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Abstract 15 

The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. 16 
Although efforts have been made to identify biosynthetic genes for secondary metabolites, the 17 
chemical output of the gut microbiome consists predominantly of primary metabolites. Here, we 18 
systematically profile primary metabolic genes from the gut microbiome, identifying 19,885 gene 19 
clusters in 4,240 high-quality microbial genomes. We find marked differences in pathway distribution 20 
among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic 21 
differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each 22 
taxon. Analysis of 1,135 subjects from a Dutch population-based cohort shows that the level of 14 23 
microbiome-derived metabolites in plasma is almost completely uncorrelated with the metagenomic 24 
abundance of the corresponding biosynthetic genes, revealing a crucial role for pathway-specific gene 25 
regulation and metabolite flux. This work is a starting point for understanding differences in how 26 
bacterial taxa contribute to the chemistry of the microbiome. 27 
 28 
The pathways encoding the production of microbial metabolites are often physically clustered in the 29 
genome, in regions known as metabolic gene clusters (MGCs). Current tools for computational 30 
prediction of metabolic pathways focus on gene clusters for natural product biosynthesis (1) or generic 31 
primary metabolism (2, 3). Here, we introduce a new algorithm, gutSMASH, to profile known and 32 
predicted novel primary metabolic gene clusters from the gut microbiome. We use this tool to perform 33 
a systematic analysis of primary metabolic gene clusters in bacterial strains from the gut microbiome, 34 
and identify the prevalence and abundance of each of these pathways across a large population-based 35 
cohort. 36 
 37 
Algorithms that identify physically clustered genes have become a mainstay of bacterial pathway 38 
identification; taking into account the conserved physical clustering of genes prevents false positive 39 
hits based on sequence similarity alone. This principle has been widely applied in the field of natural 40 
product biosynthesis, e.g. in antiSMASH (1), which predicts biosynthetic gene clusters (BGCs) by 41 
detecting physically clustered protein domains using profile hidden Markov Models (pHMMs). Here, 42 
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we tailored this gene cluster detection framework to detect MGCs involved in primary metabolism 43 
and bioenergetics. 44 
 45 

 46 
Figure 1: Development and design of detection rules for gutSMASH. (1) A set of known and characterized MGC-encoded 47 
pathways were curated from the literature. Protein domains were identified across all MGCs and core enzymatic domains 48 
were manually identified. For enzymatic domains belonging to broad multifunctional enzyme families, protein superfamily 49 
phylogenies were built to create clade-specific pHMMs. (2) These domains were incorporated in the initial detection rules. 50 
The detection rules were run on a test set, and all the MGC predicted by the same rule were grouped together and (3) run 51 
through BiG-SCAPE, which grouped the MGCs into gene cluster families (GCFs). (4) Based on literature analysis of GCF 52 
members, detection rules were manually fine-tuned to either include or exclude MGC architectures that were either related 53 
to specialized primary metabolism or not. (5) Finally, fine-tuned detection rules were annotated and categorized into 54 
different MGC classes based on their metabolic end products. 55 
 56 
As a starting point, we constructed a dataset of 51 primary metabolic pathways from the gut 57 
microbiome with biochemical or genetic literature support (including MGCs as well as pathways 58 
encoded by a single gene) and identified core enzymes (i.e., required for pathway function) to serve 59 
as a signature for the detection rules (Figure 1, Table S1; see Methods for details). To more accurately 60 
predict MGCs of interest, we performed three computational procedures. First, for core enzymes 61 
belonging to 12 of the protein superfamilies that are known to catalyze diverse types of reactions and 62 
were most commonly found across a wide range of pathways, we constructed phylogenies and used 63 
them to create clade-specific pHMMs to detect specific subfamilies (see SI results Phylogenetic 64 
analysis of protein superfamilies to identify pathway-specific clades). Second, we designed pathway-65 
specific rules for each MGC type in our dataset (see Methods). These rules were validated and 66 
optimized by detailed visual inspection and analysis of MGC sequence similarity networks made using 67 
BiG-SCAPE (4), generated from gutSMASH results on a set of 1,621 microbial genomes (Online Data: 68 
https://gutsmash.bioinformatics.nl/help.html#Validation); see SI results Validation of gutSMASH 69 
detection rules by evaluating their predictive performance) (Table S2&S3). Third, despite the fact that 70 
most specialized primary metabolic pathways are encoded in MGCs, there are also single-protein 71 
pathways that are in charge of the secretion of key specialized primary metabolites in the gut 72 
