

# 1 Recovery of high-quality Genomes from a deep-inland Salt Lake Using 2 BASALT

3  
4 Ke Yu<sup>1#,\*</sup>, Zhiguang Qiu<sup>1#</sup>, Rong Mu<sup>1#</sup>, Xuejiao Qiao<sup>1#</sup>, Liyu Zhang<sup>1#</sup>, Chun-Ang Lian<sup>1</sup>, Chunfang Deng<sup>1</sup>, Yang Wu<sup>1</sup>,  
5 Zheng Xu<sup>2</sup>, Bing Li<sup>3</sup>, Baozhu Pan<sup>4</sup>, Yunzeng Zhang<sup>5</sup>, Lu Fan<sup>6</sup>, Yong-xin Liu<sup>7</sup>, Huiluo Cao<sup>8</sup>, Tao Jin<sup>9</sup>, Baowei Chen<sup>10</sup>, Fan  
6 Wang<sup>11</sup>, Yan Yan<sup>12</sup>, Luhua Xie<sup>12</sup>, Lijie Zhou<sup>13</sup>, Shan Yi<sup>14</sup>, Song Chi<sup>15</sup>, Chuanlun Zhang<sup>6</sup>, Tong Zhang<sup>16</sup>, Weiqin Zhuang<sup>17</sup>

7  
8  
9 <sup>1</sup> School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.

10 <sup>2</sup> School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia

11 <sup>3</sup> Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua  
12 Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

13 <sup>4</sup> State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an,  
14 Shaanxi, 710048, China.

15 <sup>5</sup> Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,  
16 Yangzhou University, Yangzhou, 225009, China.

17 <sup>6</sup> Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

18 <sup>7</sup> State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for  
19 Seed Design, Chinese Academy of Sciences, Beijing, China.

20 <sup>8</sup> Department of Microbiology, University of Hong Kong, Hong Kong, 999077, China.

21 <sup>9</sup> Guangdong Magigene Biotechnology Co., Ltd, Guangzhou, China.

22 <sup>10</sup> Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen  
23 University, Zhuhai, 510275, China.

24 <sup>11</sup> School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, 519082, China.

25 <sup>12</sup> Key Laboratory of Ocean and Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of  
26 Sciences, Guangzhou, 510640, China.

27 <sup>13</sup> College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.

28 <sup>14</sup> Department of Chemical and Materials Engineering, Faculty of Engineering, University of Auckland, New Zealand.

29 <sup>15</sup> Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China.

30 <sup>16</sup> Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam  
31 Road, Hong Kong, 999077, China.

32 <sup>17</sup> Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New Zealand.

33

34

35

36

37

38 **Abstract**

39 Metagenomic binning enables the in-depth characterization of microorganisms. To improve the  
40 resolution and efficiency of metagenomic binning, BASALT (Binning Across a Series of AssembLies  
41 Toolkit), a novel binning toolkit was present in this study, which recovers, compares and optimizes  
42 metagenomic assembled genomes (MAGs) across a series of assemblies from short-read, long-read or  
43 hybrid strategies. BASALT incorporates self-designed algorithms which automates the separation of  
44 redundant bins, elongate and refine best bins and improve contiguity. Evaluation using Critical  
45 Assessment of Metagenome Interpretation (CAMI) datasets at low (132 genomes) and medium (596  
46 genomes) complexities revealed that BASALT auto-binning gained up to 10 times of shared MAGs  
47 with better quality when pairwise comparing to DASTool, VAMB and metaWRAP, resulting in up to  
48 51% more MAGs obtained than other binners. Using BASALT, a case-study analysis of a Salt Lake  
49 sediment microbial community from northwest arid region of China was performed, resulting in 426  
50 non-redundant MAGs, including 352 bacterial and 69 archaeal MAGs which could not be assigned to  
51 any known species from GTDB (ANI < 95%). In addition, two Lokiarchaeotal MAGs that belong to  
52 superphylum Asgardarchaeota were observed from Salt Lake sediment samples. This is the first time  
53 that candidate species from phylum Lokiarchaeota was found in the arid and deep-inland environment,  
54 filling the current knowledge gap of earth microbiome. Overall, BASALT is proven to be a robust  
55 toolkit for metagenomic binning, and more importantly, expand the Tree of Life.

56 **Keywords:** Microbiome; Metagenome; Binning refinement; Tree of Life; Salt Lake;  
57 Asgardarchaeota/Lokiarchaeota

58  
59 \*Contact Information:

60 Name: Ke Yu,  
61 Address: Shenzhen Graduate School, Peking University, Lishui Road, Nanshan district, Shenzhen  
62 Email: [yuke.sz@pku.edu.cn](mailto:yuke.sz@pku.edu.cn)

63

64

65

66

67

68

69 **Introduction**

70 Metagenomics analyses accommodated numerous of approaches exploring microbial diversities,  
71 biosynthetic potentials and evolutionary relationships of earth's microbiome (Tyson et al. 2004,  
72 Temperton and Giovannoni 2012). Specifically, the development of sequencing technologies,  
73 computational capacities and bioinformatic tools enabled genome-scale analyses, which freed our  
74 cognition of microorganisms from only cultivated isolates and significantly boosted our  
75 understandings on uncultivable microorganisms (Parks et al. 2017, Pasolli et al. 2019). Genome-  
76 resolved metagenomics was firstly applied in 2004 from low microbial diversity environment (Tyson  
77 et al. 2004), followed by a series of initiations such as Earth Microbiome Project (EMP) and the  
78 European Nucleotide Archive (ENA) which enabled us to unravel the microorganisms on a global  
79 scale (Thompson et al. 2017). For example, the latest report from EMP projects revealed more than  
80 52,000 Metagenomic Assembled Genomes (MAGs) on species level (Amid et al. 2020, Nayfach et al.  
81 2020), consisting a wide range of samples from environments with medium to high level of microbial  
82 complexities, such as human (Pasolli et al. 2019, Almeida et al. 2021), freshwater (Ali et al. 2020),  
83 marine (Tully et al. 2018, Reji et al. 2020), engineered environment (Ransom-Jones et al. 2017, Liang  
84 et al. 2020) and soil (Kroeger et al. 2018, Nascimento Lemos et al. 2020), etc. Such studies  
85 implementing genome-resolved metagenomic approaches have largely expanded branches of  
86 microorganisms on tree of life (Hug et al. 2016). However, despite these findings, a vast majority of  
87 microorganisms remain obscured due to 1) limitation of bioinformatic tools such as assembly and  
88 binning; 2) large unexplored area/regions with specific environmental conditions; and 3) advanced  
89 cultivation methods to be developed.

90 Aside from the developing innovations of culturing new microorganisms (Lewis et al. 2020), major  
91 discovery of novel species was based on sequencing-based analyses. However, major impediments  
92 that hampered us from obtaining comprehensive and high-quality MAGs from existing sequencing  
93 datasets are assembly and binning steps (Nayfach et al. 2020). Due to the nature of next-generation

94 sequencing, a series of errors may occur in binning sourced from assembled short-read sequences, such  
95 as mis-clustering contigs into bins, mis-separating contigs from one genome into multiple bins, and  
96 mis-separating multiple genomes into bins sharing partial genomic sequences (Rinke et al. 2013, Yu  
97 et al. 2018, Wang et al. 2019), resulting in redundant and artificial bins that interfere the actual binning  
98 result. While the development of third generation sequencing can significantly increase the length of  
99 sequencing reads to mitigate binning errors, higher costs (e.g. Pacific Biosciences sequencing, PacBio)  
100 or error reads (e.g. Oxford Nanopore Technology, ONT) are still hindrances from acquiring intact  
101 microbial genomes with higher completeness and lower contamination (Laver et al. 2015, Wang et al.  
102 2015). To date, the development of assembly (Bankevich et al. 2012, Peng et al. 2012, Li et al. 2015),  
103 binning (Alneberg et al. 2013, Wu et al. 2016, Kang et al. 2019, Nissen et al. 2021) and refinement  
104 tools (Song and Thomas 2017, Urtskiy et al. 2018) have allowed us recovering MAGs from relatively  
105 high diversity environments (Parks et al. 2017, Sczyrba et al. 2017), but an average of 70% of  
106 sequencing reads were still unable to be exploited on genome-resolved analyses, which proportion is  
107 even higher in more complexed environment such as soil (Howe et al. 2014, Nayfach et al. 2020).  
108 Although a growing number of bioinformatic tools have implemented algorithms on third generation  
109 sequencing datasets, such as hybrid assemblers (e.g. Unicycler, OPERA-MS, Wick et al. 2017,  
110 Bertrand et al. 2019), a systematic estimation of these tools on complexed environmental samples is  
111 crucially needed. Moreover, no study has utilized third generation sequences on post-binning  
112 approaches calibrating assembled bins and complementing genome gaps, which can maximize the  
113 exploitation of long-reads data to elevate recovered genome qualities. Therefore, to further expand tree  
114 of life, more robust assembly and binning workflows, as well as post-binning refinement methods are  
115 yet to be developed.

116 In addition to the demands of advanced bioinformatic tools, more investigations on remote  
117 areas/regions, especially the ones from unique environmental conditions that absent from global  
118 projects (Nayfach et al. 2020, Almeida et al. 2021) can largely expand our knowledge on earth genomic

119 pools. As such environmental parameters (physical, chemical and biological) have direct and indirect  
120 effect on microbial communities (Berdjeb et al. 2011, Nishiyama et al. 2018, Easson and Lopez 2019,  
121 Glasl et al. 2019), exploring uncommon environment can expand the breadth of our understanding on  
122 microbial diversity and potential functions. A few studies have already launched targeting rarely  
123 explored environments on deserts (Finstad et al. 2017), oil fields (Eze et al. 2020), hydrothermal vents  
124 (Anderson et al. 2017) and non-marine soda lakes (Vavourakis et al. 2018), but such number of  
125 investigations were still scarce to support the expansion of microbial diversity, compare to a vast  
126 majority of studies on marine, soil and human-associated microbiomes (Hoshino et al. 2020,  
127 Nascimento Lemos et al. 2020, Almeida et al. 2021).

128 In this study, we introduce a highly robust toolkit BASALT (Binning Across a Series of AssembLies  
129 Toolkit) to robustly recover microbial genomes from sequencing datasets using a series of innovative  
130 methodologies for assembly, binning and refinements. Firstly, BASALT uses high-throughput  
131 assembly methods to automatically assemble/co-assemble multiple files in parallel to reduce the  
132 manual input; Next, BASALT incorporates self-designed algorithms which automates the separation  
133 of redundant bins to elongate and refine best bins and improve contiguity; Further, BASALT facilitates  
134 state-of-art refinement tools using third-generation sequencing data to calibrate assembled bins and  
135 complement genome gaps that unable to be recalled from bins; Lastly, BASALT is an open frame  
136 toolkit that allows multiple integration of bioinformatic tools, which can optimize a wide range of  
137 datasets from various of assembly and binning software. Using BASALT, we performed a case study  
138 on sediment samples of Aiding Lake, Xinjiang China, a deep-inland hypersaline lake with high aridity  
139 in the surrounding area (Figure S1, Guan et al. 2020), which is different from common chlorite saline  
140 aquatic system. Based on the superior number and quality of MAGs obtained via BASALT, we present  
141 taxonomic and genetic profiles on prokaryotic microbial communities of lake sediment samples,  
142 including two Lokiarchaeota species from a recently discovered archaeal superphylum  
143 Asgardarchaeota (Zaremba-Niedzwiedzka et al. 2017) that also found in our samples. Here, we

144 highlighted that BASALT can efficiently enhance the assembly and binning processes on metagenomic  
145 sequences, which allows in-depth investigations on the existing dataset by increasing overall and  
146 individual MAG quality. By acquiring more high-quality MAGs, we could potentially unfold much  
147 more knowledges on known or unknown microbial taxa, potential functions and host-microbial  
148 interactions, which further expand the tree of life.

