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Abstract

The gut microbiota produce hundreds of small molecules, many of which modulate host physiology.
Although efforts have been made to identify biosynthetic genes for secondary metabolites, the
chemical output of the gut microbiome consists predominantly of primary metabolites. Here, we
systematically profile primary metabolic genes from the gut microbiome, identifying 19,885 gene
clusters in 4,240 high-quality microbial genomes. We find marked differences in pathway distribution
among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic
differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each
taxon. Analysis of 1,135 subjects from a Dutch population-based cohort shows that the level of 14
microbiome-derived metabolites in plasma is almost completely uncorrelated with the metagenomic
abundance of the corresponding biosynthetic genes, revealing a crucial role for pathway-specific gene
regulation and metabolite flux. This work is a starting point for understanding differences in how
bacterial taxa contribute to the chemistry of the microbiome.

The pathways encoding the production of microbial metabolites are often physically clustered in the
genome, in regions known as metabolic gene clusters (MGCs). Current tools for computational
prediction of metabolic pathways focus on gene clusters for natural product biosynthesis (1) or generic
primary metabolism (2, 3). Here, we introduce a new algorithm, gutSMASH, to profile known and
predicted novel primary metabolic gene clusters from the gut microbiome. We use this tool to perform
a systematic analysis of primary metabolic gene clusters in bacterial strains from the gut microbiome,
and identify the prevalence and abundance of each of these pathways across a large population-based
cohort.

Algorithms that identify physically clustered genes have become a mainstay of bacterial pathway
identification; taking into account the conserved physical clustering of genes prevents false positive
hits based on sequence similarity alone. This principle has been widely applied in the field of natural
product biosynthesis, e.g. in antiSMASH (1), which predicts biosynthetic gene clusters (BGCs) by
detecting physically clustered protein domains using profile hidden Markov Models (pHMMs). Here,
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43  we tailored this gene cluster detection framework to detect MGCs involved in primary metabolism
44 and bioenergetics.

45
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47 Figure 1: Development and design of detection rules for gutSMASH. (1) A set of known and characterized MGC-encoded
48 pathways were curated from the literature. Protein domains were identified across all MGCs and core enzymatic domains
49 were manually identified. For enzymatic domains belonging to broad multifunctional enzyme families, protein superfamily
50 phylogenies were built to create clade-specific pHMMs. (2) These domains were incorporated in the initial detection rules.
51 The detection rules were run on a test set, and all the MGC predicted by the same rule were grouped together and (3) run
52 through BiG-SCAPE, which grouped the MGCs into gene cluster families (GCFs). (4) Based on literature analysis of GCF
53 members, detection rules were manually fine-tuned to either include or exclude MGC architectures that were either related
54 to specialized primary metabolism or not. (5) Finally, fine-tuned detection rules were annotated and categorized into
55 different MGC classes based on their metabolic end products.

