

Evaluating the reliability of human brain white matter tractometry

John Kruper^{a,b}, Jason D. Yeatman^{c,d}, Adam Richie-Halford^b, David Bloom^{a,b}, Mareike Grotheer^{e,f}, Sendy Caffarra^{c,d,g}, Gregory Kiar^h, Iliana I. Karipidisⁱ, Ethan Roy^c, Bramsh Q. Chandio^j, Eleftherios Garyfalidis^j, and Ariel Rokem^{1a,b}

^aDepartment of Psychology, University of Washington, Seattle, WA, 98195, United States of America

^beScience Institute, University of Washington, Seattle, WA, 98195, United States of America

^cGraduate School of Education, Stanford University, Stanford, CA, 94305, United States of America

^dDivision of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, United States of America

^eCenter for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, Marburg 35032, Germany

^fDepartment of Psychology, University of Marburg, Marburg 35039, Germany

^gBasque Center on Cognition, Brain and Language, BCBL, 20009, Spain

^hDepartment of Biomedical Engineering, McGill University, Montreal, H3A 0E9, Canada

ⁱCenter for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, United States of America

^jDepartment of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington, Bloomington, IN, 47408, United States of America

The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections *in vivo*, in part based on reliability of the analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry (<https://yeatmanlab.github.io/pyAFQ>). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to demonstrate the reliability of computational analysis pipelines in neuroimaging.

Diffusion MRI | Brain Connectivity | Tractography | Reproducibility | Robustness

Correspondence: arokem@uw.edu

these are models of the anatomy, we refer to these estimates as “bundles” to distinguish them from the anatomical pathways themselves. The delineation of well-known anatomical pathways overcomes many of the concerns about confounds in dMRI-based tractography (13, 14), because “brain connections derived from diffusion MRI tractography can be highly anatomically accurate – if we know where white matter pathways start, where they end, and where they do not go” (15).

The physical properties of the tissue affect the diffusion of water within the brain and the microstructure of tissue within the white matter along the length of computationally-generated bundles can be assessed using a variety of models (16, 17). Taken together, computational tractography, bundle recognition and diffusion modeling provide so-called “tract profiles”: estimates of microstructural properties of tissue along the length of major pathways. This is the basis of tractometry: statistical analysis that compares different groups, or assesses individual variability in brain connection structure (9, 18–21). For the inferences made from tractometry to be valid and useful, tract profiles need to be reliable.

In the present work, we provide an assessment of three different ways in which scientific results can be reliable: reproducibility, test-retest reliability, and robustness. These terms are often debated and conflicting definitions for these terms have been proposed (22, 23). Here, we use the definitions proposed in (24). *Reproducibility* is defined as the case in which data and methods are fully accessible and usable: running the same code with the same data should produce an identical result. Use of different data (e.g., in a test-retest experiment) resulting in quantitatively comparable results would denote *test-retest reliability (TRR)*. In clinical science and psychology in general, TRR (e.g., in the form of inter-rater reliability) is considered a key metric of the reliability of a measurement. Use of a different analysis approach or different analysis system (e.g., different software implementation of the same ideas) could result in similar conclusions, denoting their *robustness* against implementation details. The recent findings of Botvinik-Nezer *et al* (25) show that even when full computational reproducibility is achieved, the re-

Introduction

The white matter of the brain contains the long-range connections between distant cortical regions. The integration and coordination of brain activity through the fascicles containing these connections is important for information processing and for brain health (1, 2). Using voxel-specific directional diffusion information from diffusion-weighted MRI (dMRI), computational tractography produces three-dimensional trajectories through the white matter within the MRI volume that are called “streamlines” (3, 4). Collections of streamlines that match the location and direction of major white matter pathways within an individual can be generated with different strategies: using probabilistic (5, 6) or streamline-based (7, 8) atlases, or known anatomical landmarks (9–12). Because

The white matter of the brain contains the long-range connections between distant cortical regions. The integration and coordination of brain activity through the fascicles containing these connections is important for information processing and for brain health (1, 2). Using voxel-specific directional diffusion information from diffusion-weighted MRI (dMRI), computational tractography produces three-dimensional trajectories through the white matter within the MRI volume that are called “streamlines” (3, 4). Collections of streamlines that match the location and direction of major white matter pathways within an individual can be generated with different strategies: using probabilistic (5, 6) or streamline-based (7, 8) atlases, or known anatomical landmarks (9–12). Because

54 sults of analysing a single fMRI dataset can vary significantly 109
55 between teams and analysis pipelines, demonstrating issues 110
56 of robustness. 111

57 The contribution of the present work is three-fold: To 112
58 support reproducible research using tractometry, we de- 113
59 veloped an open-source software library called Auto- 114
60 mated Fiber Quantification in Python (pyAFQ; <https://github.com/yeatmanlab/pyAFQ>). 115
61 Given dMRI 116
62 data that has undergone standard preprocessing (e.g., us- 117
63 ing QSIprep (26)), pyAFQ automatically performs tractogra- 118
64 phy, classifies streamlines into bundles representing the ma- 119
65 jor tracts, and extracts tract profiles of diffusion properties 120
66 along those bundles, producing “tidy” CSV output files (27) 121
67 that are amenable to further statistical analysis (Fig. S1). The 122
68 library implements the major functionality provided by a pre- 123
69 vious MATLAB implementation of tractometry analysis (9), 124
70 and offers a menu of configurable algorithms allowing re- 125
71 searchers to tune the pipeline to their specific scientific ques- 126
72 tions (Fig. S2). Second, we use pyAFQ to assess test-retest 127
73 reliability of tractometry results. Third, we assess robustness 128
74 of tractometry results to variations across different models 129
75 of the diffusion in individual voxels, across different bun- 130
76 dle recognition approaches, and across different implemen- 131
77 tations. 132

