon” represents a codon
substitution model; “codon+10cat” represents a codon substitution model with 10
categories for ω; “codon+alpha” is a codon model with continuous rate variation in
mutation rate and in ω (only allowed in phastSim). Each boxplot represents ten
replicates. Seq-Gen does not allow codon models. Colors are as in Fig 3. To aid the
visual comparison, we use trees of different sizes for different simulators: 10 tips for
INDELible-m1; 100 tips for INDELible-m2; 1,000 tips for SEq-Gen; 20,000 tips for
phastSim.

September 23, 2021 21/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

101 102 103 104 105

Number of tips

0

10

20

30

40

50

60

Ti
m

e
(s

ec
on

ds
)

Comparison of Simulation Running Times
tree generation
phastSim
phastSim+Fasta
INDELible-m1
INDELible-m2

Fig 6. Comparison of running times of Indelible and phastSim simulators

in a SARS-CoV-2 scenario with indels. In this scenario we compare phastSim
against Indelbile-m1 and Indelible-m2 (the only other methods considered here that
model indels), with uniform insertion and deletion rate of 0.1 and with indel length
distribution of Geo(0.5). Each boxplot represents ten replicates.

Unexpectedly, the computational demands of Seq-Gen and INDELible-m1 seem not 462

affected by the length of the branches. It is instead surprising to see that the 463

computational demand of INDELible-m2 seems also not affected by the branch lengths, 464

despite it using a Gillespie approach; the reason is that probably other factors, 465

independent of the number of mutations, cause the bulk of the demand in this scenario. 466

Discussion 467

We have introduced a new approach to simulating sequence evolution that is 468

particularly efficient when used on phylogenies with many tips and with short branches. 469

Our software phastSim implements this new algorithm and is implemented in Python, 470

allowing it to be easily extended and combined with other Python packages. phastSim 471

relies on the ETE 3 tree phylogenetic structure, and in particular it uses ETE 3 to read 472

input phylogenetic trees. This allows flexibility in the phylogenetic tree input format. 473

Furthermore, thanks to the fact that the efficiency of the algorithm is not affected by 474

the complexity of the substitution model used, we allow a broad choice of evolutionary 475

models, such as codon models with position-specific mutation rates and selective 476

pressures. We also implement a new model of hypermutability to more realistically 477

describe the mutational process in SARS-CoV-2. Also, we can efficiently simulate indel 478

events, which are rarely modeled by other simulation packages. 479

We show that, compared with other simulators, phastSim is more efficient in the 480

scenarios common to genomic epidemiology, that is, when simulating many closely 481

related bacterial or viral genomes. Its particular efficiency with bacterial genomes 482

means that it ideally matches the needs of software that simulate bacterial ancestral 483

recombination graphs (e.g. [9, 41]). phastSim can also be easily run using the output of 484

September 23, 2021 22/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

0.1 1 10
branch length rescale factor

0

10

20

30

40

50

60

70

Ti
m

e
(s

ec
on

ds
)

Comparison of Simulation Running times

phastSim (100,000 tips)
SeqGen (5,000 tips)
INDELible-m1 (1000 tips)
INDELible-m2 (1000 tips)

Fig 7. Comparison of running times of different simulators in a

SARS-CoV-2 scenario after rescaling the tree branch lengths by different

factors. On the Y axis we show the number of seconds it takes to perform simulations
using different software. On the X axis is the rescaling factor we use to make the
phylogenetic tree branch lengths longer or shorter. Colors are as in Fig 3. To aid the
visual comparison, we use trees of different sizes for different simulators: 1000 tips for
INDELible; 5,000 tips for Seq-Gen; 100,000 tips for phastSim.

phylogenetic simulator, most relevantly VGsim [42] which allows fast simulations of very 485

large and short phylogenies typical of SARS-CoV-2 and other genomic epidemiological 486

scenarios, and which also allows the simulation of the effects of selection on the 487

phylogenetic tree shape. phastSim is implemented as a Python package, which allows 488

for easy integration into other Python pipelines. 489

In the future, it would be possible, and of interest, to expand the features of 490

phastSim, in particular allowing a broader spectrum of models, for example allowing 491

column-specific amino acid fitness profiles; also, it could be possible to implement the 492

described algorithm in more efficient programming languages. 493

In conclusion, we have presented a novel algorithm, and corresponding software 494

implementation phastSim, to efficiently simulate sequence evolution along large trees of 495

closely related sequences. This new approach considerably outperforms other methods 496

in the scenarios of genomic epidemiology, for example when simulating SARS-CoV-2 497

genome sequence datasets. This approach also allows for more realistic models of 498

sequence evolution, allowing more efficient and accurate sequence data simulation and 499

inference. 500

Acknowledgments 501

We are very thankful to Vladimir Shchur for the valuable suggestions on our work. 502