149

150 **Results**

151 **Environment, pipeline and availability**

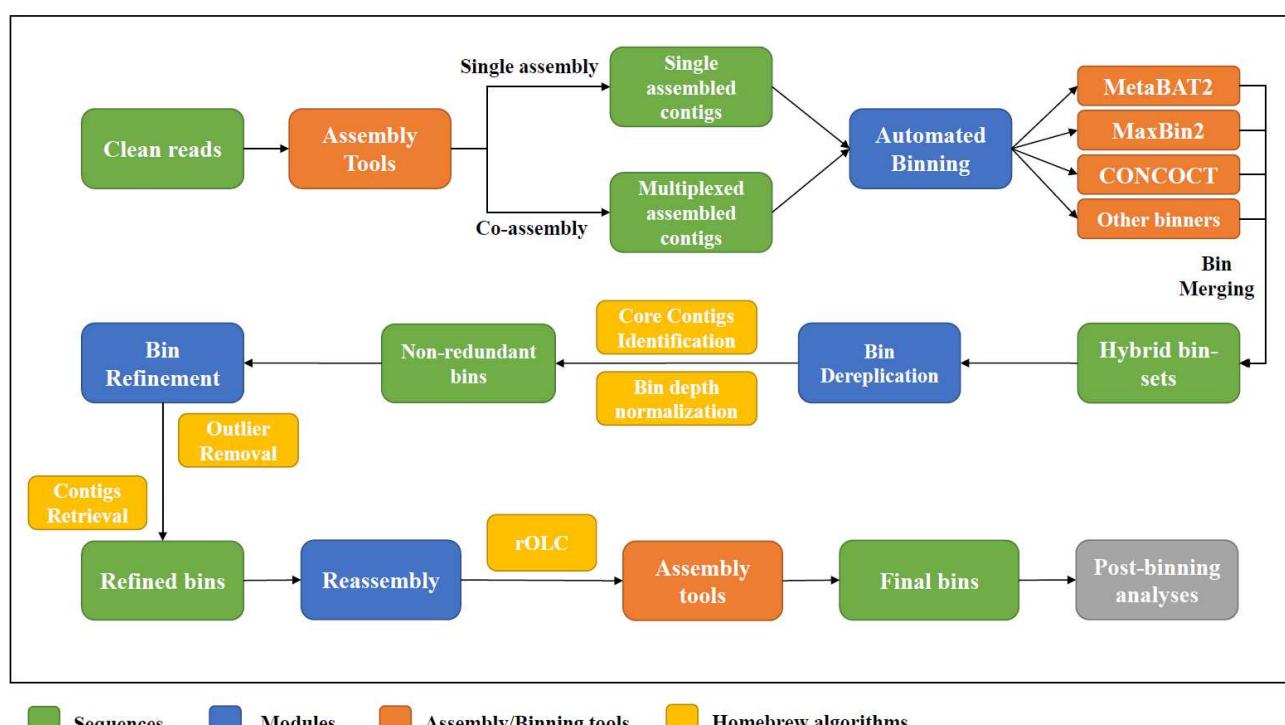
152 BASALT is command line software based on Python scripts with a series of modules, each containing  
153 one or more algorithms/programs addressing data processing or analysis. Overall, BASALT is an  
154 automated program running with one command line, while a few checkpoints are set in each module  
155 to accommodate users to customize their preference to start at any checkpoint as needed. Further details  
156 of outlines and algorithms are available at (<https://github.com/EMBL-PKU/BASALT>).

157

158 **BASALT workflow.**

159 BASALT is a versatile toolkit that provides comprehensive pipeline from mapping, automated binning  
160 to post-binning refinement that enable users to retrieve non-redundant and high-quality MAGs from  
161 metagenome samples. Overall, BASALT contains four major modules including Automated Binning,  
162 Bin Dereplication, Bin Refinement and Reassembly, where five core algorithms were implemented in  
163 these modules including Core Contigs Identification, Bin depth normalization, Outlier Removal,  
164 Contigs Retrieval and Restrained Overlap-Layout-Consensus (rOLC, Figure 1). As BASALT enables  
165 multiple assembly or co-assembly datasets from short-read sequences (next-generation sequencing,  
166 NGS) or long-read sequences (third-generation sequencing, TGS) as input files, it is expected that a  
167 potential increase of reads utilization is available (Stewart et al. 2018). By importing multiple

168 sequences with coverage information, BASALT conducted automated binning using prominent tools  
169 such as MetaBAT2, Maxbin2 and CONCOCT (Alneberg et al. 2013, Wu et al. 2016, Kang et al. 2019)  
170 that generated hybrid bin-sets. Raw hybrid bin-sets were firstly filtered with a homebrew Bin  
171 Dereplication module to remove replicated bins obtained from the same assembly. The non-redundant  
172 bins of each assembly were then merged and categorized into different groups at a customized average  
173 nucleotide identity (ANI) cutoff. Each group of bins were further filtered by the homebrew algorithm  
174 which classifies core contigs that further enables identification of redundant bins before selecting into  
175 a single, hybrid bin-set obtained from all samples. The selected bin-set was further filtered using a  
176 critical Outlier Removal algorithm, which integrated coverage and tetranucleotide frequency (TNF) to  
177 remove outliers by using an interquartile ranges (IQR) method with multiple thresholds. Next,  
178 sequences from assembly files were retrieved by connecting with existing contigs in the OR-filtered  
179 bins to create an expanded sequences pool with potential connected contigs, while BASALT compared  
180 and selected the refined bins with higher quality value. Further, a restrained Overlap-Layout-  
181 Consensus (rOLC) step was conducted to overlap the replicated bins obtained from different  
182 assemblies into OLC-merged bins, followed by the reassembly step to generate the finalized bin-set.  
183 Notably, the sequence retrieval and reassembly step allowed utilization of long-read sequences  
184 obtained from TGS to complement gaps and join overlapped regions on the bins to increase  
185 completeness and reduce contamination.



186

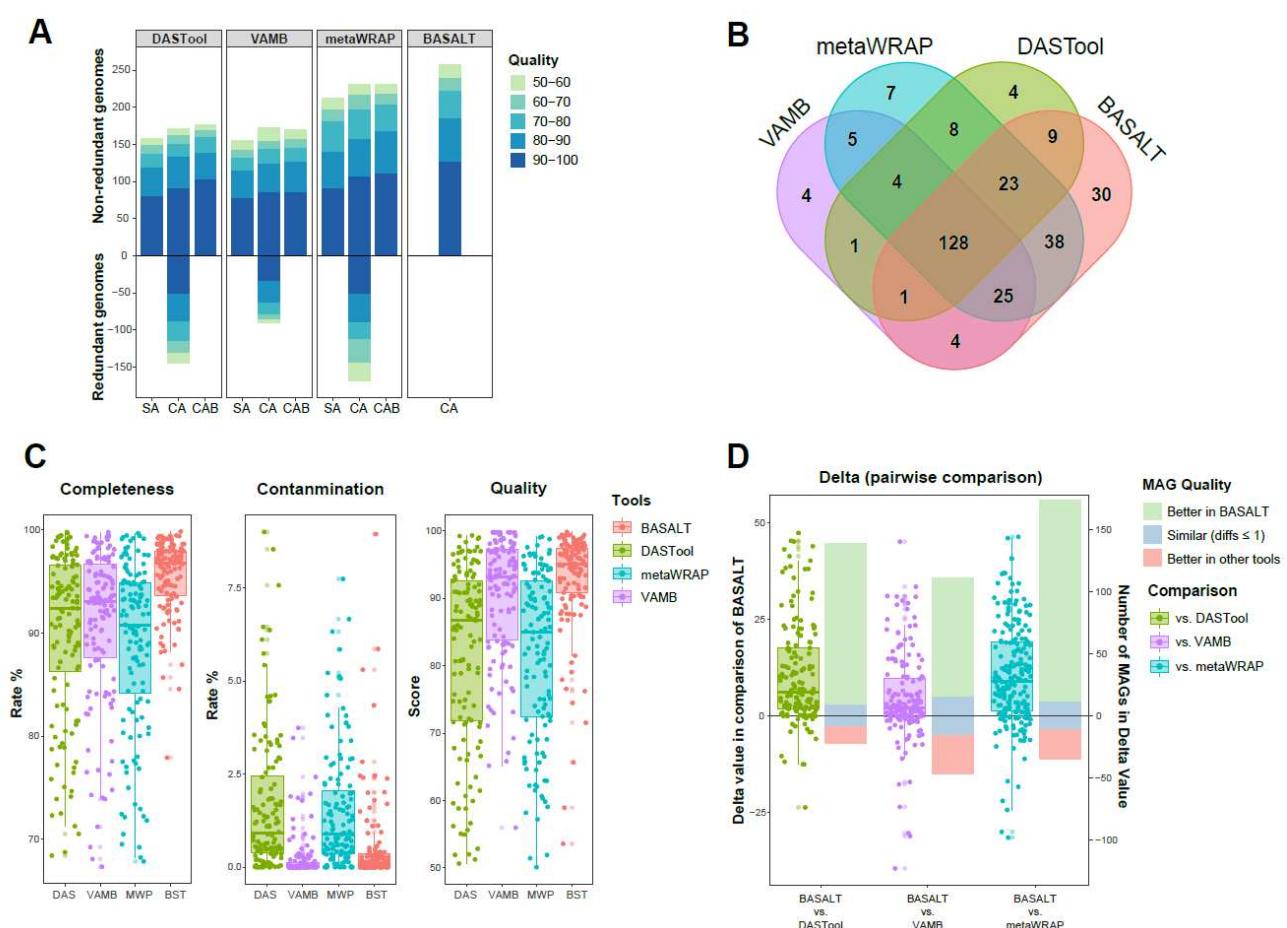
187 **Figure 1.** BASALT workflow for assembly, binning and refinement of metagenomic sequencing data (blocks  
188 in green). BASALT contains four major modules (blocks in blue) including Automated Binning, Bin  
189 DerePLICATION, Bin Refinement and Reassembly, where five core algorithms (blocks in yellow) were  
190 implemented in these modules including Core Contigs Identification, Bin depth normalization, Outlier Removal,  
191 Contigs Retrieval and Restrained Overlap-Layout-Consensus (rOLC). In addition to core workflow, assembly  
192 and binning tools (blocks in orange) were also flexibly embedded in BASALT.

193

#### 194 **BASALT improves recognition of non-redundant bins.**

195 BASALT pipeline enables multiple input files for assembly, including long-reads files for hybrid  
196 assembly. The advantage of input with multiple files is not limited to the reduction of computational  
197 time but could also generate more bins than individual assembled samples. For example, binning using  
198 multiplexed samples generated 16.3%, 14.2% and 11.1% more non-redundant MAGs when using DAS  
199 Tool (MCM), VAMB and metaWRAP (MCM), respectively on CAMI-medium dataset (Table S1,  
200 Figure S2), while the increasing rate on CAMI-high dataset were 8.2%, 11.0% and 9.0%, respectively  
201 (Table S1, Figure 2A). Despite the advantage above, a major drawback using multiplexed samples was  
202 the byproducts of replicated bins, which were considered as redundant or pseudo- genomes. To address

203 this issue, BASALT pipeline accommodates a Bin Dereplication module with homebrew algorithms  
204 which can remove redundant bins generated from the multiplexed assemblies as well as hybrid bin-  
205 merging from automated binning, resulting in optimized, non-redundant bin-sets (Figure 1).  
206 Comparing with standard CAMI-medium and -high genomes, DAS Tool, VAMB and metaWRAP  
207 generated 85.9%, 77.1%, 95.0% (CAMI-medium) and 84.8%, 52.3%, 72.7% (CAMI-high) redundant  
208 MAGs, respectively (Figure 2A, Figure S2), while no redundancy was observed in BASALT MAGs,  
209 suggesting high redundancy rate were existed using the first three binning tools/toolkits. Remarkably,  
210 BASALT Bin Dereplication, Refinement and Reassembly modules can not only eliminate redundant  
211 MAGs generated from DAS Tool, VAMB and metaWRAP pipelines, but also increase the overall  
212 quality of non-redundant MAGs (Co-assembled data refined with BASALT, CAB, Figure 2A),  
213 suggesting good efficiency of redundancy removal and quality improvement using BASALT from co-  
214 assembled bins.