78 Materials and Methods 133

79 **pyAFQ.** We developed an open-source tractometry software 135
80 library to support computational reproducibility: Python 136
81 Automated Fiber Quantification (pyAFQ; <https://github.com/yeatmanlab/pyAFQ>). 137
82 The software re- 138
83 lies heavily on methods implemented in DIPY (28). Our 139
84 implementation was also guided by a previous MATLAB im- 140
85 plementation of tractometry (mAFQ) (9). More details are 141
86 available in the ‘Automated Fiber Quantification in Python 142
87 (pyAFQ)’ section of Supplementary Methods. 143

88 **Tractometry.** The pyAFQ software is configurable, allowing 144
89 users to specify methods and parameters for different stages 145
90 of the analysis (Fig. S2). Here, we will describe the default 146
91 setting. In the first step, computational tractography methods, 147
92 implemented in DIPY (28), are used to generate streamlines 148
93 throughout the brain white matter (Fig. S1A). Next, the T1- 149
94 weighted MNI template (29, 30) is registered to the anisotropic 150
95 power map (APM) (31, 32) computed from the diffusion data, 151
96 that has a T1-like contrast (Fig. S1B) using the symmetric im- 152
97 age normalization method (33) implemented in DIPY (28). 153
98 The next step is to perform bundle recognition, where each 154
99 tractography streamline is classified as either belonging to a 155
100 particular bundle, or discarded. We use the transform found 156
101 during registration to bring canonical anatomical landmarks, 157
102 such as waypoint regions of interest (ROIs) and probability 158
103 maps, from template space to the individual subject’s native 159
104 space. Waypoint ROIs are used to delineate the trajectory of 160
105 the bundles (34). See Table S1 for the bundle abbreviations 161
106 we use in this paper. Streamlines that pass through inclu- 162
107 sion waypoint ROIs for a particular bundle, and do not pass 163
108 through exclusion ROI, are selected as candidates to include 163

in the bundle. In addition, a probabilistic atlas (35) is used as a tie-breaker to determine whether a streamline is more likely to belong to one bundle or another (in cases where the streamline matches the criteria for inclusion in either). For example, the corticospinal tract is identified by finding streamlines that do pass through an axial waypoint ROI in the brainstem and another ROI axially oriented in the white matter of the corona radiata, but that do not pass through the midline (Fig. S1C). The final step is to extract the tract profile: each streamline is resampled to a fixed number of points and the mean value of a diffusion-derived scalar (e.g., fractional anisotropy (FA) and mean diffusivity (MD)) is found for each one of these nodes. The values are summarized by weighting the contribution of each streamline, based on how concordant the trajectory of this streamline is with respect to the other streamlines in the bundle (Fig. S1D). To make sure that profiles represent properties of the core white matter, we remove the first and last 5 nodes of the profile, then further remove any nodes where either the FA is less than 0.2 or the MD is greater than 0.002. This removes nodes that contain partial volume artifacts (16).

Data. We used two datasets with test-retest measurements. We used Human Connectome Project test-retest measurements of dMRI for 44 neurologically healthy subjects aged 22-35 (HCP-TR) (36). The other is an experimental dataset, with dMRI from 48 children, 5 years old in age, collected at the University of Washington (UW-PREK). More details about the measurement are available in the ‘Data’ section of Supplementary Methods.

HCP-TR Configurations. We processed HCP-TR with three different pyAFQ configurations. In the first configuration, we used the diffusion kurtosis model (DKI) as the orientation distribution function (ODF) model. In the second configuration, we used constrained spherical deconvolution (CSD) as the ODF model. For the final configuration, we used RecoBundles (8) for bundle recognition instead of the default waypoint ROI approach, and DKI as the ODF model. More details are available in the ‘Configurations’ section of Supplementary Methods.

Measures of Reliability. Tract recognition of each bundle was compared across measurements and methods using the Dice coefficient, weighted by streamline count (wDSC) (37). Tract profiles were compared with three measures: (1) Profile reliability: mean intraclass correlation coefficient (ICC) across points in different tract profiles for different data, which quantifies the *agreement* of tract profiles (38, 39); (2) Subject reliability: Spearman’s rank correlation coefficient (Spearman’s ρ) between the mean of the tract profiles across individuals, which quantifies the *consistency* of the mean of tract profiles; (3) an adjusted contrast index profile (ACIP) to directly compare the values of individual nodes in the tract profiles in different measurements. To estimate test-retest reliability (TRR), the above measures were calculated for each individual across different measurements. To estimate robustness, these were calculated for each individual across different analysis methods. For example, if we calculate the

164 subject reliability across analysis methods, we would call 219
 165 that “subject robustness”. If we calculated subject reliability 220
 166 across measurements, we would call that “subject TRR”. We 221
 167 explain profile and subject reliability in more detail below; 222
 168 we explain wDSC and ACIP in more detail in the ‘Measures 223
 169 of Reliability’ section of Supplementary Methods 224

170 **Profile reliability.** We use profile reliability to compare the 225
 171 shapes of profiles per bundle and per scalar. Given two sets 226
 172 of data (either test-retest or from different analyses), we first 227
 173 calculate the ICC between tract profiles for each subject in 228
 174 a given bundle and scalar. Then, we take the mean of those 229
 175 correlations. We do this for every bundle and for every scalar. 230
 176 We call this profile reliability because larger differences in 231
 177 the overall values along the profiles will result in a smaller 232
 178 mean of the ICC. Consistent profile shapes are important for 233
 179 distinguishing bundles. Profile reliability provides an assess- 234
 180 ment of the overall reliability of the tract profiles, summariz- 235
 181 ing over the full length of the bundle, for a particular scalar. 236
 182 We calculate the 95% confidence interval on profile reliabil- 237
 183 ities using the standard error of the measurement.

