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C
hromosomal instability (CIN) and somatic copy-

number alterations (SCNA) play a key role in the evo-

lutionary process that shapes cancer genomes. SC-

NAs comprise many classes of clinically relevant events, such

as localised amplifications, gains, losses, loss-of-heterozygosity

(LOH) events, and recently discovered parallel evolution-

ary events revealed by multi-sample phasing. These events

frequently appear jointly with whole genome doubling

(WGD), a transformative event in tumour evolution involving

tetraploidization of genomes preceded or followed by individ-

ual chromosomal copy-number changes and associated with

an overall increase in structural CIN.

While SCNAs have been leveraged for phylogeny reconstruc-

tion in the past, existing methods do not take WGD events into

account and cannot model parallel evolution. They frequently

make use of the infinite sites assumption, do not model hor-

izontal dependencies between adjacent genomic loci and can

not infer ancestral genomes. Here we present MEDICC2, a

new phylogeny inference algorithm for allele-specific SCNA

data that addresses these shortcomings. MEDICC2 dispenses

with the infinite sites assumption, models parallel evolution

and accurately identifies clonal and subclonal WGD events. It

times SCNAs relative to each other, quantifies SCNA burden

in single-sample studies and infers phylogenetic trees and an-

cestral genomes in multi-sample or single-cell sequencing sce-

narios with thousands of cells.

We demonstrate MEDICC2’s ability on simulated data, real-

world data of 2,778 single sample tumours from the Pan-

cancer analysis of whole genomes (PCAWG), 10 bulk multi-

region prostate cancer patients and two recent single-cell

datasets of triple-negative breast cancer comprising several

thousands of single cells.

INTRODUCTION

Somatic copy-number alterations (SCNAs) and chromo-

somal instability (CIN) are hallmarks of many tumours

and drive genome plasticity and intra-tumour heterogene-

ity (ITH) [1, 2]. SCNAs are subject to continuous evolu-

tion and selection across cancer types [3], and haplotype-

resolved SCNA analyses have revealed parallel and poten-

tially convergent evolution, including mirrored subclonal

allelic imbalance (MSAI) events [4]. Besides their clinical

relevance [5], SCNAs are a rich source of genetic varia-

tion that can be leveraged to reconstruct tumour evolution

[6, 7]. However, for evolutionary reconstructions, SCNAs

pose particular challenges, including statistical dependencies

between genomic loci, overlapping of individual gain/loss

events causing backmutations and physical constraints, e.g.

that fully deleted genetic material cannot be regained at a

later time point [6, 8, 9]. These characteristics of SCNA

events necessitate an explicit evolutionary model of individ-

ual haplotype-specific copy-number changes to allow for

accurate phylogenetic reconstructions.

Such an evolutionary model should also include whole-

genome doubling (WGD) events [10–13], which have long

been known to be linked to tumorigenesis [14–19], and

which have been identified as key contributors to CIN [3, 11,

20, 21] and as potential therapeutic targets [22–24]. WGD
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involves tetraploidization of genomes frequently followed

by immediate loss of individual chromosomes [12, 20], thus

buffering cancer genomes against the accumulation of dele-

terious mutations [21] and forming a substrate for further

genomic diversification [3, 21]. Statistical indicators of

WGD include a high average ploidy [12] in relation to the

frequency of loss-of-heterozygosity (LOH) events in a co-

hort [25], or evidence from the clone structure of multiple

samples [18]. From an evolutionary perspective, reliably

detecting WGD events requires weighing a complete dou-

bling of the genome followed by chromosomal losses against

successive gains of individual chromosomes.

While several SCNA-based evolutionary inference methods

have been proposed in the past [26–29], they do not model

WGD events, frequently make use of the infinite sites as-

sumption [30] and thus cannot infer parallel evolution, and

do not deal with statistical dependencies between genomic

loci. They are further often restricted to solving the much

simpler problem of tree inference with fully sampled data,

i.e. where the ancestral (internal) nodes of the tree are ac-

cessible through sequencing, an unrealistic assumption in

most cases. Alternatively, many clinical studies still use

hierarchical clustering based on e.g. Euclidean or Hamming

distances, which are not based on evolutionary principles, to

infer trees from SCNAs and interpret them as phylogenies

of cancer genomes.

To address this, we have developed MEDICC2 to infer phylo-

genies from SCNAs based on the Minimum-Event Distance

(MED) [6, 31], i.e. the minimum number of LOH events,

WGD events and gains and losses of arbitrary size needed

to transform one genome into another. MEDICC2 computes

the MED in the presence of WGD in linear time and recon-

structs phylogenetic trees, infers parallel events and ancestral

genomes and times SCNA events including WGD relative to

each other. We apply MEDICC2 to 2,778 tumours from the

Pan-Cancer Analysis of Whole Genomes (PCAWG), where

it accurately identifies WGD against a ”gold standard” set

of WGD calls determined using consensus copy-number

profiles from six copy-number callers [25, 32]. Using multi-

sample prostate cancer cases we demonstrate MEDICC2’s

ability to detect subclonal WGD events and to correctly

place parallel evolution and MSAI events revealed by multi-

sample phasing [3, 4]. We ultimately show how MEDICC2

infers phylogenies from allele-specific copy-number profiles

for thousands of single cells without prior clustering or data

aggregation.

RESULTS

Inferring phylogenies from SCNAs with

MEDICC2

MEDICC2 infers phylogenies and ancestral genomes from

SCNAs (Figure 1A) by solving the MED problem, originally

formulated by us [6] and recently studied by Zeira et al. [31],

using a weighted finite-state transducer (FST) framework

[33]. Briefly, the MED between a pair of copy-number pro-

files is defined as the minimum number of gains and losses of

arbitrary length needed to transform one copy-number pro-

file into another (see Methods). MEDICC2 thereby enforces

physical constraints where gains of zero-copy segments are

not permitted and zero-copy segments are ”ignored” by sub-

sequent operations, mimicking the absence of that segment

of genomic DNA (Figure 1B). This MED is thus asymmetric,

and the symmetric distance between a pair of copy-number

profiles is computed by minimising the MED between two

copy-number profiles and their evolutionary ancestor [6]

(Figure 1C). For this, the transducer implementing the MED

has to be composed with its inverse, a complex operation. To

avoid constructing this explicitly, we here employ a new lazy

composition strategy, which only expands the FST along the

path required for shortest-path computation (Methods).

To model WGD events (MED-WGD), MEDICC2 processes

whole-genome copy-number profiles including both haplo-

types at once, while keeping track of chromosome bound-

aries. Standard gain and loss events terminate when they

reach the end of a chromosome, WGD events are gains

applied to all non-zero segments in the genome (thereby dou-

bling both haplotypes) irrespective of chromosome bound-

aries. Tetraploidization preceded/followed by rapid chromo-

somal loss to reach a near-triploid state [12, 20] has been

described in many tumour types and is naturally contained

in our model in the form of a WGD event preceded/followed

by multiple losses of individual chromosomes.

