bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.433259; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Reconstruction of a catalogue of genome-scale metabolic models with

enzymatic constraints using GECKO 2.0

Ivan Domenzain'?, Benjamin Sdnchez®*, Mihail Anton®, Eduard J. Kerkhoven!, Aaréon
Millan-Oropeza®, Céline Henry®, Verena Siewers'?, John P. Morrissey’, Nikolaus

Sonnenschein® and Jens Nielsen!»3)

! Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296
Gothenburg, Sweden

? Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296
Gothenburg, Sweden

3 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby,
Denmark

* Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs,
Lyngby, Denmark

> Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden,
Science for Life Laboratory, Chalmers University of Technology, Kemivéigen 10, SE-41258 Gothenburg,

Sweden.

® Plateforme d’ analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université
Paris-Saclay, 78350, Jouy-en-Josas, France.

" School of Microbiology, Environmental Research Institute and APC Microbiome Ireland, University
College Cork, T12 K8AF, Cork, Ireland.

¥ Biolnnovation Institute, Ole Maalges Vej 3, DK2200 Copenhagen, Denmark

(*) Corresponding author.

Correspondence: nielsenj@chalmers.se

Abstract

Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration of the relation
between genotype and phenotype. Streamlined integration of enzyme constraints and proteomics data into
GEMs was first enabled by the GECKO method, allowing the study of phenotypes constrained by protein

limitations. Here, we upgraded the GECKO toolbox in order to enhance models with enzyme and
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proteomics constraints for any organism with an available GEM reconstruction. With this, enzyme-
constrained models (ecModels) for the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and
Kluyveromyces marxianus were generated, aiming to study their long-term adaptation to several stress
factors by incorporation of proteomics data. Predictions revealed that upregulation and high saturation of
enzymes in amino acid metabolism were found to be common across organisms and conditions, suggesting
the relevance of metabolic robustness in contrast to optimal protein utilization as a cellular objective for
microbial growth under stress and nutrient-limited conditions. The functionality of GECKO was further
developed by the implementation of an automated framework for continuous and version-controlled update
of ecModels, which was validated by producing additional high-quality ecModels for Escherichia coli and
Homo sapiens. These efforts aim to facilitate the utilization of ecModels in basic science, metabolic

engineering and synthetic biology purposes.

Introduction
Genome-scale metabolic models (GEMs) have become an established tool for systematic analyses of
metabolism for a wide variety of organisms'®. Their myriads of applications span from model-driven

development of efficient cell factories®’™

, to their utilization for understanding mechanisms underlying
complex human diseases'*'?. One of the most common simulation techniques for enabling phenotype
predictions with these models is flux balance analysis (FBA), which assumes that there is balancing of
fluxes around each metabolite in the metabolic network. This means that fluxes are constrained by
stoichiometries of the biochemical reactions in the network, and that cells have evolved in order to operate

their metabolism according to optimality principles'*'

. Quantitative determination of biologically
meaningful flux distribution profiles is a major challenge for constraint-based methods, as optimal
phenotypes can be attained by alternate flux distribution profiles'’, caused by the presence of network
redundancies that provide organisms with robustness to environmental and genetic perturbations. This
limitation is often addressed by incorporation of experimental measurements of exchange fluxes (secretion

of byproducts and uptake of substrates) as numerical flux constraints for the FBA problem. However, such

measurements are not readily available for a wide variety of conditions and organisms.

In order to overcome these limitations, the concept of enzymatic limitations on metabolic reactions has
been explored and incorporated by several constraint-based methods. Some of these have modelled enzyme
demands of metabolic reactions by constraining metabolic networks with kinetic parameters and

physiological limitations of cells, such as a crowded intracellular volume'®™'®

, a finite membrane surface
area for expression of transporter proteins'’ and a bounded total protein mass available for metabolic

enzymes’’ . All of these modelling frameworks have been successful at expanding the range of predictions
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of classical FBA, providing explanations for overflow metabolism and cellular growth on diverse
environments for Escherichia coli'®"**'"** Saccharomyces cerevisiae®**®, Lactococus lactis®’ and even
human cells?***. However, these modelling approaches were applied to metabolic networks of extensively
studied model organisms, which are usually well represented in specialized resources for kinetic parameters
such as the BRENDA® and SABIO RK* databases. Furthermore, collecting the necessary parameters for
the aforementioned models was mostly done manually; therefore, no generalized model parameterization

procedure was provided as an integral part of these methods.

Enzyme limitations have also been introduced into models of metabolism by other formalisms, for instance,
Metabolic and gene Expression models (ME-models), implemented on reconstructions for E. coli**3?,
Thermotoga maritima® and Lactococus lactis®®; and resource balance analysis models (RBA), on
reconstructions for E. coli*® and Bacillus subtilis***7. These formalisms succeeded at merging genome-scale
metabolic networks together with comprehensive representations of macromolecular expression processes,
enabling detailed exploration of the constraints that govern cellular growth on diverse environments.
Despite the great advances for understanding cell physiology, provided by these modelling formalisms,
accuracy on phenotype predictions is compromised by the large number of parameters that are required
(rate constants for transcriptional, translational, protein folding and degradation processes), with most of
these not being readily available in the literature. Moreover, these models encompass processes that differ
radically in their temporal scales (e.g., protein synthesis vs. metabolic rates) and their mathematical
representation (presence of non-linear expressions in ME-models), requiring the implementation of more

elaborate techniques for numerical simulation.

GECKO, a method for enhancement of GEMs with Enzymatic Constraints using Kinetic and Omics data,
was developed in 2017 and applied to the consensus GEM for S. cerevisiae, Yeast7*®. This method extends
the classical FBA approach by incorporating a detailed description of the enzyme demands for the metabolic
reactions in a network, accounting for all types of enzyme-reaction relations, including isoenzymes,
promiscuous enzymes and enzymatic complexes. Moreover, GECKO enables direct integration of
proteomics abundance data, if available, as constraints for individual protein demands, represented as
enzyme usage pseudo-reactions, whilst all of the unmeasured enzymes in the network are constrained by a
pool of remaining protein mass. Additionally, this method incorporates a hierarchical and automated
procedure for retrieval of kinetic parameters from the BRENDA database, which yielded a high coverage
of kinetic constraints for the S. cerevisiae network. The resulting enzyme-constrained model, ecYeast7, was
used for successful prediction of the Crabtree effect in wild-type and mutant strains of S. cerevisiae and

cellular growth on diverse environments and genetic backgrounds, but also provided a simple framework


https://doi.org/10.1101/2021.03.05.433259
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.433259; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

for prediction of protein allocation profiles and study of proteomics data in a metabolic context.

Furthermore, the model formed the basis for modeling yeast growth at different temperatures®.

Since the first implementation of the GECKO method™®, its principles of enzyme constraints have been
incorporated into GEMs for B. subtilis®, E. coli*', B. coagulans**, Streptomyces coelicolor* and even for
diverse human cancer cell-lines?, showing the applicability of the method even for non-model organisms.
Despite the rapid adoption of the method by the constraint-based modelling community, there is still a need
for automating the model generation and enabling identification of kinetic parameters for less studied
organisms. Here we wanted to build GECKO models for several organisms, and we therefore updated the
GECKO toolbox to its 2.0 version. Among other improvements, we generalized its structure to facilitate its
applicability to a wide variety of GEMs, and we improved its parameterization procedure to ensure high
coverage of kinetic constraints, even for poorly studied organisms. Additionally, we incorporated
simulation utility functions, and developed an automated virtual pipeline for update of enzyme-constrained
models (ecModels), named ecModels container. This container is directly connected to the original sources
of version-controlled GEMs and the GECKO toolbox, offering a continuously updated catalogue of diverse

ecModels.