184 In some cases, there is low between-subject variance in 238
 185 tract profile shape (for example, this is often the case in 239
 186 CST). We use ICC to account for this, as ICC will penalize 240
 187 low between-subject variance in addition to rewarding 241
 188 high within-subject variance. Profile reliability is a way of 242
 189 quantifying the *agreement* between profiles. Qualitatively, 243
 190 we use four descriptions for profile reliability: excellent (ICC 244
 191 > 0.75), good (ICC = 0.60 to 0.74), fair (ICC = 0.40 to 0.59), 245
 192 and poor (ICC < 0.40) (40).

193 **Subject reliability.** We calculate subject reliability to compare 246
 194 individual differences in profiles, per bundle and per scalar, 247
 195 following (41). Given two measurements for each subject, 248
 196 we first take the mean of each profile within each individ- 249
 197 ual, measurement and scalar. Then we calculate Spearman’s 250
 198 ρ from the means from different subjects for a given bundle 251
 199 and scalar across the measurements. High subject reliabil- 252
 200 ity means the ordering of an individual’s tract profile mean 253
 201 among other individuals is consistent across measurements 254
 202 or methods. This is akin to test reliability which is computed 255
 203 for any clinical measure.

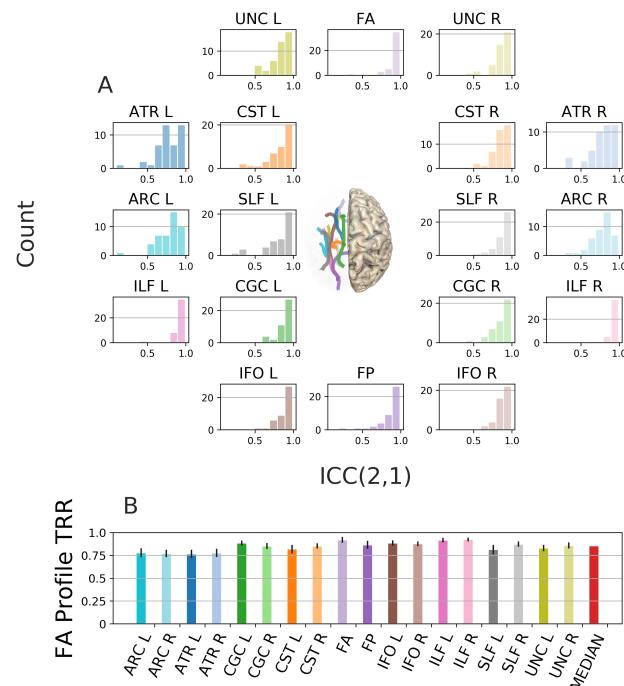
204 One downside of subject reliability is that the shape of the 256
 205 extracted profile is not considered. Additionally, if one mea- 257
 206 surement or method produces higher values for all subjects 258
 207 uniformly, subject reliability would not be affected. Instead, 259
 208 the intent of subject reliability is to well summarize the 260
 209 preservation of relative differences between individuals for 261
 210 mean tract profiles. In other words, subject reliability quanti- 262
 211 fies the *consistency* of mean profiles. The 95% confidence 263
 212 interval on subject reliabilities are parametric. 264

213 Results

214 Tractometry using pyAFQ classifies streamlines into bundles 265
 215 that represent major anatomical pathways. The streamlines 266
 216 are used to sample dMRI-derived scalars into bundle profiles 267
 217 that are calculated for every individual and can be summa- 268
 218 rized for a group of subjects. An example of the process and 269
 219

220 result of the tract profile extraction process is shown in Sup- 221
 222 plementary Fig. S3, together with the results of this process 223
 224 across the 18 major white matter pathways for all subjects in 225
 226 the HCP-TR dataset.

227 **Assessing test-retest reliability of tractometry.** In 228
 229 datasets with scan-rescan data we can assess test-retest reli- 230
 231 ability (TRR) at several different levels of tractometry. For 232
 233 example, the correlation between two profiles provides a mea- 234
 235 sure of the reliability of the overall tract profile in that sub- 236
 237 ject. Analyzing the Human Connectome Project’s test-retest 238
 239 dataset (HCP-TR), we find that for fractional anisotropy (FA) 240
 241 calculated using DKI, the values of *profile reliability* vary 242
 243 across subjects (Figure 1A), but they overall tend to be rather 244
 245 high, with the average value within each bundle in the range 246
 247 0.77 ± 0.05 to 0.92 ± 0.02 and a median across bundles of 248
 249 0.86 (Figure 1B). We find similar results for mean diffusivity 250
 251 (MD; Fig. S4) and replicate similar results in a second dataset 252
 253 (Fig. 3B).



254 **Fig. 1. FA profile test-retest reliability** **A:** Histograms of individual subject ICC 255
 255 between the FA tract profiles across sessions for a given bundle. Colors encode 256
 256 the bundles, matching the diagram showing the rough anatomical positions of the 257
 257 bundles for the left side of the brain (center). **B:** Mean (\pm 95% confidence 258
 258 interval) TRR for each bundle, color-coded to match the histograms and the bundles 259
 259 diagram, with median across bundles in red.

260 **Subject reliability** assesses the reliability of mean tract 261
 261 profiles across individuals. Subject FA TRR in the HCP-TR 262
 262 also tends to be high, but the values vary more across bun- 263
 263 dles with a range of 0.57 ± 0.24 to 0.85 ± 0.12 and a median 264
 264 across bundles of 0.73. We can see that subject TRR is lower 265
 265 than profile TRR (Figure 2). This trend is consistent for MD 266
 266 (Fig. S5) as well as for another dataset (Fig. 3C).