Before calculating distances, copy-number profiles are typi-

cally phased (Figure 1D-E), either through the use of multi-

sample reference phasing using Refphase [3], or through

an internal evolutionary phasing routine (Methods), which

chooses a haplotype configuration that minimises the total

MED between the genome and a reference genome, typically

a diploid normal (Figure 1E). MEDICC2 then infers the tree
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Figure 1: MEDICC2 algorithm. A) MEDICC2 infers cancer phylogenies from SCNA data from single cells or bulk sequencing using a minimum-event distance

(MED) and infers the ancestral genomes. It allows for backmutations, obeys biological constraints and solves the phylogeny problem where ancestral genomes are not

sampled. B) Computing distances with WGD: Copy-number profiles (CNPs) are represented as vectors of positive integer copy-numbers across chromosomes (here: two

chromosomes with four segments each). To infer the correct MED, LOH events are considered first, as lost segments cannot be re-gained by later events. WGD events span

the full CNP, whereas gain and loss events can affect an arbitrary number of segments within a chromosome. C) Symmetric distance calculation: The MED, as computed

through the FST T, is asymmetric due to the biological constraints. The final symmetric distance is computed from a CNP to an arbitrary ancestral CNP and from the ancestral

CNP back to the second CNP, thereby minimising over all possible ancestral CNPs. This is achieved by composition of the tree FST T with its inverse T-1. D) Schematic

overview of the MEDICC2 workflow. Haplotype-specific CNPs are either pre-phased or undergo evolutionary phasing (see E). Pairwise MEDs are computed between all

genomes, followed by tree inference and ancestral reconstruction which determines the final branch lengths of the tree. Results are reported to the user as a patient summary

and plot. E) Evolutionary phasing: CNPs for both alleles are jointly encoded as an unweighted phasing FST P where both possible allele configurations are encoded at

each position in the sequence. Evolutionary phasing then determines the optimal configuration (bold arrows) and extracts final haplotypes (orange and blue) by computing

the MED between the phasing FST and two reference haplotypes (here diploid). An example of major/minor and phased configuration and its distances d to the diploid

is shown at the bottom. Abbreviations: CNP: Copy-number profile, FST: Finite-state transducer, MED: Minimum-event distance, LOH: Loss of heterozygosity, WGD:

Whole genome doubling.

topology from pairwise MEDs between all genomes using

neighbour joining [34] and calculates summary statistics as

previously described [6]. Finally, ancestral copy-number pro-

files are reconstructed such that the total number of events

along the tree is minimal, which determines the final branch

lengths of the tree. The result is reported to the user as

a patient summary and plot which includes the tree and

inferred ancestral and terminal copy-number profiles, and

change events, either globally for the whole genome or at

user-defined positions of interest, e.g. oncogenes and tumor

suppressors.

We first verified the technical accuracy and time complexity

of the MED inference by simulating copy-number profiles

with a known distance from a diploid normal under the

MEDICC2 model. MEDICC2 correctly estimated the MED

in linear time (Figure 2A), and the inferred MED forms a

lower bound to the true number of events (minimum event

criterion) with and without WGD (Figure 2B and Supplemen-

tary Figure 1A), in contrast to Euclidean distance (r2=0.17,

Supplementary Figure 1B). The new lazy composition strat-

egy leads to a performance increase of about one order of

magnitude, enabling distance calculations for a large number

of samples or single cells (Figure 2A).

We next assessed the tree reconstruction accuracy of

MEDICC2 in comparison to alternative inference tools using

an independent and unbiased simulation routine. Here, evo-
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Figure 2: Algorithm performance: A) Runtime of different composition strategies for the FSTs are shown over copy-number profiles with increasing length from

20 to 200 segments. Computation time of the MEDs is linear with respect to the length of the input sequences. While MED-WGD took significantly longer to compute

than the MED without WGD, the new lazy and lazy kernel composition strategies reduced runtime by a factor of between 5 and 10. B) Using 1000 random instances of

copy-number evolution starting from a diploid genome, MEDICC2 correctly infers distances no greater than the true simulated distance if using MED-WGD (r2=0.87). C)

Using an independent simulation routine we benchmark MEDICC2 against a range of other methods. The reconstructed trees were compared to the simulated trees using

the Generalized Robinson-Foulds distance. As expected, the GRF distance rises with increasing tree size, while MEDICC2 outperforms all other methods for all tree sizes.

D) The MEDICC2 WGD score for 2778 cancer genomes: Individual cancers are plotted based on their average ploidy and fraction of genome with LOH. The original

separating line between WGD and non-WGD tumours was estimated by Dentro et al. as y = 2.9 - 2x. Correct ”WGD” and ”no WGD” predictions from MEDICC2 were

marked in orange and blue while false predictions were marked in black and grey (latter if the PCAWG WGD status was ”uncertain”). Abbreviations: NJ: Neighbor-joining,

Min. Ev.: Minimum Evolution.

lution was simulated on the level of the genome through

chromosomal and segmental gains and losses but also

copy-number neutral events including inversions and bal-

anced translocations and complex events such as breakage-

fusion-bridges and WGDs (Methods). From these simu-

lated genomes with varying mutation rates copy-number

profiles were generated by counting genomic segments and

subjected to different tree reconstruction strategies, includ-

ing Euclidean and Manhattan distances with the neighbor

joining [34] and minimum evolution [35] algorithms, as well

as the tailored tool MEDALT [28]. MEDICC2 outperforms

other methods for all ranges of mutation rates and tree sizes,

especially in the presence of WGDs (Figure 2C, Supplemen-

tary Figure 2A-B) and independent of the tree metric used

(Supplementary Figure 2C).

MEDICC2 accurately identifies WGD events

in 2,778 cancers

In order to test MEDICC2’s WGD detection abilities on

real data, we applied MEDICC2 to 2,778 tumours from the

Pan-cancer Analysis of Whole Genomes (PCAWG) [32].