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microbial ecosystem, such as serine dehydratase, which produces ammonia and pyruvate from serine 73 
(5). For this reason, we also built 10 clade-specific pHMMs to detect these (see Methods section 74 
Assessing single-protein pathway abundance within representative human gut bacteria). The above 75 
procedures led to the design of a robust set of detection rules to identify both known and putative 76 
MGCs that are potentially relevant for metabolite-mediated microbiome-associated phenotypes.  77 
 78 
To profile the metabolic capacity of strains from the human gut microbiome, we selected a set of 79 
4,240 unique high-quality reference genomes consisting of 1,520 genomes from the Culturable 80 
Genome Reference (CGR) collection (6), 2,308 genomes from the Microbial Reference Genomes 81 
collection of the Human Microbiome Project (HMP) consortium (7) and 414 additional genomes from 82 
the class Clostridia to account for their metabolic versatility (8) (Table S4). We refrained from including 83 
metagenome-assembled genomes in this analysis, as they often lack the taxon-specific genomic 84 
islands (9) on which many specialistic metabolic functions are encoded. In total, gutSMASH predicted 85 
19,885 MGCs across these genomes that are clear homologues of MGCs for our set of known pathway 86 
types (See Methods: Evaluating the functional potential of the human microbiome using gutSMASH).   87 
 88 
The combined results of the gutSMASH MGC scanning and the single-protein pHMM detection across 89 
the three reference collections provide unique insights into the metabolic traits encoded by the 90 
genomes of human gut bacteria. While some genera harbor a small set of highly conserved pathways, 91 
(e.g., Akkermansia, Faecalibacterium), other genera contain much larger interspecies differences 92 
(Figure 2A). The genus Clostridium displays remarkable metabolic versatility, with 42 distinct 93 
metabolic pathways present across members of this genus (Figure 2A). Clostridial strains that are 94 
indistinguishable by 16S sequencing often harbor distinct gene cluster ensembles (Suppl. Figure 1), 95 
suggesting that specialization in primary metabolism leads to functional differentiation even among 96 
closely related strains. Clostridium is a clear outlier: by comparison, the next most numerous set of 97 
metabolic pathways are found within the Enterobacteriaceae (e.g., Salmonella, Escherichia, 98 
Enterobacter, and Klebsiella) with 22-25 metabolic pathways. Intriguingly, many of the metabolic 99 
pathways encoded by Clostridium and members of the Enterobacteriaceae are non-overlapping (with 100 
23/42 Clostridium pathways not being identified among Enterobacteriaceae), highlighting the distinct 101 
metabolic strategies these microbes employ within the gut (Figure 2A). The Bacteroides, 102 
Actinobacteria (Eggerthella and Collinsella) and Verrucomicrobia (Akkermansia) harbor a more 103 
restricted set of primary metabolic pathways, likely reflecting versatility in upstream components of 104 
their metabolism (i.e., glycan foraging and other forms of substrate utilization).  105 
 106 
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 107 
Figure 2: Distribution of known pathways across most representative genera in the human gut. (A) Circles represent the 108 
absence/presence of known pathways in each genus. Larger circles indicate cases in which more than 50% of the genomes 109 
for a genus encode the pathway, while smaller circles indicate cases in which 50% or fewer of the genomes encode it. Colored 110 
ranges indicate a categorization of MGCs by chemical class of their product, in which npAA represents nonproteinogenic 111 
amino acids and SCFA represents short-chain fatty acids. Taxonomic assignments were applied using the Genome Taxonomy 112 
Database (GTDB) (10). The tree was generated using phyloT (https://phylot.biobyte.de/) and visualized using iTOL (11). Raw 113 
data are available in Table S5. (B) Distribution of the main acetate synthesis pathways at phylum level. Some of the pathways 114 
are ubiquitous across the five major phyla (e.g. pyruvate to acetate/formate [PFL]), while others are only found in Firmicutes 115 
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(CO2 to acetate [WLP]). Raw data for the pie charts is available in Table S6. Genes and gene clusters depicted are 116 
representatives from Bacteroides thetaiotaomicron (PFL & PFOR), Salmonella enterica (Eut), Clostridium sporogenes (Cut), 117 
Clostridium difficile (WLP) and Clostridium sticklandii (Grd). (C) Bioenergetic strategies in Escherichia that has a variety of 118 
alternate electron acceptors to choose from compared to Bacteroides and Clostridium. Abbreviations: PFL, pyruvate formate-119 
lyase; PFOR, pyruvate:ferredoxin oxidoreductase; Eut, ethanolamine utilization; Cut, choline utilization; WLP, Wood-120 
Ljungdahl Pathway; Grd, glycine reductase; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; LCA, 121 
lithocholic acid; TMAO, trimethylamine N-oxide; DMSO, dimethylsulfoxide; SCFA, short-chain fatty acid; Ndh, NADH 122 