216 **Figure 2.** Comparison of BASALT with other binning tools/pipelines on CAMI-high dataset. **A)** Number of  
217 MAGs recovered from CAMI-high dataset using DASTool (MaxBin2, CONCOCT and MetaBAT2, MCM),  
218 VAMB, metaWRAP (MCM) and BASALT. In the first three tools, Co-assembly (CA) resulted in higher number  
219 of non-redundant MAGs compare to single assembly (SA) approach, while BASALT refinement module (Co-  
220 assembly refined with BASALT, CAB) removed redundant MAGs and generated higher quality of MAGs in  
221 the co-assembly approach. Color of bars indicated the quality of MAGs (50-100, from light to dark). **B)** Venn  
222 diagram showing number of MAGs recovered using different tools. There were 128 MAGs found shared across  
223 all tools, while 4, 4, 7 and 30 MAGs were uniquely recovered using DAS Tool (green), VAMB (purple),  
224 metaWRAP (cyan) and BASALT (red) pipelines, respectively. **C)** Completeness, contamination and quality of  
225 128 shared MAGs recovered using DAS Tool (DAS, green), VAMB (purple), metaWRAP (MWP, cyan) and  
226 BASALT (BST, red). MAGs recovered using BASALT had lower contamination rate compared to DAS Tool  
227 and metaWRAP, and higher completeness and quality compared to all other tools. **D)** Pairwise comparison of  
228 MAGs shared by corresponding pairs of tools. Overall, BASALT was superior in obtaining higher qualitied  
229 MAGs compared to other tools. The number of MAGs that BASALT gained higher quality value (bars in light  
230 green) was much more than the number of MAGs that other tools gained higher quality value (bars in light red)  
231 or had similar quality value (difference of value  $\leq 1$ , bars in light blue).

232

### 233 **BASALT generates higher number and qualitied MAGs in synthetic microbial communities.**

234 The BASALT refinement module not only removes redundant bins generated in other pipelines, but  
235 also improves the quality and number of MAGs. In comparison of MAGs (Quality score  $\geq 50$ ) obtained  
236 via different toolkits, BASALT resulted in 27.1%, 7.0%, 1.7% (CAMI-medium) and 50.9%, 50%, 11.7%  
237 (CAMI-high) more non-redundant MAGs than DAS Tool, VAMB and metaWRAP, respectively  
238 (Figure 2A, Figure S2, Table S1). Moreover, in top-qualitied CAMI-high MAGs (Quality score  $\geq 90$ ),  
239 BASALT obtained 38%, 47.7% and 17.6% more non-redundant MAGs than DAS Tool, VAMB and  
240 metaWRAP, respectively (Figure 2A). This result suggested BASALT is more robust retrieving high-  
241 qualitied and non-redundant MAGs from metagenome samples, especially on those samples with  
242 higher complexity.

243 To individually evaluate the BASALT refinement module, a further refinement step was performed on  
244 CAMI-high datasets processed with DAS Tool, VAMB and metaWRAP. Although less MAGs were

245 recovered compare to the result using comprehensive BASALT pipeline, 3.7%, 2.4% and 7.0% more  
246 MAGs (Quality score  $\geq 80$ ) were retrieved, respectively, compared to the default approaches of other  
247 toolkits (Table S1, Figure 2A). This result suggested that BASALT can also optimize number and  
248 quality of MAGs even based on the datasets processed with other pipelines.

249 Comparing MAGs recovered from the abovementioned toolkits with reference genomes in CAMI-  
250 high dataset, 128 MAGs were found universally presented across all pipelines, while 4, 4, 7 and 30  
251 MAGs were uniquely recovered using DAS Tool, VAMB, metaWRAP and BASALT pipelines,  
252 respectively (Figure 2B). In comparison of the 128 shared MAGs in their completeness, contamination  
253 and quality score (completeness – 5\*contamination) across different toolkits, BASALT has the overall  
254 advantages in acquiring high-quality and low contamination MAGs in comparison with others (Figure  
255 2C). Further, we performed pairwise comparison between BASALT and the other tools of shared  
256 MAGs and calculated delta value (difference of MAG quality between two tools) on the same genome.  
257 The delta value showed BASALT could retrieve 10, 3.1 and 6.8 times of high-quality MAGs compared  
258 to DAS Tool, VAMB and metaWRAP, respectively (Figure 2D), indicating that BASALT can  
259 substantially obtain better quality of MAGs comparing with other tools. In summary, BASALT can  
260 retrieve a greater number of non-redundant MAGs from medium-high complexed samples with higher  
261 qualities.

262

### 263 **BASALT efficiently retrieves genomes from high complexity samples.**

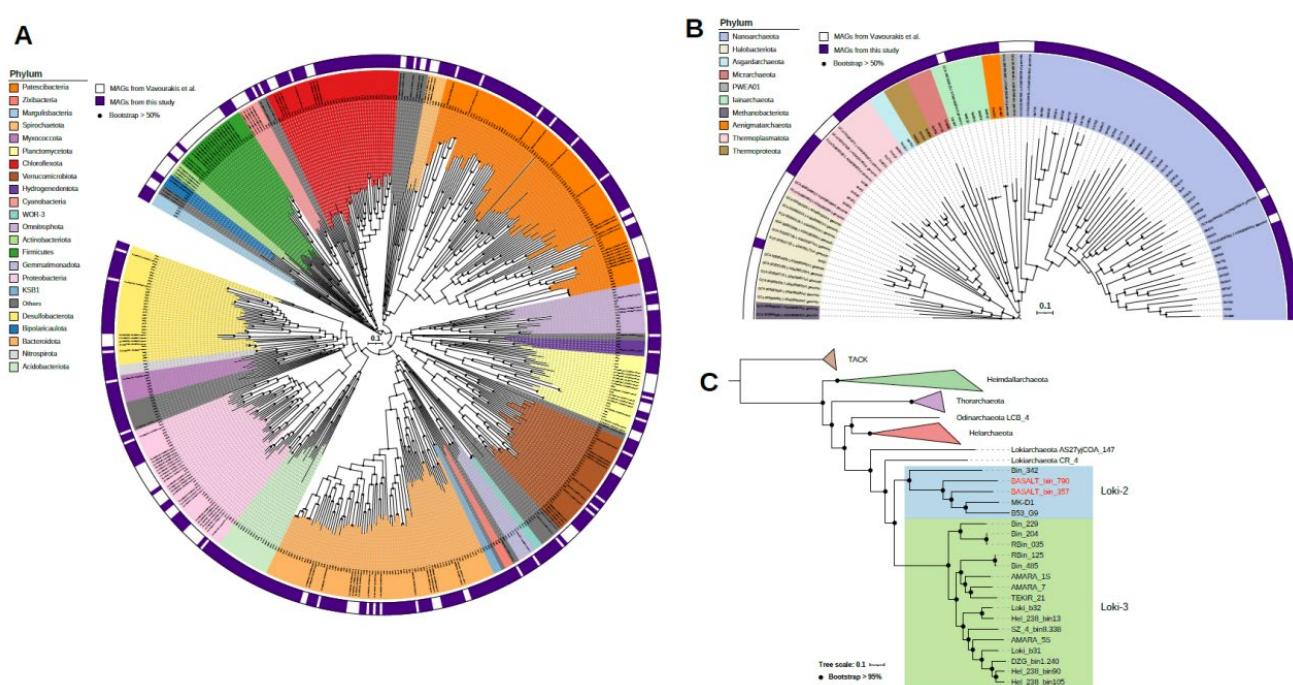
264 We performed four metagenome samples from Aiding Lake sediments using both BASALT to evaluate  
265 the capacity of BASALT on improving genome qualities recovered from complexed environmental  
266 samples. Using BASALT, assembled bins were quality-checked with CheckM (Parks et al. 2015),  
267 resulting in 426 non-redundant MAGs (completeness – 5\*contamination  $\geq 50$ , mean completeness =  
268 79%, mean contamination = 1.7%, mean quality value = 70.4), including 113 MAGs above high-

269 quality level (quality  $\geq 80$ ). As a majority of metagenomic sequences could not be utilized to recover  
270 high-quality genomes (Nayfach et al. 2016, Nayfach et al. 2020), we estimated the efficiency of  
271 sequences utilized in the lake sediment samples, resulting in 26.9% of reads mapped to the MAGs,  
272 which largely improved the utilization rate of metagenomic sequences in recovered MAGs compared  
273 to other samples with high complexity (Howe et al. 2014).

274 In reference to Genome Taxonomy Database (GTDB, Parks et al. 2018), all 426 MAGs from BASALT  
275 pipelines were annotated spanning 39 bacterial and 8 archaeal phyla. MAGs classified into bacterial  
276 phyla were mainly focused in Patescibacteria, Chloroflexota, Verrucomicrobiota, Bacteroidota,  
277 Proteobacteria and Desulfobacterota, while MAGs classified into archaeal phyla were Halobacteriota,  
278 Thermoplasmatota, Asgardarchaeota, Thermoproteota, Iainarchaeota and Micrarchaeota in archaeal  
279 domain (Figure 3A), representing a unique characteristic of microbial communities in the Salt Lake  
280 sediment. Among these 426 MAGs, 98.9% bacterial MAGs and 100% archaeal MAGs could not be  
281 assigned to any known species from GTDB (ANI  $< 95\%$ ). At genus level, 57.6% bacterial MAGs and  
282 66.7% archaeal MAGs could not be assigned to any known genus from GTDB. This result suggested  
283 that there was a large repository of genetic pool to be uncovered in Salt Lake sediments.

284 To further validate the MAGs recovered from Aiding Lake sediments, we compared these assembled  
285 genomes with another study by Vavourakis et al. (2018) where samples were collected from several  
286 soda lakes in the Kulunda Steppe (south-western Siberia, Altai, Russia). Generally, the two datasets  
287 shared a vast majority of phyla (Figure 3A), indicating that despite the different geographical location,  
288 bacterial assemblages of the Salt Lakes might be similar. Specifically, diverse bacterial taxa from  
289 phylum Patescibacteria were observed in our study, which paralleled with the study by Vavourakis et  
290 al. (2018). On the other hand, in the unique of phyla observed in two datasets, Acidobacteriota,  
291 Nitrospirota, Zixibacteria, WOR-3 and KSB31 were only present in this study (Figure 3A). In archaeal  
292 communities, MAGs from phyla Halobacteriota, Thermoplasmatota, Iainarchaeota and  
293 Nanoarchaeota were observed in both datasets, while phyla Methanobacteriota and PWEA01 were

294 only present in Vavourakis et al. (2018) and phyla/superphyla Asgardarchaeota, Thermoproteota,  
295 Micrarchaeota and Aenigmataarchaeota were only present in our study (Figure 3B). In the shared phyla,  
296 a large number of MAGs from phylum Nanoarchaeota found, but only one MAG from phylum  
297 Halobacteriota observed in this study, while a large community of Halobacteriota was observed in  
298 Vavourakis et al. (2018). The difference of the two datasets might be due to the physiochemical  
299 parameters between two contrasting sites of lakes (Sorokin et al. 2014), but such differences could also  
300 be related to the different strategies of assembly, as well as binning pipelines.



301

302 **Figure 3.** Phylogenetic trees of **A)** bacterial MAGs from Vavourakis et al. (2018) and this study, **B)** archaeal  
303 MAGs from Vavourakis et al. (2018) and this study, and **C)** Maximum-likelihood tree of Asgardarchaeotal  
304 MAGs based on protein encoded genes from the whole genome. The unrooted phylogenetic trees in A) and B)  
305 were constructed with Fasttree, while the Maximum-likelihood tree in C) was constructed with PHYML and re-  
306 rooted with superphylum TACK. The two Lokiarchaeota MAGs found in this study were highlighted with red  
307 in C), and all genomes used to create trees that not obtained from this study were listed in Table S2.

308

309 **Newly discovered Lokiarchaeota species from a deep-inland non-marine hypersaline lake.**

310 Using four metagenome samples, BASALT pipeline expanded 421 of known species on prokaryotic

311 phylogenetic tree with samples from one Salt Lake. Remarkably, two MAGs classified as  
312 Lokiarchaeota belongs to the superphylum Asgardarchaeota, were also observed in our results.  
313 Although previous study has reported Asgardarchaeota phyla found in hypersaline lakes (Bulzu et al.  
314 2019), to the best of our knowledge, this is the first time that archaeal phylum Lokiarchaeota was found  
315 from the deep inland non-marine samples. Comparing with other MAGs/isolates obtained in previous  
316 studies, the two MAGs found in our study were grouped with Loki-2 MAGs/isolates (Figure 3C), next  
317 to *Ca. Prometheoarchaeum syntrophicum*, a strain isolated from a deep-sea sediment sample at Nankai  
318 Trough, Japan (Imachi et al. 2020). Interestingly, other Loki-2 MAGs were found globally, including  
319 Bin\_342 from Shark Bay, Australia (Wong et al. 2020) and B53\_G9 from Guaymas Basin, US (Seitz  
320 et al. 2019), suggesting that Loki-2 species were widely distributed not only in marine sediments but  
321 also in the deep-inland terrestrial environment.