PCAWG provides high-fidelity copy-number profiles and

annotations for each tumour including their WGD status,

which serve us as a ”gold standard”. In PCAWG, WGD was

inferred from the relationship between tumour ploidy and

the percentage of the genome affected by LOH across the

cohort [25]. MEDICC2 should provide a cohort-independent

evolutionary measure of WGD that distinguishes between

doubling of the genome, potentially followed by individual

chromosomal losses, and successive individual chromoso-

mal copy-number gains without genome doubling. To test

this, we downloaded unphased consensus copy-number pro-

files from the PCAWG project and employed MEDICC2’s
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Figure 3: Evolutionary history of tumour subclones from patient ”A31”. A) SNV-based phylogeny: Reproduction of the SNV-based phylogeny as described in

Gundem et al. 2015 for the multi-sample prostate cancer tumour case with one sample (”C”) from the primary tumour and four samples (”A”, ”D”, ”E”, and ”F”) from

distinct metastatic sites. Original reconstruction was performed using an n-dimensional Bayesian Dirichlet process to cluster estimated cancer cell fractions of the single

nucleotide variants (SNV) identified in the WGS across samples. Only the dominant clones of each sample are given. B-C) MEDICC2 phylogeny: Using multi-sample

phased copy-number profiles, MEDICC2 detected the presence of WGD in the metastatic samples and its absence in the primary sample from A31. The MEDICC2 analysis

identifies multiple MSAI events as well as parallel LOH on chromosomes 5, 6 and 13 (purple arrows). Individual events are marked in the copy-number track (C) where they

occur: gains (red) and losses (blue) (see also Figure 3). The grey numbers in each branch corresponds to its bootstrap-confidence score while the events from the MEDICC2

event detection are marked in green.

evolutionary phasing (Methods) on each copy-number pro-

file using a diploid normal sample as a reference. We then

calculated the WGD evidence score si (Methods) by com-

paring the MED with and without the possibility of WGD

between each PCAWG tumour and a diploid normal sample.

MEDICC2 prefers the presence of a WGD event over succes-

sive individual chromosomal gains and losses if the WGD

evidence score is greater or equal to one (si ≥ 1). Multiple

WGD events can be detected in a similar manner (Methods).

For an overview of the calculated distances and the WGD

evidence scores si, see Supplementary Figure 3A-C.

Using this criterion, MEDICC2 predicted WGDs in 2668

out of 2778 cases (96.0%), 12 of which were predicted to

have undergone two WGD events. All other 110 cases were

annotated as WGD in PCAWG but these events were not

called by MEDICC2 (FNR=0.04; FPR=0). Since PCAWG

WGD annotations are also based on biological data with in-

herent noise and may contain errors, we investigated whether

the 110 missed cases of WGD were marked as ’WGD un-

certain’ by the PCAWG heterogeneity and evolution work-

ing group. Indeed, tumours with status ’WGD uncertain’

were significantly overrepresented amongst these tumours

(p = 1.2 · 10−8, chi-square test). To increase sensitivity and

in order to mitigate the effect of noisy data, we next created

100 bootstrap replicates for each sample (Methods) and cal-

culated the WGD evidence scores for each replicate. Mark-

ing samples as WGD if at least 5% of their bootstrap runs

exhibited at least one WGD event increased the detection

accuracy of WGDs to 98.8% (FPR=5/2778; FNR=27/2778)

(Figure 2D) while also increasing the over-representation of

false predictions among tumours with status ’WGD uncer-

tain’ (p = 7 · 10−13, chi-square test). Bootstrap sampling

also identified 27 samples that underwent two successive

WGDs (Figure 2D).

These results demonstrate that MEDICC2 accurately infers

the presence of WGD events even in single-sample stud-

ies, without the need for additional parameter estimation or

cohort-level statistics. If required, bootstrap resampling can

be used to increase sensitivity and resilience against noise.

MEDICC2 reveals subclonal WGD events and

parallel evolution in prostate cancer

We next reconstructed phylogenies and inferred ancestral

genomes for a multi-sample, whole-genome sequencing

(WGS) cohort with 10 metastatic prostate cancer patients

introduced in Gundem et al. 2015 [37]. Gundem et al.

estimated cancer cell fractions of all single nucleotide vari-

ants (SNV) to perform SNV-based phylogenetic reconstruc-

tions. An illustrative example is patient ”A31” (Figure 3)

which consists of one sample (”C”) from the primary tumour

and four samples (”A”, ”D”, ”E”, and ”F”) from distinct

metastatic sites. A31 was later included in and analysed as

part of the PCAWG cohort [25] and found to demonstrate

a subclonal WGD event with WGD affecting all metastatic
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Figure 4: Event detection for the Gundem et al. 2015 cohort. A) WGD detection: In the 10 patients a total of 10 WGDs were detected, two of which were clonal, one

sub-clonal and one terminal. B) Using the MEDICC2 event detection routine we detected the number of times a whole chromosome arm was either gained or lost completely

in a single branch. The gains and losses were aggregated over all patients and samples into a -single score. This score was compared against the oncogene - tumor suppressor

gene (OG-TSG) score derived by Davoli et al. [36] A clear correlation between the gains/losses and the OG-TSG score (which is not based on copy-numbers) is visible. C)

The analysis was repeated on the basis of all 1729 individual genes present in the Davoli et al. dataset. On the x-axis we plotted the base-10 logarithm of the genes’ p-value

and flipped the sign for the oncogenes to create a single, continuous x-axis for both genesets. A small correlation is visible which becomes more pronounced when only

considering the top 100 genes. Genes with p < 10
−20were marked with their name.

samples (A, D, E, and F) but not the primary sample (C).

In addition to faithfully recovering the original phylogeny

without prior subclonal deconvolution, MEDICC2’s ances-

tral reconstruction correctly detected and placed the WGD

event at the ancestor of the metastatic samples (WGD evi-

dence score sA31 = 22, Figure 3B-C), followed by a gain

on chromosome 8p and multiple chromosome wide losses.

The most-recent common ancestor (MRCA) of all samples

however revealed only moderate CIN with clonal LOHs on

chromosomes 2, 6, 12 and 17, indicative of the substantial

divergence between the primary tumor and the metastases.

Finally, the ancestor of the three metastases samples A, D

and F revealed a MSAI deletion on chromosome 5 different

from metastasis E. Across all 10 patients four total WGD

events were gathered, two of which were clonal as well as

one sub-clonal and one terminal WGD (Figure 4A). We ob-

served an overall agreement between the MEDICC2 and

SNV trees, with identical topologies for 7 out of 10 patients

(Supplementary Figures 4-12).

We next compared relative branch lengths within the SNV-

based tree of A31 and the SCNA-based MEDICC2 tree.

Branch lengths of both trees correspond to the number of

SNVs present in each subclonal cluster and to the number

of SCNA events larger than 1 Mb, respectively. To facil-

itate comparison between branch lengths in the two trees

we computed relative event distances by normalising branch

lengths by the maximal root to leaf distance for each tree.

