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Abstract:

Spatial biology is emerging as a new frontier of biomedical research in development and disease, but
currently limited to transcriptome and a panel of proteins. Here we present spatial epigenome profiling
for three histone modifications (H3K27me3, H3K4me3, H3K27ac) via next-generation sequencing
by combining in-tissue CUT&Tag chemistry and microfluidic deterministic barcoding. Spatial
chromatin states in mouse embryos or olfactory bulbs revealed tissue type-specific epigenetic
regulations, in concordance with ENCODE reference data, but providing spatially resolved genome-
wide profiles at tissue scale. Using fluorescence imaging to identify the tissue pixels (20um) each
containing one nucleus allowed us to extract single-cell epigenomes in situ. Spatial chromatin state
profiling in tissue may enable unprecedented opportunities to study epigenetic regulation, cell

function and fate decision in normal physiology and pathogenesis.
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Main Text:

Chromatin state is of great importance in determining the functional output of the genome and is
dynamically regulated in a cell type-specific manner (1-5). Despite the recent breakthroughs in
massively parallel single-cell sequencing(6-12) that also enabled profiling epigenomics in
individual cells (13-23), it is becoming increasingly recognized that spatial information of single
cells in the original tissue context is equally essential for the mechanistic understanding of
biological processes and disease pathogenesis. However, these associations are missing in current
single-cell epigenomics data. Furthermore, tissue dissociation in single-cell technologies may
preferentially select certain cell types or perturb cellular states as a result of the dissociation or other

environmental stresses (24, 25).

Spatially resolved transcriptomics emerged to address this challenge (26-30). Recently, we further
extended it to the co-mapping of transcriptome and a panel of proteins via deterministic barcoding in
tissue (DBIT) (31, 32). As of today, it remains unreachable to conduct spatially resolved epigenomics
sequencing in a tissue section. Herein, we report on a first-of-its-kind technology for spatial
epigenomics named high-spatial-resolution chromatin modification state profiling by sequencing
(hsrChST-seq) which combines the concept of in tissue deterministic barcoding with the Cleavage
Under Targets and Tagmentation (CUT&Tag) chemistry (33, 34) (Fig. 1A and fig. S1). First, a tissue
section on a standard aminated glass slide was lightly fixed with formaldehyde. Antibody binds to
the target histone modification was added, followed by a secondary antibody binding to enhance the
tethering of pA-Tn5 transposome. By adding Mg*™* to activate the transposome in tissue, adapters
containing a ligation linker were inserted to genomic DNA at the histone mark antibody recognition
sites. Then, a set of DNA barcode A solutions were introduced via microchannel-guided delivery(35)
to the tissue section to perform in situ ligation for appending a distinct spatial barcode Ai (i = 1-50).

Afterwards, a second set of barcodes Bj (j = 1-50) were flowed on the tissue surface in microchannels
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perpendicularly to those in the first flow barcoding step. These barcodes were then ligated at the
intersections, resulting in a mosaic of tissue pixels, each of which contains a distinct combination of
barcodes Ai and Bj (i = 1-50, j = 1-50). The tissue slide being processed could be imaged during each
flow or afterward such that the tissue morphology can be correlated with the spatial epigenomics map.

After forming a spatially barcoded tissue mosaic, DNA fragments were collected by cross-link

reversal and amplified by PCR to complete library construction.