56

57  As a starting point, we constructed a dataset of 51 primary metabolic pathways from the gut
58  microbiome with biochemical or genetic literature support (including MGCs as well as pathways
59  encoded by a single gene) and identified core enzymes (i.e., required for pathway function) to serve
60 asasignature for the detection rules (Figure 1, Table S1; see Methods for details). To more accurately
61 predict MGCs of interest, we performed three computational procedures. First, for core enzymes
62 belonging to 12 of the protein superfamilies that are known to catalyze diverse types of reactions and
63  were most commonly found across a wide range of pathways, we constructed phylogenies and used
64  them to create clade-specific pHMMs to detect specific subfamilies (see Sl results Phylogenetic
65  analysis of protein superfamilies to identify pathway-specific clades). Second, we designed pathway-
66  specific rules for each MGC type in our dataset (see Methods). These rules were validated and
67  optimized by detailed visual inspection and analysis of MGC sequence similarity networks made using
68  BiG-SCAPE (4), generated from gutSMASH results on a set of 1,621 microbial genomes (Online Data:
69 https://gutsmash.bioinformatics.nl/help.html#Validation); see Sl results Validation of gutSMASH
70  detection rules by evaluating their predictive performance) (Table S2&S3). Third, despite the fact that
71 most specialized primary metabolic pathways are encoded in MGCs, there are also single-protein
72 pathways that are in charge of the secretion of key specialized primary metabolites in the gut
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73 microbial ecosystem, such as serine dehydratase, which produces ammonia and pyruvate from serine
74 (5). For this reason, we also built 10 clade-specific pHMMs to detect these (see Methods section
75  Assessing single-protein pathway abundance within representative human gut bacteria). The above
76  procedures led to the design of a robust set of detection rules to identify both known and putative
77 MGCs that are potentially relevant for metabolite-mediated microbiome-associated phenotypes.
78
79  To profile the metabolic capacity of strains from the human gut microbiome, we selected a set of
80 4,240 unique high-quality reference genomes consisting of 1,520 genomes from the Culturable
81 Genome Reference (CGR) collection (6), 2,308 genomes from the Microbial Reference Genomes
82  collection of the Human Microbiome Project (HMP) consortium (7) and 414 additional genomes from
83  theclass Clostridia to account for their metabolic versatility (8) (Table S4). We refrained from including
84  metagenome-assembled genomes in this analysis, as they often lack the taxon-specific genomic
85 islands (9) on which many specialistic metabolic functions are encoded. In total, gutSMASH predicted
86 19,885 MGCs across these genomes that are clear homologues of MGCs for our set of known pathway
87  types (See Methods: Evaluating the functional potential of the human microbiome using gutSMASH).
88
89  The combined results of the gutSMASH MGC scanning and the single-protein pHMM detection across
90 the three reference collections provide unique insights into the metabolic traits encoded by the
91 genomes of human gut bacteria. While some genera harbor a small set of highly conserved pathways,
92  (e.g., Akkermansia, Faecalibacterium), other genera contain much larger interspecies differences
93  (Figure 2A). The genus Clostridium displays remarkable metabolic versatility, with 42 distinct
94  metabolic pathways present across members of this genus (Figure 2A). Clostridial strains that are
95 indistinguishable by 16S sequencing often harbor distinct gene cluster ensembles (Suppl. Figure 1),
96  suggesting that specialization in primary metabolism leads to functional differentiation even among
97  closely related strains. Clostridium is a clear outlier: by comparison, the next most numerous set of
98 metabolic pathways are found within the Enterobacteriaceae (e.g., Salmonella, Escherichia,
99  Enterobacter, and Klebsiella) with 22-25 metabolic pathways. Intriguingly, many of the metabolic
100  pathways encoded by Clostridium and members of the Enterobacteriaceae are non-overlapping (with
101  23/42 Clostridium pathways not being identified among Enterobacteriaceae), highlighting the distinct
102  metabolic strategies these microbes employ within the gut (Figure 2A). The Bacteroides,
103  Actinobacteria (Eggerthella and Collinsella) and Verrucomicrobia (Akkermansia) harbor a more
104  restricted set of primary metabolic pathways, likely reflecting versatility in upstream components of
105  their metabolism (i.e., glycan foraging and other forms of substrate utilization).
106


https://doi.org/10.1101/2021.02.25.432841
http://creativecommons.org/licenses/by/4.0/

107
108

109
110
111
112
113
114
115

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432841; this version posted February 26, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

a)

SCFA .
SCFAother | @[>B0%bacteria |
Aliphatic amines @ ]=<50% bacteria

Aromatic primary metabolism|
npAA
Other

Energy-MGCs Total number
of pathways

and histidine

proline to 5-aminovalerate

carnitine to betaine

succinate to propionate
® acrylate to propionate
tryptophan decarboxylase
tyrosine decarboxylase
(XX 1] ®e e @O tryptophanase /tyrosine phenol-lyase
g i
CA/CDCA to DCA/LCA
DMSO-TMAO reductase
glycerolP to glyceroneP
nitrate reductase
formate dehydrogenase

sulfate to sulfide
NADH dehydrogenase

hydroxybenzoate to phenol

® AAAto arylpropionates
hydroxyproline to proline
Ech complex

caffeate to hydrocaffeate
@ urocanate reductase

threonine to propionate
ethanolamine utilization
putrescine to spermidine
arginine to putrescine
gallic acid to pyrogallo!
phenylacetate to toluene
4-HPA to p-cresol
indolacetate to scatole

aminobutyrate to butyrate
5.

