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The validity of research results depends on the reliability of s these are models of the anatomy, we refer to these estimates
analysis methods. In recent years, there have been concerns as “bundles” to distinguish them from the anatomical path-
about the validity of research that uses diffusion-weighted MRI ,; ways themselves. The delineation of well-known anatomical
(dMRI) to understand human brain white matter connections pathways overcomes many of the concerns about confounds
in vivo, in part based on reliability of the analysis methods used o in dMRI-based tractography (13, 14), because “brain connec-
in this field. We defined and assessed three dimensions of reli- . . . . .
er . . . 20 tions derived from diffusion MRI tractography can be highly
ability in dMRI-based tractometry, an analysis technique that . . .
21 anatomically accurate — if we know where white matter path-

assesses the physical properties of white matter pathways: (1) .
reproducibility, (2) test-retest reliability and (3) robustness. To * ways start, where they end, and where they do not go” (15).

facilitate reproducibility, we provide software that automates . The physical properties of the tissue affect the diffusion
tractometry (https://yeatmanlab.github.io/pyAFQ). », of water within the brain and the microstructure of tissue
In measurements from the Human Connectome Project, as well ,; ithin the white matter along the length of computationally-
as clinical-grade measurements, we find that tractometry has generated bundles can be assessed using a variety of mod-
high test-retest reliability that is comparable to most standard- 2 els (16, 17). Taken together, computational tractography.
ized clinical assessment tools. We find that tractometry is also ’ L . . . . ;
. . R e s . 25 bundle recognition and diffusion modeling provide so-called

robust: showing high reliability with different choices of anal- « ' . . .
2 “tract profiles”: estimates of microstructural properties of

ysis algorithms. Taken together, our results suggest that trac- . . ook
tometry is a reliable approach to analysis of white matter con- * tissue along the length of major pathways. This is the ba-

nections. The overall approach taken here both demonstrates @' Sis of tractometry: statistical analysis that compares different
the specific trustworthiness of tractometry analysis and outlines s groups, or assesses individual variability in brain connection
what researchers can do to demonstrate the reliability of com- 32  structure (9, 18-21). For the inferences made from tractome-

=)

putational analysis pipelines in neuroimaging. a try to be valid and useful, tract profiles need to be reliable.

Diffusion MRI | Brain Connectivity | Tractography | Reproducibility | Robust- 35 In the present work, we provide an assessment of three dif-
ness s ferent ways in which scientific results can be reliable: repro-
Correspondence: arokem@uw.edu & ducibility, test-retest reliability, and robustness. These terms

s are often debated and conflicting definitions for these terms
s have been proposed (22, 23). Here, we use the definitions
w0 proposed in (24). Reproducibility is defined as the case in
The white matter of the brain contains the long-range connec- « which data and methods are fully accessible and usable: run-
tions between distant cortical regions. The integration and « ning the same code with the same data should produce an
coordination of brain activity through the fascicles contain- «s identical result. Use of different data (e.g., in a test-retest
ing these connections is important for information processing « experiment) resulting in quantitatively comparable results
and for brain health (1, 2). Using voxel-specific directional s would denote test-retest reliability (TRR). In clinical science
diffusion information from diffusion-weighted MRI (AMRI), 4« and psychology in general, TRR (e.g., in the form of inter-
computational tractography produces three-dimensional tra- «s rater reliability) is considered a key metric of the reliability of
jectories through the white matter within the MRI volume s a measurement. Use of a different analysis approach or dif-
that are called “streamlines” (3, 4). Collections of streamlines s ferent analysis system (e.g., different software implementa-
that match the location and direction of major white matter so tion of the same ideas) could result in similar conclusions, de-
pathways within an individual can be generated with different s+ noting their robustness against implementation details. The
strategies: using probabilistic (5, 6) or streamline-based (7, 8) s= recent findings of Botvinik-Nezer et al (25) show that even
atlases, or known anatomical landmarks (9-12). Because sz when full computational reproducibility is achieved, the re-
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sults of analysing a single fMRI dataset can vary significantly 1o
between teams and analysis pipelines, demonstrating issues 110
of robustness. 111
The contribution of the present work is three-fold: To 112
support reproducible research using tractometry, we de- 113
veloped an open-source software library called Auto- 114
mated Fiber Quantification in Python (pyAFQ; https: s
//yeatmanlab.github.io/pyAFQ). Given dMRI s
data that has undergone standard preprocessing (e.g., us- 117
ing QSIprep (26)), pyAFQ automatically performs tractogra- 11
phy, classifies streamlines into bundles representing the ma- 11
jor tracts, and extracts tract profiles of diffusion properties 120
along those bundles, producing “tidy” CSV output files (27) a1
that are amenable to further statistical analysis (Fig. S1). The 22
library implements the major functionality provided by a pre- 12:
vious MATLAB implementation of tractometry analysis (9), 124
and offers a menu of configurable algorithms allowing re- 125
searchers to tune the pipeline to their specific scientific ques- 126
tions (Fig. S2). Second, we use pyAFQ to assess test-retest 127
reliability of tractometry results. Third, we assess robustness 12s
of tractometry results to variations across different models

of the diffusion in individual voxels, across different bun- 12e
dle recognition approaches, and across different implemen- 1o
tations. 131
132
133

Materials and Methods

134
PYAFQ. We developed an open-source tractometry software s
library to support computational reproducibility: Python 4
Automated Fiber Quantification (pyAFQ; https://
github.com/yeatmanlab/pyAFQ). The software re- 15
lies heavily on methods implemented in DIPY (28) . Our 15
implementation was also guided by a previous MATLAB im- 15
plementation of tractometry (mAFQ) (9). More details are 140
available in the ’Automated Fiber Quantification in Python s
(pyAFQ)’ section of Supplementary Methods. 142