We performed hsrChST-seq with antibodies against H3K27me3 (repressing loci), H3K4me3
(activating promoters) and H3K27ac (activating enhancers and/or promoters) in E11 mouse embryos.
We first assessed the quality of spatial epigenome sequencing data based on the total number of
unique fragments and fraction of reads in peaks (FRiP) per pixel (Fig. 1B, fig. S3 and fig. S9A). In
50 um hsrChST-seq experiments, we obtained a median of 9788 (H3K27me3), 16135 (H3K4me3),
or 24663 (H3K27ac) unique fragments per pixel of which 28% (H3K27me3), 34% (H3K4me3), or
15% (H3K27ac) of fragments fell within peak regions, indicating high coverage of genomic
sequences and a low level of background. In 20 um hsrChST-seq experiments, we obtained a median
of 9951 (H3K27me3), 7310 (H3K4me3), or 13171 (H3K27ac) unique fragments per pixel of which
35% (H3K27me3), 41% (H3K4me3), or 17% (H3K27ac) of fragments fell within peak regions. In
addition, the fragment length distribution was consistent with the capture of nucleosomal and
subnucleosomal fragments for all modifications (fig. S2, A and B). To validate the reproducibility of
hsrChST-seq, we performed correlation analysis between biological replicates. The Pearson
correlation coefficient r was ~0.94 (fig. S2C), which demonstrated a consistent performance of
hsrChST-seq. We also compared hsrChST-seq to published non-spatial mapping methods including
scCUT&Tag and ENCODE bulk ChlP-seq (4, 16), which suggested that hsrChST-seq not only

provides spatial information but also better performance and higher data quality.
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To identify cell types de novo by chromatin states, a cell by tile matrix was generated for the
different modifications by aggregating reads in 5 kilobase bins across the genome. Latent sematic
indexing (LSI) and uniform manifold approximation and projection (UMAP) were then applied for
dimensionality reduction and embedding, followed by Louvain clustering using the ArchR package
(36). Mapping the clusters back to the spatial location identified spatially distinct patterns that agreed
with the tissue histology in a H&E stained adjacent tissue section (Fig. 2, A to C). Cluster 1
(H3K27me3) and cluster 6 (H3K4me3) represent the heart in the mouse embryo. Cluster 2
(H3K27me3 and H3K4me3) and cluster 4 (H3K27ac) are specific to the liver region. Cluster 8
(H3K27me3), cluster 3 (H3K4me3) and cluster 1 (H3K27ac) are associated with the forebrain.
Cluster 9 (H3K27me3), cluster 5 (H3K4me3) and cluster 3 (H3K27ac) are the midbrain. Cluster 11

(H3K27me3), cluster 8 (H3K4me3) and cluster 2 (H3K27ac) are the hindbrain. These results

demonstrated that hsrChST-seq could resolve major tissue structures with high spatial resolution.

To benchmark hsrChST-seq data, we used the UMAP transform function to project the ENCODE
organ-specific ChlP-seq data onto our UMAP embedding (4, 36). Overall, cluster identification
matched well with the ChlP-seq projection (Fig. 2, C and D) and distinguished major cell types in
E11 mouse embryo. To further compare hsrChST-seq to known spatial patterning during
development, we examined cell type-specific marker genes and estimated the expression of these
genes from our chromatin modification data. For H3K27me3, chromatin silencing score (CSS) was
calculated to predict the gene expression based on the overall signal associated with a given locus
(16). Active genes should have a low CSS due to the lack of H3K27me3 repressive mark in the
vicinity of the marker gene regions (Fig. 2E and fig. S4A). For example, Hand2, which is required
for vascular development and plays an essential role in cardiac morphogenesis, showed a lack of
H3K27me3 enrichment in the heart. Foxa2, a transcription activator for several liver-specific genes,