267 **Test-retest reliability of tractometry in different imple- 268
 268 ments, datasets, and tractography methods.** We

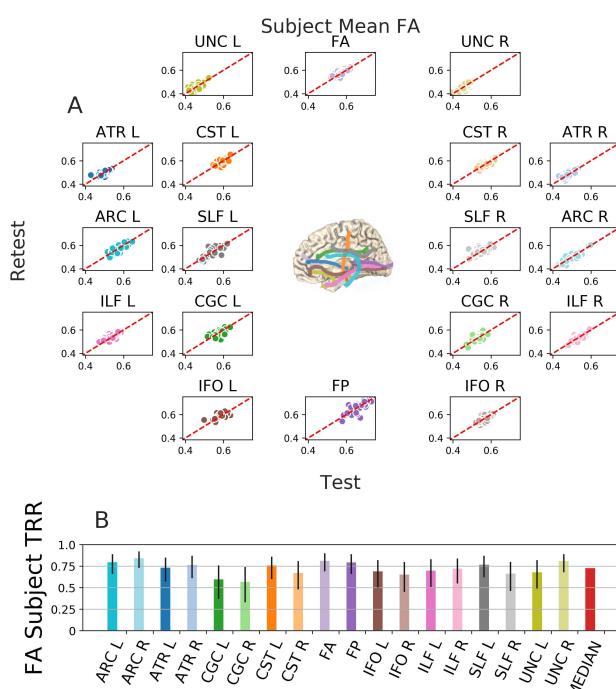


Fig. 2. Subject test-retest reliability **A:** Mean tract profiles for a given bundle and the FA scalar for each subject using the first and second session of HCP-TR. Colors encode bundle information, matching the core of the bundles (center). **B:** subject reliability is calculated from the Spearman's ρ of these distributions, with median across bundles in red ($\pm 95\%$ confidence interval).

275 0.74. Comparing different ODF models in pyAFQ, we found
276 that the DKI and CSD ODF models have highly similar TRR,
277 both at the level of wDSC (Fig. 3A), as well as at the level of
278 profile and subject TRR (Fig. 3F-G).

279 **Robustness: comparison between distinct tractogra-
280 phy models and bundles recognition algorithms.** To as-
281 sess the robustness of tractometry results to different models
282 and algorithms, we used the same measures that were used to
283 calculate TRR.

284 **Tractometry results can be robust to differences in ODF
285 models used in tractography.** We compared two algorithms:
286 tractography using DKI- and CSD-derived ODFs. The
287 weighted Dice similarity coefficient (wDSC) for this com-
288 parison can be rather high in some cases (e.g., the uncinate
289 and corticospinal tracts, Figure 4A), but produce results that
290 appear very different for some bundles, such as the arcuate
291 and superior longitudinal fasciculi (ARC and SLF) (see also
292 Figure 4D). Despite these discrepancies, profile and subject
293 robustness are high for most bundles (median FA of 0.77
294 and 0.75, respectively) (Figure 4B,C). In contrast to the
295 results found in TRR, MD subject robustness is consistently
296 higher than FA subject robustness. The two bundles with
297 the most marked differences between the two ODF models
298 are the SLF and ARC (Figure 4D). These bundles have low
299 wDSC and profile robustness, yet their subject robustness re-
300 mains remarkably high (In FA, 0.75 ± 0.17 for ARC R and
301 0.88 ± 0.09 for SLF R) (Figure 4C). These differences are
302 partially explained due to the fact that there are systematic
303 biases in the sampling of white matter by bundles generated
304 with these two ODF models, as demonstrated by the non-
305 zero adjusted contrast index profile (ACIP) between the two
306 models (Figure 4E).

307 **Most white matter bundles are highly robust across bundle
308 recognition methods.** We compared bundle recognition with
309 the same tractography results using two different approaches:
310 the default waypoint ROI approach (9), and an alternative ap-
311 proach (RecoBundles) that uses atlas templates in the space
312 of the streamlines (44). Between these algorithms, wDSC is
313 around or above 0.6 for all but one bundle, ILF R (Figure 5).
314 There is an asymmetry in the ILF atlas bundle (7), which re-
315 sults in discrepancies between ILF R recognized with way-
316 point ROI and with RecoBundles. Despite this bundle, we
317 find high robustness overall. For MD, the first quartile subject
318 robustness is 0.82 (Figure 5C, D).

319 **Tractometry results are robust to differences in software im-
320 plementation.** Overall, we found that robustness of tractom-
321 etry across these different software implementations is high
322 in most white matter bundles. In the mAFQ/pyAFQ com-
323 parison, most bundles have a wDSC around or above 0.8,
324 except the two callosal bundles (FA bundle and FP), which
325 have a much lower overlap (Fig. 6A). Consistent with this
326 pattern, profile and subject robustness is also overall rather
327 high (Fig. 6B, C). The median values across bundles are 0.71
328 and 0.77 for FA profile and subject robustness, respectively.