CO:2 to acetate (WLP)
©© pyruvate to acetate (PFOR)
fumarate to succinate
acetate to butyrate
© glutamate to butyrate
©009® o R-pyruvate to R-acetate (PorA)

leucine to isocaproate
threonine dehydratase
propanediol utilization

glycine to acetate
© lysine to acetate/butyrate/ammonia

°
®

000000000000000° 0000 000000 pyuvate o acetateflormate (PFL)

Fusobacteria o
Verrucomicrobia
Bacteroidete

@ histidine to glutamate
@ cysteine desulfidase

@ Rnfcomplex

Akkermansia
S Alistipes

|—— Prevotella
[—— Bacteroides
Proteobacteria gz;z’;;ﬁ%’:éde S
Salmonella

b Escherichia

Actinobacteria

"IIII“l"'I[

L
. 2
00000000000000000 sorins dehydratass

Collinsella
Corynebacterium Wl
Bifidobacterium |
Propionibacterium il
Coprobacillus
Clostridioides
Eubacterium
Ruminococcus
Faecalibacterium W
Hungatella

S Butyricicoccus W

Fimicutee; Clostridium I

Roseburia
Blautia

20000000000
@ oooe o0 o
0o 000 00 0o
eo0e © @O o0 o

b)

Bacteroidetes Proteobacteria Actinobacteria ~Firmicutes Verrucomicrobia Fusobacteria

100%
0%

91% 68% 91%

Pyruvate to acetate/formate (PFL)

o -C».

o
\ﬂ)L°" . M, * HeooH ‘
o

93% 100%
7% 10% 0%

32% 9%

45%
91% 0.2% ‘ 17% 0% 57%
% ~ 99.8% 83% 100% 43%

l 1% 0% 0%

100% 100%

: Pyruvate to acetate (PFOR) 98% 1% 62%

o o
[——
\H)Lo" == /u\ou + co,
o
OMEDICIODODOND- Ethanolamine utilization (Eut)

o
NH, —»
2 HoT et s )LOH + ~SoH + NHy

mm Choline utilization (Cut) e

2 'l‘, ; o e 100%
Z3N0H —» )Loﬂ + o + 'I‘

S €02 to acetate (WLP) o= o 0% ‘ 27% 0% 0%

100% 100% 100% 73% 100% 100%

38%

8
®
#

»000
3
8

3
®
8
2
g

o
8H, + 4C0, —m 2Pl

; I : l 0O [: [: ) c Glycine to acetate (Grd) L2 0% 0% . 23% 0% 0%
7%

o A o 100% 100% 100%

100% 100%
+ NH,
HN L — o s

% genomes not coding for the pathway
W % genomes coding for the pathway

) . terminal reductases ) terminal reductase .
Escherichia Bacteroides (™) _. €\ Clostridium fR-nY\
J

Ndh fumarate
0, NO; fumarate DMSO/

TMAO * NADH { ferredoxin

-

Figure 2: Distribution of known pathways across most representative genera in the human gut. (A) Circles represent the
absence/presence of known pathways in each genus. Larger circles indicate cases in which more than 50% of the genomes
for a genus encode the pathway, while smaller circles indicate cases in which 50% or fewer of the genomes encode it. Colored
ranges indicate a categorization of MGCs by chemical class of their product, in which npAA represents nonproteinogenic
amino acids and SCFA represents short-chain fatty acids. Taxonomic assighments were applied using the Genome Taxonomy
Database (GTDB) (10). The tree was generated using phyloT (https://phylot.biobyte.de/) and visualized using iTOL (11). Raw
data are available in Table S5. (B) Distribution of the main acetate synthesis pathways at phylum level. Some of the pathways
are ubiquitous across the five major phyla (e.g. pyruvate to acetate/formate [PFL]), while others are only found in Firmicutes
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116 (CO2 to acetate [WLP]). Raw data for the pie charts is available in Table S6. Genes and gene clusters depicted are
117 representatives from Bacteroides thetaiotaomicron (PFL & PFOR), Salmonella enterica (Eut), Clostridium sporogenes (Cut),
118 Clostridium difficile (WLP) and Clostridium sticklandii (Grd). (C) Bioenergetic strategies in Escherichia that has a variety of
119 alternate electron acceptors to choose from compared to Bacteroides and Clostridium. Abbreviations: PFL, pyruvate formate-
120 lyase; PFOR, pyruvate:ferredoxin oxidoreductase; Eut, ethanolamine utilization; Cut, choline utilization; WLP, Wood-
121 Ljungdahl Pathway; Grd, glycine reductase; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; LCA,
122 lithocholic acid; TMAO, trimethylamine N-oxide; DMSO, dimethylsulfoxide; SCFA, short-chain fatty acid; Ndh, NADH
123 dehydrogenase, Rnf, Rhodobacter nitrogen fixation like complex; Hyd, hydrogenase.