had low CSS predominately in the liver region. Nr2el, which correlates with the lack of H3K27me3
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modification in the forebrain, is required for anterior brain differentiation and patterning and is also
involved in retinal development. Otx2, a transcription factor probably involved in the development of
the brain and the sense organs, must be highly expressed in the midbrain and hindbrain. For H3K4me3
and H3K27ac, gene activity score (GAS) was used since they are related to active genes (Fig. 2F, fig.
S5A and fig. S7A). For example, Nfe2 and Hemgn, which are essential for regulating erythroid and
hematopoietic cell maturation and differentiation, were active exclusively in liver. Foxgl was highly
enriched in the forebrain, which plays an important role in the establishment of the regional
subdivision of a developing brain and in the development of telencephalon. Ina is involved in the
morphogenesis of neurons, showed high GAS in midbrain and hindbrain. Gata4, which plays a key
role in myocardial differentiation and function, was activated extensively in the heart. We further
conducted Gene Ontology (GO) enrichment analysis for each cluster, and the GO pathways matched
well with the anatomical annotation (fig. S4B, fig. S5B, and fig. S7B). To understand which
regulatory factors are most active across clusters, we calculated transcription factor (TF) motif
enrichments in H3K4me3 and H3K27ac modification loci (fig. S6 and fig. S8). As expected, the most
enriched motifs in liver correspond to GATA transcription factors, including the well-studied role of
Gata2 in the development and proliferation of hematopoietic cell lineages. Mef2a, which mediates
cellular functions in cardiac muscle development, was enriched in the heart region. To predict gene
regulatory interactions and enhancer target genes across clusters, we correlated SCRNA-seq data (37)
and H3K27ac modifications at candidate enhancers (Fig. 2G). This correlation-based map predicted
experimentally validated enhancer-gene interactions with high spatial resolution. For example,
predicted enhancers of Ascll and Kcng3 were enriched in the brain and eye, which agreed with the

VISTA validated elements (38).

We then conducted hsrChST-seq with 20 um pixel size to analyze the brain region of an E11

mouse embryo (Fig. 3, A to C). Unsupervised clustering showed distinct spatial patterns for all
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modifications, and H3K27me3 identified most clusters. Cluster identification matched ENCODE
organ-specific bulk ChlIP-seq projection onto the UMAP embedding (fig. S9, B and C). We further
surveyed H3K27me3 modifications and observed distinct modification patterns across clusters (Fig.
3, Ato Cand fig. S10A). Cfap77 was repressed extensively except in a portion of the forebrain. Six1,
which is involved in limb development, had low CSS in Cluster 5. Although both Sfta3-ps and Rhcg
lack H3K27me3 enrichment only in the forebrain, they had distinct spatial patterns. Pathway analysis
of marker genes revealed that cluster 1 was mainly involved in forebrain development, cluster 2
corresponded to anterior/posterior pattern specification, and cluster 4 was associated with heart

morphogenesis, all in good agreement with anatomical annotations (Fig. 3A and fig. S10B).

We also demonstrated hsrChST-seq with immunofluorescence-stained tissue section. A mouse
olfactory bulb tissue section was stained with DAPI (4',6-diamidino-2-phenylindole), a blue nuclear
DNA dye (Fig. 3, D and E). Then, we performed hsrChST-seq with H3K27me3, which distinguished
the major cell types, including glomerular layer (cluster 1) and granular layer (cluster 2). Examples
of H3K27me3 modification patterns revealed by hsrChST-seq and validation by in situ hybridization
are shown in Fig. 3G. With DAPI staining for nucleus, we could select the pixels of interest such as
those containing only one nucleus or those showing specific chromatin modifications. Combining
immunofluorescence with hsrChST-seq at the cellular level (20 um pixel size) on the same tissue
slide allowed for extracting single-cell epigenome data in situ without tissue dissociation (Fig. 3, H

toL).

Lastly, to map cell types onto hsrChST-seq data, we integrated the H3K4me3 and H3K27ac data
with the scRNA-seq data (37). Spatial tissue pixels (black) were found to conform well into the
clusters of single cell transcriptomes, enabling the transfer of cell type annotations from single-cell
transcriptomics data to the spatial pixels in tissue and further to chromatin modification states. Several

organ-specific cell types were detected (Fig. 4 and fig. S11, A and B). For example, the definitive
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erythroid cells, crucial for early embryonic erythroid development were exclusively enriched in the
liver. Cardiac muscle cell types were observed only in the heart region in agreement with the
anatomical annotation. Chondrocytes & osteoblasts were observed widely in the embryonic facial
prominence. Inhibitory interneurons were highly enriched in the midbrain and hindbrain, and
abundant oligodendrocyte progenitors were observed in forebrain region. Although H3K4me3 and
H3K27ac had fewer clusters than H3K27me3 in the 20 um experiments, we found that the clusters
that appeared to be homogenous could be further deconvoluted into sub-populations (Fig. 4, E to H).
We also co-embedded the H3K4me3 and H3K27ac data with the spatial transcriptome DBIiT-seq data
from E11 mouse embryos (fig. S11, C and D). In brief, integrative analyses using single-cell or spatial

transcriptomics data with well annotated cell types can further refine the definition of cell identity

and correlate with spatial distribution of chromatin modification states (39).