143
Tractometry. The pyAFQ software is configurable, allowing 144
users to specify methods and parameters for different stages 145
of the analysis (Fig. S2). Here, we will describe the default 14
setting. In the first step, computational tractography methods,
implemented in DIPY (28), are used to generate streamlines 147
throughout the brain white matter (Fig. STA). Next, the T1- 14
weighted MNI template (29, 30) is registered to the anistropic 1ss
power map (APM) (31, 32) computed from the diffusion data, 1so
that has a T1-like contrast (Fig. S1B) using the symmetric im- 151
age normalization method (33) implemented in DIPY (28). 12
The next step is to perform bundle recognition, where each 1s:
tractography streamline is classified as either belonging to a s
particular bundle, or discarded. We use the transform found 1ss
during registration to bring canonical anatomical landmarks, 1ss
such as waypoint regions of interest (ROIs) and probability 1s7
maps, from template space to the individual subject’s native 1ss
space. Waypoint ROIs are used to delineate the trajectory of 1ss
the bundles (34). See Table S1 for the bundle abbreviations 1eo
we use in this paper. Streamlines that pass through inclu- s
sion waypoint ROIs for a particular bundle, and do not pass
through exclusion ROI, are selected as candidates to include +es
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in the bundle. In addition, a probabilistic atlas (35) is used as
a tie-breaker to determine whether a streamline is more likely
to belong to one bundle or another (in cases where the stream-
line matches the criteria for inclusion in either). For example,
the corticospinal tract is identified by finding streamlines that
do pass through an axial waypoint ROI in the brainstem and
another ROI axially oriented in the white matter of the corona
radiata, but that do not pass through the midline (Fig. S1C).
The final step is to extract the tract profile: each streamline is
resampled to a fixed number of points and the mean value of a
diffusion-derived scalar (e.g., fractional anisotropy (FA) and
mean diffusivity (MD)) is found for each one of these nodes.
The values are summarized by weighting the contribution of
each streamline, based on how concordant the trajectory of
this streamline is with respect to the other streamlines in the
bundle (Fig. SID). To make sure that profiles represent prop-
erties of the core white matter, we remove the first and last
5 nodes of the profile, then further remove any nodes where
either the FA is less than 0.2 or the MD is greater than 0.002.
This removes nodes that contain partial volume artifacts (16).

Data. We used two datasets with test-retest measurements.
We used Human Connectome Project test-retest measure-
ments of dMRI for 44 neurologically healthy subjects aged
22-35 (HCP-TR) (36). The other is an experimental dataset,
with dMRI from 48 children, 5 years old in age, collected
at the University of Washington (UW-PREK). More details
about the measurement are available in the 'Data’ section of
Supplementary Methods.

HCP-TR Configurations. We processed HCP-TR with
three different pyAFQ configurations. In the first configu-
ration, we used the diffusion kurtosis model (DKI) as the ori-
entation distribution function (ODF) model. In the second
configuration, we used constrained spherical deconvolution
(CSD) as the ODF model. For the final configuration, we
used RecoBundles (8) for bundle recognition instead of the
default waypoint ROI approach, and DKI as the ODF model.
More details are available in the *Configurations’ section of
Supplementary Methods.

Measures of Reliability. Tract recognition of each bundle
was compared across measurements and methods using the
Dice coefficient, weighted by streamline count (WDSC) (37).
Tract profiles were compared with three measures: (1) Pro-
file reliability: mean intraclass correlation coefficient (ICC)
across points in different tract profiles for different data,
which quantifies the agreement of tract profiles (38, 39); (2)
Subject reliability: Spearman’s rank correlation coefficient
(Spearman’s p) between the mean of the tract profiles across
individuals, which quantifies the consistency of the mean of
tract profiles; (3) an adjusted contrast index profile (ACIP) to
directly compare the values of individual nodes in the tract
profiles in different measurements. To estimate test-retest
reliability (TRR), the above measures were calculated for
each individual across different measurements. To estimate
robustness, these were calculated for each individual across
different analysis methods. For example, if we calculate the

Kruper etal. |


https://yeatmanlab.github.io/pyAFQ
https://yeatmanlab.github.io/pyAFQ
https://yeatmanlab.github.io/pyAFQ
https://github.com/yeatmanlab/pyAFQ
https://github.com/yeatmanlab/pyAFQ
https://github.com/yeatmanlab/pyAFQ
https://doi.org/10.1101/2021.02.24.432740
http://creativecommons.org/licenses/by/4.0/

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432740; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

subject reliability across analysis methods, we would call 215
that “subject robustness”. If we calculated subject reliability 220
across measurements, we would call that “subject TRR”. We 2
explain profile and subject reliability in more detail below; 22
we explain wDSC and ACIP in more detail in the "Measures

of Reliability’ section of Supplementary Methods 223

224
Profile reliability. We use profile reliability to compare the

shapes of profiles per bundle and per scalar. Given two sets ,
of data (either test-retest or from different analyses), we first .
calculate the ICC between tract profiles for each subject in,
a given bundle and scalar. Then, we take the mean of those ,
correlations. We do this for every bundle and for every scalar. |
We call this profile reliability because larger differences in
the overall values along the profiles will result in a smaller,
mean of the ICC. Consistent profile shapes are important for ,
distinguishing bundles. Profile reliability provides an assess-
ment of the overall reliability of the tract profiles, summariz-
ing over the full length of the bundle, for a particular scalar.
We calculate the 95% confidence interval on profile reliabili-
ties using the standard error of the measurement.

In some cases, there is low between-subject variance in
tract profile shape (for example, this is often the case in
CST). We use ICC to account for this, as ICC will penal-
ize low between-subject variance in addition to rewarding
high within-subject variance. Profile reliability is a way of
quantifying the agreement between profiles. Qualitatively,
we use four descriptions for profile reliability: excellent (ICC
> 0.75), good (ICC = 0.60 to 0.74), fair (ICC = 0.40 to 0.59),
and poor (ICC < 0.40) (40).

25

28

29

1
32

33

36

Subject reliability. We calculate subject reliability to compare
individual differences in profiles, per bundle and per scalar,
following (41). Given two measurements for each subject,
we first take the mean of each profile within each individ-
ual, measurement and scalar. Then we calculate Spearman’s
p from the means from different subjects for a given bundle
and scalar across the measurements. High subject reliabil-
ity means the ordering of an individual’s tract profile mean
among other individuals is consistent across measurements
or methods. This is akin to test reliability which is computed
for any clinical measure.

One downside of subject reliability is that the shape of the
extracted profile is not considered. Additionally, if one mea-
surement or method produces higher values for all subjects
uniformly, subject reliability would not be affected. Instead,
the intent of subject reliability is to well summarize the
preservation of relative differences between individuals for
mean tract profiles. In other words, subject reliability quan-
tifies the consistency of mean profiles. The 95% confidence
interval on subject reliabilities are parametric. =

37

239
Results 0
241
Tractometry using pyAFQ classifies streamlines into bundles 2.
that represent major anatomical pathways. The streamlines 2
are used to sample dMRI-derived scalars into bundle profiles
that are calculated for every individual and can be summa- 24

rized for a group of subjects. An example of the process and 2
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result of the tract profile extraction process is shown in Sup-
plementary Fig. S3, together with the results of this process
across the 18 major white matter pathways for all subjects in
the HCP-TR dataset.