The relative event distances from the root of each tree to the

terminal nodes representing samples A, F and D were con-

served in the two phylogenetic reconstructions. However, the

SNV-based and SCNA-based trees demonstrated distinctly

different relative branch lengths from the diploid normal root

leading to the MRCA. This ”trunk” was found to be shorter

in the SCNA-based MEDICC2 tree (11/53 SCNAs) when

compared to the SNV-based tree (2056/2682 SNVs). This

suggests that there have been relatively few founder SCNAs

compared to a large number of founder SNVs, potentially

due to a larger number of SNVs present in the tissue before

malignant transformation and a later onset of CIN likely as

a result of one or more of these SNVs. This finding was

replicated in 9/10 patients of the full cohort (Supplementary

Figures 4-12). In addition, in A31 the branch terminating

at the dominant clone of metastatic sample E was relatively

long in the SCNA-based tree compared to in the SNV tree

(24/53 vs 52/2682, Figure 3B). This relatively large min-

imum event distance is due to multiple SCNA events on

chromosome 12 present only in sample E suggesting a com-

plex set of SCNAs potentially occurring together.

Recently, we applied the multi-sample reference phasing al-

gorithm that maintains consistent phased haplotypes across

samples from a single patient’s disease to reveal additional

SCNA heterogeneity across human cancers [3, 4]. This addi-

tional heterogeneity results from the detection of MSAI as

well as SCNA-mediated parallel evolution where the same

SCNA event (e.g. an LOH event) occurs independently

affecting distinct haplotypes within an individual patient’s

disease [3, 4, 38, 39]. Since MEDICC2 models both hap-

lotypes individually and does not employ the infinite sites
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assumption, it can infer both MSAI-mediated homoplasy

and homoplasy affecting the same allele by assigning these

parallel events to separate branches of the tree. Multi-sample

reference phasing analysis of the samples from A31 iden-

tified multiple MSAI events as well as parallel LOH on

chromosomes 6 and 13 (Figure 3C). MEDICC2 assigned the

independent origins of these parallel events to the branch

corresponding to the emergence of the dominant clone in the

primary sample and to the branch corresponding to emer-

gence of the common ancestor of all the metastatic samples

(Figure 3B-C). MEDICC2’s ability to correctly identify and

locate these parallel evolutionary events revealed by multi-

sample phasing provides additional evidence for a diverging

evolutionary trajectory between primary and metastatic sam-

ples, absent from its original analysis [37].

We were further interested in whether the inferred tree topolo-

gies and SCNAs can be used to detect preferentially gained

and lost regions, potential indicators of positive selection [3].

To this end we used the oncogene (OG) and tumor suppressor

gene (TSG) scores derived by Davoli et al. [36] for indi-

vidual genes as well as on the level of chromosome-arms.

MEDICC2’s event detection algorithm (Methods) allows

calculating the net number of gains and losses along the phy-

logenetic tree in regions of interest and counts events only

once at the node in the tree where they occur. Across the

10 patients in this cohort, a clear correlation is visible (Pear-

son R=0.48, p=0.0053) between the MEDICC2 event score

and the OG-TSG score on the level of chromosome arms

reported by Davoli et al. [36] (Figure 4B, Supplementary

Figure 3B). Additionally, on the level of all 1,729 individual

genes from Davoli et al., we find a correlation of R=0.09

(p<0.0001) (Figure 4C) which rises to R=0.27 when consid-

ering only the top 100 genes. Despite the low sample size

of 10 patients, the results show the ability of MEDICC2 to

infer regions of interest by detecting distinct gain and loss

events in the individual copy-number trees.

MEDICC2 infers SCNA phylogenies from

single-cells

Recent advances in single-cell technology have enabled the

collection of copy-number profiles of thousands of cells.

While large single-cell experiments constitute a major op-

portunity to study tumour evolution with higher precision

and on a larger scale, they also bring unique challenges. The

lower coverage of single-cell studies lead to a lower signal-

to-noise ratio than conventional methods and therefore to

less reliable and more noisy copy-number profiles. The large

number of copy-number profiles representing cells increases

the computational burden, in particular for pairwise dis-

tance calculations and ancestral reconstruction. Due to the

new fast composition algorithm (Figure 2A) and an efficient

parallelisation strategy (see Methods and [40]) MEDICC2

processes thousands of cells efficiently. Here, we apply

MEDICC2 to a previously published single-cell study of

triple-negative breast cancer by Minussi et al. [41] looking

at the two patients highlighted in the paper, TN1 and TN2,

with 1,100 and 1,024 cells, respectively. In the original study,

the authors defined ”superclones” and ”subclones” by two

separate clustering methods in the two-dimensional UMAP

space created from pairwise Manhattan-distances. Consen-

sus copy-number profiles were created from these clusters

and a minimum evolution tree was created from the Manhat-

tan distances between these consensus profiles. This indirect

way of determining the phylogeny of these cells involved a

number of data abstractions that involved manual selection

of hyperparameters (e.g. for the clustering algorithms).

We instead derived allele-specific copy-numbers from the

original raw data (Methods) and ran MEDICC2 directly on

the allele-specific copy-number profiles to reconstruct phy-

logenies for all cells without intermediate clustering steps

or consensus profiles (Figure 5 and Supplementary Figure

13A).

Next, we mapped superclones and subclones from the origi-

nal publication to the MEDICC2 tree and found a high de-

gree of concordance between the clonal architecture revealed

by MEDICC2 and the original results [41], in contrast to a

simple tree based on Manhattan distance between all cells

(Supplementary Figure 13B-C). For TN2, MEDICC2 recre-

ates all superclones and most subclones from the original

publication, while for TN1 it consolidates two superclones

into one, but otherwise detects them as in the original pub-

lication. In addition, MEDICC2 correctly detected truncal

WGDs in both patients as described [41].

While the original study reports truncal branch lengths simi-

lar to the maximal MRCA to leaf distance, suggesting that

roughly half of the SCNA events happened before emergence

of the MRC, we find truncal branch lengths substantially

shorter in the MEDICC2 phylogenies (42/164 for patient

TN1 and 71/238 for patient TN2). These findings are in

concordance with our results for the metastatic prostate can-

cer patients described above and provides further evidence
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Figure 5: Inferred phylogeny for single-cell data with 1,024 cells. Inferred phylogeny and allele-specific copy-number profiles for patient TN2 from Minussi et al.

2021. The diploid and most recent common ancestor to all cells are marked with green and blue circles, respectively. We manually selected clades from the phylogeny to

match the superclones and subclones of the original publication. These are marked next to the tree in the colors of the original publication and with horizontal lines. The

structure of the tree corresponds very clearly with distinct features of the copy-number profiles and match the clonal structure derived in the original publication. Selected

synapomorphies of the clone structure are highlighted with a yellow border and annotated on the figure.

for substantial clonal diversification after emergence of the

MRCA.