Our study demonstrated the profiling of chromatin states in situ in tissue sections with high spatial
resolution. This NGS-based approach is unbiased and genome-wide for mapping biomolecular
mechanisms in the tissue context. This capability would enable novel discovery of causative
relationships throughout the Central Dogma of molecular biology from epigenome to transcriptome
and proteome in individual cells with broad implications for how tissues organize and how diseases
develop. The versatility and scalability of this method may accelerate the mapping of chromatin states
at tissue scale and cellular level to significantly enrich cell atlases with spatially resolved

epigenomics, adding a new dimension to spatial biology.
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Fig. 1. Design of high-spatial-resolution epigenome sequencing of tissue sections. (A) Schematic
workflow. Primary antibody binding, secondary antibody binding, and pA-Tn5 transposition were
performed sequentially in tissue sections. Afterwards, two sets of DNA barcodes (A1-A50, B1-B50)
were ligated in-situ. After imaging the tissue sample, DNA fragments were released by reversing
cross-linking. Library was constructed during polymerase chain reaction (PCR) and then sequenced
by next-generation sequencing (NGS). (B) Comparison of number of unique fragments for different
histone marks and different microfluidic channel width between our spatial method in this work and
other non-spatial chromatin profiling methods. (C) Comparison of fraction of reads in peaks (FRIiP)
for different histone marks and different microfluidic channel width between our spatial method in
this work and other non-spatial chromatin profiling methods. Peaks were obtained by peak calling

in bulk datasets.
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Fig. 2. Spatial epigenome mapping of E11 mouse embryos with 50 um pixel size. (A) H&E
image from an adjacent tissue section and a region of interest for spatial epigenome mapping. (B)
Unsupervised clustering analysis and spatial distribution of each cluster for different histone
modifications. (C) UMAP embedding of unsupervised clustering analysis for each histone
modification. Cluster identities and coloring of clusters are consistent with (B). (D) LSI projection
of ENCODE bulk ChlP-seq data from diverse cell types of the E11.5 mouse embryo dataset onto
the hsrChST-seq embedding. (E) Genome browser tracks (left) and spatial mapping (right) of gene
silencing by H3K27me3 modification for selected marker genes in different clusters. (F) Genome
browser tracks (left) and spatial mapping (right) of gene activity by H3K4me3 modification for
selected marker genes in different clusters. (G) Predicted enhancers of Ascll (chrl0:
87,463,659—87,513,660; mm10) (left) and Keng3 (chrl5: 66,231,223-66,331,224; mm10) (right)

from H3K27ac profiling. Cluster of each track corresponds to (B). Enhancers validated by in vivo

reporter assays are shown between main panels.
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Fig. 3. Spatial epigenome mapping at cellular level. (A) H&E image of an E11 mouse embryo
from an adjacent tissue section and a region of interest for spatial epigenome mapping with 20 um

pixel size. (B) Unsupervised clustering analysis and spatial distribution of each cluster of E11
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mouse embryo per histone mark. (C) Genome browser tracks (left) and spatial mapping (right) of
gene silencing by H3K27me3 modification for selected marker genes in different clusters of the
E11 mouse embryo data. (D) H&E image of mouse olfactory bulb from an adjacent tissue section
and a region of interest for spatial epigenome mapping. (E) Fluorescent image of nuclear staining
with DAPI in a region of interest performed on the same tissue section used for spatial epigenome
mapping. (F) Unsupervised clustering analysis and spatial distribution of each cluster of mouse
olfactory bulb by H3K27me3 modification. (G) Spatial mapping (left) of gene silencing by
H3K27me3 modification for selected marker genes. In situ hybridization (right) and expression
images (middle) of corresponding genes are from the Allen Institute database. (H) Fluorescent
images of selected pixels containing single nuclei (DAPI). (1) Heatmap of chromatin silencing score
of selected pixels. (J) UMAP of unsupervised clustering analysis of selected pixels containing