Assessing test-retest reliability of tractometry.In
datasets with scan-rescan data we can assess test-retest relia-
bility (TRR) at several different levels of tractometry. For ex-
ample, the correlation between two profiles provides a mea-
sure of the reliability of the overall tract profile in that sub-
ject. Analyzing the Human Connectome Project’s test-retest
dataset (HCP-TR), we find that for fractional anisotropy (FA)
calculated using DKI, the values of profile reliability vary
across subjects (Figure 1A), but they overall tend to be rather
high, with the average value within each bundle in the range
0.77+0.05 to 0.92 +0.02 and a median across bundles of
0.86 (Figure 1B). We find similar results for mean diffusivity
(MD; Fig. S4) and replicate similar results in a second dataset
(Fig. 3B).
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Fig. 1. FA profile test-retest reliability A: Histograms of individual subject ICC
between the FA tract profiles across sessions for a given bundle. Colors encode
the bundles, matching the diagram showing the rough anatomical positions of the
bundles for the left side of the brain (center). B: Mean (£ 95% confidence inter-
val) TRR for each bundle, color-coded to match the histograms and the bundles
diagram, with median across bundles in red.

Subject reliability assesses the reliability of mean tract pro-
files across individuals. Subject FA TRR in the HCP-TR
also tends to be high, but the values vary more across bun-
dles with a range of 0.57£0.24 to 0.85£0.12 and a median
across bundles of 0.73. We can see that subject TRR is lower
than profile TRR (Figure 2). This trend is consistent for MD
(Fig. S5) as well as for another dataset (Fig. 3C).

Test-retest reliability of tractometry in different imple-
mentations, datasets, and tractography methods. We
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Fig. 2. Subject test-retest reliability A: Mean tract profiles for a given bundle and 29
the FA scalar for each subject using the first and second session of HCP-TR. Colors
encode bundle information, matching the core of the bundles (center). B: subject
reliability is calculated from the Spearman’s p of these distributions, with median 29
across bundles in red (3= 95% confidence interval). 299

300

301
compared TRR across datasets and implementations. In both

datasets, we found high TRR in the results of tractography
and bundle recognition: wDSC was larger than 0.7 for all ,,
but one bundle (Fig. 3A): the delineation of the anterior for-
ceps (FA bundle) seems relatively unreliable using pyAFQ .,
in the UW-PREK dataset (using the FA scalar, pyAFQ sub-

ject TRR is only 0.37 £ 0.28 compared to mAFQ’s 0.84 =
0.10). We found overall high profile TRR that did not always g
translate to high subject TRR (Fig. 3B-G). For example, for 4,
FA in UW-PREK, median profile TRRs are 0.75 for pyAFQ 4,
and 0.77 for mAFQ while median subject TRRs are 0.70 for 4,
pyAFQ and 0.75 for mAFQ. Note that profile and subject 5,
TRR have different denominators (for example, subjects that 4
have similar mean profiles to each other would have low sub- 4,
ject TRR, even if the profiles are reliable, because it is harder g5
to distinguish between subjects in this case). mAFQ is one of 4
the most popular software pipelines currently available for ,,,
tractometry analysis, so it provides an important point for g
comparison. In comparing different software implementa-

tions, we found that mAFQ has higher subject TRR relative a1
to pyAFQ in the UW-PREK dataset, when TRR is relatively a2
low for pyAFQ (see the FA bundle, CST L, and ATR L in s
Fig. 3C). On the other hand, in the HCP-TR dataset pyAFQ a2
we used the RTP pipeline (42, 43), which is an extension of a2
mAFQ, and found that pyAFQ tends to have slightly higher s«
profile TRR than RTP for MD, but slightly lower profile TRR a2
for FA (Fig. 3D). The pyAFQ and RTP subject TRR are s
highly comparable (Fig. 3E). In FA, the median pyAFQ sub- a2
ject TRR for FA is 0.76 while the median RTP subject TRR is a2
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0.74. Comparing different ODF models in pyAFQ, we found
that the DKI and CSD ODF models have highly similar TRR,
both at the level of wDSC (Fig. 3A), as well as at the level of
profile and subject TRR (Fig. 3F-G).

Robustness: comparison between distinct tractogra-
phy models and bundles recognition algorithms. To as-
sess the robustness of tractometry results to different models
and algorithms, we used the same measures that were used to
calculate TRR.

Tractometry results can be robust to differences in ODF
models used in tractography. We compared two algorithms:
tractography using DKI- and CSD-derived ODFs. The
weighted Dice similarity coefficient (wDSC) for this com-
parison can be rather high in some cases (e.g., the uncinate
and corticospinal tracts, Figure 4A), but produce results that
appear very different for some bundles, such as the arcuate
and superior longitudinal fasciculi (ARC and SLF) (see also
Figure 4D). Despite these discrepancies, profile and subject
robustness are high for most bundles (median FA of 0.77
and 0.75, respectively) (Figure 4B,C). In contrast to the re-
sults found in TRR, MD subject robustness is consistently
higher than FA subject robustness. The two bundles with
the most marked differences between the two ODF models
are the SLF and ARC (Figure 4D). These bundles have low
wDSC and profile robustness, yet their subject robustness re-
mains remarkably high (In FA, 0.75+0.17 for ARC R and
0.88 +0.09 for SLF R) (Figure 4C). These differences are
partially explained due to the fact that there are systematic
biases in the sampling of white matter by bundles generated
with these two ODF models, as demonstrated by the non-
zero adjusted contrast index profile (ACIP) between the two
models (Figure 4E).

Most white matter bundles are highly robust across bundle
recognition methods. We compared bundle recognition with
the same tractography results using two different approaches:
the default waypoint ROI approach (9), and an alternative ap-
proach (RecoBundles) that uses atlas templates in the space
of the streamlines (44). Between these algorithms, wDSC is
around or above 0.6 for all but one bundle, ILF R (Figure 5).
There is an asymmetry in the ILF atlas bundle(7), which re-
sults in discrepancies between ILF R recognized with way-
point ROIs and with RecoBundles. Despite this bundle, we
find high robustness overall. For MD, the first quartile subject
robustness is 0.82 (Figure 5C, D).

Tractometry results are robust to differences in software im-
plementation. Overall, we found that robustness of tractom-
etry across these different software implementations is high
in most white matter bundles. In the mAFQ/pyAFQ com-
parison, most bundles have a wDSC around or above 0.8,
except the two callosal bundles (FA bundle and FP), which
have a much lower overlap (Fig. 6A). Consistent with this
pattern, profile and subject robustness is also overall rather
high (Fig. 6B, C). The median values across bundles are 0.71
and 0.77 for FA profile and subject robustness, respectively.
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For some bundles, like the right and left uncinate, there is s
large agreement between pyAFQ and mAFQ (for subject FA: a7
UNC L p =0.90£0.07, UNC R p = 0.89 £0.08). How-
ever, the callosal bundles have particularly low mean diffu-
sivity (MD) profile robustness (Fig. 6B) (0.07 £ 0.09 for FP,
0.18 £0.09 for FA).