Our analyses demonstrate that MEDICC2 infers tree topolo-

gies that provide substantial biological insight, while previ-

ous approaches using general measures such as the Manhat-

tan distance were not able to recover the clonal architecture

of the tumour (Supplementary Figure 13B-C). In contrast to

clustering of consensus profiles, MEDICC2 retains single-

cell information when inferring tree topologies and ancestral

genomes. To the best of our knowledge, MEDICC2 is the

only available algorithm that can reliably create accurate

phylogenies from thousands of single-cells.

DISCUSSION

We here develop and apply a computational approach

for reconstructing the evolutionary history of cancer from

haplotype-specific SCNA profiles. MEDICC2 employs an

explicit evolutionary model of copy-number change, com-

putes the MED [6] in linear time at a fraction of its original

runtime. It detects individual SCNA events, including clonal

and subclonal WGD, and provides statistical robustness as-

sessment of the inferred trees. MEDICC2 is applicable

to any allele-specific or total copy-number estimation al-

gorithm from any sequencing modality or SNP array. In

contrast to breakpoint-based approaches, MEDICC2 models

actual genomic events that change copy-number, incorporat-

ing biological constraints such as in LOH regions, where the

lost allele cannot be regained.

MEDICC2 does not model the underlying biological pro-

cesses, such as whole chromosome missegregation [2], chro-

mothripsis [42], chromoplexy [43], breakage fusion bridge

cycles [44] and others [45]. In the future such events might

be possible to incorporate depending on the additional com-

putational complexity required. Nonetheless, our simula-

tions show that MEDICC2 accurately infers phylogenies in

the presence of these complex events, outcompeting alterna-

tive methods. In these simulations, the recently developed

MEDALT that also incorporates MED, performed poorly rel-

ative to the other methods considered (Supplementary Figure

2B). One possible explanation might be that, like many other

tools, MEDALT uses a minimum spanning tree to infer the

tree topology, thereby implicitly assuming that the set of

sampled genomes also contains the ancestral genomes from

the tumour’s past.

Our recent work [3, 4] and that of others [38] has highlighted

the importance of using multi-sample phasing to reveal ad-

ditional SCNA heterogeneity taking the form of MSAI or
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parallel evolution of similar SCNAs from distinct haplotypes

[3, 4]. Since MEDICC2 does not employ the infinite sites as-

sumption, it can reveal homoplasy on alternating haplotypes

(MSAI) as well as on the same haplotype where an inde-

pendent origin of two events leads to a more parsimonious

phylogeny than a shared ancestry.

WGD in cancer can result from endoreduplication [46], mi-

totic dysfunction [47] or cytokinesis failure [48]. Nearly all

of these proposed mechanisms suggest a diploid to tetraploid

transition (tetraploidization) [49], frequently followed by

return to a near-triploid state through subsequent chromo-

some losses [20], possibly with preceding LOH events [50].

MEDICC2 can replicate this behavior naturally through the

combination of LOH events, a WGD event and multiple in-

dependent chromosome-wide losses. As every chromosome-

loss is counted as a separate event, the MED might over-

estimate the true number of events. However, our model

seems to fit real-world copy-number profiles extremely well

as verified on 2,778 WGS tumours from the PCAWG cohort.

In the Gundem et al. cohort [37] MEDICC2 provided further

support for the divergence of the primary and metastatic

samples through the detection of a subclonal WGD event

and parallel evolution in A31. Interestingly, other SCNA-

mediated parallel evolution events were identified at the AR

gene locus in the original analysis of this tumour through

the orthogonal method of exact structural variant breakpoint

identification enabled by WGS [37]. Analysis of the net

gains and losses of chromosome arms and individual genes

along the inferred trees for all patients showed a clear cor-

relation with the OG-TSG score [36]. This demonstrates

the ability of MEDICC2 to find genomic events potentially

under positive selection for clinical interpretation of tumour

evolution. In the future, analysis of a larger cohort could

yield further insights into preferentially gained and lost re-

gions of the genome in a cancer-type specific way.

In contrast to SNV data, assessing within-sample subclon-

ality from copy-number profiles from bulk sequencing is

notoriously difficult and bulk copy-number profiles thus typ-

ically only reflect the dominant clone in that sample. Since

MEDICC2 is agnostic of the sequencing modality used to

generate its input, future advances that increase the resolu-

tion of copy-number profiles will be usable by MEDICC2

without modification. Here, single-cell sequencing [51] for

total [52] and allele-specific copy-number profiles [53] can

help increase resolution. As we have shown, MEDICC2 can

handle thousands of cells and thereby infer inter- and intra-

region evolution. It clearly outperforms pairwise Manhattan

distances from the original study, creating a tree topology

that matches previously identified super- and subclones with

high accuracy directly from single cells without additional

parameter fitting or the creation of consensus profiles.

Like most computational tools, MEDICC2’s performance is

limited by the quality of the input data. Over-segmentation, a

common problem of copy-number inference, can have large

effects on the MED and this issue is elevated in single-cell

experiments which are prone to low signal-to-noise ratios.

In the future, co-inference of copy-number and tree topology

will help resolve ambiguities due to noise in the data [54].

In summary, systematically determining the number and

order of WGD, arm-level SCNAs, and focal events that

have occurred in the evolutionary history of a tumour has

not yet been performed on a large scale and has previously

been the preserve of theoretical mathematical modelling

[55, 56]. MEDICC2 enables the reconstruction and timing

of the individual SCNA events present in the evolutionary

history of a tumour that may overlap and build upon one

another. This will allow much more detailed dissection

of WGD, aneuploidy and CIN across the genome utilising

single sample, multi-sample and single-cell approaches, than

the measures of the proportion of the genome affected by

SCNA that much of the field has previously relied on.

METHODS

The MEDICC2 model

To solve the MED problem we employ a finite-state trans-

ducer (FST) framework as previously described [6], fol-

lowing the notation of Mohri [57]. Copy-number pro-

files are represented as vectors of positive integer copy-

numbers (k)1..n, with 0 ≤ k ≤ 8, where each integer

copy-number represents a genomic segment i. Chromo-

some boundaries are marked by a chromosome separator

character ’X’ and both haplotypes are concatenated and

separated by ’X’. We represent these allele-specific copy-

number profiles as unweighted finite-state acceptors (FSA)

A = (Σ, Q,E, i, F ) and evolutionary events as weighted

FSTs T = (Σ, Q,E, i, F, λ, ρ) with (input and output) copy-

number alphabet Σ = {0, .., 8, X} (per allele), a finite set of

states Q, a finite set of transitions E, an initial state i ∈ Q,

a set of final states F ⊆ Q, an initial weight λ and a final
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weight ρ. Transitions between states are equipped with an

input symbol li ∈ Σ(input copy-number) and an output

symbol lo ∈ Σ (output copy-number) and a weight w. All

weights λ, ρ, w are taken from the positive integers including

zero and calculations are carried out over the tropical semir-

ing, i.e. weights are summed along the path of a FST and

the final weight between a pair of sequences is the minimum

over all possible paths

T [x, y] = min
π∈P

w[π]i (1)

(see [33]), where P is the set of all possible paths transform-

ing x to y.