Results

Community development of GECKO

To ensure wide application and enable future development by the research community, we established the
GECKO toolbox as open-source software, mostly encoded in MATLAB. It integrates modules for
enhancement of GEMs with kinetic and proteomics constraints, automated retrieval of kinetic parameters
from the BRENDA database (python module), as well as simulation utilities and export of ecModel files
compatible with both the COBRA toolbox** and the COBRApy package®’. The development of GECKO
has been continuously tracked in a public repository (https://github.com/SysBioChalmers/GECKO) since

2017, providing a platform for open and collaborative development. The generation of output model files
in .txt and SBML L3V1 FBC2* formats enabled the utilization of ecYeastGEM' structure as a standard
test to track the effects of any modifications in the toolbox algorithm through the use of the Git version

control system, contributing to reproducibility of results and backwards compatibility of code.

Interaction with users of the GECKO toolbox and the ecYeastGEM model has also been facilitated through
the use of the GECKO repository, allowing users to raise issues related with the programming of the toolbox
or even about conceptual assumptions of the method, which has guided cumulative enhancements.

Additionally, technical support for installation and utilization of the toolbox and ecYeastGEM is now
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provided through an open community chat room (available at: https:/gitter.im/SysBioChalmers/ GECKO),

reinforcing transparent and continuous communication between users and developers.

New additions to the GECKO toolbox

The first implementation of the GECKO method significantly improved phenotype predictions for S.
cerevisiae’s metabolism under a wide variety of genetic and environmental perturbations®®. However, its
development underscored some issues, in particular that quantitative prediction of the critical dilution rate
and exchange fluxes at fermentative conditions are highly sensitive to the distribution of incorporated
kinetic parameters. Although S. cerevisiae is one of the most studied eukaryal organisms, not all reactions
included in its model have been kinetically characterized. Therefore, a large number of kc: numbers
measured for other organisms (48.35%), or even non-specific to their reaction mechanism (56.03% of kca
values found by introduction of wild cards into E.C. numbers) were needed to be incorporated, in order to
fill the gaps in the available data for the reconstruction of the first S. cerevisiae ecModel, ecYeast7.
Moreover, detailed manual curation of k.. numbers was needed for several key enzymes in order to achieve

biologically meaningful predictions.

As the BRENDA database*” is the main source of kinetic parameters for GECKO, all of the available kca
and specific activity entries for non-mutant enzymes were retrieved. In total, 38,280 entries for 4,130 unique
E.C. numbers were obtained and classified according to biochemical mechanisms, phylogeny of host
organisms and metabolic context (Supp. file 1), in order to assess significant differences in distributions of
kinetic parameters. This analysis showed that not all organisms have been equally studied. Whilst entries
for H. sapiens, E. coli, R. norvegicus and S. cerevisiae account for 24.02% of the total, very few kinetic
parameters are available for most of the thousands of organisms present in the database, showing a median
of 2 entries per organism (Fig. 1A, Supp. file 1). The analysis also showed that kinetic activity can differ
drastically, spanning several orders of magnitude even for families of enzymes with closely related
biochemical mechanisms (Fig. 1B). Finally, it was also observed that &, distributions for enzymes in the
central carbon and energy metabolism differ significantly from those in other metabolic contexts across
phylogenetic groups of host organisms (life kingdoms, according to the KEGG phylogenetic tree*®), even
without filtering the dataset for entries reported exclusively for natural substrates, as previously done by

other studies* (Fig. 1C).

As ke numbers depend on biochemical mechanisms, metabolic context and phylogeny of host organisms,
a modified set of hierarchical kc.: matching criteria was implemented as part of GECKO 2.0. The modified

parameterization procedure enables the incorporation of kinetic parameters that have been reported as
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specific activities in BRENDA when no k., is found for a given query (as the specific activity of an enzyme
is defined as its kcr over its molecular weight), adding 8,118 new entries to the catalogue of kinetic
parameters in the toolbox. A phylogenetic distance-based criterion, based on the phylogenetic tree available
in the KEGG database™, was introduced for cases in which no organism-specific entries are available for a
given query in the kinetic parameters dataset. A comparison of the new k. matching criteria with their

predecessor set is shown in Supp. file 2.

In order to assess the impact of the modified k.. assignment algorithm on an ecModel, ecYeast7 was
reconstructed using both the first and the new version of the GECKO toolbox (GECKO 2.0). A
classification of the matched k... numbers according to the different levels of the new matching algorithm
is provided in Fig. 1D. The incorporation of specific activity values in the parameter catalogue increased
the number of kinetic parameters matched to complete E.C. numbers (no added wild cards) from 1432 to
2696 (Fig. 1E). Moreover, the implementation of the phylogenetic distance-based criterion yielded a
distribution of kinetic parameters that showed no significant differences when compared to the values
reported in BRENDA for all fungi species, in contrast to the kinetic profile matched by the previous
algorithm (p-values <10"'° and <10”7, when compared to the BRENDA fungi and S. cerevisiae distributions,
respectively, under a Kolmogorov-Smirnov test) (Fig. 1F). The quality of phenotype predictions for the
ecYeast7 model enhanced by GECKO2.0 was evaluated by simulation of batch growth in 19 different

environments, with an average relative error of 29.22% when compared to experimental data (Fig. 1G).

The introduction of manually curated k.. numbers in a metabolic network has been proven to increase the
quality of phenotype predictions for S. cerevisiae***>*%; nevertheless, this is an intensive and time
consuming procedure that is hard to ensure for a large number of models subject to continuous
modifications. In order to ensure applicability of the GECKO method to any standard GEM, a unified
procedure for curation of kinetic parameters was developed based on parameter sensitivity analysis. For
automatically generated ecModels that are not able to reach the provided experimental value for maximum
batch growth rate, an automatic module performs a series of steps in which the top enzymatic limitation on
growth rate is identified through the quantification of enzyme control coefficients. For such enzymes, the
E.C. number is obtained and then its correspondent k.. value is substituted by the highest one available in

BRENDA for the given enzyme class. This procedure iterates until the specific growth rate predicted by

the model reaches the provided experimental value.

Finally, as the first version of the toolbox relied on the structure and nomenclature of the model Yeast7, its

applicability to other reconstructions was not possible in a straightforward way. In order to provide
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compatibility with any other GEM, based on COBRA* or RAVEN™ formats, all of the organism-specific
parameters required by the method (experimental growth rate, total protein content, organism name, names
and identifiers for some key reactions, etc.) can be provided in a single MATLAB initialization script,

minimizing the modifications needed for the generation of a new ecModel.

ecModels container: an automatically updated repository

Several GEMs that have been published are still subject to continuous development and maintenance' >,
this renders GEMs to be dynamic structures that can change rapidly. In order to integrate such continuous
updates into the enzyme constrained version of a model in an organized way, an automated pipeline named

ecModels container was developed.

The ecModels container is a continuous integration implementation whose main functionality is to provide
a catalogue of ecModels for several relevant organisms that are automatically updated every time a
modification is detected either in the original GEM source repository or in the GECKO toolbox, i.e. new
releases in their respective repositories. The pipeline generates ecModels in different formats, including the
standard SBML and MATLAB files, and stores them in a container repository

(https://github.com/SysBioChalmers/ecModels) in a version controlled way, requiring minimal human

interaction and maintenance. The GECKO toolbox ensures the creation of functional and calibrated
ecModels that are compatible with the provided experimental data (maximum batch growth rate, total
protein content of cells and exchange fluxes at different dilution rates as an optional input). This whole
computational pipeline is illustrated in Fig. 2. Further description of the ecModels container pipeline

functioning is included in in the Materials and Methods section.