329 compared TRR across datasets and implementations. In both
330 datasets, we found high TRR in the results of tractography
331 and bundle recognition: wDSC was larger than 0.7 for all
332 but one bundle (Fig. 3A): the delineation of the anterior for-
333 ceps (FA bundle) seems relatively unreliable using pyAFQ
334 in the UW-PREK dataset (using the FA scalar, pyAFQ sub-
335 ject TRR is only 0.37 ± 0.28 compared to mAFQ's $0.84 \pm$
336 0.10). We found overall high profile TRR that did not always
337 translate to high subject TRR (Fig. 3B-G). For example, for
338 FA in UW-PREK, median profile TRRs are 0.75 for pyAFQ
339 and 0.77 for mAFQ while median subject TRRs are 0.70 for
340 pyAFQ and 0.75 for mAFQ. Note that profile and subject
341 TRR have different denominators (for example, subjects that
342 have similar mean profiles to each other would have low sub-
343 ject TRR, even if the profiles are reliable, because it is harder
344 to distinguish between subjects in this case). mAFQ is one of
345 the most popular software pipelines currently available for
346 tractometry analysis, so it provides an important point for
347 comparison. In comparing different software implemen-
348 tations, we found that mAFQ has higher subject TRR relative
349 to pyAFQ in the UW-PREK dataset, when TRR is relatively
350 low for pyAFQ (see the FA bundle, CST L, and ATR L in
351 Fig. 3C). On the other hand, in the HCP-TR dataset pyAFQ
352 we used the RTP pipeline (42, 43), which is an extension of
353 mAFQ, and found that pyAFQ tends to have slightly higher
354 profile TRR than RTP for MD, but slightly lower profile TRR
355 for FA (Fig. 3D). The pyAFQ and RTP subject TRR are
356 highly comparable (Fig. 3E). In FA, the median pyAFQ sub-
357 ject TRR for FA is 0.76 while the median RTP subject TRR is
358

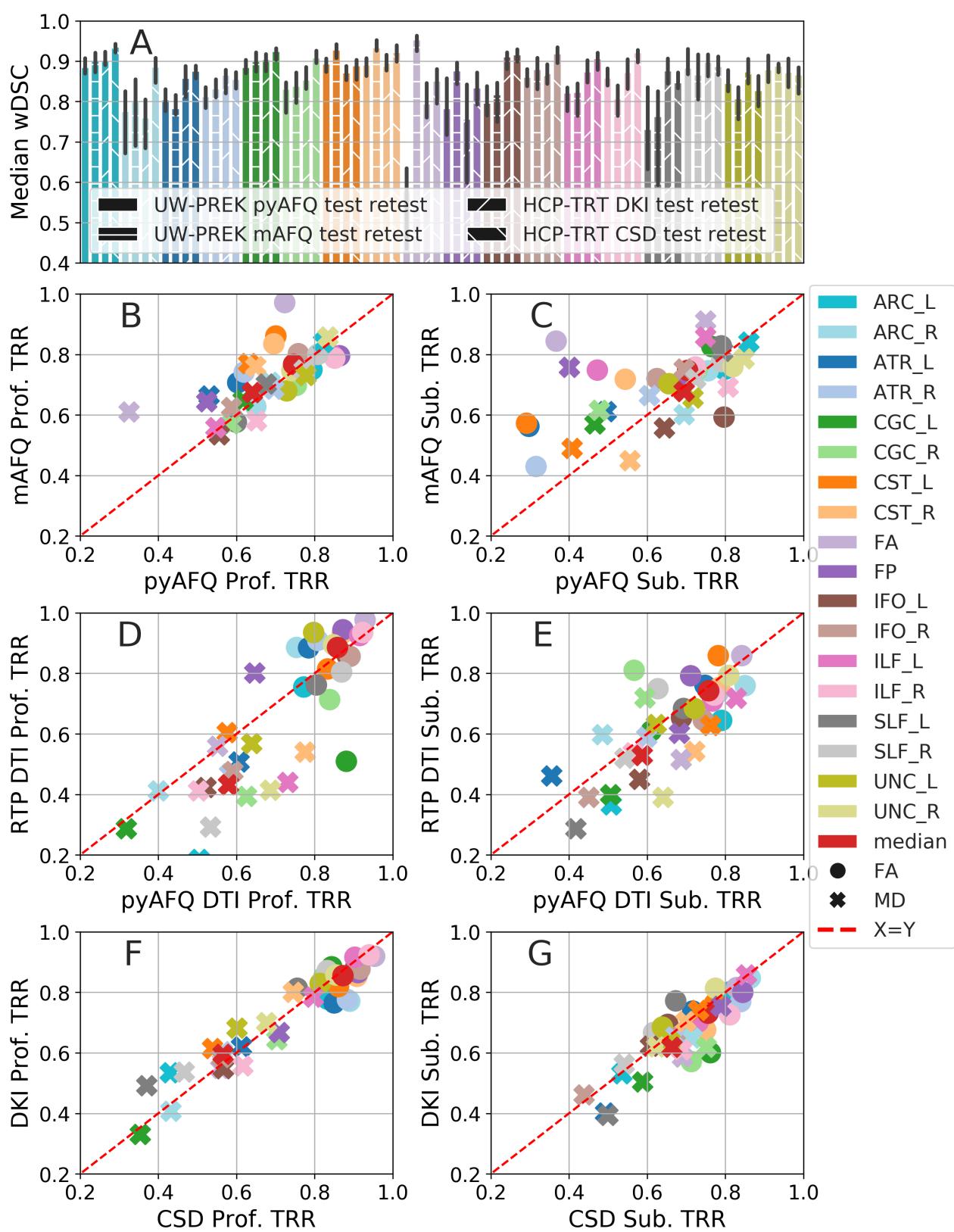


Fig. 3. wDSC, profile, and subject TRR of: pyAFQ and mAFQ on UW-PREK; pyAFQ on HCP-TR using different ODF models; and RTP on HCP-TR. Colors indicate bundle. In **A**: texture indicates the dataset and methods being compared. Error bars show the 95% confidence interval. **B**, **D**, and **F** show profile TRR and **C**, **E**, and **G** show subject TRR. Profile and subject TRR calculations are demonstrated with HCP-TR using DKI in figures 1 and 2 respectively. In **B** and **C**, we compare the TRR of mAFQ and pyAFQ on UW-PREK. In **D** and **E**, we compare pyAFQ and RTP on HCP-TR using only single shell data. In **F** and **G**, we compare DKI and CSD TRR on HCP-TR. Point shapes indicate the extracted scalar. The red dotted line is equal TRR between methods.