349
350
The robustness of tractometry to the differences between the ss1
pyYAFQ and mAFQ implementation depends on the bundle, s
scalar, and reliability metric. In addition, for many bundles, ss3
the ACIP between mAFQ and pyAFQ results is very close s
to 0, indicating no systematic differences (Fig. 6D). In some s
bundles — the corticospinal tract (CST) and the anterior thala- sse
mic radiations (ATR) — there are small systematic differences ss7
between mAFQ and pyAFQ. In the Forceps Posterior (FP), ass
pyAFQ consistently finds smaller FA values than mAFQ in a ase
section on the left side. Notice that the forceps anterior has o
an ACIP that deviates only slightly from 0, even though the s

6 | bioRxiv

forceps recognitions did not have as much overlap as other
bundle recognitions (see Fig. 6A).

Discussion

Previous work has called into question the the reliability
of neuroimaging analysis (e.g., (25, 45, 46)). We assessed
the reliability of a specific approach, tractometry, which
is grounded in decades of anatomical knowledge, and we
demonstrate that this approach is reproducible, reliable and
robust. A tractometry analysis typically combines the out-
puts of tractography with diffusion reconstruction at the level
of the individual voxels within each bundle. One of the ma-
jor challenges facing researchers who use tractometry is that
there are many ways to analyze diffusion data, including dif-
ferent models of diffusion at the level of individual voxels;
techniques to connect voxels through tractography; and ap-
proaches to classify tractography results into major white
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subject.

matter bundles. Here, we analyzed the reliability of tractome- a7
try analysis at several different levels. We analyzed both test- as
retest reliability of tractometry results and their robustness to ss
changes in analytic details, such as choice of tractography as
method, bundle recognition algorithm, and software imple- sss
mentation (Fig 6). o

385

Test-retest reliability of tractometry. Test-retest reliabil- **°
ity (TRR) of tractometry is usually rather high, comparable **’
in some tracts and measurements to the TRR of the measure- **°
ment. In comparing the HCP-TR analysis and UW-PREK **
analysis, we note that higher measurement reliability goes **
hand in hand with tractometry reliability. o
In terms of the anatomical definitions of the bundles, quan- .
tified as the TRR wDSC, we find reliable results in both .
datasets and with both software implementations and both o
tractography methods that we tested. With pyAFQ we found .
a relatively low TRR in the frontal callosal bundle (FA bun- .

Kruper etal. |

dle) in the UW-PREK dataset. This could be due to the sen-
sitivity of the definition of this bundle to susceptibility dis-
tortion artifacts in the frontal poles of the two hemispheres.
This low TRR was not found with mAFQ, suggesting that
this low TRR is not a necessary feature of the analysis, and is
a potential avenue for improvement to pyAFQ. While the two
implementations were created by teams with partial overlap
and despite the fact that pyAFQ implementation drew both
inspiration as well as specific implementation details from
mAFQ, many details of implementation still differ substan-
tially. For example, the implementations of tractography al-
gorithms are quite different — pyAFQ relies on DIPY (28)
for its tractography, while mAFQ uses implementations pro-
vided in Vistasoft (47). The two pipelines also use differ-
ent registration algorithms, with pyAFQ relying on the SyN
algorithm (33), while mAFQ relies on registration methods
implemented as part of the Statistical Parametric Mapping
(SPM) software (48). These differences may explain the dis-
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crepancies observed. 453
We also find that TRR is high at the level of profiles within s
subjects and mean tract profiles across subjects. This is gen- ss
erally observed in both datasets that we examined, and us- sss
ing different analysis methods and software implementations. ss7
For the UW-PREK dataset, subject TRR tends to be higher s
in mAFQ than in pyAFQ. On the other hand, for the HCP- s
TR dataset, pyAFQ subject TRR tends to be higher than that 4
obtained with RTP, which is a fork and extension of mAFQ st
(42, 43). Generally, TRR of FA profiles and also TRR of s
mean FA across subjects tend to be higher than those of MD. s
This could be because the assessment of MD is more sensi- as
tive to partial volume effects. In contrast to FA, MD is also s
not bounded, which means that extreme values at the bound- 4ss
aries of tissue types can have a substantial effect on TRR. 4

Robustness of tractometry. As highlighted in the recent “®
work by Botvinik-Nezer et al (25) and in parallel by Schilling 4°
et al (45), inferences from even a single dataset can vary sig- 4°
nificantly, depending on the decisions and analysis pipelines
that are used. The analysis approaches used in tractometry ¢
embody many assumptions made at the different stages of 4
analysis: the model of the signal in each individual voxel, the 47
manner in which streamlines are generated in tractography,
the definition of bundles, and the extraction of tract profiles. 476
While TRR is important, it does not guard against systematic +7
errors in the analysis approach. One way to test model as- 478
sumptions and software failures is to create ground truth data ¢
against which different methods and implementations can be “°
tested (13, 49, 50). However, this approach also relies on 4
certain assumptions about the mechanisms that generate the 42
data that is considered ground truth, making this approach 3
more straightforward for some methods than others. Here,
we instead assessed the robustness of tractometry results to 4
perturbations of analytic components, focusing on the mod-
elling of ODFs in individual voxels and the approach taken 47

to bundle recognition. 488
489

Subject robustness remains high despite differences in the s
spatial extent of bundles. We replicated previous findings o1
that the definition of major bundles can vary in terms of their ss2
spatial extent (quantified via wDSC) (13, 37, 40, 45), depend- s
ing on the software implementation or the ODF model used. 494
As we show, low wDSC robustness often corresponds to low ass
profile robustness, and vice versa (Fig 6B,C, Fig 4A,B, and 4s
Fig 5A,B). That is, when two algorithms detect bundles with 457
small spatial overlap, the shape of the resulting tract profiles s
are also different from each other. However, low wDSC and 49
profile robustness does not always translate to low subject s
robustness. Algorithms can detect bundles with low spatial sor
overlap and of different shapes yet still agree on the ordering se
of the mean of the profiles, i.e., which subjects have high or se
low FA in a given bundle. A clear example of this is the SLF sos
and ARC in Fig 4 (wDSC and profile robustness are low, yet sos
subject robustness is very high). This suggests that tractome- sos
try can overcome failures in precise delineation of the major so
bundles by averaging tissue properties within the core of the sos
white matter. Conversely, important details that are sensitive sos

Kruper etal. |

to these choices may be missed when averaging along the
length of the tracts. Moreover, this may also reflect biases in
the measurement that cannot be overcome at either stage of
the analysis: tractography or bundle recognition.

Our high subject-level robustness results (Fig 6C, Fig 4C, and
Fig 5C) dovetail with the results of a recently-published study
that used tractometry in a sample of 45 participants (51), and
found high subject-level correlations between the mean tract
values of FA and MD for two different pipelines: determin-
istic tractography using the diffusion tensor model (DTI) as
the ODF model (essentially identical to a pipeline used in our
supplementary analysis, described in “DTI Configuration”),
and probabilistic tractography using CSD as the ODF model.
Consistent with our results on the HCP-TR dataset, slightly
higher subject robustness was found for MD than for FA.