124 Our results provide insights into the metabolic strategies that microbes use to produce short chain
125  fatty acids (SCFAs). As expected, butyrate production is found exclusively in certain Firmicutes and
126  Fusobacteria, whereas propionate production is largely confined to (and conserved in) the
127 Bacteroidetes. However, the phylogenetic distribution of pathways that generate acetate -- the most
128  concentrated molecule produced in the gut (12) -- has not yet been described. Two pathways for the
129  conversion of pyruvate to acetate -- pyruvate formate-lyase (pyruvate to acetate/formate) and
130  pyruvate:ferredoxin oxidoreductase (PFOR) -- are widely distributed across microbial strains from
131  diverse phyla (Figure 2B). Two observations suggest that these two pathways are the most prolific
132  source of acetate in the gut. First, some strains known to produce large quantities of acetate rely
133  entirely on one or both of the pathways. Second, each one uses pyruvate as a substrate, consistent
134  with a model in which these pathways are the primary conduit through which carbohydrate-derived
135  carbon is converted to acetate. Additional taxon-specific pathways for acetate include the CO; to
136  acetate pathway and the glycine to acetate pathway (each specific to a subset of Firmicutes), as well
137  as the choline and ethanolamine utilization pathways (widespread among Enterobacteriaceae and
138  each found in different clades of Firmicutes) (Figure 2A).

139

140  Our results demonstrate a striking difference in mechanisms for energy capture by three of the major
141 bacterial genera in the gut: Bacteroides, Escherichia, and Clostridium. When growing aerobically with
142  glucose, E. coli generates most of its energy by channelling electrons through membrane bound
143  cytochromes using oxygen as the terminal electron acceptor (Figure 2C). However, oxygen is limiting
144  inthe gut. Under anaerobic conditions, bacteria from the genus Escherichia employ alternate terminal
145 electron acceptors such as nitrate, DMSO, TMAO, and fumarate by substituting alternate terminal
146  reductases into their electron transport system (Figure 2C). However, in the healthy gut these
147  alternate electron acceptors are either absent or available in limited amounts, likely explaining why
148  these facultative anaerobes represent a small proportion of the healthy microbiome (13). In contrast
149  to the diversity of terminal reductases used by the Escherichia, Bacteroides genomes encode only
150 fumarate reductase (Figure 2C). They use a unique pathway, carboxylating PEP to form fumarate,
151  which they use as a terminal electron acceptor to run an anaerobic electron transport chain involving
152 NADH dehydrogenase and fumarate reductase, ultimately forming propionate. Thus, the metabolic
153  strategy employed by Bacteroides ensures a steady stream of electron acceptor to fuel their
154  metabolism. The Clostridium do not utilize similar mechanisms for energy capture as the Escherichia
155  and the Bacteroides. Recent analyses suggest that they use the Rnf complex for generating a proton
156  motive force. Several pathways encoded by the genomes of Clostridium (e.g., acetate to butyrate, AAA
157  to arylpropionates, leucine to isocaproate) (Figure 2A) consist of an electron bifurcating acyl-CoA
158  dehydrogenase enzyme. This complex bifurcates electrons from NADH to the low potential electron
159  carrier ferredoxin which can then donate electrons to the RNF complex which functions as a proton
160  orsodium pump, generating an ion motive force. Although much still is to be learned about Clostridial
161 metabolism, our findings suggest that their metabolism operates at a different scale of the redox
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162  tower compared to Bacteroides and Enterobacteriaceae, using low potential electron carriers to fuel
163  their metabolism.

164

165 Next, we set out to determine the prevalence and abundance of each pathway in a cohort of human
166  samples. We used BiG-MAP (14) to profile the relative abundance of each MGC class across 1,135
167 metagenomes from the population-based LifeLines DEEP cohort (15), by mapping metagenomic reads
168  against a collection of 6,836 non-redundant MGCs detected in our set of reference genomes (Figure
169  3A,B). Some pathways, such as CO; to acetate (acetogenesis) and butyrate production from acetate
170  or glutamate, as well as polyamine-forming pathways, were found in >99% of microbiomes. Others,
171  such as 1,2-propanediol utilization and p-cresol production, both associated with negative effects on
172  gut health (16, 17), were observed at detectable levels in only half of the samples. In terms of
173  abundance, it is striking that for example the bile acid-induced (bai) operon for the formation of the
174  secondary bile acids deoxycholic acid and lithocholic acid, which has been characterized from very
175 low-abundance Clostridium scindens strains (18), was still shown to be present in relatively high
176  abundance across a subset of subjects. Analysis of the mapped reads showed that the vast majority
177  of these mapped to a homologous MGC from the genus Dorea instead (Suppl. Figure 2), for which the
178 physiological relevance remains to be established. It is also interesting to see that, while two of the
179  three acetate-forming pathways (PFL and WLP) were consistently found at high abundance levels, the
180 abundance of all butyrate-forming pathways is highly variable across subjects, with a >20-fold
181  difference between lower and upper quartiles in the abundance distribution of the glutamate-to-
182 butyrate pathway, and a >440-fold difference between the 10th percentile and the 90th percentile.
183