322

## 323 **Discussion**

324 BASALT is superior in quality and number of MAGs on low (132 genomes) to medium (596 genomes)  
325 complexity samples. In regards of MAG quality assessment, CheckM (Parks et al. 2015) is widely  
326 used in a vast majority of studies. However, in the presence of standard CAMI datasets, we calculated  
327 the MAG quality against the corresponding genomes that can result in more accurate evaluations.  
328 Notably, our dereplication module implemented in the integration step can efficiently remove  
329 redundant bins that generated in co-assembly and bin selection steps, which was evidenced in the test  
330 analysis using both CAMI-medium and CAMI-high datasets (Figure 2A). Although there are other  
331 redundancy removal methods such as dRep (Olm et al. 2017), result suggested that redundant genomes  
332 cannot be efficiently identified and removed using dRep on CAMI-medium or CAMI-high datasets  
333 (Table S1), suggesting that BASALT Bin Dereplication gains more advantages in removing redundant  
334 bins under higher complexed samples. Due to the scarcity of standard synthesized community with

335 high complexity to date, further works testing the efficiency of Bin Dereplication module on the  
336 standardized samples with high complexity are needed.

337 BASALT-integrated Bin Dereplication module can efficiently remove redundant bins generated by  
338 binning tools. However, due to the major impediments of short-fragmented technology of next-  
339 generation sequencing (NGS) and post sequencing algorithm, recovered MAGs cannot specify  
340 differences of genomes at strain level with high similarity. While long read sequencing such as ONT  
341 has become more popular in the current metagenomic studies (Jain et al. 2016), high error rates still  
342 required to be rectified by NGS. In this study, third-generation sequences were innovatively integrated  
343 into our toolkit where long reads can be used to amend sequences and fill gaps on assembled genomes,  
344 which can improve the overall quality of bins and increase the number of high-qualitied MAGs.  
345 Although standard dataset with high complexity is currently not available in the database, our case  
346 study revealed that Salt Lake sediments can be considered as samples with relatively high complexity  
347 (6,993 ZOTUs from 16S rRNA gene amplicons), which was comparable with other studies on soil  
348 samples regardless the primer selection (Fulthorpe et al. 2008, Xiong et al. 2021). In the context of  
349 high complexed samples of Salt Lake sediments, BASALT could also efficiently conduct reads  
350 utilization in metagenomic binning with 26.9% mapped sequences, which to some extent helped to  
351 resolve the difficulty raised in the EMP project (Nayfach et al. 2020). Prospectively, the trend in the  
352 development of third-generation sequencing has inspired that further exploitation of long-read  
353 sequences can increase the resolution of MAGs at strain or single nucleotide polymorphism (SNP),  
354 which may boost the outcome of recovered genomes in high complexity samples. Therefore, future  
355 development should focus on the combination of NGS and TGS to improve the efficiency of binning,  
356 which consequently expand our knowledge on the tree of life.

357 In addition to the BASALT toolkits introduced in this study, one major finding in the case study was  
358 the discovery of two novel Lokiarchaeota genomes from the sediment samples of Aiding Lake.  
359 Lokiarchaeota belongs to a recently discovered superphylum Asgardarchaeota, which is a hot topic

360 linked to the origin of eukaryotes (Spang et al. 2018). To date, candidate species of Lokiarchaeota were  
361 universally found near deep sea hydrothermal vents and marine sediments (Spang et al. 2015, Spang  
362 et al. 2018, Hoshino et al. 2020, Wong et al. 2020, Yin et al. 2020). A recent study has found candidate  
363 Lokiarchaeota present in hypersaline lakes near Black Sea (Bulzu et al. 2019), whereas our study  
364 highlighted the first time that Loki-2 species were found from deep-inland hypersaline lake sediments.  
365 Given the genetic analysis on Lokiarchaeota along with other candidate Asgardarchaeota species  
366 (Zaremba-Niedzwiedzka et al. 2017, Seitz et al. 2019, Imachi et al. 2020, Wong et al. 2020, Yin et al.  
367 2020) have suggested that candidate Lokiarchaeota species were adaptive in marine environment with  
368 distinct metabolic pathway, such as lignin or protein degradations. Thus, it was unlikely that candidate  
369 Loki-2 species were newly emerged in the deep-inland hypersaline lake. Therefore, the discovery in  
370 this study might have provided a landmark that candidate Lokiarchaeota species might exist in the  
371 ancient age before the plate movement event occurred. However, insufficient MAGs/isolates revealed  
372 to date hampered us to make rigid conclusions, that more investigation on this group of archaea is  
373 critically required in the future studies.

374

## 375 **Methods**

### 376 **Overview of BASALT**

377 BASALT is a versatile toolkit that recovers, compares and optimizes MAGs across a series of  
378 assemblies assembled from short-read, long-read or hybrid strategies. We established five homebrew  
379 algorithms to carry out Core Contigs Identification (CCI), Bin Depth Normalization, Outlier Removal  
380 (OR), Contigs Retrieval, and restrained overlap-layout-consensus (rOLC). These algorithms consist  
381 three core modules of BASALT, such as Bin Dereplication, Bin Refinement and Bin Reassembly  
382 modules. Besides, BASALT contains an autobinning module that uses mapping tools (e.g. bowtie2,  
383 Langdon 2015) and binners (e.g. MetaBAT2, Maxbin2, and CONCOCT) to generate a raw hybrid bin-

384 set after input of assemblies (Figure 1).

385

386 **Dereplication of redundant bins**

387 Incompleteness and contamination of MAGs would hinder the dereplication of bins from the hybrid  
388 bin-set. We developed an effectively strategy that can remove most of the potential contaminated  
389 sequences while large number of sequences are still kept to carrying out precise redundancy  
390 identification. Different from previously reported genome-wide ANI-based and marker gene- based  
391 de-replicating methods such as dRep (Olm et al. 2017), the present method firstly generated a core  
392 contig pool by filtering out potentially contaminated contigs of target bins. The depth and  
393 tetranucleotide frequency (TNF) value of the selected contigs ranked from a range of 25 to 75  
394 percentile of all the contigs of target bins. Then, selected bins were grouped into different raw bin-sets  
395 based on overall similarity of core contigs. Secondly, we evaluated the sequencing depth discrepancy  
396 among bins across different bin-sets to ensure the correct identification of redundant bins with relative  
397 low similarity. The average depth of one bin should be equivalent to the average depth of the core  
398 contigs of this bin. For neutralizing the sequencing depth discrepancy yielded by mapping the same  
399 reads to different assemblies, we designed a method to calculate the normalization ratio between two  
400 possibly redundant bins, which identifies near-identical sequences (99.8% similarity across longer than  
401 50% of the whole length of sequence) between two potential redundant bins as candidate bins. A depth  
402 normalization ratio between candidate bins was then calculated by using the depth of these contigs,  
403 which was then used to neutralize the average depth of candidate bins. Those candidate bins with  
404 similar average sequencing depth ( $\delta \leq 10\%$ ) were considered as redundant bins to be removed.  
405 Finally, the bin with better quality value (completeness – 5\* contamination) estimated by CheckM  
406 (Parks et al. 2015) was kept being the better bin for further refinement and reassembly.

407

408 **Refinement**

409 BASALT refinement module contains two adversary processes: Outlier Removal (OR) and Contig  
410 Retrieval. To effectively remove contaminated contigs from a certain bin, we designed an outlier  
411 removal algorithm that removes contigs with an outlier value of sequencing depth or TNF based on an  
412 interquartile range (Formula 1), while different thresholds (k) were set (e.g. 1, 1.5, 3) to determine  
413 these contigs. In the context of bin quality, OR keeps bins with higher quality value, while bins with  
414 lower quality were discarded. If no refined bin with higher quality than the original bin was generated,  
415 OR would acquiescently eliminate sequences marked as depth or TNF outliers under the threshold of  
416 3. Notably, the default setting of OR mainly removes contaminated sequences, but it may cause an  
417 unnecessary removal of contigs due to restricted threshold.

418 ***Formula 1:***

$$419 \quad x_i > Q3 + k(IQR) \vee x_i < Q1 - k(IQR)$$

420 In this formula, Q1 and Q3 stands for 25 and 75 percentiles of all contigs, where IQR (interquartile  
421 ranges) was calculated by  $Q3 - Q1$ .  $k \geq 0$ .

422 Contig Retrieval algorithm was designed to retrieve sequences that have not been clustered into the  
423 target bin in the binning process, especially multicopy sequences or unnecessarily removed sequences  
424 by Outlier Removal. Contig Retrieval identifies contigs that potentially connected to existing  
425 sequences in the target bin. These candidate contigs were further assessed by an interquartile range  
426 method to remove depth or TNF outliers as described above and connected to the target bin by paired-  
427 end tracking (Albertsen et al. 2013) or long-read mapped method, forming a refined bin. Refined bins  
428 were expected to have higher quality value than target bins which were further selected to form a  
429 refined bin-set for further reassembly.

430

431

432 **Reassembly**

433 BASALT reassembly module includes a restrained overlap-layout-consensus (rOLC) process and a  
434 reassembly process. The rOLC algorithm was designed to retrieve sequence which was not included  
435 in the BASALT binning and refinement processes. Specifically, this process re-utilized sequences from  
436 redundant bins identified and removed from the dereplication module to overlap the sequences from  
437 the target bin. Using a loose threshold (overlap length: 300 bp; similarity: 99%), rOLC algorithm  
438 aggressively recorded the redundant candidate sequences removed from the target bin in the previous  
439 steps. As rOLC process may increase the contamination of sequences, a reassembly step was  
440 implemented after rOLC to amend the contamination caused by rOLC, and more importantly, to  
441 precisely elongate the length of sequences in the target bin. In the reassembly process, short-read or  
442 long-read sequences were extracted from datasets by Bowtie2 and Minimap2, respectively (Langdon  
443 2015, Li 2018). Three state-of-art assemblers were implemented in the reassembly step: SPAdes, FLYe,  
444 and Unicycler (Bankevich et al. 2012, Wick et al. 2017, Kolmogorov et al. 2019) to carry out short-  
445 read reassembly, long-read reassembly and hybrid reassembly, respectively. A final bin selecting  
446 process was exploited to select the best bins from the reassembly step to form the final bins for post-  
447 binning analysis.

448

449 **Sample collection**

450 Salt Lake sediment samples were collected in July 2018 from Aiding Lake, an arid region in Turpan  
451 City, Xinjiang Uygur Autonomous Region (42°52'9" N, 89°03'5" E). Briefly, about 50 grams of  
452 sediment samples (n = 4) were randomly collected at 0-10 cm depth in the lake into sterile 50 ml falcon  
453 tubes. Samples were immediately placed on dry ice before brought to laboratory and transferred to -  
454 80 °C freezer until further DNA extraction was performed.

455

456 **DNA extraction and sequencing**

457 Frozen stored sediment samples (~250 mg dry weight per sample) was used to extract genomic DNA  
458 using DNeasy PowerSoil Kit (Qiagen, Hilden, Germany), following the manufacturer's instructions.

459 Extracted DNA was quality checked by NanoDrop 2000 (Thermo Fisher Scientific, Waltham,  
460 Massachusetts, US), quantity checked by Qubit Fluorometer (Thermo Fisher Scientific) and PCR  
461 checked to confirm the amplifiability.

462 For 16S rRNA gene amplicon sequencing, barcode as a marker for each sample DNA was added at the  
463 5' end of primers targeting V4 region for bacterial and archaeal communities (515F-806R, Caporaso  
464 et al. 2012). Sequencing was performed at MAGIGENE, Guangzhou, China on an Illumina NovaSeq  
465 6000 platform (2 × 250 bp paired end chemistry).

466 For shotgun metagenomics sequencing, quantity and quality checked genomic DNA was sent to  
467 Novegene Co., Ltd, Nanjing, China on an Illumina NovaSeq (2 × 150 bp paired end chemistry).