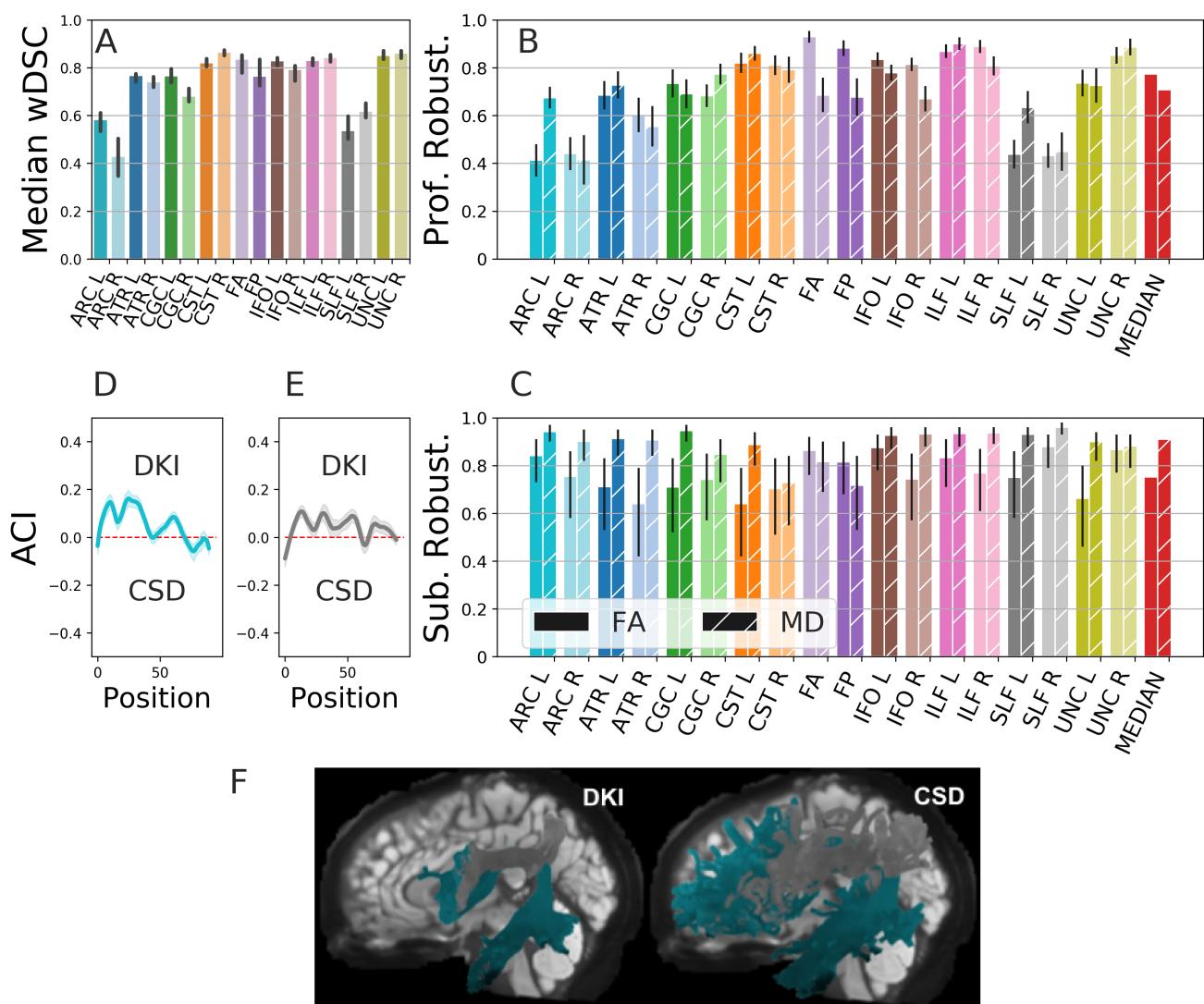


Fig. 4. ODF model robustness. We compared DKI- and CSD-derived tractography. Colors encode bundle information as in Figures 1 and 2. Textured hatching encodes FA/MD information. **A** wDSC robustness. **B** Profile robustness. **C** Subject robustness. Error bars represent 95% confidence interval. **D, E** Adjusted contrast index profile (ACIP) between ARC L and SLF L tract profiles of each algorithm. Positive ACIP indicates DKI found a higher value of FA than CSD at that node. The 95% confidence interval on the mean is shaded. **F** Tractography and bundle recognition results for ARC L and SLF L respectively for one example subject.

For some bundles, like the right and left uncinate, there is large agreement between pyAFQ and mAFQ (for subject FA: $\rho = 0.90 \pm 0.07$, UNC R $\rho = 0.89 \pm 0.08$). However, the callosal bundles have particularly low mean diffusivity (MD) profile robustness (Fig. 6B) (0.07 ± 0.09 for FP, 0.18 ± 0.09 for FA).

The robustness of tractometry to the differences between the pyAFQ and mAFQ implementation depends on the bundle, scalar, and reliability metric. In addition, for many bundles, the ACIP between mAFQ and pyAFQ results is very close to 0, indicating no systematic differences (Fig. 6D). In some bundles – the corticospinal tract (CST) and the anterior thalamic radiations (ATR) – there are small systematic differences between mAFQ and pyAFQ. In the Forceps Posterior (FP), pyAFQ consistently finds smaller FA values than mAFQ in a section on the left side. Notice that the forceps anterior has an ACIP that deviates only slightly from 0, even though the

forceps recognitions did not have as much overlap as other bundle recognitions (see Fig. 6A).