A catalogue of new ecModels

Following the aforementioned additions to the GECKO toolbox, that have allowed its generalization, we
used the toolbox for the reconstruction of four new ecModels from previously existing high-quality
metabolic network reconstructions: iYali4, for the oleaginous yeast Yarrowia lipolytica’; iSM996, for the
thermotolerant yeast Kluyveromyces marxianus®; iML1515, for the widely studied bacterium E. coli*; and
Humanl, being the latest and largest network reconstruction available for studying H. sapiens metabolism?.
For the microbial models, all model parameters were calibrated according to the provided experimental

4,51-53

data, generated by independent studies , yielding functional ecModels ready for simulations. Size

metrics for these models can be seen in Table 1.
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These ecModels, together with ecYeastGEM, are hosted in the ecModels container repository for their
continuous and automated update every time that a version change is detected either in the original model
source or in the GECKO repository. In the case of microbial species, two different model structures are
provided: ecModel, which has unbounded individual enzyme usage reactions ready for incorporation of
proteomics data; and ecModel _batch in which all enzyme usage reactions are connected to a shared protein
pool. This pool is then constrained by experimental values of total protein content, and calibrated for batch
simulations using experimental measurements of maximum batch growth rates on minimal glucose media,

thus providing a functional ecModel structure ready for simulations.

For ecHumanGEM just the unbounded ecModel files are provided, as this is a general network of human
metabolism, containing all reactions from any kind of human tissue or cell type for which evidence is
available, and therefore not suitable for numerical simulation. As H. sapiens is the most represented
organism in the BRENDA database, accounting for 11% of the total number of available k.. values (Supp.
file 1), kinetic parameters from other organisms were not taken into account for its enhancement with
enzyme constraints. ecHumanl1 provides the research community with an extensive knowledge base that
represents a complete and direct link between genes, proteins, kinetic parameters, reactions and metabolites
for human cells in a single model structure, subject to automated continuous update by the ecModels

container pipeline.

Table 1.- Size metrics summary for the ecModels catalogue.

Original GEMs
Organism S. cerevisiae Y. lipolytica K. marxianus E. coli H. sapiens
Model ID yeastGEM_8.3.3 iYali4 iSM996 iML1515 Humanl
Reactions 3963 1924 1913 2711 13101
Metabolites 2691 1671 1531 1877 8400
Genes 1139 847 996 1516 3628
Enzyme constrained GEMs
Model ID ecYeastGEM eciYali eciSM996 eciML1515 | ecHumanGEM
Reactions 8028 3881 5334 6084 46259
Metabolites 4153 1880 2064 2334 12191
Enzymes 965 647 716 1259 3224
Enzyme 84.72% 76.39% 71.89% 83.05% 88.86%
coverage
Reactions W/ kcar 3771 1586 2891 2562 27014
Reactions w/ 504 205 532 456 3791
Isoenzymes
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Promiscuous 572 324 469 673 2184
Enzymes
Enzyme 252 75 27 383 756
complexes

Visualization of GECKO simulations in the Caffeine platform
We implemented simulations with ecModels in Caffeine, an open-source software platform for cell factory

design. Caffeine, publicly available at http://caffeine.dd-decaf.eu, allows user-friendly simulation and

visualization of flux predictions made by genome-scale metabolic models. Several standard modelling
methods are already included in the platform, such as "*C fluxomics data integration, and simulation of
gene deletion and/or overexpression, to interactively explore strain engineering strategies. In order to allow
for GECKO simulations, we added a new feature to the platform for uploading enzyme-constrained models
and absolute proteomics data. Additionally, we added a simulation algorithm that recognizes said models,
and overlays the selected proteomics data on them, leaving out data that makes the model unable to grow
at a pre-specified growth rate. After these inclusions to the platform, enzyme usage can now be computed
on the fly and visualized on metabolic maps (Fig. 2B), to identify potential metabolic bottlenecks in a given
condition. The original proteomics data can be visualized as well, to identify if the specific bottleneck is
due to a lack of enzyme availability, or instead due to an inefficient kinetic property. This will suggest
different metabolic engineering strategies to the user: if the problem lies in the intracellular enzyme levels,
the user can interpret this as a recommendation for overexpressing the corresponding gene, whereas if the
problem lies in the enzyme efficiency, the user could assess introducing a heterologous enzyme as an

alternative.

GECKO simulation utilities

As ecModels are defined in an irreversible format and incorporate additional elements such as enzymes (as
new pseudo-metabolites) and their usages (represented as pseudo-reactions), they might sometimes not be
directly compatible with all of the functionalities offered by currently available constraint-based simulation
software***#%3435  We therefore added several new features to the GECKO toolbox that allow the
exploration and exploitation of ecModels. These include utilities for: 1) basic simulation and analysis
purposes, 2) accessible retrieval of kinetic parameters, 3) automated generation of condition-dependent
ecModels with proteomic abundance constraints, 4) comparative flux variability analysis between a GEM
and its ecModel counterpart, and 5) prediction of metabolic engineering targets for enhanced production
with an implementation of the FSEOF method™ for ecModels. Detailed information about the inputs and

outputs for each utility can be found on their respective documentation, available at:
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https://github.com/SysBioChalmers/GECK O/tree/master/geckomat/utilities. All of these utilities were
developed in MATLAB due to their dependency on some RAVEN toolbox functions™.

Predicting microbial proteome allocation in multiple environments

In order to test the quality of the phenotype predictions of an ecModel automatically generated by the
ecModels container pipeline, batch growth under 11 different carbon sources was simulated with
eciML1515 for E. coli. Figure 3A shows that, for all carbon sources, growth rates were predicted at the
same order of magnitude as their corresponding experimental measurements, with the most accurate
predictions obtained for growth on D-glucose, mannose and D-glucosamine. Furthermore, batch growth
rate and protein allocation predictions, using no exchange flux constraints, were compared between
eciML1515 and the iJL.1678 ME-model*, the latter accounting for both metabolism and macromolecular
expression processes. The sum squared error (SSE) for batch growth rate predictions across the 11 carbon
sources using eciML1515 was 0.27, a drastic improvement when compared to the 1.21 SSE of iJL1678
ME-model predictions®*. Figure 3B shows the predicted total proteome needed by cells to sustain the
provided experimental growth rates for the same 11 environments. Notably eciML1515 predicts values that
lie within the range of predictions of the i{JL.1678 ME-model (from the optimal to the generalist case) for
10 out of the 11 carbon sources (see Materiales and Methods for simulation details). This shows that the
new version of the GECKO toolbox ensures the generation of functional ecModels that can be readily used
for simulation of metabolism, due to its systematic parameter flexibilization step which reduces the need
of extensive manual curation for new ecModels. Furthermore, iIML1515 is a model available as a static file
at the BiGG models repository’’; therefore, its integration to the ecModels container for continuous update
demonstrates the flexibility of our pipeline, regarding compatibility with original GEM sources, which can

be provided as a link to their git-based repositories or even as static URLs.

Proteomics constraints refine phenotype predictions for multiple organisms and conditions

The previously mentioned module for integration of proteomics data generates a condition-dependent
ecModel with proteomics constraints for each condition/replicate in a provided dataset of absolute protein
abundances [mmol/gDw]. Even though absolute quantification of proteins is becoming more accessible and

integrated into systems biology studies™

, a major caveat of using proteomics data as constraints for
quantitative models is their intrinsic high biological and technical variability®, therefore some of the
incorporated data constraints need to be loosened in order to obtain functional ecModels. When needed,
additional condition-dependent exchange fluxes of byproducts can also be used as constraints in order to
limit the feasible solution space. A detailed description of the proteomics integration algorithm

implemented in GECKO is given in Supp. file 2.
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The new proteomics integration module was tested on the three ecModels for budding yeasts available in
ecModels container (ecYeastGEM, eciYali, eciSM996). We measured absolute protein abundances for S.
cerevisiae, Y. lipolytica and K. marxianus, grown in chemostats at 0.1 h™! dilution rate and subject to several
experimental conditions (high temperature, low pH and osmotic stress with KCI)*, and incorporated these
data into the ecModels as upper bounds for individual enzyme usage pseudo-reactions. Then, exchange
fluxes for CO, and oxygen corresponding to the same chemostat experiments were used as a comparison
basis to evaluate quality of phenotype predictions. For each organism-condition pair, 3 models were
generated and compared in terms of predictions: a pure stoichiometric metabolic model, an enzyme-
constrained model with a limited shared protein pool, and an enzyme-constrained model with proteomics
constraints. It was found that the addition of the enzyme pool constraint enables major reduction of the
relative error in prediction of gaseous exchange fluxes in some of the studied conditions. Additionally, the
incorporation of individual protein abundance constraints improves even further the predictive accuracy of

gaseous exchanges, for 10 out of the 11 evaluated cases (Fig. 4A-C).