single nuclei. (K) Heatmap of cell-to-cell Pearson’s correlation scores. (L) UMAP colored by

chromatin silencing score for selected genes.


https://doi.org/10.1101/2021.03.11.434985
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434985; this version posted March 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Chondrocytes & Definitive erythroid ~ Inhibitory
= N\ B osteoblasts lineage interneurons

SN

Inhibitory neuron
progenitors

Cardiac muscle
lineages

Inhibitory neuron

Definitive erythroid
line progenitors.

Oligodendrocyt: Inhibitory
Progenitors interneurons

® Cardiac muscle lineages ® Lens @ Excitatory neurons @ Postmitotic premature neurons
: ghhglri’l;?;\zi;:::;:i“m : H’:qhm'“m“;z:;::‘s"‘e @ Granule neurons @ Premature oligodendrocyte

® Chondrocyles & osteoblasts  ® Melanocyles ¢ Hepalocytes ® Primiive erythroid lineage

® Connective fissue progenitors ® Myacytes ® Inhibitory interneurons ® Radial glia

® Definitive erythroid lineage @ Neural progenitor cells ® Inhibitory neuron progenitors  ® Schwann cell precursor

@ Early mesenchyme @ Neural Tube @ Inhibitory neurons @ Sensory neurons

® Endothelial cells ® Notochord cells @ Intermediate Mesoderm @ Stromal cells

® Ependymal cell @ Oligodendrocyte Progenitors @ Isthmic organizer cells ® White blood cells

@ Epithelial cells @ Osteoblasts @ Jaw and tooth progenitors @ Spatial Chromatin Sequencing

Pixels (this work)

Fig. 4. Integrative analysis of sScRNA-seq and hsrChST-seq. (A, C, E and G) Integration of
scRNA-seq from E11.5 mouse embryos (37) and hsrChST-seq data. Unsupervised clustering of the
combined data was colored by different cell types. (B, D, F and H) Spatial mapping of selected cell
types identified by label transferring from scRNA-seq to hsrChST-seq. (1) List of all identified cell

types in UMAP and spatial tissue pixels from hsrChST-seq.
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Fig. S1. Chemistry workflow of high-spatial-resolution epigenome profiling. A tissue section on
a standard aminated glass slide was lightly fixed with formaldehyde. Afterwards, primary antibody
that binds to the target histone modifications or chromatin-interacting proteins was added, followed
by a secondary antibody binding to enhance the tethering of pA-Tn5 transposome. pA-Tn5
transposome was then activated by adding Mg++ and incubating the sample at 37 °C. Then, the
adapters containing ligation linker 1 were inserted to the cleaved genomic DNA at antibody
recognition sites. Afterwards, a set of DNA barcode A solutions were introduced by microchannel-
guided flow delivery to perform in situ ligation reaction for appending a distinct spatial barcode Ai
(i = 1-50) and ligation linker 2. Then, a second set of barcodes Bj (j = 1-50) were introduced using
another set of microfluidic channels perpendicularly to those in the first flow barcoding step, which

were subsequently ligated at the intersections, resulting in a mosaic of tissue pixels, each containing
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a distinct combination of barcodes Ai and Bj (i = 1-50, j = 1-50). After DNA fragments were

collected by reversing cross-linking, the library construction was completed during PCR

amplification.
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Fig. S2. Size distribution of DNA fragments and reproducibility between biological replicates.
(A) Bioanalyzer data of DNA fragments. (B) Distribution of fragment lengths. (C) Reproducibility
between biological replicates on E11 mouse embryo using H3K27me3 antibody. Pearson