FSTs and FSAs can be subjected to a variety of operations, of

which composition (”◦”) is of particular importance. During

composition a new FST is constructed in which the set of

states is the cartesian product of the set of states of the two

input FSTs. The composition S of two FSTs T1 and T2 then

assigns a weight to any pair of input and output sequences

by chaining their transduction

S[x, y] = (T1 ◦ T2)[x, y]

= min
z

(T1[x, z] + T2[z, y]) (2)

via intermediary sequence z [57]. Composition is also used

to effectively compute the score or total weight T [x, y] that

a FST T assigns to a pair of sequences x and y (Eq. 1)

by representing x and y as two unweighted acceptors and

running a single-source shortest distance algorithm (SD)

over the composition x ◦ T ◦ y [57]

T [x, y] = min
π
w[π]i = SD(x ◦ T ◦ y). (3)

Composition enables us to combine multiple evolutionary

event FSTs into a final FST in which the individual events

are carried out successively in order of composition, and to

transform the asymmetric MED into a symmetric MED for

calculation of the pairwise distance matrix [6].

Calculating the minimum-event distance

It has been shown previously that the standard MED can be

solved by considering losses separately before any gains [31].

Indeed, only loss-of-heterozygosity (LOH) events, i.e. losses

which reduce haplotype-specific copy-numbers to zero, must

be considered first, as subsequent gain and loss events must

ignore the positions with copy-number zero. The MED

however is oblivious to the ordering of any subsequent gains

and losses. When including WGD events (MED-WGD),

LOH events must again be dealt with before any other event.

In addition, WGD events must come before any segmental

losses and gains, for example to allow for the deletion of

segments previously gained during a WGD event (Figure

1B). The inclusion of WGD events further introduces non-

determinism into the problem as locally WGD events cannot

be distinguished from segmental gains before taking the full

sequence into consideration.

We thus define four one-step FSTs which model one of four

different evolutionary events considered: (i) LOH events

(T 1
LOH), (ii) segmental (+1) gains (T 1

G), (iii) segmental

(-1) losses (T 1
L) without LOH and (iv) WGD (+1 for all

non-zero segments) events (T 1
WGD). LOH events, gains and

losses must terminate when they reach separator character

’X’. WGD events do not terminate at ’X’ and leave it un-

changed. In the one-step FSTs, each sequence position can

only be affected by a single event. For example, the one-

step FST for segmental gains T 1
G only allows copy-number

changes of arbitrary length from 1 to 2, 2 to 3, and so on,

but not, for example, from 1 to 3. To span the full range

of possible events, the one-step FSTs are each composed

n times with themselves and the maximum copy-number

dictates the number of compositions necessary: n = |Σ| − 1

for LOH events and n = |Σ| − 2 for segmental losses and

gains and WGD events [6]. The resulting event FSTs TLOH,

TG, TL, and TWGD are then chained (composed) into the

asymmetric MED-WGD FST)

T = TLOH ◦ TWGD ◦ TL ◦ TG. (4)

The final MED-WGD between copy-number profiles x and

y is then computed following Eq. 3 as

T [x, y] = SD(x ◦ T ◦ y)

= SD(x ◦ TLOH ◦ TWGD ◦ TL ◦ TG ◦ y). (5)

Analogously, the simple MED is built via composition as in

T = TLOH ◦ TL ◦ TG (6)

and distance calculation is carried out as in Eq. 5.

As noted previously the MED and MED-WGD are asymmet-

ric. To compute symmetric distances S[x, y] between pairs

of copy-number profiles connected in a phylogenetic tree we

compute the score between x and y via its common ancestor

using the kernel composition of T with its inverse T−1 [58,
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59] (Figure 1C):

S[x, y] = SD(x ◦ T−1 ◦ T ◦ y). (7)

As the number of states in a composed FST is the product

of the states of the input FSTs, explicit computation of the

composition in Eq. 7 is computationally expensive. We

therefore employ a new computation strategy based on lazy

(on-demand) composition followed by shortest path compu-

tation using a shortest-first queue [60]. Lazy composition

prevents full expansion of the composed FST before deter-

mining the shortest path and instead expands the FST only

along the path visited [60].

MED speed and accuracy evaluation

To assess the performance of the new lazy composition strat-

egy and the accuracy of the MED calculation we simulated

copy-number profiles following the MEDICC2 evolutionary

model. A random number of evolutionary events was gen-

erated using a poisson process with rate parameter µ = 10

(reconstruction accuracy test) and µ = 20 (speed test). In the

reconstruction accuracy test each event had a 5% probability

to be a WGD event, and a 47.5% probability of being a gain

or loss respectively. In the speed test, to prevent too many

deletions, the gain probability was set to 80%. The start of

an event of gain or loss events in the sequence The start of

an event was selected uniformly at random from the set of

remaining available positions (positions with copy-number

6= 0) and event lengths were drawn from a geometric distri-

bution with success probability parameter p = 0.2. Events

were applied to the sequence obeying biological constraints,

i.e. no gain of segments with copy-number zero and forced

ending of events at chromosome boundaries, the latter with

the exception of WGD. For the reconstruction accuracy test,

sequences were fixed at length 50 (five chromosomes of

length 10 each). For the speed test, sequence lengths were

varied from 20 to 200 segments (Figure 2A).

Linear time evolutionary phasing

Traditionally, allele-specific SCNAs are reported in major

and minor copy-number, as the relative phasing of copy-

number segments to each other is unknown. We introduced

the multi-sample reference phasing implementation refphase

[3, 61] to leverage relative phasing information in a multi-

sample sequencing scenario and used it to identify MSAI

events across human cancers [3, 4, 39]. In situations where

multi-sample reference phasing is not feasible, e.g. in single-

sample scenarios, we developed evolutionary phasing [6],

where the assignment of major and minor copy-numbers

to parental haplotypes is chosen to minimize the sum of

MEDs over both parental haplotypes (minimum evolution

criterion). In its original form, evolutionary phasing was

achieved through the use of a weighted context-free gram-

mar in concert with our original MED [6], a computationally

costly solution. To enable phasing for a large number of

segments and genomes, we here provide a novel phasing

strategy which solves the evolutionary phasing problem ex-

actly, but at a fraction of the original runtime, by staying

within the realm of regular grammars and FSAs.