The impact of incorporating enzyme and proteomics constraints on intracellular flux predictions was further
assessed by mapping all condition-dependent flux distributions from the tested ecModels to their
corresponding reactions in the original GEMs. In general, metabolic flux distributions showed high

similarity when comparing ecModel to GEM predictions (Fig. S1), as 70-90% of the active fluxes were

1;gecModel

predicted within the interval of 0.5 < fold-change < 2 (F C= ‘VGW) across all conditions (Fig. S2 A-C,

Supp. file 3). In addition, principal component analysis on absolute enzyme usage profiles predicted by
ecModels revealed that, at low dilution rates, predictions of enzyme demands are mostly defined by the
selected set of imposed constraints (shared protein pool vs. proteomics constraints) rather than by
environmental condition, i.e. exchange fluxes (Fig. S2 D-F). However, more straightfroward comparison
of the models’ predictions, by pairwise comparison of predicted absolute enzyme usage profiles, showed
that 60 — 80% of the predicted enzyme usages lie within a range of 0.5 < fold-change < 2, when comparing
ecModels predictions with and without proteomics constraints, across organisms and conditions (Fig. 4D,
Fig. S2 G-I and Supp. file 3). It was observed that the incorporation of proteomics constraints induces a
drastic differential use for a considerable amount of enzymes, as 12-21% of enzyme usages were predicted
as either enabled or disabled by these constraints across all the simulated conditions, showing slight
enrichment for enabled alternative isoenzymes for already active reactions (Supp. file 3). This suggests that
upper bounds on enzyme usages induce differentiated utilization of isoenzymes, reflecting well why

isoenzymes have been maintained throughout evolution.


https://doi.org/10.1101/2021.03.05.433259
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.433259; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The explicit inclusion of enzymes into GEMs by the GECKO method enables prediction of enzyme
demands at the protein, reaction and pathway levels. Total protein burden values predicted by ecModels for
several relevant metabolic superpathways (central carbon and energy metabolism, amino acid metabolism,
lipid and fatty acid metabolism, cofactor and vitamin metabolism and nucleotide metabolism, according to
the KEGG metabolic subsystems*®), showed that central carbon and energy metabolism is the most affected
sector in the ecYeastGEM network by integration of proteomics constraints, as protein burden predictions
were higher, at least by 20%, for 3 out the 4 simulated conditions when compared with predictions of the

ecYeastGEM without proteomics data (Fig. 4E).

Relative enzyme usages, estimated as predicted absolute enzyme usage over enzyme abundance for all of

€i

T ]), can be understood as the saturation level of enzymes in a given
i

the measured enzymes in an ecModel (

condition. In order to analyze the metabolic mechanisms underlying long-term adaptation to stress in
budding yeasts, relative enzyme usage profiles were computed from all the previous simulations of
ecModels with proteomics constraints. Enzymes that display fold-changes higher than 1 for both absolute
abundance and their saturation level, when comparing predicted usage profiles between stress and reference
conditions, suggest regulatory mechanisms on individual proteins that contribute to cell growth on the
anlyzed stress condition. Figure 4F shows all of the enzymes that were identified as responsive to
environmental stress in this study, displaying enrichment for enzymes involved in biosynthesis of diverse

amino acids and folate metabolism.

A further mapping of all enzymes in these ecModels to a list of 2,959 single copy protein-coding gene
orthologs across the three yeast species® found 310 core proteins across these ecModels. Principal
component analysis revealed that variance on absolute enzyme usages and abundance profiles for these
core proteins is mostly explained by differences in the metabolic networks of the different species rather
than by environmental conditions (Fig. S3 B-C), reinforcing previous results suggesting that, despite being
phylogenetically related, their long-term stress responses at the molecular level have evolved independently

after their divergence in evolutionary history®.

Exploring the solution space reduction
A major limitation in the use of GEMs is the high variability of flux distributions for a given cellular
objective when implementing flux balance analysis, as this requires solving largely underdetermined linear

systems through optimization algorithms'>®°. This limitation has usually been overcome with incorporation
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of measured exchange fluxes as constraints. However, these data are typically sparse in the literature.
Previous studies explored the drastic reduction in flux variability ranges of ecModels for S. cerevisiae and
11 human cell-lines when compared to their original GEMs due to the addition of enzyme constraints'>?®.
However, the irreversible format of ecModels (forward and backwards reactions are split in order to account
for enzyme demands of both directions) hinders their compatibility with the flux variability analysis (FVA)
functions already available in COBRA* and RAVEN® toolboxes. As a solution to this, an FVA module
was integrated to the utilities repertoire in GECKO, whose applicability has been previously tested on
studies with ecModels for S. cerevisiae' and human cell lines?. This module contains the necessary functions

to perform FVA on any set of reactions of an ecModel, enabling also a direct comparison of flux variability

ranges between an ecModel and its GEM counterpart in a consistent way (see Supp. file 2).

The FVA utility was applied on three different ecModels of microbial metabolism and their correspondent
GEMs (iIML1515, iYali4 and iSM996). In all cases the FVA comparisons were carried out for both
chemostat and batch growth conditions in order to span different degrees of constraining of the metabolic
networks (0.1 h™' dilution rate and minimal glucose uptake rate fixed for chemostat conditions; biomass
production fixed to experimental measurements of p,,,, and unconstrained uptake of minimal media
components, for batch conditions). Cumulative distributions for flux variability ranges for all explored
ecModels and GEMs are shown in Figure 5, in which it can be seen that median flux variability ranges are
much reduced for all ecModels and conditions, especially at high growth rates where enzyme constraints
reduce the variability range 5-6 orders of magnitude when compared to pure GEMs. The cumulative
distributions also show a major reduction in the amount of totally variable fluxes (reactions that can carry
any flux between -1000 to 1000 mmol/gDw h), which are an indicator of undesirable futile cycles present
in the network due to lack of thermodynamic and enzyme cost information®-%. For high growth rates, the
amount of totally variable fluxes accounts for 3-12% of the active reactions in the analysed GEMs, in

contrast to their corresponding ecModels in which such extreme variability ranges are completely absent.

Further analysis of the FVA results revealed that a reduction of at least 95% of the variability range was
achieved for more than 90% of all active fluxes at high growth rates in all ecModel. Interestingly, the
aforementioned flux variability metrics were overall improved even for the chemostat conditions, despite a
higher degree of constraining (fixed low growth rate and optimal uptake rate), which restrains these models

to an energy efficient respiratory mode (Supp. file 4).