dehydrogenase, Rnf, Rhodobacter nitrogen fixation like complex; Hyd, hydrogenase.  123 

Our results provide insights into the metabolic strategies that microbes use to produce short chain 124 
fatty acids (SCFAs). As expected, butyrate production is found exclusively in certain Firmicutes and 125 
Fusobacteria, whereas propionate production is largely confined to (and conserved in) the 126 
Bacteroidetes. However, the phylogenetic distribution of pathways that generate acetate -- the most 127 
concentrated molecule produced in the gut (12) -- has not yet been described. Two pathways for the 128 
conversion of pyruvate to acetate -- pyruvate formate-lyase (pyruvate to acetate/formate) and 129 
pyruvate:ferredoxin oxidoreductase (PFOR) -- are widely distributed across microbial strains from 130 
diverse phyla (Figure 2B). Two observations suggest that these two pathways are the most prolific 131 
source of acetate in the gut. First, some strains known to produce large quantities of acetate rely 132 
entirely on one or both of the pathways. Second, each one uses pyruvate as a substrate, consistent 133 
with a model in which these pathways are the primary conduit through which carbohydrate-derived 134 
carbon is converted to acetate. Additional taxon-specific pathways for acetate include the CO2 to 135 
acetate pathway and the glycine to acetate pathway (each specific to a subset of Firmicutes), as well 136 
as the choline and ethanolamine utilization pathways (widespread among Enterobacteriaceae and 137 
each found in different clades of Firmicutes) (Figure 2A).  138 
 139 
Our results demonstrate a striking difference in mechanisms for energy capture by three of the major 140 
bacterial genera in the gut: Bacteroides, Escherichia, and Clostridium. When growing aerobically with 141 
glucose, E. coli generates most of its energy by channelling electrons through membrane bound 142 
cytochromes using oxygen as the terminal electron acceptor (Figure 2C). However, oxygen is limiting 143 
in the gut. Under anaerobic conditions, bacteria from the genus Escherichia employ alternate terminal 144 
electron acceptors such as nitrate, DMSO, TMAO, and fumarate by substituting alternate terminal 145 
reductases into their electron transport system (Figure 2C). However, in the healthy gut these 146 
alternate electron acceptors are either absent or available in limited amounts, likely explaining why 147 
these facultative anaerobes represent a small proportion of the healthy microbiome (13). In contrast 148 
to the diversity of terminal reductases used by the Escherichia, Bacteroides genomes encode only 149 
fumarate reductase (Figure 2C). They use a unique pathway, carboxylating PEP to form fumarate, 150 
which they use as a terminal electron acceptor to run an anaerobic electron transport chain involving 151 
NADH dehydrogenase and fumarate reductase, ultimately forming propionate. Thus, the metabolic 152 
strategy employed by Bacteroides ensures a steady stream of electron acceptor to fuel their 153 
metabolism. The Clostridium do not utilize similar mechanisms for energy capture as the Escherichia 154 
and the Bacteroides. Recent analyses suggest that they use the Rnf complex for generating a proton 155 
motive force. Several pathways encoded by the genomes of Clostridium (e.g., acetate to butyrate, AAA 156 
to arylpropionates, leucine to isocaproate) (Figure 2A) consist of an electron bifurcating acyl-CoA 157 
dehydrogenase enzyme. This complex bifurcates electrons from NADH to the low potential electron 158 
carrier ferredoxin which can then donate electrons to the RNF complex which functions as a proton 159 
or sodium pump, generating an ion motive force. Although much still is to be learned about Clostridial 160 
metabolism, our findings suggest that their metabolism operates at a different scale of the redox 161 
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tower compared to Bacteroides and Enterobacteriaceae, using low potential electron carriers to fuel 162 
their metabolism. 163 
 164 
Next, we set out to determine the prevalence and abundance of each pathway in a cohort of human 165 
samples. We used  BiG-MAP (14) to profile the relative abundance of each MGC class across 1,135 166 
metagenomes from the population-based LifeLines DEEP cohort (15), by mapping metagenomic reads 167 
against a collection of 6,836 non-redundant MGCs detected in our set of reference genomes (Figure 168 
3A,B). Some pathways, such as CO2 to acetate (acetogenesis) and butyrate production from acetate 169 
or glutamate, as well as polyamine-forming pathways, were found in >99% of microbiomes. Others, 170 
such as 1,2-propanediol utilization and p-cresol production, both associated with negative effects on 171 
gut health (16, 17), were observed at detectable levels in only half of the samples. In terms of 172 
abundance, it is striking that for example the bile acid-induced (bai) operon for the formation of the 173 
secondary bile acids deoxycholic acid and lithocholic acid, which has been characterized from very 174 
low-abundance Clostridium scindens strains (18), was still shown to be present in relatively high 175 