Exceptions & Limitations. High profile robustness did not al-
ways imply high subject robustness (e.g., the FP in Fig 4
has high profile robustness, but low subject robustness). This
suggests that there are other sources of between-subject vari-
ance that do not correspond directly to profile robustness
within an individual.

There are still significant challenges to robustness that arise
from the way in which the major bundles are defined. This
problem was highlighted in recent work that demonstrated
that different researchers use different criteria to define bun-
dles of streamlines that represent the same tract (45). In
our case, this challenge is represented by the relatively low
robustness between the waypoint ROI algorithm for bundle
definition and the RecoBundles algorithm. In this compari-
son, the wDSC exceeds 0.8 in only one bundle and is below
0.4 in two cases. While both algorithms identify a bundle of
streamlines that represents the right ILF, this bundle differs
substantially between the two algorithms. Even so, profile
and subject robustness can still be rather high, even in some
cases in which rather middling overlap is found between the
anatomical extent of the bundles. This challenge highlights
the need for more precise definitions of the models of brain
tracts that are derived from dMRI, but also highlights the
need for clear, automated and reproducible software to per-
form bundle recognition.

In addition to decisions about analysis approach, which may
be theoretically motivated, software implementations may
contain systematic errors in executing the different steps and
different software may be prone to different kinds of failure
modes. Since other software implementations (9, 42) of the
AFQ approach have been in widespread use in multiple dif-
ferent datasets and research settings, we also compared the
results across different software implementations (Fig. 6).
While there are some systematic differences between imple-
mentations, tractometry is overall quite robust to differences
between software implementations.

Another important limitation of this work is that we have only
analyzed samples of healthy individuals. Where brains are
severely deformed (e.g., in TBI, brain tumors and so forth),
particular care would be needed to check the results of bundle
recognition, and separate considerations would be needed in
order to reach conclusions about the reliability of the infer-
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ences made. 565

566

Computational reproducibility via open-source soft-_
ware. Reproducibility is a bedrock of science, but achieving ses
full computational reproducibility is a high bar that requires :32
access to the software, data and computational environment sz
that a researcher uses (22). One of the goals of pyAFQ is to 7
provide a platform for reproducible tractometry. It is embed- sz
ded in an ecosystem of tools for reproducible neuroimaging ::
and is extensible. This is shown in Fig. S6 and Fig S2 and is s77
further discussed in “Supplementary Discussion of pyAFQ”. 7
Results from the present article and supplements can be ss
reproduced using a set of Jupyter notebooks provided here: %)
https://github.com/36000/Tractometry_
TRR_and_robustness. After installing the version of
pyAFQ that we used (0.6), reproduction should be straight- s,
forward on standard operating systems and architectures, or o
in cloud computing systems (see code and Supplementary ses
Methods). In the UW-PREK dataset, we shared the tract 2:3
profiles and we provide web-based visualizations using a s
tool that previously developed for transparent data sharing :z
of tractometry data (52): https://yeatmanlab. s
github.io/UW_PREK_pyAFQ pre_browser and ::2
https://yeatmanlab.github.io/UW_PREK_ 504
PyAFQ_post_browser. 222
The HCP-TR dataset is relatively straightforward for others sez
to access in its preprocessed form through the HCP, and be- >
cause the study IDs can be openly shared in our code, anyone s
with such access should be able to reproduce the figures in
full. Using these resources, it should be possible to re-execute eos
our workflows and replicate most of our results (53). For ex- >¢
ample, if other researchers would be interested in comparing eos
our TRR results to another tractometry pipeline (e.g., TRAC- >
ULA (11), another popular tractometry pipeline) or another eos
bundle recognition algorithm (e.g., TractSeg (54), which uses °"
a neural network to recognize bundles, or Classifyber (55), st
which uses a linear classifier), they could do so with the HCP- :13
TR dataset, inspired by our scripts, and the visualization tools ets
in the pyAFQ software. o
618
Future Work. There are many aspects of reliability that Z;
could be further explored. We explored robustness with re- 22;
spect to ODF models and bundle recognition algorithms; ro-
bustness could also be explored with respect to: data acquisi- %>;
tion parameters within the same subject; preprocessing meth- ez
ods; profile extraction method (for example, comparing our >’
current approach with the BUndle ANalytics (BUAN) (56)); 62
and the effects of profile realignment on tract profile reliabil- %7
ity (57). Another possibility for teasing apart measurement ez
and tractography effects would be to test profile TRR using >
the streamline of one scan on the results of the second scan ess
(by registering the streamline themselves, to avoid data inter- >
polation in volume registration). This could tease apart the es
effects of tractography from the voxel-level models of tis- %
sue properties, because it is not necessary that these would e
be sensitive to the same constraints (e.g., different sensitiv- :ﬁ
ity to noise). The methods we demonstrate and resources we s
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provide in this paper should be useful for anyone wishing to
further explore reliability in tractometry.
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Supplementary Methods

Automated Fiber Quantification in Python (pyAFQ). Inspired by a previous MATLAB implementation (9), We developed
a software library that automates dMRI-based tractometry analysis. The library is called pyAFQ (Python Automated Fiber
Quantification), and it is implemented as open-source software here: https://github.com/yeatmanlab/pyAFQ. The
software is developed under the permissive OSI-approved BSD license. It allows users to specify the methods and parame-
ters they want to use for tractometry. pyAFQ uses many components of the scientific Python ecosystem (58). In particular,
it relies heavily on implementations of algorithms for diffusion reconstruction, orientation determination, tractography and
image registration implemented in Diffusion Imaging in Python (DIPY), an open-source, Python library for computational neu-
roanatomy (28). The pyAFQ software implements extensive documentation with Sphinx (59), including a gallery of executable
examples, implemented using Sphinx Gallery (60). Unit testing is implemented using pytest, with continuous integration im-
plemented to test proposed changes to the library, as well as longer nightly tests that check that pipelines of operations are
not adversely affected by changes that are introduced in developing the software. pyAFQ’s test suite uses the HARDI data
collected for (16), CFIN (61), and data from the Human Connectome Project. pyAFQ can be parallelized across subjects and
sessions using dask (62). The analysis performed in this paper primarily used pyAFQ run using Cloudknot (63) on Amazon
Web Services (AWS).