468

469 **Sequencing processing**

470 To evaluate the efficiency of BASALT, standard Critical Assessment of Metagenome Interpretation  
471 (CAMI) datasets including a simple-complexity (132 genomes, CAMI-medium) and a medium-  
472 complexity (596 genomes, CAMI-high) synthesized communities were downloaded from  
473 (<https://data.cami-challenge.org/participate>) (Sczyrba et al. 2017). Raw paired-end reads were initially  
474 filtered using fastp (Chen et al. 2018). Fifty percent of bases were filtered based on a minimum quality  
475 score of 5 and sequence length of 150 bp, allowing no ambiguous bases. Clean reads were individually  
476 and co-assembled using SPAdes (version3.14.1, Bankevich et al. 2012) into contigs specifying k-mer  
477 sizes of 21, 33, 55, 77 and finally reserved contigs > 1,000 bps. To compare with other binners/toolkits,  
478 filtered contigs were processed with DASTool, VAMB, metaWRAP and BASALT, respectively. The  
479 redundancy, completeness and contamination of the MAGs were calculated against standard CAMI

480 datasets using a homebrew script *Bin\_quality\_evaluation.py* available on github  
481 (<https://github.com/EMBL-PKU/BASALT>) to ensure high accuracy of results obtained from the four  
482 binners/toolkits. High-quality MAGs (completeness - 5\*contamination  $\geq$  50%) were kept for further  
483 statistical analysis, whereas bins did not meet the quality were discarded.

484 For Aiding Lake sediment samples, raw 16S rRNA gene amplicon sequences were processed using  
485 Quantitative Insights Into Microbial Ecology (QIIME2) pipeline (<http://qiime.org>) (Caporaso et al.  
486 2010). DADA2 was used to filter low-quality sequences with lengths < 230 bp, remove chimeric  
487 sequences, singletons, and join the quality-filtered paired-end reads. Unique sequences (100%  
488 similarity) were taxonomically assigned using Naive Bayes classifier against the SILVA 16S rRNA  
489 gene reference alignment database (release 123) (Pruesse et al. 2007). To compare the complexity of  
490 Salt Lake sediment samples with other high-complexed samples such as soil, sequences were rarefied  
491 to an even sampling depth at 10,000 reads per sample, before singleton was removed from the  
492 generated OTU table. Overall, a total number of 6,993 ZOTUs (Zero-radius OTUs) were obtained.

493 For shotgun metagenomic sequences of Aiding Lake sediment samples, sequences were processed  
494 following the same procedure on CAMI-medium and CAMI-high datasets using BASALT. The  
495 completeness and contamination of the MAGs were then estimated using CheckM version 1.1.3 (Parks  
496 et al. 2015) with lineage-specific marker genes and default parameters, with only high-quality MAGs  
497 (completeness - 5\*contamination  $\geq$  50%) were kept for further analyses.

498

## 499 **Phylogenetic analysis**

500 The GTDB-Tk version (version1.4.1, Chaumeil et al. 2020) program was used to assign taxonomic  
501 classifications to the MAGs (release r95). To make comparison with another study of soda lake samples  
502 (Vavourakis et al. 2018), dereplicated MAGs were downloaded from NCBI Assembly database and  
503 phylogenetic analyses were conducted based on MAGs from both studies using Fasttree (Price et al.

504 2010). For phylogenetic analysis of Asgardarchaeota, MAGs/isolates were downloaded from other  
505 studies listed in Table S2, and Maximum-likelihood tree was constructed using PHYML version 3.0  
506 (Guindon et al. 2010) with 1000 bootstrap iterations. Phylogenetic trees were visualized and edited in  
507 the iTOL (<https://itol.embl.de>) online platform (Letunic and Bork 2019).

508

## 509 **Code availability**

510 All BASALT codes including homebrew scripts for quality checking against standard datasets are  
511 available at (<https://github.com/EMBL-PKU/BASALT>).

512

## 513 **Reference**

514 Albertsen, M., P. Hugenholtz, A. Skarshewski, K. L. Nielsen, G. W. Tyson, and P. H. Nielsen. 2013. Genome sequences of  
515 rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. *Nature  
516 biotechnology* **31**:533-538.

517 Ali, M., D. R. Shaw, M. Albertsen, and P. E. Saikaly. 2020. Comparative genome-centric analysis of freshwater and marine  
518 ANAMMOX cultures suggests functional redundancy in nitrogen removal processes. *Frontiers in microbiology*  
519 **11**:1637.

520 Almeida, A., S. Nayfach, M. Boland, F. Strozzi, M. Beracochea, Z. J. Shi, K. S. Pollard, E. Sakharova, D. H. Parks, and P.  
521 Hugenholtz. 2021. A unified catalog of 204,938 reference genomes from the human gut microbiome. *Nature  
522 biotechnology* **39**:105-114.

523 Alneberg, J., B. S. Bjarnason, I. de Bruijn, M. Schirmer, J. Quick, U. Z. Ijaz, N. J. Loman, A. F. Andersson, and C. Quince.  
524 2013. CONCOCT: clustering contigs on coverage and composition. *arXiv preprint arXiv:1312.4038*.

525 Amid, C., B. T. Alako, V. Balavenkataaraman Kadhirvelu, T. Burdett, J. Burgin, J. Fan, P. W. Harrison, S. Holt, A. Hussein,  
526 and E. Ivanov. 2020. The European nucleotide archive in 2019. *Nucleic acids research* **48**:D70-D76.

527 Anderson, R. E., J. Reveillaud, E. Reddington, T. O. Delmont, A. M. Eren, J. M. McDermott, J. S. Seewald, and J. A. Huber.  
528 2017. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal  
529 vents. *Nature communications* **8**:1-11.

530 Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham,  
531 and A. D. Prjibelski. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell  
532 sequencing. *Journal of computational biology* **19**:455-477.

533 Berdjeeb, L., T. Pollet, I. Domaizon, and S. Jacquet. 2011. Effect of grazers and viruses on bacterial community structure  
534 and production in two contrasting trophic lakes. *BMC microbiology* **11**:1-18.

535 Bertrand, D., J. Shaw, M. Kalathiyappan, A. H. Q. Ng, M. S. Kumar, C. Li, M. Dvornicic, J. P. Soldo, J. Y. Koh, and C.  
536 Tong. 2019. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and  
537 mobile elements in human microbiomes. *Nature biotechnology* **37**:937-944.

538 Bulzu, P.-A., A.-S. Andrei, M. M. Salcher, M. Mehrshad, K. Inoue, H. Kandori, O. Beja, R. Ghai, and H. L. Banciu. 2019.

539 Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. *Nature microbiology* **4**:1129-1137.

540 Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K.  
541 Goodrich, and J. I. Gordon. 2010. QIIME allows analysis of high-throughput community sequencing data. *Nature  
542 methods* **7**:335-336.

543 Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. Owens, J. Betley, L. Fraser, and  
544 M. Bauer. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.  
545 The *ISME journal* **6**:1621-1624.

546 Chaumeil, P.-A., A. J. Mussig, P. Hugenholtz, and D. H. Parks. 2020. GTDB-Tk: a toolkit to classify genomes with the  
547 Genome Taxonomy Database. Oxford University Press.

548 Chen, S., Y. Zhou, Y. Chen, and J. Gu. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* **34**:i884-  
549 i890.

550 Easson, C. G., and J. V. Lopez. 2019. Depth-Dependent environmental drivers of microbial plankton community structure  
551 in the Northern Gulf of Mexico. *Frontiers in microbiology* **9**:3175.

552 Eze, M. O., S. A. Lütgert, H. Neubauer, A. Balouri, A. A. Kraft, A. Sieven, R. Daniel, and B. Wemheuer. 2020. Metagenome  
553 assembly and metagenome-assembled genome sequences from a historical oil field located in Wietze, Germany.  
554 *Microbiology Resource Announcements* **9**.

555 Finstad, K. M., A. J. Probst, B. C. Thomas, G. L. Andersen, C. Demergasso, A. Echeverría, R. G. Amundson, and J. F.  
556 Banfield. 2017. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of  
557 the hyperarid Atacama Desert from genome-resolved metagenomics. *Frontiers in microbiology* **8**:1435.

558 Fulthorpe, R. R., L. F. Roesch, A. Riva, and E. W. Triplett. 2008. Distantly sampled soils carry few species in common.  
559 The *ISME journal* **2**:901-910.

560 Glasl, B., D. G. Bourne, P. R. Fraile, T. Thomas, B. Schaffelke, and N. S. Webster. 2019. Microbial indicators of  
561 environmental perturbations in coral reef ecosystems. *Microbiome* **7**:1-13.

562 Guan, T.-W., Y.-J. Lin, M.-Y. Ou, and K.-B. Chen. 2020. Isolation and diversity of sediment bacteria in the hypersaline  
563 aiding lake, China. *PLoS One* **15**:e0236006.

564 Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New algorithms and methods to  
565 estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Systematic biology* **59**:307-  
566 321.

567 Hoshino, T., H. Doi, G.-I. Uramoto, L. Wörmer, R. R. Adhikari, N. Xiao, Y. Morono, S. D'Hondt, K.-U. Hinrichs, and F.  
568 Inagaki. 2020. Global diversity of microbial communities in marine sediment. *Proceedings of the national  
569 academy of sciences* **117**:27587-27597.

570 Howe, A. C., J. K. Jansson, S. A. Malfatti, S. G. Tringe, J. M. Tiedje, and C. T. Brown. 2014. Tackling soil diversity with  
571 the assembly of large, complex metagenomes. *Proceedings of the national academy of sciences* **111**:4904-4909.

572 Hug, L. A., B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst, C. J. Castelle, C. N. Butterfield, A. W. Hernsdorf, Y.  
573 Amano, and K. Ise. 2016. A new view of the tree of life. *Nature microbiology* **1**:1-6.

574 Imachi, H., M. K. Nobu, N. Nakahara, Y. Morono, M. Ogawara, Y. Takaki, Y. Takano, K. Uematsu, T. Ikuta, and M. Ito.  
575 2020. Isolation of an archaeon at the prokaryote-eukaryote interface. *Nature* **577**:519-525.

576 Jain, M., H. E. Olsen, B. Paten, and M. Akeson. 2016. The Oxford Nanopore MinION: delivery of nanopore sequencing to  
577 the genomics community. *Genome biology* **17**:1-11.

578 Kang, D. D., F. Li, E. Kirton, A. Thomas, R. Egan, H. An, and Z. Wang. 2019. MetaBAT 2: an adaptive binning algorithm  
579 for robust and efficient genome reconstruction from metagenome assemblies. *PeerJ* **7**:e7359.

580 Kolmogorov, M., J. Yuan, Y. Lin, and P. A. Pevzner. 2019. Assembly of long, error-prone reads using repeat graphs. *Nature  
581 biotechnology* **37**:540-546.

582 Kroeger, M. E., T. O. Delmont, A. M. Eren, K. M. Meyer, J. Guo, K. Khan, J. L. Rodrigues, B. J. Bohannan, S. G. Tringe,

583 and C. D. Borges. 2018. New biological insights into how deforestation in Amazonia affects soil microbial  
584 communities using metagenomics and metagenome-assembled genomes. *Frontiers in microbiology* **9**:1635.

585 Langdon, W. B. 2015. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing  
586 (GCAT) benchmarks. *BioData mining* **8**:1-7.

587 Laver, T., J. Harrison, P. O’neill, K. Moore, A. Farbos, K. Paszkiewicz, and D. J. Studholme. 2015. Assessing the  
588 performance of the oxford nanopore technologies minion. *Biomolecular detection and quantification* **3**:1-8.

589 Letunic, I., and P. Bork. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic acids*  
590 *research* **47**:W256-W259.

591 Lewis, W. H., G. Tahon, P. Geesink, D. Z. Sousa, and T. J. Ettema. 2020. Innovations to culturing the uncultured microbial  
592 majority. *Nature Reviews Microbiology*:1-16.

593 Li, D., C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam. 2015. MEGAHIT: an ultra-fast single-node solution for large and  
594 complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics* **31**:1674-1676.

595 Li, H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**:3094-3100.

596 Liang, Z., J. Shi, C. Wang, J. Li, D. Liang, E. L. Yong, Z. He, and S. Wang. 2020. Genome-centric metagenomic insights  
597 into the impact of alkaline/acid and thermal sludge pretreatment on the microbiome in digestion sludge. *Applied*  
598 *and environmental microbiology* **86**.

599 Nascimento Lemos, L., L. Manoharan, L. William Mendes, A. Monteiro Venturini, V. Satler Pylro, and S. M. Tsai. 2020.  
600 Metagenome assembled-genomes reveal similar functional profiles of CPR/Patescibacteria phyla in soils.  
601 *Environmental microbiology reports* **12**:651-655.