Discussion
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Here we demonstrated how enzyme constrained models for diverse species significantly improve
simulation performance compared to traditional GEMs. Furthermore, to enable the community to easily
adapt this modelling approach, we upgraded the GECKO toolbox for enhancement of genome-scale models
with enzyme and omics constraints to its version 2.0. Major improvements on the kc,: matching algorithm
were incorporated into the toolbox, based on phylogenetic distance between the modeled organism and the
host organisms for data queries, and an automated curation of k.,; numbers for over-constrained models
were incorporated into the toolbox. Major refactoring of the GECKO toolbox enabled a generalization of
the method, allowing the creation of high-quality ecModels for any provided functional GEM with minimal
need for case-specific introduction of new code. Additionally, several utility functions were integrated into
the toolbox in order to enable basic simulation purposes, accessible retrieval of enzyme parameters,
integration of proteomics data as constraints, flux variability analysis and prediction of gene targets for
enhanced production of metabolites. Overall, it was shown that these enhancements to the GECKO toolbox
improve the incorporation of kinetic parameters into a metabolic model, yielding ecModels with

biologically meaningful kinetic profiles without compromising accuracy on phenotype predictions.

Two major limitations of the first version of the GECKO toolbox were its specific customization to the S.
cerevisiae model, Yeast7, and the need of extensive manual curation for generating an ecModel suited for
FBA simulations; thus, its applicability to other GEMs was not a straightforward procedure. To overcome
these limitations, we generalized the code with the aim of making GECKO a model-agnostic tool. The
development of a procedure for automatic curation of kinetic parameters enabled the generation of
functional ecModels with minimal requirements for experimental data. Recently, ecModels for 11 human
cancer cell-lines were generated with this automated procedure, using Humanl as a model input and
RNAseq datasets together with the tINIT algorithm'® to generate cell-line specific networks®. These
ecModels were used for the prediction of cellular growth and metabolite exchange rates at different levels
of added constraints, resulting in remarkable improvements in accuracy when compared with predictions
of their original GEMs. This highlights one of the main advantages of ecModels: their capability of yielding
biologically meaningful phenotype predictions without an excessive dependency on exchange fluxes as

constraints.

In order to further showcase the functionality of the GECKO toolbox 2.0, a family of new high-quality
ecModels were generated for E. coli, Y. lipolytica, K. marxianus and H. sapiens, based on the original
GEMs iML1515, iYali4, iSM996 and Humanl, respectively. Furthermore, we generated a self-hosted
pipeline for continuous and automated generation and update of ecModels, ecModels container, so that

each of the currently available ecModels (ecYeastGEM, eciML1515, eciYali, eciSM996 and ecHuman1)
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are integrated to it, providing a version-controlled and continuously updated repository for high-quality

ecModels.

Absolute proteomics measurements for the budding yeasts S. cerevisiae, K. marxianus and Y. lipolytica
grown under multiple environmental conditions, were incorporated as constraints into their ecModels by
using the proteomics integration module added to the GECKO toolbox. Analysis of metabolic flux
distributions revealed that net reaction fluxes predicted by GEMs are not significantly affected by the
incorporation of kinetic and proteomics constraints, however the explicit integration of enzymes into
ecModels extends the range of predictions of classical FBA and enables computation of enzyme demands
at the reaction and pathway levels. It was found that incorporation of proteomics constraints does not affect
enzyme demand predictions significantly for most of the active enzymes at low dilution rates across the
simulated conditions. However, we observed that a diversified utilization of isoenzymes, enforced by
proteomics constraints, increases the predicted total protein mass allocated to central carbon and energy
metabolism, in comparison to optimal enzyme allocation profiles. This result suggests the relevance of
metabolic robustness in contrast to optimal protein utilization for microbial growth under environmental

stress and nutrient-limited conditions.

Incorporation of proteomics data allows the use of ecModels as scaffolds for systems-level studies of
metabolism, providing a tool for uncovering metabolic readjustments induced by genetic and environmental
perturbations, which might be difficult to elucidate by purely data-driven approaches, specially at
conditions of relatively low changes at the transcript® and protein levels®. For all studied stress conditions
in this study, we identified upregulated proteins (increased abundance) that are needed to operate at high
saturation levels in stress conditions, while showing low usage at reference conditions, creating lists of
potential gene amplification targets for enhancing stress tolerance in three industrially relevant yeast species
(Supp. file 3). Upregulation and high saturation of enzymes in amino acid and folate metabolism were
found to be common across the studied organisms and stress conditions (Fig. S3 D and Supp. file 3). These
results suggests that yeast cells display enzyme expression profiles that provide them with metabolic
robustness for microbial growth under stress and nutrient-limited conditions, in contrast to an optimal

protein allocation strategy that prioritizes expression of the most efficient and non-redundant enzymes.

Our results on drastic reduction of median flux variability ranges and the number of totally unbounded

fluxes for eciYali, eciSM996 and eciML1515, together with previous studies’>*®

, suggest that a major
reduction of the solution space of metabolic models to a more biologically meaningful subspace is a general

property of ecModels. However, flux variability is an intrinsic characteristic of metabolism; therefore,
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metabolic models with highly constrained solution spaces may exclude some biological capabilities of
organisms, which are not compatible with the set of constraints used for the analysis (exchange fluxes,

growth rates and even profiles of kinetic parameters, considered as condition-independent in ecModels).

Here, the predictive capabilities of eciML1515 and {JL1678 ME-model (both for E. coli) for cellular growth
and global protein demands on diverse environments were compared. The major improvement in predicted
maximum growth rates, together with a comparable performance on quantification of protein demands,
shown by eciML1515 suggest that, despite its mathematical and conceptual simplicity, the GECKO
formalism is a suitable framework for quantitative probing of metabolic capabilities, compatible with the
widely used FBA method and without the need of excessive complexity or computational power.
Nevertheless, ME-models provide a much wider range of predictions that explore additional processes in
cell physiology with great detail. Direct comparison between the predictions of these modelling formalisms,
suggest that ME-models performance can be improved by incorporation of either curated or systematically

retrieved kinetic parameters that are suitable for the modelled organisms.

Simpler modelling frameworks that account for protein or enzyme constraints in metabolism, such as flux
balance analysis with molecular crowding (FBAwWMC)'®!"", metabolic modelling with enzyme kinetics
(MOMENT)?* and constrained allocation flux balance analysis (CAFBA)?!, have also been developed and
used to explore microbial cellular growth'®!7?! and overflow metabolism'¢*. These methods have overcome
the lack of reported parameters for some specific reactions either by incorporation of proteomics
measurements and prior flux distributions®, manual curation and sampling procedures'®!” or even by
lumping protein demands by functionally related proteome groups. In contrast, the new version of the
GECKO toolbox provides a systematic and robust parameterization procedure, leveraging the vastly
accumulated knowledge of biochemistry research stored in public databases, ensuring the incorporation of

biologically meaningful kinetic parameters even for poorly studied reactions and organisms.

The applicability of these other simple modelling formalisms to models for diverse species is limited as
none of these methods has been provided as part of a generalized model-agnostic software implementation.
Recently, a simplified variant of the MOMENT method (sMOMENT) was developed and embedded into
an automated pipeline for generation and calibration of enzyme-constrained models of metabolism
(AutoPACMEN)™. The pipeline was tested on the generation of an enzyme-constrained version of the
iJO1366 metabolic reconstruction for E. coli, which also showed consistency with experimental data. This
work represented a step forward in the field of constrain-based metabolic modelling, as it contributed to

standardization of model generation and facilitating their utilization and applicability to other cases.
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However, due to the intrinsic trade-off between model simplicity and descriptive representation, a limitation
of the sSMOMENT method is its simplification of redundancies in metabolism, which just accounts for the
optimal way of catalysing a given biochemical reaction, discarding the representation of alternative
isoforms that might be relevant under certain conditions. In GECKO ecModels, all enzymes for which a
gene-E.C. number relationship exists are included in the model structure. As traditional FBA simulations
rely on optimality principles one could, in principle, expect the same predicted flux distributions by
sSMOMENT and GECKO ecModels. Nonetheless, the explicit incorporation of all enzymes in a metabolic
network enables explanation of protein expression profiles that deviate from optimality in order to gain
robustness to changes in the environment, as it has been recently shown by the integration of a regulatory
nutrient-signalling Boolean network together with an ecModel for S. cerevisiae’s central carbon

metabolism’'.