There are many ways to analyze dMRI data and to estimate tractomery-based tract-profiles. For example, many different
models are used to determine the directions of tracking within each voxel and to connect different voxels with a variety of
tractography algorithms. Similarly, different models can be used to determine the tissue properties within a voxel. However, it
is hard to determine which methods to use, because different methods may be appropriate for different datasets, depending on
their characteristics: the measurements conducted, the signal to noise ratio (SNR) of the data and so forth. Software to support
analysis of a variety of datasets should make it easy to use many different methods and to compare results between methods.
All of the choices the user can make in each of the steps of pyAFQ are delineated below and summarized in Fig. S2. The
software implements a library with an object-oriented application programming interface (API), as well as a command-line
interface (CLI). Using pyAFQ’s API, pyAFQ can be run with only a few lines of code. The API is also flexible, giving the user
the ability to choose which algorithms and parameters to use. For users unfamiliar with python, pyAFQ has a command line
interface (CLI) which uses a configuration file written in TOML (64). pyAFQ also has a Boutiques configuration file and can
be executed using Boutiques (65).

Locating and mapping data (BIDS). The first step in analysis is to find the files that the software will use. pyAFQ relies on
pyBIDS (66, 67) to query data that is provided in the BIDS format (68). It looks for dMRI, b-value, and b-vector files stored
in standard formats (see https://yeatmanlab.github.io/pyAFQ/usage/data.html for details). Additionally,
the user can provide files from other processing pipelines to be used as a brain mask during registration or as start or stop
masks during tractography, as well as completed tractography results. We typically use the Nibabel software library to interact
with neuroimaging files (69). Following the BIDS standard, the outputs of pyAFQ are put in the BIDS derivatives folder, in a
pipeline directory labelled as “afq”. The derivative BIDS format follows as much as possible the draft implementation of the
BIDS derivatives for dMRI data.

Tractography. There are several methods for computational tractography. The pyAFQ software exposes many of these as op-
tions. It allows users to choose from multiple fiber orientation distribution functions (70) that determine the direction of tracking
in each step of the process: based on Diffusion Tensor Imaging (DTI) (71, 72), Diffusion Kurtosis Imaging (DKI) (73), Con-
strained Spherical Deconvolution (CSD) (74, 75), and Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-
CSD) (76). Deterministic and probabilistic tractography algorithms can be used and stopping criteria can be implemented for
particle filtering tractography, using the continuous map criterion (77) or anatomically-constrained tractography (78). The de-
fault tractography setting uses DTI, deterministic direction finding, a max turning angle per step of 30°, one seed per voxel, and
retains only streamlines between 10 and 1000mm long. Many of our tractography defaults are inspired by the results of (79)
and (9). The default seed and stop masks are created by thresholding FA at 0.2. All of these parameters can be customized
using pyAFQ’s API or CLIL

Template registration. The user can specify their own template and subject image to register, however pyAFQ also provides four
builtin options: register subject non-diffusion weighted image (also known as b0) to the Montreal Neurological Institute (MNI)
T2 template (29, 30); register subject FA to a group mean fractional anisotropy (FA) template from the UK Biobank (80, 81);
register a subject’s anisotropic power map (APM) (31, 32) to the MNI T1 template; and register subject streamlines to the 16
bundles human connectome project (HCP) atlas (7) using streamline registration (SLR) (82). The first three of these builtin
techniques use the nonlinear Symmetric Diffeomorphic Registration (SyN) (33) after an optional linear preregistration, both
implemented in DIPY. pyAFQ uses Templateflow (83) to get MNI T1/T2 templates for registration. The default registration
behavior is to consider all b-values under 50 to be b0, mask the subject’s APM using DIPY’s median_otsu image recognition
algorithm (84) on the subject b0, and register the masked power map to the masked MNI T1 template. Per default, we chose to
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use the APM for registration based on previous findings that show this is a good choice (85) and based on our own experience.
All of these parameters can be customized using pyAFQ’s API and CLI.

Bundle recognition and cleaning. To identify the streamlines that best represent a particular anatomical pathway, we perform
bundle recognition. The default behavior is to perform the initial classification using probability maps, and then segment with
waypoint ROIs defined in (86), then filter the classified streamlines by their termination locations, using the AAL atlas (87),
where streamlines must be within 4mm of the expected endpoint region. Waypoint ROIs are moved into the subject space and
then patched up using the Quickhull Algorithm (88). There is also an option, turned off by default, to clip streamline edges at
the ROIs (86).

In addition to the waypoint-based recognition described above, pyAFQ also allows the user to choose to use a streamline atlas
based bundle recognition method, called RecoBundles (44). Parameters for either algorithm can be customized using pyAFQ’s
API and CLI.

After recognition, cleaning is performed based on the Mahalanobis distance of each streamline from the mean in each node.
This process was originally described in (9). By default, pyAFQ resamples streamlines to 100 points (nodes) and performs
5 rounds of cleaning with a distance threshold of 5 standard deviations from the mean of the node coordinates at each point,
and a length threshold of 4 standard deviations from the mean length. Cleaning is also stopped if a bundle has less than 20
streamlines. All of these parameters can be customized using pyAFQ’s API and CLI.

Tract Profile Extraction. After cleaning, py AFQ computes and visualizes tract profiles. The mean profile (called a “tract profile”)
is calculated using the same Mahalanobis distance-based weighting strategy as in Yeatman et al. (9), implemented in DIPY.
Visualization can be performed using one of two backends: fury (89) or plotly (90), which create either animated gifs or
interactive html files respectively. Visualizations are created for the whole brain tractometry and for each individual bundle.

Data. We measured the reliability of tractometry using two datasets with contrasting characteristics.

Human Connectome Project (HCP-TR). The WU-Minn Human Connectome Project (HCP) (91) includes measurements of
diffusion MRI data from almost all of the 1,200 participants. Here, we focus our analysis on a subset of these subjects for
which test-retest data are available. We refer to this data as HCP-TR. This dataset contains dMRI data from 44 individuals.
This represents a relatively high-quality, high-resolution dataset, with multiple diffusion directions and multiple b-values. The
acquisition parameters of HCP-TR are described in detail elsewhere (36). We used data that had been preprocessed through the
HCP pipelines, as provided through the AWS Open Data program (https://registry.opendata.aws/hcp-openaccess/).

University of Washington Pre-K (UW-PREK). Two measurements were conducted in each participant 1 day apart. These were
acquired with 32 directions, b=1,500 s/mm?, 2 mm? isotropic resolution, TR/TE=7200/83 msec. Data were preprocessed using
FSL for eddy current, motion correction, and susceptibility distortion correction. Analysis using the mAFQ was conducted as
previously described (9). We converted UW-PREK to BIDS format (68) for input into pyAFQ’s API.

We attempted to configure pyAFQ to most closely match the mAFQ configuration. We used robust estimation of tensors by
outlier rejection (RESTORE) (92) to fit the DTI model. In tractography, we used 160,000 seeds randomly distributed wherever
DTI FA is higher than 0.3. We used only 1 round of cleaning. We ran this on both the UW-PREK pre and post sessions, and
compared its reproducibility to the results on the same datasets with mAFQ. We also compared the robustness of the results
between the pyAFQ and mAFQ algorithms on the pre-session data only.