602 Nayfach, S., B. Rodriguez-Mueller, N. Garud, and K. S. Pollard. 2016. An integrated metagenomics pipeline for strain  
603 profiling reveals novel patterns of bacterial transmission and biogeography. *Genome research* **26**:1612-1625.

604 Nayfach, S., S. Roux, R. Seshadri, D. Udwyar, N. Varghese, F. Schulz, D. Wu, D. Paez-Espino, I.-M. Chen, and M.  
605 Huntemann. 2020. A genomic catalog of Earth’s microbiomes. *Nature biotechnology*:1-11.

606 Nishiyama, E., K. Higashi, H. Mori, K. Suda, H. Nakamura, S. Omori, S. Maruyama, Y. Hongoh, and K. Kurokawa. 2018.  
607 The relationship between microbial community structures and environmental parameters revealed by  
608 metagenomic analysis of hot spring water in the Kirishima Area, Japan. *Frontiers in bioengineering and*  
609 *biotechnology* **6**:202.

610 Nissen, J. N., J. Johansen, R. L. Allesøe, C. K. Sønderby, J. J. A. Armenteros, C. H. Grønbech, L. J. Jensen, H. B. Nielsen,  
611 T. N. Petersen, and O. Winther. 2021. Improved metagenome binning and assembly using deep variational  
612 autoencoders. *Nature biotechnology*:1-6.

613 Olm, M. R., C. T. Brown, B. Brooks, and J. F. Banfield. 2017. dRep: a tool for fast and accurate genomic comparisons that  
614 enables improved genome recovery from metagenomes through de-replication. *The ISME journal* **11**:2864-2868.

615 Parks, D. H., M. Chuvochina, D. W. Waite, C. Rinke, A. Skarszewski, P.-A. Chaumeil, and P. Hugenholtz. 2018. A  
616 standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. *Nature*  
617 *biotechnology* **36**:996-1004.

618 Parks, D. H., M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson. 2015. CheckM: assessing the quality of  
619 microbial genomes recovered from isolates, single cells, and metagenomes. *Genome research* **25**:1043-1055.

620 Parks, D. H., C. Rinke, M. Chuvochina, P.-A. Chaumeil, B. J. Woodcroft, P. N. Evans, P. Hugenholtz, and G. W. Tyson.  
621 2017. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. *Nature*  
622 *microbiology* **2**:1533-1542.

623 Pasolli, E., F. Asnicar, S. Manara, M. Zolfo, N. Karcher, F. Armanini, F. Beghini, P. Manghi, A. Tett, and P. Ghensi. 2019.  
624 Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes  
625 spanning age, geography, and lifestyle. *Cell* **176**:649-662. e620.

626 Peng, Y., H. C. Leung, S.-M. Yiu, and F. Y. Chin. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic

627 sequencing data with highly uneven depth. *Bioinformatics* **28**:1420-1428.

628 Price, M. N., P. S. Dehal, and A. P. Arkin. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments.

629 PLoS One **5**:e9490.

630 Pruesse, E., C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glöckner. 2007. SILVA: a comprehensive

631 online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. *Nucleic*

632 *Acids Res* **35**.

633 Ransom-Jones, E., A. J. McCarthy, S. Haldenby, J. Doonan, and J. E. McDonald. 2017. Lignocellulose-degrading microbial

634 communities in landfill sites represent a repository of unexplored biomass-degrading diversity. *MspHERE* **2**.

635 Reji, L., B. B. Tolar, J. M. Smith, F. Chavez, and C. Francis. 2020. Genome-resolved metagenomics reveals lineage-specific

636 metabolic strategies within marine nitrifier subpopulations. *in* Ocean Sciences Meeting 2020. AGU.

637 Rinke, C., P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson, J.-F. Cheng, A. Darling, S. Malfatti, B. K. Swan, and

638 E. A. Gies. 2013. Insights into the phylogeny and coding potential of microbial dark matter. *Nature* **499**:431-437.

639 Sczyrba, A., P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Dröge, I. Gregor, S. Majda, J. Fiedler, and E. Dahms.

640 2017. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. *Nature*

641 *methods* **14**:1063-1071.

642 Seitz, K. W., N. Dombrowski, L. Eme, A. Spang, J. Lombard, J. R. Sieber, A. P. Teske, T. J. Ettema, and B. J. Baker. 2019.

643 Asgard archaea capable of anaerobic hydrocarbon cycling. *Nature communications* **10**:1-11.

644 Song, W.-Z., and T. Thomas. 2017. Binning\_refiner: improving genome bins through the combination of different binning

645 programs. *Bioinformatics* **33**:1873-1875.

646 Spang, A., L. Eme, J. H. Saw, E. F. Caceres, K. Zaremba-Niedzwiedzka, J. Lombard, L. Guy, and T. J. Ettema. 2018.

647 Asgard archaea are the closest prokaryotic relatives of eukaryotes. *PLoS genetics* **14**:e1007080.

648 Spang, A., J. H. Saw, S. L. Jørgensen, K. Zaremba-Niedzwiedzka, J. Martijn, A. E. Lind, R. Van Eijk, C. Schleper, L. Guy,

649 and T. J. Ettema. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. *Nature* **521**:173-

650 179.

651 Stewart, R. D., M. D. Auffret, A. Warr, A. H. Wiser, M. O. Press, K. W. Langford, I. Liachko, T. J. Snelling, R. J. Dewhurst,

652 and A. W. Walker. 2018. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen.

653 *Nature communications* **9**:1-11.

654 Temperton, B., and S. J. Giovannoni. 2012. Metagenomics: microbial diversity through a scratched lens. *Current opinion*

655 *in microbiology* **15**:605-612.

656 Thompson, L. R., J. G. Sanders, D. McDonald, A. Amir, J. Ladau, K. J. Locey, R. J. Prill, A. Tripathi, S. M. Gibbons, and

657 G. Ackermann. 2017. A communal catalogue reveals Earth's multiscale microbial diversity. *Nature* **551**:457-463.

658 Tully, B. J., E. D. Graham, and J. F. Heidelberg. 2018. The reconstruction of 2,631 draft metagenome-assembled genomes

659 from the global oceans. *Scientific data* **5**:1-8.

660 Tyson, G. W., J. Chapman, P. Hugenholtz, E. E. Allen, R. J. Ram, P. M. Richardson, V. V. Solovyev, E. M. Rubin, D. S.

661 Rokhsar, and J. F. Banfield. 2004. Community structure and metabolism through reconstruction of microbial

662 genomes from the environment. *Nature* **428**.

663 Uritskiy, G. V., J. DiRuggiero, and J. Taylor. 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic

664 data analysis. *Microbiome* **6**:1-13.

665 Vavourakis, C. D., A.-S. Andrei, M. Mehrshad, R. Ghai, D. Y. Sorokin, and G. Muyzer. 2018. A metagenomics roadmap to

666 the uncultured genome diversity in hypersaline soda lake sediments. *Microbiome* **6**:1-18.

667 Wang, M., C. R. Beck, A. C. English, Q. Meng, C. Buhay, Y. Han, H. V. Doddapaneni, F. Yu, E. Boerwinkle, and J. R.

668 Lupski. 2015. PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-

669 associated chromosomal structural variations. *BMC genomics* **16**:1-12.

670 Wang, Z., Z. Wang, Y. Y. Lu, F. Sun, and S. Zhu. 2019. SolidBin: improving metagenome binning with semi-supervised

671 normalized cut. *Bioinformatics* **35**:4229-4238.

672 Wick, R. R., L. M. Judd, C. L. Gorrie, and K. E. Holt. 2017. Unicycler: resolving bacterial genome assemblies from short  
673 and long sequencing reads. *PLoS computational biology* **13**:e1005595.

674 Wong, H. L., F. I. MacLeod, R. A. White, P. T. Visscher, and B. P. Burns. 2020. Microbial dark matter filling the niche in  
675 hypersaline microbial mats. *Microbiome* **8**:1-14.

676 Wu, Y.-W., B. A. Simmons, and S. W. Singer. 2016. MaxBin 2.0: an automated binning algorithm to recover genomes from  
677 multiple metagenomic datasets. *Bioinformatics* **32**:605-607.

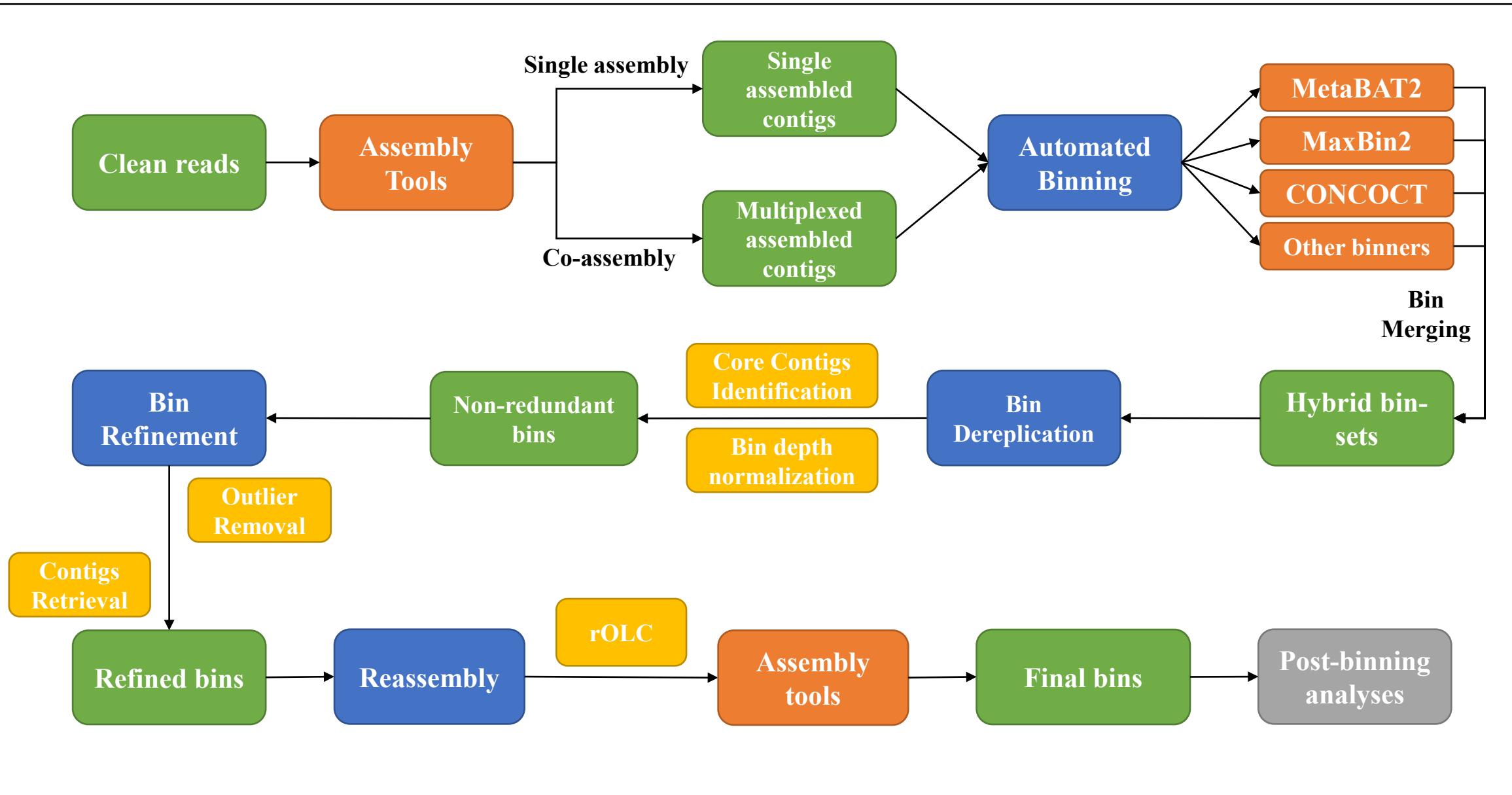
678 Xiong, C., Y. G. Zhu, J. T. Wang, B. Singh, L. L. Han, J. P. Shen, P. P. Li, G. B. Wang, C. F. Wu, and A. H. Ge. 2021. Host  
679 selection shapes crop microbiome assembly and network complexity. *New Phytologist* **229**:1091-1104.