In conclusion, GECKO2.0 together with the development of the automated pipeline ecModels container
facilitates the generation, standardization, utilization, exchange and community development of ecModels
through a transparent version-controlled environment. This tool provides a dynamic, and potentially
increasing, catalogue of updated ecModels trying to close the gap between model developers and final users
and reduce the time-consuming tasks of model maintenance. We are confident that this will enable wide
use of ecModels in basic science for obtaining novel insight into the function of metabolism as well as in
synthetic biology and metabolic engineering for design of strains with improved functionalities, e.g., for

high-level production of valuable chemicals.

Material and Methods

Automation pipeline and version-controlled hosting of the ecModels container

The ecModels repository is used to version-control the pipeline code and the resulting models. The pipeline
is restricted to 2 short Python files, whose role is to decide when models need to be updated based on a
configuration file config.ini, and to consequently invoke the use of GECKO for each model. Updates are
deemed necessary when either the underlying dependencies (i.e., GECKO, RAVEN and COBRA
toolboxes, the Gurobi solver, and 1libSMBL) or the source GEMs are independently updated to a new

version (release) in their respective repositories.

The pipeline is designed be automatic and to not require supervision. It was developed to work with both
version-controlled GEMs and GEMs downloadable from a URL, updating the version in the configuration

after a new ecModel is obtained. For easy review, the pipeline log is publicly available under the Actions
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tab of the GitHub repository. The computation is performed through a self-hosted GitHub runner, further
leveraging the transparent nature of the GitHub platform and the git version-control system. The resulting
ecModel and updated configuration are committed to the repository, with the changes being made available
for review through a pull request. Additionally, the GECKO output is also replicated in the pull request

body. The ecModels container thus continues the transparency and reproducibility of the source models.

Quantification of absolute protein concentrations for S. cerevisiae, Y. lipolytica and K. marxianus

Total protein extraction for the strains Saccharomyces cerevisiae CEN.PK113-7D (standard, low pH, high
temperature, osmotic stress), Kluyveromyces marxianus CBS6556 (standard, low pH, high temperature,
osmotic stress) and Yarrowia lipolytica W29 (standard, low pH, high temperature) was conducted as
described previously (Supp. file 2). Three reference samples (hereafter, ‘bulk’ samples), one per strain,
were constructed by pooling 5 pg of each experimental sample. Aliquots of 15 pg of total protein extract
from each sample (3 strains x 4 conditions x 3 replicates) and the three bulks were separated on one-
dimensional SDS-PAGE short-migration gels (1x1 cm lanes, Invitrogen, NP321BOX). Yeast proteins
digestion was performed on excised bands from gel gradient and digested peptides of UPS2 (Sigma) were
used as external standards for absolute protein quantification (more details in Supp. file 2). Four pl of the
different peptide mixtures (800 ng for yeast peptides and 949 ng for bulks) were analyzed using an Orbitrap

Fusion™ Lumos™ Tribrid™ mass spectrometer (Thermo Fisher Scientific).

Protein identification was performed using the open-source search engine X!Tandem pipeline 3.4.47%. Data
filtering was set to peptide E-value < 0.01 and protein log(E-value) <-3. Relative quantification of protein
abundances was carried out using the Normalized Spectral Abundance Factor (NSAF)” and the NSAF
values obtained from UPS2 proteins in bulk samples were used to determine the suitable regression curves
that allowed the conversion from relative protein abundance into absolute terms. MS data is available online

on public databases via the PRIDE repository’* with the dataset identifier PXD012836.
Simulation of condition-dependent flux distributions

Simulation of cellular phenotypes for conditions of environmental stress at low dilution rates with GEMs
were performed by first setting bounds on measured glucose uptake and byproduct secretion rates according
to experimental data from previous studies on chemostats®’. Then the biomass production rate was
constrained (both upper and lower bounds) with the experimental dilution rate (0.1 h™'). Maximization of
the non-growth associated maintenance pseudo-reaction was set as an objective function for the
parsimonious FBA problem as a representation of the additional energy demands for regulation of cellular

growth at non-optimal conditions. The same procedure was followed for simulations with ecModels
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constrained by a total protein pool. For the case of ecModels with proteomics constraints, the same set of
constraints was used but the objective function was set as minimization of the total usage of unmeasured
proteins, assuming that the regulatory machinery for stress tolerance is represented by the condition-specific

protein expression profile.

Prediction of microbial batch growth rates

Batch cellular growth was simulated by allowing unconstrained uptake of all nutrients present in minimal
mineral media, enabling a specific carbon source uptake reaction for each case while blocking the rest of
the uptake reactions and allowing unconstrained secretion rates for all exchangeable metabolites.
Maximization of the biomass production rate was used as an objective function for the resulting FBA
problem. For prediction of total protein demands on unlimited nutrient conditions, media constraints were
set as expressed above and experimental batch growth rate values were fixed as both lower and upper
bounds for the biomass production pseudo-reaction. The total protein pool exchange pseudo-reaction was
then unconstrained and set as an objective function to minimize, assuming that when exposed to unlimited
availability of nutrients the total mass of protein available for catalyzing metabolic reactions becomes the
limiting resource for cells. The solveLP function, available in the RAVEN toolbox, was used for solving

all FBA problems in this study.

Code availability
The source code of  the updated GECKO toolbox is available at:
https://github.com/SysBioChalmers/GECKO. The code for ecModels container and the whole catalogue

of updated ecModel files can be accessed at: https://github.com/SysBioChalmers/ecModels. All custom
scripts for simulations included in this study can be found at:

https://github.com/SysBioChalmers/GECKO?2 simulations. All of these repositories are public and open to

collaborative continuous development.
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Figure 1. k.. distributions in BRENDA and ecYeast7. A) Number of k.. entries in BRENDA per organism.
B) k.. distributions for closely related enzyme families. Sample size and median values (in s') are shown
after each family identifier. C) k. distributions for enzymes in BRENDA by metabolic context and life
kingdoms. Median values are indicated by red dots in each distribution, statistical significance (under a
Kolmogorov-Smirnov test) is indicated by red stars for each pair of distributions for a given kingdom. CEM
— central carbon and energy metabolism; ALM — Amino acid and lipid metabolism; ISM — Intermediate
and secondary metabolism. D) Number of k... matches in ecYeast7 per assignment category (GECKO 2.0).
E) Comparison of the number of k.., matches for E.C. numbers with 0, 1, 2 and 3 introduced wild-cards by
GECKO 2.0 and GECKO k.., matching algorithms. F) Cumulative k.. distributions for: all S. cerevisiae
entries in BRENDA, all entries for fungi in BRENDA, ecYeast7 enhanced by GECKO and ecYeast7
enhanced by GECKO 2.0. Colored points and vertical dashed lines indicate the value for the median value
for each distribution. Statistical significance under a Kolmogorov-Smirnov test of the matched kea
distributions when compared to all entries for S. cerevisiae and fungi, is shown with red circles and stars,
respectively. p-values below 1x1072 are indicated with red. G) Prediction of batch maximum growth rates
on diverse media with ecYeast7 enhanced by GECKO 2.0. Glu — glucose, Fru — fructose, Suc — sucrose,