Discussion

Previous work has called into question the reliability of neuroimaging analysis (e.g., (25, 45, 46)). We assessed the reliability of a specific approach, tractometry, which is grounded in decades of anatomical knowledge, and we demonstrate that this approach is reproducible, reliable and robust. A tractometry analysis typically combines the outputs of tractography with diffusion reconstruction at the level of the individual voxels within each bundle. One of the major challenges facing researchers who use tractometry is that there are many ways to analyze diffusion data, including different models of diffusion at the level of individual voxels; techniques to connect voxels through tractography; and approaches to classify tractography results into major white

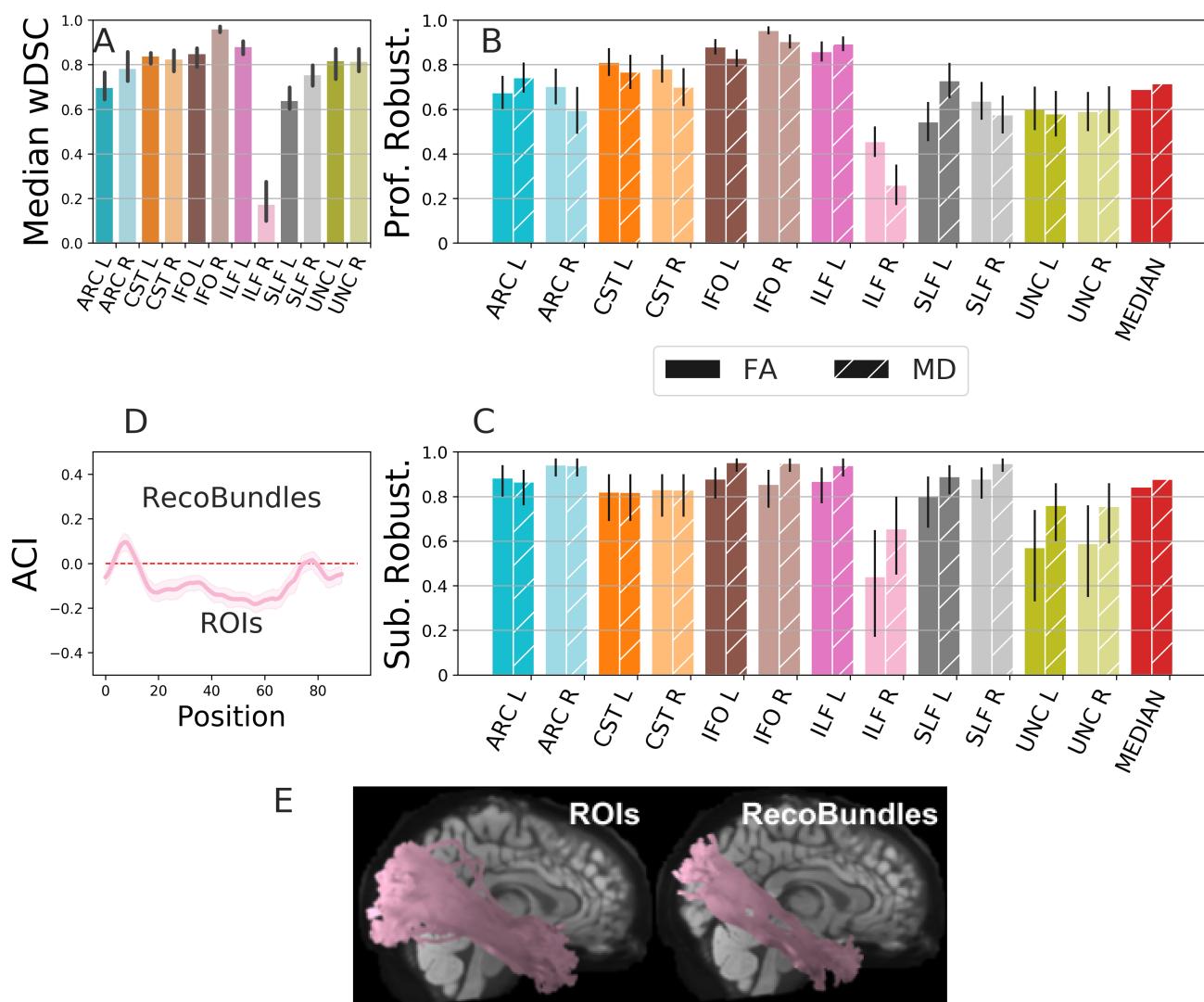


Fig. 5. Recognition algorithm robustness. **A** wDSC. **B** Profile robustness. **C** Subject robustness. Error bars show the 95% confidence interval. **D** The ILF R FA ACIP, where positive ACI indicates RecoBundles found a higher value of FA than the waypoint ROIs approach at that node. **E** shows the ILF R found by each algorithm for an example subject.

matter bundles. Here, we analyzed the reliability of tractome- 379
363 analysis at several different levels. We analyzed both test- 380
364 retest reliability of tractometry results and their robustness to 381
365 changes in analytic details, such as choice of tractography 382
366 method, bundle recognition algorithm, and software imple- 383
367 mentation (Fig 6).

388 **Test-retest reliability of tractometry.** Test-retest reliabil- 389
386 ity (TRR) of tractometry is usually rather high, comparable 390
387 in some tracts and measurements to the TRR of the measure- 391
388 ment. In comparing the HCP-TR analysis and UW-PREK 392
389 analysis, we note that higher measurement reliability goes 393
390 hand in hand with tractometry reliability.