680 Yin, X., M. Cai, Y. Liu, G. Zhou, T. Richter-Heitmann, D. A. Aromokeye, A. C. Kulkarni, R. Nimzyk, H. Cullhed, and Z.  
681 Zhou. 2020. Subgroup level differences of physiological activities in marine Lokiarchaeota. *The ISME journal*:1-  
682 14.

683 Yu, G., Y. Jiang, J. Wang, H. Zhang, and H. Luo. 2018. BMC3C: binning metagenomic contigs using codon usage, sequence  
684 composition and read coverage. *Bioinformatics* **34**:4172-4179.

685 Zaremba-Niedzwiedzka, K., E. F. Caceres, J. H. Saw, D. Bäckström, L. Juzokaite, E. Vancaester, K. W. Seitz, K.  
686 Anantharaman, P. Starnawski, and K. U. Kjeldsen. 2017. Asgard archaea illuminate the origin of eukaryotic  
687 cellular complexity. *Nature* **541**:353-358.

688



Sequences



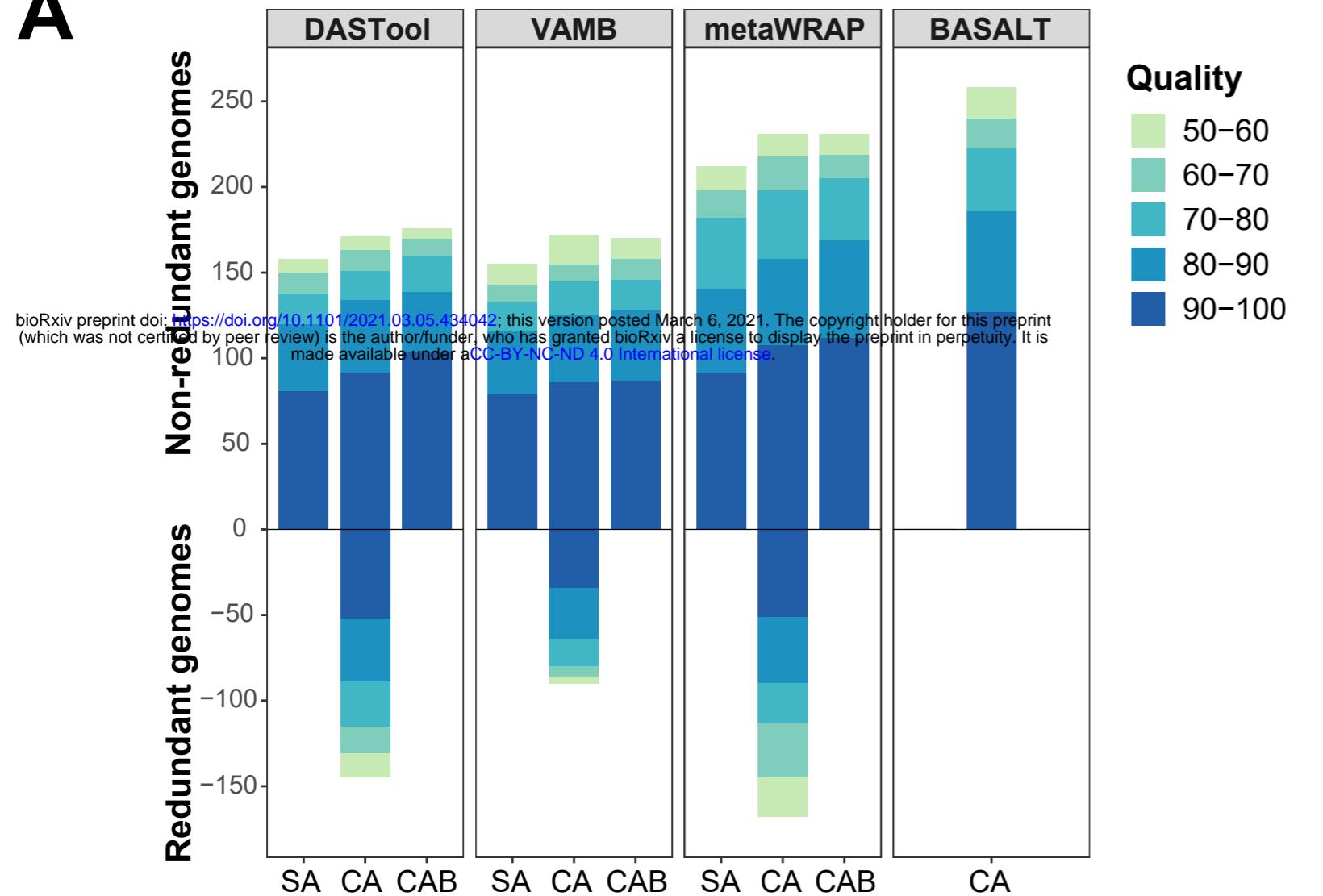
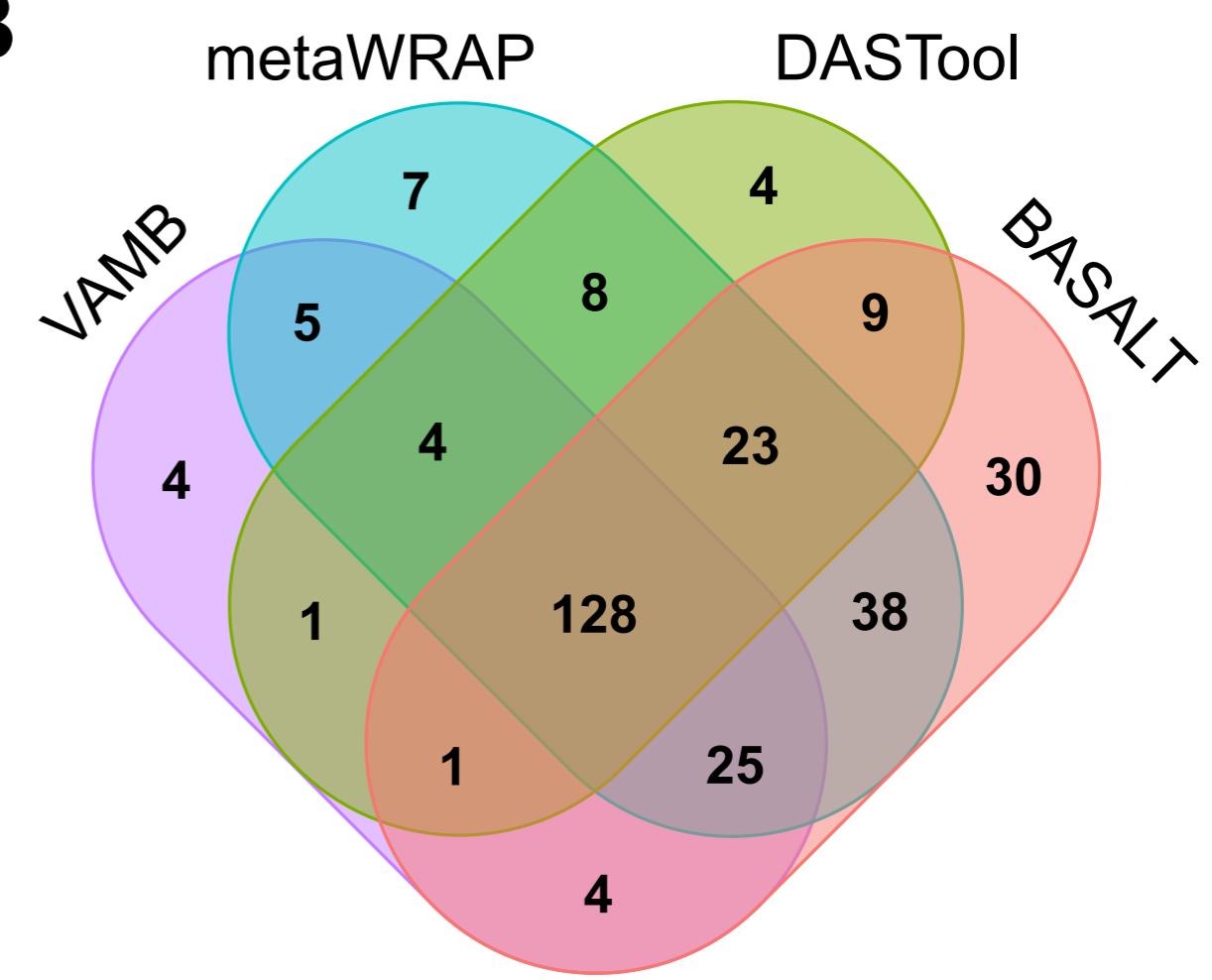
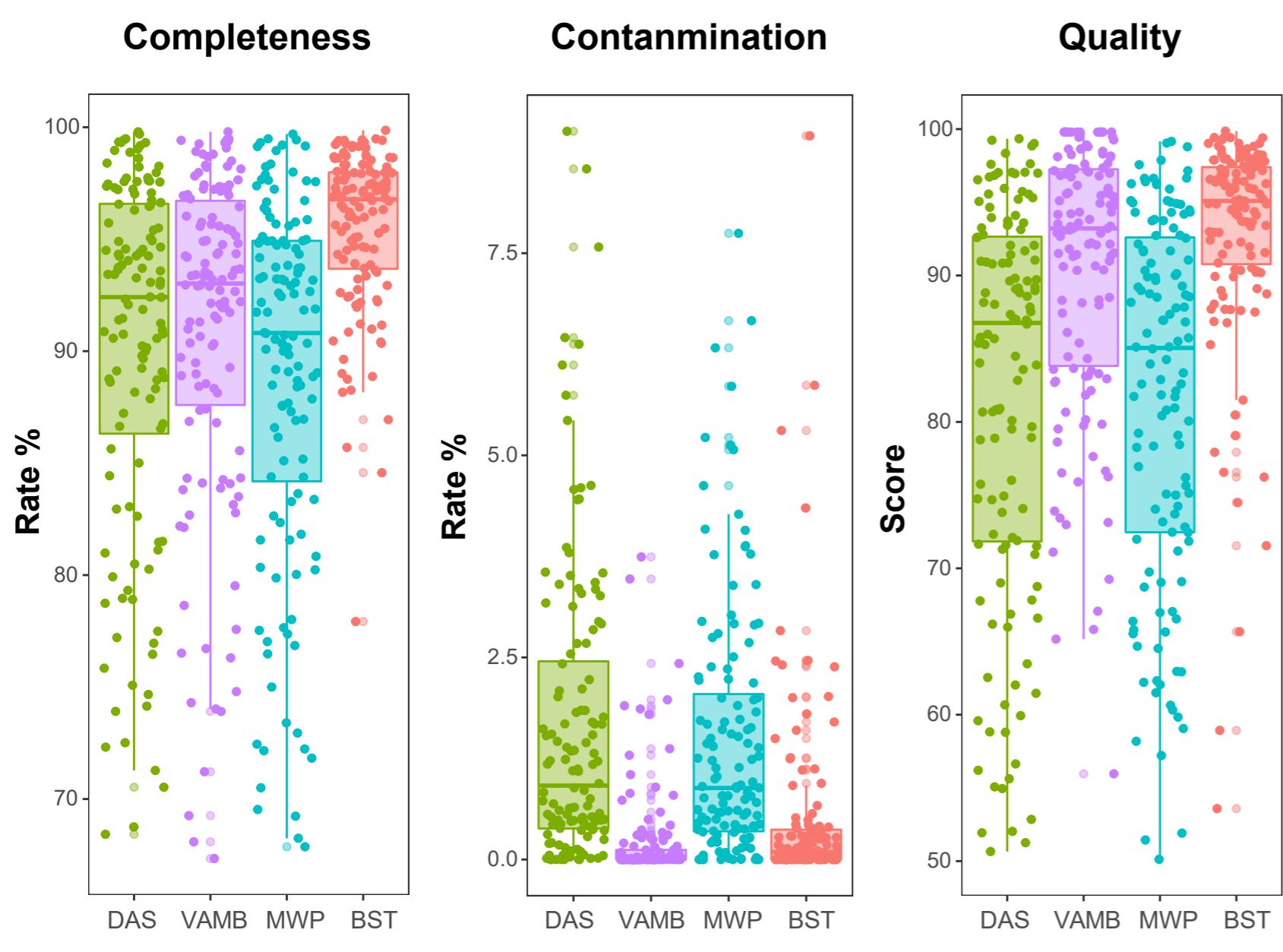
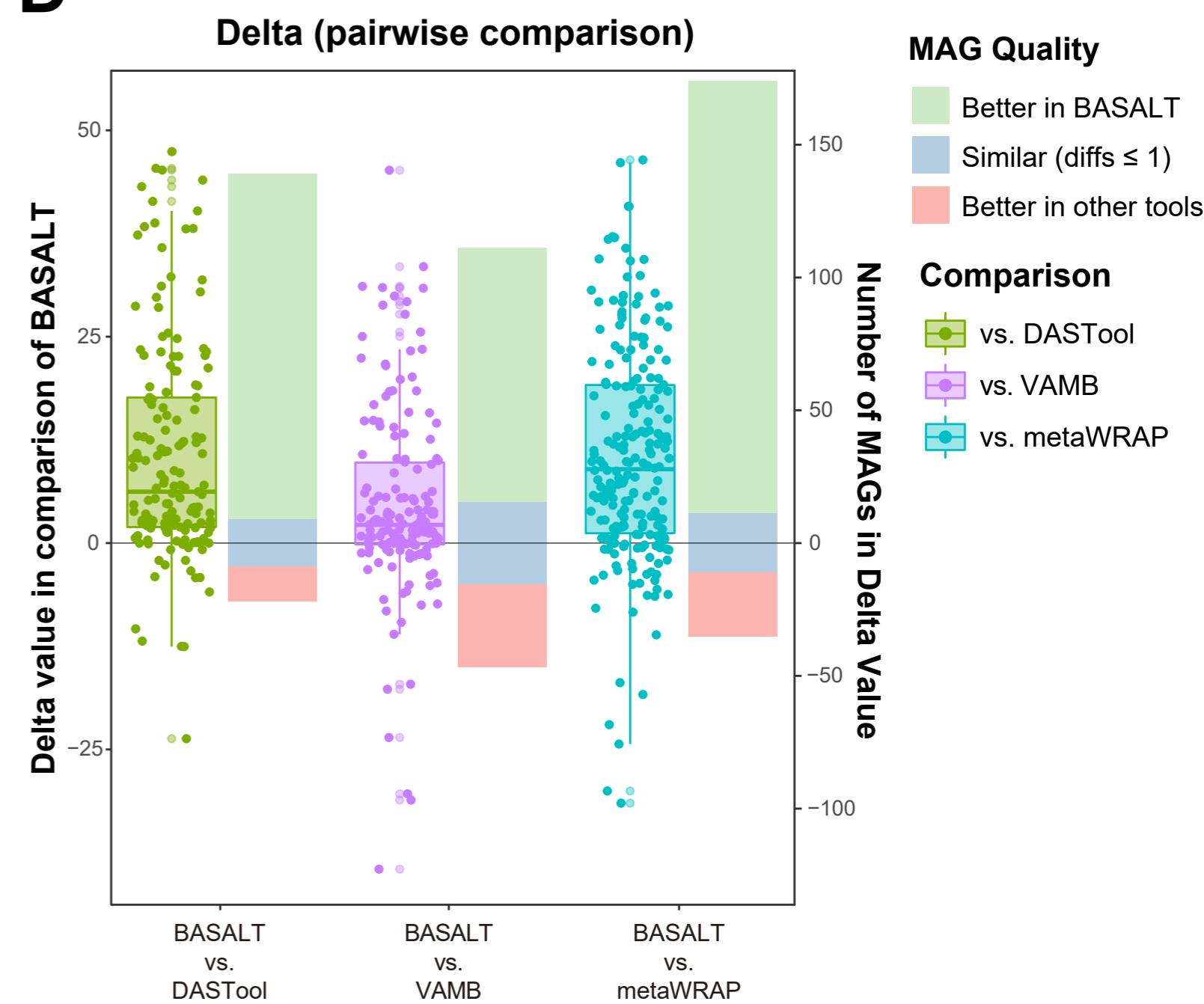
Modules