Raf —raffinose, Mal — maltose, Gal — galactose, Tre — trehalose, Gly — glycerol, Ace — acetate, Eth — ethanol.
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Figure 2. Extending utilization of ecModels. A) ecModels container: Integrated pipeline for continuous
and automated update of ecModels. B) Implementation of GECKO simulations in the Caffeine platform
(https://caffeine.dd-decaf.eu/) for visualization of enzyme usage. The color of the arrows corresponds to

the value of the corresponding fluxes. Genes or reactions connected to enzymes with a usage above 90%
are highlighted with a glow around the corresponding text or arrow, respectively. The chosen usage
threshold to highlight can be tuned with the slider on the right.
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Figure 3. Comparison of predictive capabilities between eciML1515 and ME-iJL1678 for E. coli. A)
Maximum batch growth rate predictions on minimal media with diverse carbon sources. Squared-sum
errors when compared to experimental values are shown for both eciML1515 and ME-iJL1678. B)

Prediction of total protein content in the cell by eciML1515 and ME-iJL.1678 using the optimal and

generalist approaches.
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Figure 4 Evaluation of proteomics-constrained ecModels. Comparison of median relative error in
prediction of exchange fluxes for O, and CO, by GEMs, ecModels and proteomics-constrained ecModels
across diverse conditions (chemostat cultures at 0.1 h'! dilution rate) for A) S. cerevisiae B) K. marxianus
C) Y. lipolytica. D) Comparison of absolute enzyme usage profiles [mmol/gDw] predicted by ecYeastGEM
(ecM) and ecYeastGEM with proteomics constraints (ecP) for several experimental conditions. The region

<

between the two dashed grey lines indicates enzyme usages predicted in the interval 0.5 < Ef°F /EFM

2, the region between the two dashed black lines indicates enzyme usages predicted in the interval 0.1 <
EfPJEF™ < 10 when comparing the two ecModels. E) Protein burden for different superpathways
predicted by ecYeastGEM (ecM) and ecYeastGEM with proteomics constraints (ecP). F) Highly saturated
enzymes at different stress conditions for S. cerevisiae, K. marxianus and Y. lipolytica predicted by their
corresponding ecModels constrained with proteomics data. Yellow cells indicate condition-responsive
enzymes (relative usage = 0.95). Red asterisks indicate enzymes conserved as single copy orthologs

across the three yeast species. Std — Reference condition, HiT — High temperature condition, LpH — Low

pH condition, Osm — Osmotic stress condition, AA — amino acid metabolism, NUC - nucleotide
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metabolism, CEM - central carbon and energy metabolism, CofVit — cofactor and vitamin metabolism, Lip

— lipid and fatty acid metabolism.
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Figure 5.- Cumulative distributions of flux variability ranges for iSM996, iYali4 and iML1515 compared

to their respective enzyme-constrained versions at low and high growth rates.
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Figure S1. Cumulative distributions of metabolic fluxes. Flux distributions of ecModels were mapped to
their corresponding reactions in the original GEMs and plotted together as cumulative distributions for all
organisms and conditions. A-D) Cumulative distributions for S. cerevisiae models; E-H) Cumulative
distributions for K. marxianus models; I-K) Cumulative distributions for Y. lipolytica models. Sample size

and median flux values, in mmol/gDwh, are shown within parenthesis for all distributions in all the plots.
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Statistical significance under a two-sample Kolmogorov-Smirnov test between flux distributions for
ecModels and their corresponding GEMs are shown as * (0.01 <= p-value < 0.05) and ** (p-value<0.01).
sce — S. cerevisiae, kma — K. marxianus, yli — Y. lipolytica, std — Reference condition, HiT — High
temperature condition, LpH — Low pH condition, Osm — Osmotic stress condition, GEM — Genome-scale
metabolic model, ecM — ecModel with total protein pool constraint — ecP — ecModel with proteomics

constraints.
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Figure S2. Comparison of predicted metabolic fluxes and enzyme usage distributions. Pairwise comparison

of metabolic fluxes predicted by GEMs, ecModels and proteomics-constrained ecModels for A) .

cerevisiae, B) K. marxianus and C) Y. lipolytica. Principal component analysis on enzyme usage

distributions predicted by ecModels and proteomics-constrained ecModels for D) S. cerevisiae, E) K.
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marxianus and F) Y. lipolytica subject to different environmental conditions. Pairwise comparison of
enzyme usage profiles in mmol/gDw predicted by ecModels and ecModels with proteomics constraints for
G) S. cerevisiae H) K. marxianus 1) Y. lipolytica. Grey dashed lines indicate predictions in the interval
0.5 < fold change < 2, whilst black dashed lines delimit the region of predictions within 0.1 <
fold change < 10, when comparing GEMs to ecModels (A-C) and ecModels to ecModels with
proteomics data (G-I). Std — Reference condition, HiT — High temperatura condition, LpH — Low pH
condition, Osm — Osmotic stress condition, GEM — Genome-scale metabolic model, ecM — ecModel with

total protein pool constraint — ecP — ecModel with proteomics constraints.
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Figure S3. Evolutionary conserved enzymes across S. cerevisiae, K. marxianus and Y. lipolytica. A)
Conservation of protein-coding genes amongst the three budding yeasts. Overlaps indicate number of genes
conserved as single copy orthologs between yeast species. The uniprot codes for the 2,959 conserved
protein-coding genes amongst the three species were mapped to their corresponding ecModels
(ecYeastGEM, eciSM996 and eciYali), 310 enzymes were found as single copy orthologs across the three
ecModels. B) Principal component analysis on absolute abundances for the 310 core enzymes across the
three yeast species for several experimental conditions. C) Principal component analysis on absolute
enzyme usages predicted for the 310 core enzymes by ecYeastGEM, eciSM996 and eciYali for several
experimental conditions. D) Venn diagram for all core enzymes predicted as highly saturated
(relative usage = 0.95) in at least one environmental condition across the three yeast species. Std —
Reference condition, HiT — High temperature condition, LpH — Low pH condition, Osm — Osmotic stress

condition, Sce — S. cerevisiae, Kmx — K. marxianus, Yli — Y. lipolytica.
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Supplementary methods

Improved k..« matching algorithm

The kc.r matching algorithm in the GECKO toolbox queries kinetic parameters from BRENDA, the largest
database available on enzymatic information'. However, one of the most important limitations to consider
is that such parameters are only available for <10% of the known biochemical reactions®. The turnover
number assignment to each of the enzymatic reactions present in a GEM is based on a flexible algorithm
that allows the incorporation of kinetic parameters even when values for the specific organism and natural
substrate of the enzyme are not available. However, as overestimation of microbial growth rates under
environmental and genetic perturbations remains one of the main challenges for GEM development,
biological relevance of the imposed kinetic constraints plays a crucial role for improving predictive
accuracy’. In this regard, a global analysis for the reported k.. values on BRENDA (Supp. file 1) pointed

out the following potential issues.

1. The availability of kinetic parameters is highly heterogeneous, i.e. not all organisms have been

studied to the same extent.

2. ke value distributions showed to be significantly different amongst kingdoms of life, therefore the

catalytic activity of enzymes might be phylogenetically constrained.

3. ke value distributions are highly dependent on the metabolic context. For all kingdoms of life, there
are important differences on the distributions for enzymes belonging to different metabolic pathways
groups, being central carbon and energy metabolism enzymes the fastest group (on average) when
compared to those involved in amino acid, fatty acid and nucleotide metabolism and secondary and

intermediate metabolism.

In order to address the aforementioned limitations, the GECKO k., matching algorithm was modified
aiming to provide a more accurate parameterization of models. A comparison between the introduced and

previous hierarchical algorithms is shown in Table S1.

Table S1: Kca: matching algorithms comparison.

Original k... matching criteria New criteria

As a first option, it will try to match the E.C. | Same as original.
number, the organism and the corresponding
substrate to some k..« annotation in the BRENDA
database.

If no match is found, it will try to match the E.C. | If no match is found, it will try to match the E.C.
number and the substrate, but with any organism | number and the substrate, but for the
available.
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phylogenetically closest organism with available
values.