Configurations. For all configurations, we used the Freesurfer brain segmentation provided by HCP to calculate a permissive
brain mask, with all portions of the image not labelled as 0, considered part of the brain. The brain mask is used when fitting
the ODF models. We compared the TRR of each configuration, as well as the robustness of the results across configurations.
We also compared the TRR of these configurations to the TRR of results published by Lerma-Usabiaga and colleagues (43),
denoted RTP.

DTI Configuration. In addition to the three configurations enumerated in the present paper, we processed HCP-TR with a fourth
configuration. We used only measurements with b-values between 990 and 1010 s/mm?. We used DTI as the ODF model for
tractography and profile extraction. We compared this configuration to RTP in 3D,E. We also analysed DTI for robustness and
found its results to be nearly identical to DKI.

RecoBundles Configuration. One of the configurations we ran on the HCP-TR data used RecoBundles (8). pyAFQ provides
programmatic access to two atlases, one being the full 80 bundles human connectome project (HCP) atlas (7), and other being
a 16 bundle subset of that atlas. We ran RecoBundles on HCP-TR using the full 80 bundles atlas. We use the following
RecoBundles parameter configuration: a model cluster threshold of 1.25, a reduction threshold of 25, no refinement, a pruning
threshold of 12, local streamline-based linear registration on with an asymmetric metric. We used this configuration for all 80
bundles. Multi-shell data and the DKI ODF model were used. We used nonlinear symmetric diffeomorphic registration and a
brain mask based on the HCP-provided segmentation.
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RTP. As a point of comparison, we used an open dataset of HCP-TR derivatives that was published by Lerma-Usabiaga and
colleagues (43). They processed HCP-TR using the Reproducible Tract Profiles (RTP) pipeline (42). This pipeline is a full
end-to-end pipeline and system for deployment of analysis that receives as input raw MRI data as acquired on the scanner.
While it applies different preprocessing steps and uses different tractography algorithms than mAFQ, relying on MRTRIX for
many of these steps (93), the bundle recognition steps closely resemble the ones used in mAFQ, relying on functions that stem
from the same MATLAB codebase as mAFQ. The end result of RTP are tract profiles in an easy-to-use and data-science ready
JSON format. We denote their results as RTP and compare them to the HCP-TR results computed with pyAFQ.

Measures of reliability. py AFQ gives the user the choice of which underlying algorithms to use when performing tractometry,
as shown in Fig. S2. We use this feature of pyAFQ to run multiple analyses on HCP-TR and UW-PREK, which both have test-
retest data. The analyses we selected represent only a small subset of the possible configurations of pyAFQ. However, because
the software is freely available and easily configurable with the API or CLI, it would be straightforward to test other analyses. To
compare the results on test-retest data (TRR) and compare results across analyses (robustness), we use four different measures
of reliability. Each one of these measures emphasizes different aspects of reliability.

Weighted Dice similarity coefficient (wDSC). The anatomical reliability of bundle recognition solutions is assessed by com-
paring their spatial overlap in the white matter volume. First, for every voxel in the white matter, we count the number of
streamlines that pass through that voxel for a given bundle, then divide by the total number of streamlines in that bundle. This
creates what we call a streamline density map (28). We could compare streamline density maps using a Dice similarity coeffi-
cient (94), but that would require applying a threshold to the density maps, and could give a few streamlines a large influence
on the calculation. Instead, we use the weighted Dice similarity coefficient (WDSC) (37):

Z Wi,v + W]‘,U

D( ) veEV;NY; (1)
)=
Z Wi,v+ Z Wj,v
veEV; ’UEV]'

where v is a voxel index, W ,, is the streamline density for a bundle 7 in voxel v, and v are voxels where the two bundles 7 and
7 intersect. wDSC provides a measure of the reliability in the spatial extent of bundles, in a manner that is independent from
the assessment of tract profiles.

Adjusted contrast index profile (ACIP). We use an adjusted contrast index to directly compare the values of individual nodes in
the tract profiles in different measurements. For two values (17, V2) in different profiles, the adjusted contrast index (ACI) is
calculated using Eq (2).

Vo—-11
Vo+1;

ACI(V1,V2)=2 2)
We multiply by 2 to make the contrast index have comparable values to fractional difference. In contrast to fractional difference,
however, the ACT does not require one of the variables to be a reference, and ACI(V1,V2)=—-ACI(V2,V1). Calculating and
then plotting the ACI for each point between two profiles highlights the differences between profiles, producing the adjusted
contrast index profile (ACIP). ACIP emphasizes discrepancies in estimates along the length of the tract in a manner that does
not depend on the scale of the measurement (e.g., the different scales of FA and MD).

16 | bioRxiv Kruper etal. |


https://doi.org/10.1101/2021.02.24.432740
http://creativecommons.org/licenses/by/4.0/

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432740; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Discussion of pyAFQ

PYAFQ is embedded in an ecosystem of tools for reproducible neuroimaging. The wider ecosystem of tools and standards
surrounding pyAFQ is shown in Fig. S6. Each tool has its own place in the ecosystem. We rely heavily on implementations
of dMRI analysis algorithms implemented in DIPY (28). Reproducibility and interoperability are also facilitated by relying on
the BIDS format (68) and the pyBIDS software (66, 67). Requiring a BIDS-like input makes integration with other software in
the ecosystem easier. For example, it is fairly straightforward to use the outputs of BIDS-compatible preprocessing pipelines,
such as gsiprep (95), as inputs to pyAFQ. Furthermore, the modularity of the pyAFQ pipeline means that outputs of other
tractography software (e.g., MRTRIX (96)) can be used as inputs to bundle recognition, with BIDS filters as the metadata that
allows finding and incorporating through the right data.

Cloud-based processing is going to be more important as large datasets are processed. pyAFQ does not depend on proprietary
software and can be scaled to large datasets using cloud computing platforms. In this paper, we used Cloudknot (63) to scale
pYAFQ across subjects and methods on AWS. However, because pyAFQ is a Python package, it can easily be run on any cloud
computing platform. Computing in the public cloud also supports reproducible research, as computations conducted on the
public cloud are perfectly portable to other users of the software. Our software is written with that in mind, including functions
that know how to easily access datasets that are already stored in the cloud (e.g., HCP and Healthy Brain Network (97) datasets).
We know that one of the most important ways in which users can diagnose whether processing worked as expected is by visually
inspecting the results. Thus, we provide several different visualization methods, relying on the VTK-derived FURY library, or
on browser-friendly visualizations with Plotly. pyAFQ outputs are also fully compatible with AFQ-Browser, a browser-based
tool for interactive visualization and exploration of tractometry results (52).