184  The wide variability in the metagenome abundance of each pathway raises the question of whether
185 metagenomic abundance of a pathway correlates with the level of its small molecule product in the
186  host. To address this question, we systematically compared the level of each pathway with the
187  quantity of the corresponding metabolite as determined by plasma metabolomics. We find a striking
188 lack of correlation between pathway and metabolite levels (r ranging from -0.04 to 0.24, Figure 3C).
189  These data indicate that gene abundances in metagenomes are not (on their own) a useful predictor
190 of metabolic outputs. This finding has important implications for analyses that make metabolic
191 inferences from gene abundances (19) or the abundances of individual strains (20). We speculate that
192  a more detailed understanding of the influence of diet, differences in gene regulation, characteristic
193 pathway flux (turnovers per unit time per protein copy), and pharmacokinetic characteristics (e.g.,
194 absorption, distribution, metabolism, and excretion) could ultimately enable the prediction of
195 metabolite abundance from metagenome abundance. The systematic detection of the relevant genes
196 and gene clusters by gutSMASH will provide a technological foundation for future studies in this
197  direction, by allowing mapping of metatranscriptomic data to these accurately defined and
198  categorized sets of genomic loci in order to understand which conditions and interactions are driving
199  the expression of these pathways and the accumulation of their products.
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Figure 3. Prevalence and abundance of specialized primary metabolic pathways across 1,135 human microbiome samples.

(A) Prevalence of each of the 41 known pathway classes across all microbiomes, measured as the percentage of samples in

which core enzyme-coding genes of at least one reference MGC belonging to a given class were covered by metagenomic
reads across >5% of their sequence length. This cutoff was kept low to avoid false negatives due to limited sequencing depth

for low-abundance taxa (raw data available at Table S8). (B) Distributions of log2 RPKM relative abundance values of all 41
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206 known pathway classes, categorized by product class, across all LifeLines DEEP metagenomes (raw data available at Table
207 S9). (C) Limited correlation of genetic pathway abundance with abundance of metabolites in blood plasma.

208

209 The gutSMASH software constitutes, to our knowledge, the first comprehensive automated tool
210 designed to identify niche-defining primary metabolic pathways from genome sequences or
211 metagenomic contigs—even a full-fledged metabolic network reconstruction software like
212 PathwayTools (21) (which uses the extensive MetaCyc database (22)) lacks detection capabilities for
213 3 out of the 41 MGC-encoded pathways detected by gutSMASH (Table S7). Moreover, the
214  identification of MGCs provides considerably increased confidence that detected homologues for a
215  given pathway are truly working together. Downstream, detected MGCs can be used as input for read-
216  based tools such as HUMANN (23) or BiG-MAP (14) to measure abundance or expression levels of the
217  encoded pathways. On top of these functionalities, the gutSMASH framework also facilitates
218  identifying new (i.e., uncharacterized) pathways in the microbiome. To this end, we designed an
219  additional set of rules to detect primary metabolic gene clusters of unknown function that harbor Fe-
220 S flavoenzymes (24), glycyl-radical enzymes, 2-hydroxyglutaryl-CoA-dehydratase-related enzymes,
221  and/or enzymes involved in oxidative decarboxylation. From this analysis of putative MGCs (see S|
222 methods Analysis of distant homologues and putative MGCs from CGR, HMP and Clostridioides
223 dataset), we found 12,259 putative MGCs from 760 different species, that, after redundancy filtering
224  at 90% sequence similarity, were classified into 932 GCFs. Within these, we manually prioritized a
225 range of gene clusters with unprecedented enzyme-coding gene content (see Suppl. Figure 4&S5, SI
226  Results Analysis of putative clusters and distant homologues: relevant candidates to study further).
227  These can be a potential new source to discover new pathways and metabolites.
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