correlation coefficient r = 0.94.
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Fig. S3. Unique fragment counts in spatial epigenome mapping of E11 mouse embryos using
50 um devices. These are the spatial heatmaps showing spatial distribution of unique fragment

count per pixel analyzed for three different histone marks (H3K27me3, H3K4me3, and H3K27ac).
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Fig. S4. Spatial profiling of H3K27me3 modification of E11 mouse embryos with 50 um pixel
size. (A) Spatial mapping of gene silencing by H3K27me3 modification for selected marker genes
in different clusters (see Figure 2). (B) GO enrichment analysis of differentially silenced genes in

selected clusters (C1 and C8).
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Fig. S5. Spatial profiling of H3K4me3 modification in E11 mouse embryos with 50 um pixel
size. (A) Spatial mapping of gene activity by H3K4me3 modification for selected marker genes in
different clusters (see Figure 2). (B) GO enrichment analysis of differentially activated genes in
selected clusters (C2, C3, and C6). (C) Overlay with the tissue image reveals that the spatial
chromatin state clusters precisely match the anatomic regions and the chromatin activity at select

genes (Nfe2, Foxgl, Ina, and Gata4) is highly tissue specific.
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Fig. S6. Motif enrichment of H3K4me3 modification in E11 mouse embryos. (A) Motif
enrichment analysis on marker peaks identified in selected clusters. (B) Spatial mapping of

transcription factor (TF) motif scores and logo representation of the motif retrieved from the CIS-

BP database (25).
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Fig. S7. Spatial profiling of H3K27ac modification in E11 mouse embryos with 50 um pixel
size. (A) Spatial mapping of gene activity by H3K27ac modification for selected marker genes in
different clusters. (B) GO enrichment analysis of differentially activated genes in selected clusters
(C2, C3, and C4). (C) Overlay with the tissue image reveals that the spatial chromatin state clusters
precisely match the anatomic regions and the chromatin activity at select genes (Otx2 and Hemgn)

is highly tissue specific.
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Fig. S8. Motif enrichment of H3K27ac modification in E11 mouse embryos. (A) Motif
enrichment analysis on marker peaks identified in selected clusters. (B) Spatial mapping of TF

motif scores and logo representation of the motif retrieved from the CIS-BP database (25).
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Fig. S9. Spatial epigenome mapping of E11 mouse embryos with 20 um pixel size. (A) Spatial
maps showing unique fragment count per pixel analyzed for three histone modifications
(H3K27me3, H3K4me3, and H3K27ac). (B) UMAP embedding of unsupervised clustering analysis
for each histone modification. Cluster identities and coloring of clusters are consistent with Fig. 3B.
(C) LSI projection of ENCODE bulk ChIP-seq data from different organs of the E11.5 mouse

embryo dataset into the hsrChST-seq embedding.
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Fig. S10. Spatial profiling of H3K27me3 modification in E11 mouse embryos with 20 um pixel

size. (A) Spatial mapping of gene silencing by H3K27me3 modification for selected marker genes
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in different clusters. (B) GO enrichment analysis of differentially silenced genes in selected clusters

(C1, C2, and C4).
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Fig. S11. Integrative analysis of SCRNA-seq, DBiT-seq and hsrChST-seq. (A) Spatial mapping
of selected cell types identified by label transferring from scRNA-seq to hsrChST-seq (H3K4me3,
50 um). (B) Spatial mapping of selected cell types identified by label transferring from scRNA-seq
to hsrChST-seq (H3K27ac, 50 um). (C) Integration of DBiT-seq from E11 mouse brain (15) and
hsrChST-seq data (H3K4me3, 50 um). Cluster identities are consistent with Fig. 2B. (D) Integration
of DBIiT-seq from E11 mouse brain (15) and hsrChST-seq data (H3K27ac, 50 um). Cluster

identities are consistent with Fig. 2B.
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