To do so we first encode copy-number profiles for both alle-

les jointly as an unweighted phasing FST P as follows: the

FST follows a linear structure with a number of states equal

to the number of segments +1. Two transitions occur be-

tween each neighboring pair of states and the two transitions

have as input symbols major copy-numbers and as output

symbols minor copy-numbers and vice versa (Figure 1E).

Due to these mirrored input and output symbols every valid

path through the phasing FST P thus determines an assign-

ment of copy-number alleles to haplotype 1 and haplotype 2.

The set of of all 2npossible paths for a sequence of length n

through this FST corresponds to the set of possible phasing

choices. To choose the most parsimonious haplotype assign-

ment, this phasing FST is then composed from the left and

from the right side with a composed FSA u = (d ◦ T ) ↓of

the diploid FSA d(encoding all-1s) with the MED-WGD

FST T, projected to its output (↓). Shortest-path (SP) com-

putation over this composite yields the optimal phase with a

total score equal to the sum of MEDs over both parental hap-

lotypes. Separate haplotypes haand hb can be extracted by

projection to input and output followed by weight removal:

ha =↑ SP (u ◦ P ◦ u) (8)

hb = SP (u ◦ P ◦ u) ↓ (9)

Simulating genome evolution

To evaluate the performance of MEDICC’s tree reconstruc-

tion algorithm first a tree topology for a given number of

leaves was created by randomly joining sample labels and

rooting the tree at the diploid. The branch lengths and there-

fore the number of events per branch were determined using

a Poisson distribution with λ = ∆t · S · µ, where ∆t was
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set to 1, S represents the length of the genome (440 seg-

ments, see below) and µ a variable rate parameter. To avoid

biases, somatic evolution was modelled on the level of the

genome, not the copy-number level, along the tree starting

at the diploid. We chose 2 x 22 chromosomes (two sets of

haplotypes) with 10 segments of uniform size each which

resemble the makeup of many actual bulk copy-number

profiles. At every branch, the genome was mutated with

a number of genomic events based on the corresponding

branch length. These events encompass gains and losses

of whole chromosomes, focal losses, insertions, breakage-

fusion-bridges (BFB), whole genome doublings (WGD) as

well as copy-number neutral events such as balanced and

unbalanced translocations and inversions. For example, if

a segment from chromosome 1 is moved to chromosome 2

through an unbalanced translocation and chromosome 2 is

subsequently gained, the segment of chromosome 1 is also

gained. By choosing this approach we ensure that the simula-

tion is not biased towards the approach of MEDICC2 (which

rather models the evolution of copy-number profiles and not

individual segments) and mirrors actual tumor evolution. In

the absence of actual event probabilities we kept all events

to be equally likely with the exception of BFBs and WGDs.

The probability of BFBs was set to ¼ of the other events

and for the WGD we choose four different probabilities:

0.000125 for the simulation of large trees reminiscent of

single-cell experiments (Figure 2C), and three levels for the

simulation of medium sized-trees (0 for ”No WGD”, 0.0125

for ”Low WGD” and 0.065 for ”High WGD”, (Supplemen-

tary Figure 2B).

For the large tree scenario we simulated 25 trees

each for all combinations of the mutation rate µ ∈

[0.01, 0.025, 0.05]and the number of leaves N ∈

[5, 10, 15, 20, 50, 100, 250, 500]. For the medium tree sce-

nario we simulated 25 trees each for all combinations of

the mutation rate µ ∈ [0.01, 0.025, 0.05, 0.075, 0.1]and the

number of leaves N ∈ [5, 10, 15, 20]and the three levels of

WGD as described above.

Reconstructed trees were evaluated using the Generalized

Robinson-Foulds (GRF) distance as implemented in the R

package TreeDist [62]. The GRF is based on the widely used

Robinson-Foulds distance which measures the number of

splits that occur in both trees. The GRF improves this metric

by taking the similarity of splits that are not perfect matches

into account. We furthermore used the regular Robinson-

Foulds distance (as implemented in the R package ape [63])

and the Quartet distance (as implemented in the R package

Quartet) to prevent any potential biases from the tree metric

used (Supplementary Figure 2C).

We compared MEDICC2 to a range of widely used meth-

ods which encompassed Euclidean- and Hamming-distance

based trees created both through neighbor joining and min-

imum evolution. For neighbor-joining we used the imple-

mentation of MEDICC2 and for the minimum evolution tree

we used the function fastme.bal from the R package ape

[63]. As a representative of algorithms that create minimum

spanning trees (MST), we also compared against MEDALT

[28] (Supplementary Figure 2A).

WGD detection

To facilitate WGD detection, we calculate the MED

with (MEDWGD) and without the possibility of WGD

(MEDnoWGD) between each PCAWG tumour and a diploid

normal sample and computed the WGD evidence score si as

si = MEDnoWGD(d, ti) −MEDWGD(d, ti), (10)

where ti represents a PCAWG tumour profile and d

represents a standard diploid normal sample. Because

MEDnoWGD(x, y) > MEDWGD(x, y) for any valid set of

copy-number profiles x and y, the score si is always positive

(si ≥ 0) and a score of si ≥ 1indicates a preference for a

WGD event to have occurred.

By replacing the multi-step WGD transducer TWGD in

(Eq. 4) with n-step WGD transducers for variable n,

we can test for multiple WGD events. For example,

the scores MED1WGD(x, y) > MED2WGDs(x, y) =

MED3WGDs(x, y), indicate two WGDs to have taken

place.

In order to increase the robustness of our predictions, we

repeated the analysis with 100 bootstrap runs (see below).

Samples that exhibited WGDs (or multiple WGDs) in at

least 5% of the bootstrap runs were classified as WGDs (or

multiple WGDs, respectively).

Event detection and correlation with OG-TSG

score

For comparisons between events detected in MEDICC2 and

the OG-TSG score we downloaded 1729 gene annotations

from Davoli et al. [36] and the aggregated, chromosome-arm

wise OG-TSG scores that measures the occurrences of OGs
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and TSGs on a given arm. To extract events we leverage

the ancestral reconstruction routine in MEDICC2. Trees are

then traversed in postorder, relative copy-number changes

are determined for all segments and events are counted in

the branch where the change occurs, thereby taking parallel

evolution into account while preventing counting the same

event multiple times in multiple samples from the same

patient. Change events were then overlapped with regions

of interest, i.e. the positions of OGs and TSGs as well

as the chromosome arms. An event is detected if there is

at least 90% overlap between the event and the region of

interest. Gains and losses are summed across all branches

and patients to arrive at the final ”#gains - #losses” score for

each gene / chromosome arm. The event detection routine is

available to MEDICC2 users by providing BED files with

regions of interest and MEDICC2 can calculate the number

and exact location of gains/losses of these regions along the

evolutionary trajectory.