Code Availability 503

The code and data used for this project (except for the SARS-CoV-2 phylogenetic tree 504

which falls under the restrictions of the GISAID terms of use) are available at 505

https://github.com/NicolaDM/phastSim. phastSim can be easily installed across 506

September 23, 2021 23/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://github.com/NicolaDM/phastSim
https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

most platforms (see PyPI repository https://pypi.org/project/phastSim/) using 507

the pip installer. 508

Financial Disclosure Statement 509

NG, WB, LW, CRW, and NDM were supported by the European Molecular Biology 510

Laboratory (EMBL). R.C.-D. was supported by R35GM128932, by an Alfred P. Sloan 511

foundation fellowship, and by funding from the Schmidt Futures Foundation. 512

References

1. Arenas M. Simulation of molecular data under diverse evolutionary scenarios.
PLoS Comput Biol. 2012;8(5):e1002495.

2. Fletcher W, Yang Z. The effect of insertions, deletions, and alignment errors on
the branch-site test of positive selection. Molecular biology and evolution.
2010;27(10):2257–2267.

3. Jordan G, Goldman N. The effects of alignment error and alignment filtering on
the sitewise detection of positive selection. Molecular biology and evolution.
2012;29(4):1125–1139.

4. Vialle RA, Tamuri AU, Goldman N. Alignment modulates ancestral sequence
reconstruction accuracy. Molecular biology and evolution. 2018;35(7):1783–1797.

5. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, et al. The emergence
of SARS-CoV-2 in Europe and North America. Science. 2020;370(6516):564–570.

6. Tavaré S, et al. Some probabilistic and statistical problems in the analysis of
DNA sequences. Lectures on mathematics in the life sciences. 1986;17(2):57–86.

7. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in
population genetics. Genetics. 2002;162(4):2025–2035.

8. Wilson DJ, Gabriel E, Leatherbarrow AJ, Cheesbrough J, Gee S, Bolton E, et al.
Rapid evolution and the importance of recombination to the gastroenteric
pathogen Campylobacter jejuni. Molecular biology and evolution.
2009;26(2):385–397.

9. De Maio N, Wilson DJ. The bacterial sequential Markov coalescent. Genetics.
2017;206(1):333–343.

10. Zou Z, Zhang H, Guan Y, Zhang J. Deep residual neural networks resolve quartet
molecular phylogenies. Molecular Biology and Evolution. 2019;37(5):1495–1507.
doi:10.1093/molbev/msz307.

11. Suvorov A, Hochuli J, Schrider DR. Accurate inference of tree topologies from
multiple sequence alignments using deep learning. Systematic biology.
2020;69(2):221–233.

12. Leuchtenberger AF, Crotty SM, Drucks T, Schmidt HA, Burgstaller-Muehlbacher
S, von Haeseler A. Distinguishing Felsenstein zone from Farris zone using neural
networks. Molecular Biology and Evolution. 2020;37(12):3632–3641.
doi:10.1093/molbev/msaa164.

September 23, 2021 24/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://pypi.org/project/phastSim/
https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

13. Beiko RG, Charlebois RL. A simulation test bed for hypotheses of genome
evolution. Bioinformatics. 2007;23(7):825–831.

14. Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic
variation. Bioinformatics. 2002;18(2):337–338.

15. Laval G, Excoffier L. SIMCOAL 2.0: a program to simulate genomic diversity
over large recombining regions in a subdivided population with a complex history.
Bioinformatics. 2004;20(15):2485–2487.

16. Ewing G, Hermisson J. MSMS: a coalescent simulation program including
recombination, demographic structure and selection at a single locus.
Bioinformatics. 2010;26(16):2064–2065.

17. Rambaut A, Grass NC. Seq-Gen: an application for the Monte Carlo simulation
of DNA sequence evolution along phylogenetic trees. Bioinformatics.
1997;13(3):235–238.

18. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence
evolution. Molecular biology and evolution. 2009;26(8):1879–1888.

19. Sipos B, Massingham T, Jordan GE, Goldman N. PhyloSim-Monte Carlo
simulation of sequence evolution in the R statistical computing environment.
BMC bioinformatics. 2011;12(1):1–6.

20. Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S, et al.
Phylogenetic analysis of SARS-CoV-2 data is difficult. bioRxiv. 2020;.

21. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data–from
vision to reality. Eurosurveillance. 2017;22(13):30494.

22. De Maio N, Walker CR, Turakhia Y, Lanfear R, Corbett-Detig R, Goldman N.
Mutation rates and selection on synonymous mutations in SARS-CoV-2. bioRxiv.
2021;.

23. Turakhia Y, De Maio N, Thornlow B, Gozashti L, Lanfear R, Walker CR, et al.
Stability of SARS-CoV-2 phylogenies. PLOS Genetics. 2020;16(11):e1009175.
doi:10.1371/journal.pgen.1009175.

24. Rice AM, Morales AC, Ho AT, Mordstein C, Mühlhausen S, Watson S, et al.
Evidence for strong mutation bias towards, and selection against, U content in
SARS-CoV-2: implications for vaccine design. Molecular Biology and Evolution.
2020;.

25. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry. 1977;81(25):2340–2361.

26. Hodcroft EB, De Maio N, Lanfear R, MacCannell DR, Minh BQ, Schmidt HA,
et al.. Want to track pandemic variants faster? Fix the bioinformatics bottleneck;
2021.

27. Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, et al.
Ultrafast Sample placement on Existing tRees (UShER) enables real-time
phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics.
2021;53(6):809–816.

28. Jukes TH, Cantor CR, et al. Evolution of protein molecules. Mammalian protein
metabolism. 1969;3:21–132.

September 23, 2021 25/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

29. Ellegren H, Smith NG, Webster MT. Mutation rate variation in the mammalian
genome. Current opinion in genetics & development. 2003;13(6):562–568.

30. Yang Z. Among-site rate variation and its impact on phylogenetic analyses.
Trends in Ecology & Evolution. 1996;11(9):367–372.

31. Yang Z. Estimating the pattern of nucleotide substitution. Journal of molecular
evolution. 1994;39(1):105–111.

32. Tang D. Efficient algorithms for modifying and sampling from a categorical
distribution. arXiv preprint arXiv:190611700. 2019;.

33. Huffman DA. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE. 1952;40(9):1098–1101.

34. Hasegawa M, Kishino H, Yano Ta. Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. Journal of molecular evolution.
1985;22(2):160–174.

35. Goldman N, Yang Z. A codon-based model of nucleotide substitution for
protein-coding DNA sequences. Molecular biology and evolution.
1994;11(5):725–736.

36. Spielman SJ, Wilke CO. Pyvolve: a flexible Python module for simulating
sequences along phylogenies. PloS one. 2015;10(9):e0139047.

37. McBroome J, Thornlow B, Hinrichs AS, Kramer A, De Maio N, Goldman N,
et al. A daily-updated database and tools for comprehensive SARS-CoV-2
mutation-annotated trees. Molecular Biology and Evolution.
2021;doi:10.1093/molbev/msab264.

38. Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and
visualization of phylogenomic data. Molecular biology and evolution.
2016;33(6):1635–1638.

39. Tresoldi T. Ngesh, a tool for simulating random phylogenetic trees. Version 0.5;
2021. https://github.com/tresoldi/ngesh.

40. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The
complete genome sequence of Escherichia coli K-12. science.
1997;277(5331):1453–1462.

41. Brown T, Didelot X, Wilson DJ, De Maio N. SimBac: simulation of whole
bacterial genomes with homologous recombination. Microbial genomics. 2016;2(1).

42. Shchur V, Spirin V, Pokrovskii V, Burovski E, De Maio N, Corbett-Detig R.
VGsim: scalable viral genealogy simulator for global pandemic. medRxiv. 2021;.

September 23, 2021 26/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.03.15.435416doi: bioRxiv preprint

https://github.com/tresoldi/ngesh
https://doi.org/10.1101/2021.03.15.435416
http://creativecommons.org/licenses/by/4.0/