If no match is found, it will try to match the E.C. | Same as original.

number and the organism, but with any substrate
available.

If still no match is found, it will try to match the | If no match is found, it will try to match the E.C.
E.C. number for any organism, and any substrate | number and the organism but looking in specific
available. activity values instead of kca (S.A.*Myeighi = Keca)-

If still no match is found, then it will introduce one | If still no match is found, it will try to match a ke
wildcard to the E.C. number and attempt all | value for the E.C. number, any substrate but for the
previous 4 steps again. phylogenetically closest organism with available
values.

If still no match is found, it will try to match a specific
activity value for the E.C. number, any substrate but
for the phylogenetically closest organism available.
Finally, if still no match is found, then it will
introduce one wildcard (WC) to the E.C. number and
attempt all previous 6 steps again.

Estimation of phylogenetic distance between pairs of organisms

The phylogenetic distance between organisms is measured as the number of nodes of separation between
two organisms in the KEGG taxonomical tree (incorporated as a MATLAB workspace file into the
toolbox), this new feature follows from the assumption that kinetic parameters on enzymes have been finely
tuned by evolution and are phylogenetically related*. The incorporation of specific activity values increases
the parameter coverage and avoids the assignment of a high number of wild cards, making the assignments

as close as possible to the original metabolic function of the specific enzyme class.

Iterative curation of limiting k... numbers based on enzyme control coefficients

Once kinetic parameters and protein pool bounds have been incorporated into the ecModel it is very likely
that overconstraining arises due to the intrinsic uncertainty of the incorporated k.. values. For such cases,
the module kcat_sensitivity_analysis flexibilizes the coefficients with a higher effect on the simulated
objective function value based on enzyme control coefficients given by

ECC:. = ké]at Avobi

9] ij
vobj AkC{it

in which ké’at represents the kcu parameter of the enzyme i in reaction j; v,p; is the original value in the
o ¢ is an induced perturbation in the ke equivalent to 10-fold increase of its initial
ij

cat-

objective function; Ak
value; Av,),; is the change in the objective function after perturbing k

The ECCs are ranked in a decreasing way and the enzyme with the coefficient is then selected for a 10-fold

ke increase, based on the assumption that k., parameters may span orders of magnitude across organisms
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and substrates even for the same enzyme class. This procedure iterates until the ecModel is able to reach to
provided experimental growth rate in the getModelParameters.m function. Information regarding the
flexibilized k..t values, their respective proteins and reactions, ECCs, flexibilized and original kca:

s is saved as a text file in the GECKO/model folder of the toolbox under the name kcat_modifications.txt.

Incorporation of proteomics constraints

The integrate_proteomics module in GECKO enables the generation of condition dependent models with
proteomics constraints for any given dataset of absolute protein abundances [mmol/ gDw] with m replicates
for n conditions. For each experimental condition, the abundance values are filtered, excluding proteins
that are not present in at least 2/3 of the total number of condition replicates and also noisy measurements
(proteins with relative standard deviation higher than 1 across replicates). Median values and standard
deviations of abundance are calculated for each protein across replicates, then upper bounds are imposed

on their corresponding enzyme usage pseudoreactions as follows:
ub,, = [E;] +1.96 %6

Where [E;] represents the abundance of the protein i in mmol/gDw and § the standard deviation, the
addition of 1.96 * ¢ accounts for a confidence interval of 0.95 in the protein abundance measurement. The
experimental value for cellular growth rate at which the proteomics samples were obtained is then fixed as
lower bound for the biomass pseudoreaction and measured fluxes on glucose uptake rate and, optionally,
byproducts secretion rates are set as upper bounds for their respective exchange reactions (adding a

numerical tolerance of 5%). The remaining total protein pool is then constrained by
uprool = Ptotal - 2 MWL' * [El] *x g * f
7

where Pto¢q; is the measured total protein content in the cell in gpro/gDW; My, is the molecular weight of
the measured protein i; ¢ represents an average saturation factor for the unmeasured enzymes, assumed as
0.5%¢; f accounts for the fraction that the unmeasured protein sector represents out of the total proteome in
the cell, this value is calculated by using a paxDB proteome abundance file for the organism of interest as

a reference, if no paxDB file is provided then a value of 0.5 is assumed.

Proteomics abundances are corrected for the oxidative phosphorylation complexes, trying to avoid
overconstraining of potentially erroneously measured subunits that might limit the whole pathway. This

correction is limited to just this pathway as it is desirable to modify the original dataset the least possible
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and abundance changes in OxPhos subunits are key to meet the phenotype energy requirements. Medium
constraints are set by allowing free uptake of all compounds available in the culture medium and closing
the rest of the uptake reactions. Additionally, all the upper bounds for production reactions (secretion of
metabolites) are set to 1000 mmol/gDw h. Using an ecModel_batch with the same constraints setup,
minimal enzyme requirements for the proteins present in the filtered dataset are retrieved from a
parsimonious FBA solution vector. Enzyme abundances that are lower than the minimum requirements

calculated by the FBA solution are corrected in the dataset.

A proteomics constrained ecModel_prot is obtained by the function constrainEnzymes.m. If the model is
overconstrained after imposing all the afore mentioned constraints, thenthe function

[flexibilizeProteins.m flexibilizes the top-limiting abundances (based on shadow prices for the measured

Vpio
aubei

proteins, given by: shadow prices = ) until the model is able to grow at the provided experimental

growth rate. After this, an optimal enzyme usage profile compatible with the provided constraints is

obtained and optimal levels are set as upper bounds for the flexibilized protein usages.

The total flexibilized mass of protein is drawn from the remaining protein pool (upper bound
for protein_pool_exchange pseudoreaction) for consistency with mass conservation. Non-growth
associated ATP maintenance is fitted according to condition specific experimental data if available
(measurements on exchange fluxes of oxygen and CO; from the same samples as the proteomics dataset).
In the case of chemostat samples such conditions are set by first fixing the growth rate to the experimental
value, minimizing the carbon source uptake, fixing its optimal value and then setting the total unmeasured
enzymes usage as a new objective to minimize. Each condition-specific model is saved

in GECKO/models/prot_constrained.

Comparative flux variability analysis

The function comparativeFVA.m in the FVA utitilities module provides a fair comparison of flux
variability range distributions between a given GEM and its ecModel pair for glucose limited conditions
(low dilution rates) and protein limiting regime (batch growth). For the chemostat case, a dilution rate of
0.1 h!' was set as both lower and upper bound for the biomass pseudoreaction (+/- a tolerance value of
0.01%). Then the glucose uptake rate was set as an objective to minimize and its optimal value was then
also fixed, using the same tolerance. Additional culture medium constraints were imposed (upper bound
for exchange reactions of medium components were set to 1000 mmol/gDw h). All applied constraints were
also applied to the original GEM. For the protein-limiting case, biomass production is maximized with the

ecModel and then the optimal value is used to set a lower bound on the same reaction, in order to compare
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with the original GEM, the same optimal growth rate is fixed as both lower and upper bounds for the
biomass pseudoreaction. A parsimonious flux distribution in which the total protein usage is minimized in
the ecModel subject to all of the previous constraints is then obtained. For every reaction that is able to
carry a non-zero flux in the original GEM (assessed by the RAVEN toolbox function haveFlux.m) both
minimization and maximization are performed for the original GEM. For the ecModel, such optimizations
are performed on the governing pseudoreaction representing the same original reaction flux (i.e. arm
reactions when isoenzymes are present), this is done for both the forward reaction and its reversible
counterpart (if present). In order to avoid the introduction of artificial variability, the forward reaction is
blocked when the backwards is optimized, and the same is applied to the opposite direction. For each

reaction a flux variability range is given by

For the ecModel these ranges are given by
FV. = ( max __ min) _( max __ .,,min
i = Vi 14} Virev — ViRev
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