Resampling for robustness estimation

The bootstrap [64, 65] is a classical approach in phyloge-

netics to assess the robustness of an inferred tree to pertur-

bations of the data. During bootstrapping of a multiple se-

quence alignment columns are drawn from the original data

with replacement and a large number of resampled datasets

(typically 100-1000) are created. The tree reconstruction

method of choice is then employed on all bootstrap datasets

and the relative frequency with which a branch (or taxon

split) of the original tree appears in the set of bootstrapped

trees forms a support value for this branch. A necessary

requirement for this approach is the independence of sites in

the alignment. Since this assumption does not hold for copy-

number profiles, we use the following alternative resampling

strategies for copy-number profiles in MEDICC2:

Chromosome-wise bootstrap: Here, whole chromo-

somes are drawn with replacement from the original chromo-

somes to create a bootstrap sample. As losses and gains end

at chromosome boundaries and as WGD events are ignorant

to the order and number of chromosomes, this approach does

not introduce false events while still providing a sufficiently

large sample space, albeit at the cost of a coarse-grained res-

olution. Therefore not all bootstrap samples will be equally

representative of the underlying data.

Segment-wise natural jacknife: Here, N segments are

drawn with replacement from the original N segments, dis-

carding all duplicates. On average this is equivalent to dis-

carding 1

e
randomly selected segments [66]. The jackknife

approaches the bootstrap distribution and due to the lower

number of resulting segments has a speed-advantage over

the chromosome-wise bootstrap, however, the jackknife gen-

erally generates less accurate representations of the original

data than the bootstrap. Branch support values are indicated

by their percentage value on the respective branches (see

Figure 3A).

Parallelization strategy

Single-cell experiments with thousands of cells demand high

performing methods as the pairwise distance calculations

scale with O(N2) and are therefore exceptionally compu-

tationally expensive. In addition to the performance im-

provements when calculating the MED, we implemented

a parallelization routine to make MEDICC2 applicable to

100s to thousands of cells. To this end we utilized a recently

proposed parallelization strategy [40] to split the N × N

pairwise distance calculations into smaller chunks that can

be run in parallel. In the method used, the N samples are

split into p2 + p groups of size p (where p is the smallest

prime such that p2 ≥ N ) and the pairwise distances within

the individual groups are calculated such that a given pair is

never calculated twice. This allows for a theoretical speed-

up by the factor p2 + p which for all practical concerns is

only limited by the number of available cores [40].

Single-cell data processing and analysis

Segmented logged ratios of read counts within genomic bins

and total copy-number profiles of single-cell triple-negative

breast cancer data were obtained from ref [41]. Allele-counts

at 1000G SNP positions were obtained for each single cell

using alleleCounter (v.4.0.0) as described in ref [41].

Fitting to integers. The logged ratios Logged ratios were

centred to zero by subtracting the mean to obtain the logR.

logR values were fitted to integers by identifying the off-

set ψthat minimises the sum of distances across segments

of the ntot=logR-ψ to their values rounded to the closest

integers round(ntot), weighted by the lengths of the seg-

ments w: argminψwi × (ntot,i − round(ntot,i))
2
|ntot,i =

log(Ri) − ψ. In the original publication, the logged ra-

tios were fitted to integers by using the same FACS ploidy
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value as the offset for all cells. Since individual cells can

harbour private CNAs, their ploidy can indeed vary around

their average FACS ploidy. Therefore, we derived the av-

erage number of copies along the genome calculated from

the published total copy-number profiles (˜ initial value of

ψaccording to FACS ploidy) and performed a search within

{0.85ψ, 1.15ψ} by steps of 0.01 to further optimise the off-

set to minimise the distance to integers within each individ-

ual cell.

Getting phased parental-allele-specific copy-number

profiles. Identify heterozygous SNPs. Across all cells

from the same patient, allele counts were summed to get

a pseudo-bulk profile. FACS sorting based on ploidy en-

riches for tumour cells, but still 10-15% of cells were normal

contaminants [41], thus even in LOH regions, heterozygous

SNPs can be identified. As described in ref [41], heterozy-

gous SNPs with allele counts for genotype A and B, cA and

cB, were defined as those with P(Bin(cA + cB, 0.99) ≤ cA)

< 0.01 and P(Bin(cA + cB, 0.99) ≤ cB) < 0.01. At each

heterozygous SNP position, the genotype with the highest

read count in the pseudo bulk was assigned to the major

allele.

Fitting within cells. After phasing all heterozygous SNPs,

for each segment, the maximum likelihood estimate of the

BAF bmle is derived as follows: from each b belong to the

possible values between 0 and 1 by steps of 0.001, bmle

is the value of the BAF b that maximizes the likelihood

of a Binomial distribution with probability b, number of

successes is the total number of reads bearing the genotypes

assigned to the major allele, and the number trials is the total

number of reads.

Fitting across cells. To account for the noise in ntot and

BAF, copy-number states of each segment are assigned by

fitting these data to integers across cells. Each cell’s seg-

ment is assigned to allele-specific copy-number states as fol-

lows: first, it is assigned to its closest integer allele-specific

copy-number state, i.e. {round(ntot*BAF), round(ntot)-

round(ntot*BAF)}; second, at each populated allele-specific

copy-number state across cells, the noise parameter for a

Gaussian distribution is estimated from the non-rounded in-

tegers, with the mean being the total integer corresponding

to the integer state, and the parameters for a Beta distribu-

tion are estimated from the segments’ BAF values, keep-

ing the mean of the Beta as the BAF of the correspond-

ing integer state; then, each cell’s segment is re-assigned

to the allele-specific copy-number states that minimise the

sum of its LogR and BAF likelihoods normalized across

states; the weight given to the likelihood from the LogR

can be modulated to best assign states from diploid cells

((1.9<ploidy<2.1) to {1,1} across segments (here, 50%

more weight was given to the likelihood from the LogR);

and the second and third steps are repeated a hundred times

or until convergence.

Using the major minor configuration of the data as described

above, MEDICC2 was run with standard settings on 32 cores

for patient TN1 and TN2 of the cohort. By looking at the

final tree and the corresponding copy-number profiles, clades

in the tree were manually assigned to the corresponding

super- and subclone of the original publication. In order

to recreate the minimum evolution trees from the original

publication [41] we created phylogenies using the function

fastme.bal from the R package ape [63] based on the pairwise

Manhattan distance.

Implementation and Availability

MEDICC2 is implemented in Python 3 and freely available

under GPLv3 at https://bitbucket.org/schwarzlab/medicc2.

It employs OpenFST and its Python wrapper pywrapfst [60]

for manipulation of finite-state machines. Core algorithms

are implemented in C++ as a Cython extension by linking

to the OpenFST library. All data and code to reproduce the

figures of this publication are present in the repository.
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