Assembly/Binning tools

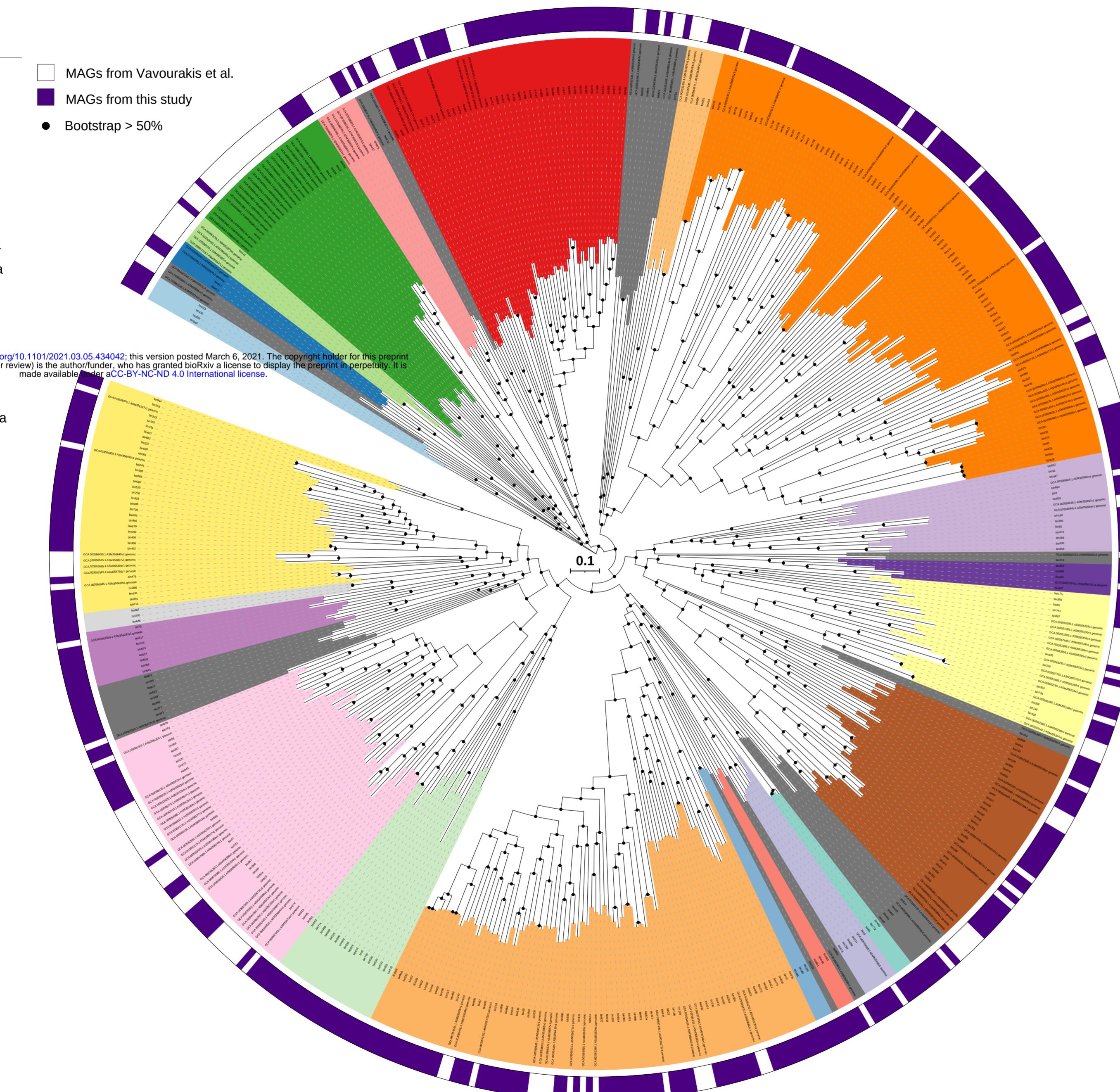


Homebrew algorithms

**A****B****C****D**

**A****Phylum**

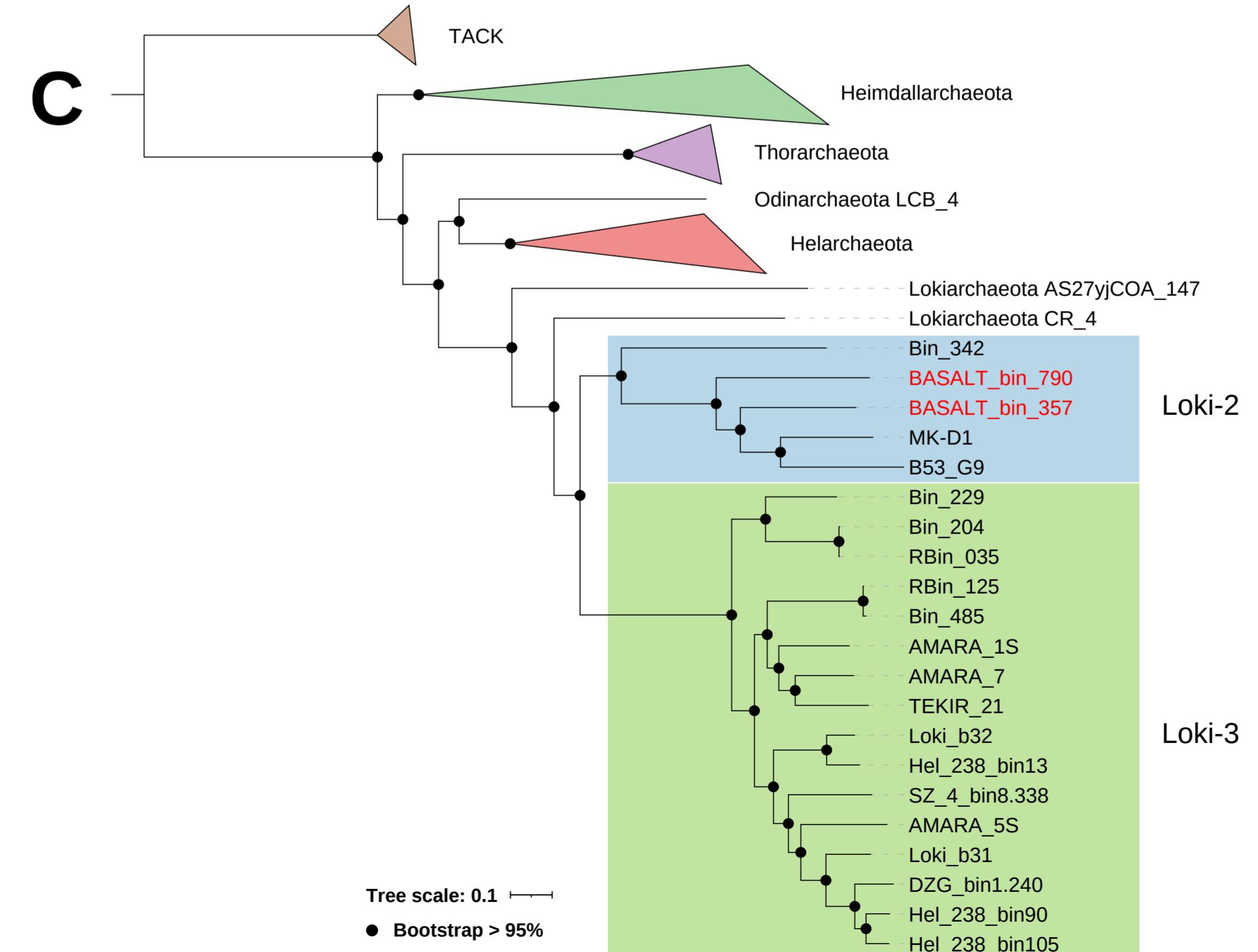
- Patescibacteria
- Zixibacteria
- Margulisbacteria
- Spirochaetota
- Myxococcota
- Planctomycetota
- Chloroflexota
- Verrucomicrobiota
- Hydrogenedentota
- Cyanobacteria
- WOR-3
- Omnitrophota
- Actinobacteriota
- Firmicutes
- Gemmimonadota
- Proteobacteria
- KSB1
- Others
- Desulfov bacterota
- Bipolaricau lota
- Bacteroidota
- Nitrospirota
- Acidobacteriota

**B****Phylum**

- Nanarchaeota
- Halobacteriota
- Asgardarchaeota
- Micrarchaeota
- PWEA01
- Iainarchaeota
- Methanobacteriota
- Aenigmarchaeota
- Thermoplasmata
- Thermoproteota

- MAGs from Vavourakis et al.
- MAGs from this study
- Bootstrap > 50%

Tree scale: 0.1  
● Bootstrap > 95%

**C**

Loki-2

Loki-3