Finally, beyond visualization and summary of the results, and tools for analysis of reliability presented in this work, pyAFQ
does not provide a substantial set of tools for statistical analysis of tractometry results. Instead, the outputs of pyAFQ are
provided as “tidy” CSV tables (27). This means that it is compatible as inputs to the AFQ Insight tool for statistical analysis
(20), but also amenable to many other statistical analysis approaches. This output should facilitate interdisciplinary use of
dMRI data, as it is provided in a format that is widely used in statistics and machine learning.

PYAFQ is extensible. In general, variability in results would be reduced with a standard pipeline that could be used across all
studies and datasets. However, as noted by Lindquist, “studies tend to be too varied for one pipeline to always be appropri-
ate” (98). This is particularly true as new measurement techniques, new processing methods and new analysis approaches for
dMRI are evolving. Therefore, the pyAFQ pipeline was designed to be flexible, making it easier to reproduce results, while
providing researchers with many choices for the appropriate analysis, depending on their data and questions. pyAFQ allows the
user to make many decisions (Fig S2), and all of those decisions can be encoded in a configuration file. That configuration file
can be used to reproduce the same analysis pipeline given the same version of pyAFQ is used. By providing the configuration
file or the arguments passed to the main API, one can clearly satisfy the requirement for a re-executable workflow outlined
in (53).

To extend to new bundles, pyAFQ allows users to define new queries that recognize bundles that are not part of the set of 18
detected by the original mAFQ software. For a simple example, we use a set of alternative waypoint ROIs to detect different
portions of the corpus callosum (99) (Fig S7A). These alternative ROIs are included in py AFQ but not used by default. In more
complicated example, another set of ROIs is used to recognize the location of the optic radiations (OR; Fig S7). Because these
are relatively small and winding, their delineation requires additional components: it requires several waypoint ROIs used not
only as inclusion criteria, but also as exclusion criteria, and it requires delineation of endpoints in the cortex that are not part of
the AAL atlas, which is used in the standard set of bundles. It also requires oversampling of streamlines, so in order to obtain
a proper definition of the OR, tractography is configured to use 125 seeds per voxel (instead of the default 8). All of these
components can be integrated into calls to the software API, without needing to change any of its internals. This includes any
custom waypoint ROIs, inclusive or exclusive, as well as probability maps, endpoint locations, and whether the bundle crosses
the midline.
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s Supplementary Figures and Tables

Fig. S1. The stages of tractometry. A Computational tractography generates streamlines estimating the trajectories of white matter
connections. B An anatomical template is registered to each subjects individual brain. Here, in a mid-coronal view, the MNI T1-weighted
template (29, 30), shown with the locations of waypoint ROlIs for classification of the left corticospinal tract (5) (slightly enlarged for
visualization purposes). The subject’s anisotropic power map (APM) (31) is used as the target for registration, due to its similarity to the
T1 contrast. C Classification of the streamlines. Here, in a lateral view, the streamlines classified as belonging to the left corticospinal
tract (CST L), overlaid on a mid-saggital slice of the subject’s non diffusion-weighted (b0) image. The streamlines are shaded by the
subject’s fractional anisotropy (FA) along their length. D, Tract profiles are extracted from the bundles. Here, the FA profile for CST L.
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ARCL | Left Arcuate

ARCR | Right Arcuate

ATR L | Left Thalamic Radiation

ATR R | Right Thalamic Radiation

CGCL | Left Cingulum Cingulate

CGCR | Right Cingulum Cingulate

CSTL | Left Corticospinal

CSTR | Right Corticospinal

FA Callosum Forceps Minor

FP Callosum Forceps Major

IFOL Left Inferior Fronto-occipital Fasciculus
IFOR | Right Inferior Fronto-occipital Fasciculus
ILFL Left Inferior Longitudinal Fasciculus
ILFR Right Inferior Longitudinal Fasciculus
SLFL | Left Superior Longitudinal Fasciculus
SLFR | Right Superior Longitudinal Fasciculus
UNCL | Left Uncinate

UNCR | Right Uncinate

Table S1. Abbreviations of the major white matter pathways recognized by pyAFQ.
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Fig. S2. Choices the user can make for how to run pyAFQ. The colors represent different steps of tractometry. Tractography is shaded
blue, registration is shaded green, recognition is shaded orange, and tract profiles is shaded red. Every rounded box and diamond
contains one or more choices, except for the rounded boxes marked “Done!”, which indicates all choices have been made. Diamonds
indicate the path you take depends on the choice in the diamond. pyAFQ has reasonable defaults for all of these decisions; however it
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also makes it simple for the user to customize their tractometry pipeline according to their needs.
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Fig. S3. Extraction of tract profiles from the recognition of white matter into major bundles of streamlines. A Representative
bundles from an example subject in the HCP-TR dataset. Streamlines are colored by bundle, and are shaded by the interpolated FA
value at each point. The background is the mean non diffusion-weighted image (b0). B The same subject’s fractional anisotropy (FA).
C extracting FA along each bundle and plotting the FA in a tract profile. Individual tract profiles are plotted with thin lines and the mean
tract profile is plotted with a thick line. The tract profiles are colored according to their bundle are laid out in positions that reflect their
anatomical positions (compare A and C).
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Fig. S4. MD profile test-retest reliability A: Histograms of individual subject ICC between the MD tract profiles across sessions for a
given bundle. Colors encode the bundles, matching the diagram showing the rough anatomical positions of the bundles for the left side
of the brain (center). B: Mean (£ 95% confidence interval) TRR for each bundle, color-coded to match the histograms and the bundles
diagram, with median across bundles in red.
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Fig. S5. Subject test-retest reliability A: Mean tract profiles for a given bundle and the MD scalar for each subject using the first
and second session of HCP-TR. Colors encode bundle information, matching the core of the bundles (center). B: subject reliability
is calculated from the Spearman’s p of these distributions, with median across bundles in red. Error bars show the 95% confidence
interval.
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Fig. S6. The pyAFQ software is intergrated into an ecosystem for reproducible tractometry Steps performed by pyAFQ are enclosed
in the dotted rectangle, whereas steps outside that rectangle are performed by other software. Upper left: pyAFQ requires preprocessed
diffusion MRI data in BIDS format. This could be from QSlprep (26) or dMRIprep (https://github.com/nipreps/dmriprep).
Bottom right: pyAFQ outputs can serve as inputs to AFQ Browser for further interaction and visualization (52) or AFQ Insight for
statistical analysis (20). Bottom left: pyAFQ uses DIPY (28) for the implementation of dMRI algorithms. pyAFQ uses Cloudknot (63) to
scale processing by parallelizing across subjects in AWS.
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Fig. S7. Callosal bundles from HCP-TR, optic radiations from UW-PREK, found by pyAFQ. Streamlines are colored according to
their bundles and shaded according to FA. The background images are each a b0 slice. A callosal bundles found by pyAFQ on an
example subject from HCP-TR. B optic radiations found by pyAFQ on an example subject from UW-PREK.
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