abundance across a subset of subjects. Analysis of the mapped reads showed that the vast majority 176 
of these mapped to a homologous MGC from the genus Dorea instead (Suppl. Figure 2), for which the 177 
physiological relevance remains to be established. It is also interesting to see that, while two of the 178 
three acetate-forming pathways (PFL and WLP) were consistently found at high abundance levels, the 179 
abundance of all butyrate-forming pathways is highly variable across subjects, with a >20-fold 180 
difference between lower and upper quartiles in the abundance distribution of the glutamate-to-181 
butyrate pathway, and a >440-fold difference between the 10th percentile and the 90th percentile. 182 
 183 
The wide variability in the metagenome abundance of each pathway raises the question of whether 184 
metagenomic abundance of a pathway correlates with the level of its small molecule product in the 185 
host. To address this question, we systematically compared the level of each pathway with the 186 
quantity of the corresponding metabolite as determined by plasma metabolomics. We find a striking 187 
lack of correlation between pathway and metabolite levels (r ranging from -0.04 to 0.24, Figure 3C). 188 
These data indicate that gene abundances in metagenomes are not (on their own) a useful predictor 189 
of metabolic outputs. This finding has important implications for analyses that make metabolic 190 
inferences from gene abundances (19) or the abundances of individual strains (20). We speculate that 191 
a more detailed understanding of the influence of diet, differences in gene regulation, characteristic 192 
pathway flux (turnovers per unit time per protein copy), and pharmacokinetic characteristics (e.g., 193 
absorption, distribution, metabolism, and excretion) could ultimately enable the prediction of 194 
metabolite abundance from metagenome abundance. The systematic detection of the relevant genes 195 
and gene clusters by gutSMASH will provide a technological foundation for future studies in this 196 
direction, by allowing mapping of metatranscriptomic data to these accurately defined and 197 
categorized sets of genomic loci in order to understand which conditions and interactions are driving 198 
the expression of these pathways and the accumulation of their products. 199 
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 200 
Figure 3. Prevalence and abundance of specialized primary metabolic pathways across 1,135 human microbiome samples. 201 
(A) Prevalence of each of the 41 known pathway classes across all microbiomes, measured as the percentage of samples in 202 
which core enzyme-coding genes of at least one reference MGC belonging to a given class were covered by metagenomic 203 
reads across >5% of their sequence length. This cutoff was kept low to avoid false negatives due to limited sequencing depth 204 
for low-abundance taxa (raw data available at Table S8). (B) Distributions of log2 RPKM relative abundance values of all 41 205 
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known pathway classes, categorized by product class, across all LifeLines DEEP metagenomes (raw data available at Table 206 
S9). (C) Limited correlation of genetic pathway abundance with abundance of metabolites in blood plasma. 207 
 208 
The gutSMASH software constitutes, to our knowledge, the first comprehensive automated tool 209 
designed to identify niche-defining primary metabolic pathways from genome sequences or 210 
metagenomic contigs—even a full-fledged metabolic network reconstruction software like 211 
PathwayTools (21) (which uses the extensive MetaCyc database (22)) lacks detection capabilities for 212 
3 out of the 41 MGC-encoded pathways detected by gutSMASH (Table S7). Moreover, the 213 
identification of MGCs provides considerably increased confidence that detected homologues for a 214 
given pathway are truly working together. Downstream, detected MGCs can be used as input for read-215 
based tools such as HUMAnN (23) or BiG-MAP (14) to measure abundance or expression levels of the 216 
encoded pathways. On top of these functionalities, the gutSMASH framework also facilitates 217 
identifying new (i.e., uncharacterized) pathways in the microbiome. To this end, we designed an 218 
additional set of rules to detect  primary metabolic gene clusters of unknown function that harbor Fe-219 
S flavoenzymes (24), glycyl-radical enzymes, 2-hydroxyglutaryl-CoA-dehydratase-related enzymes, 220 
and/or enzymes involved in oxidative decarboxylation. From this analysis of putative MGCs (see SI 221 
methods Analysis of distant homologues and putative MGCs from CGR, HMP and Clostridioides 222 
dataset), we found 12,259 putative MGCs from 760 different species, that, after redundancy filtering 223 
at 90% sequence similarity, were classified into 932 GCFs. Within these, we manually prioritized a 224 
range of gene clusters with unprecedented enzyme-coding gene content (see Suppl. Figure 4&5, SI 225 
Results Analysis of putative clusters and distant homologues: relevant candidates to study further). 226 
These can be a potential new source to discover new pathways and metabolites. 227 
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