394 In terms of the anatomical definitions of the bundles, quan- 395
392 tified as the TRR wDSC, we find reliable results in both 396
393 datasets and with both software implementations and both 394
395 tractography methods that we tested. With pyAFQ we found 396
397 a relatively low TRR in the frontal callosal bundle (FA bun- 398

399 dle) in the UW-PREK dataset. This could be due to the sen- 400
404 sitivity of the definition of this bundle to susceptibility dis- 405
408 tortion artifacts in the frontal poles of the two hemispheres. 409
412 This low TRR was not found with mAFQ, suggesting that 413
416 this low TRR is not a necessary feature of the analysis, and is 417
420 a potential avenue for improvement to pyAFQ. While the two 421
424 implementations were created by teams with partial overlap 425
428 and despite the fact that pyAFQ implementation drew both 429
432 inspiration as well as specific implementation details from 433
436 mAFQ, many details of implementation still differ substan- 437
440 tially. For example, the implementations of tractography al- 441
444 gorithms are quite different – pyAFQ relies on DIPY (28) 445
448 for its tractography, while mAFQ uses implementations pro- 449
452 vided in Vistasoft (47). The two pipelines also use differ- 453
456 ent registration algorithms, with pyAFQ relying on the SyN 457
460 algorithm (33), while mAFQ relies on registration methods 461
464 implemented as part of the Statistical Parametric Mapping 465
468 (SPM) software (48). These differences may explain the dis- 469
472

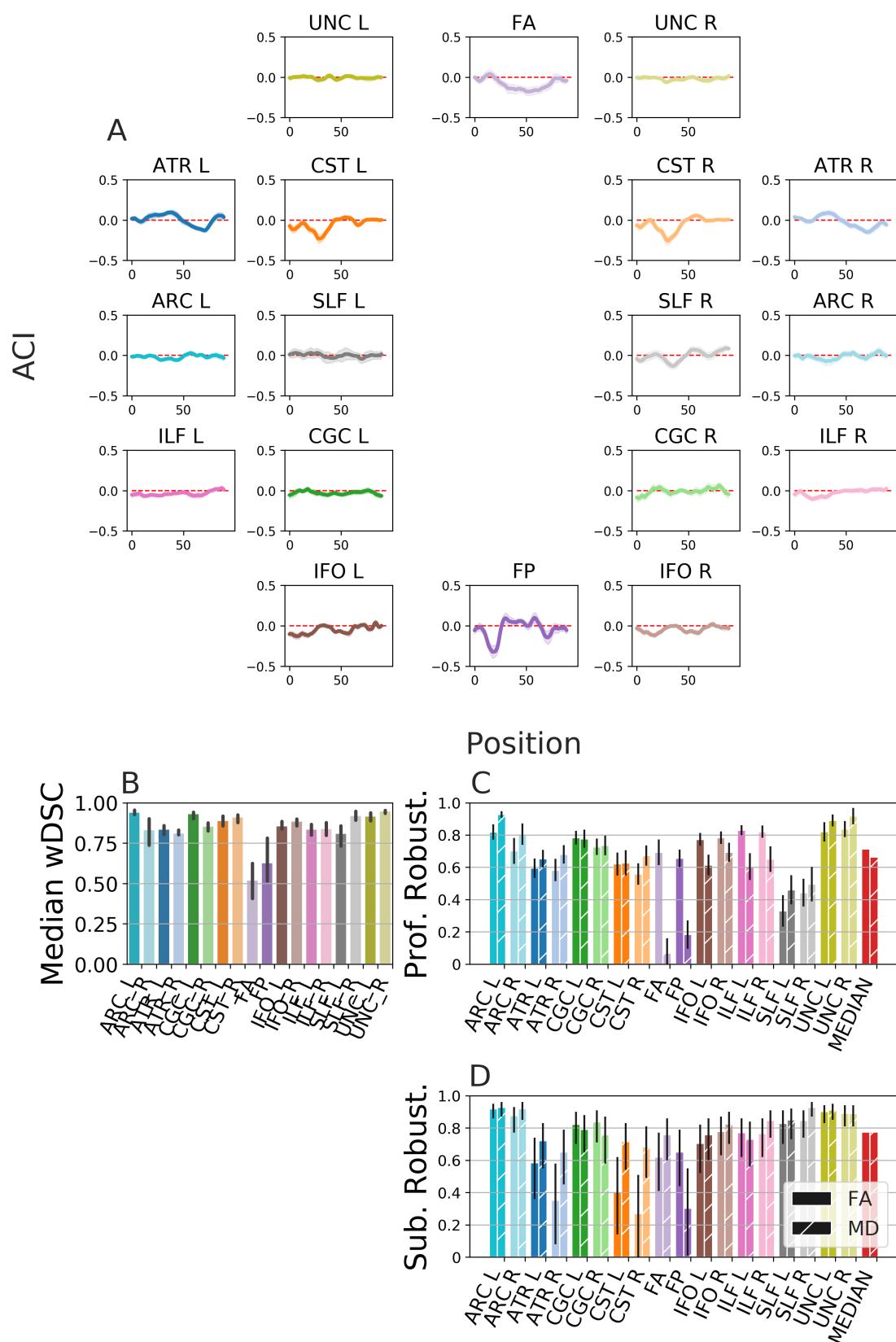


Fig. 6. Robustness between pyAFQ and mAFQ on UW-PREK session # 1 data. A ACIP between the FA tract profiles from UW-PREK using pyAFQ and mAFQ. Positive ACI indicates pyAFQ found a higher value than mAFQ at that node. The 95% confidence interval on the mean is shaded. Robustness in wDSC (**B**) bundle profiles (**C**) and across subjects (**D**). Error bars show the 95% confidence interval.

397 crepancies observed.

398 We also find that TRR is high at the level of profiles within 453
399 subjects and mean tract profiles across subjects. This is gen- 454
400 erally observed in both datasets that we examined, and us- 455
401 ing different analysis methods and software implementations. 456
402 For the UW-PREK dataset, subject TRR tends to be higher 457
403 in mAFQ than in pyAFQ. On the other hand, for the HCP- 458
404 TR dataset, pyAFQ subject TRR tends to be higher than that 459
405 obtained with RTP, which is a fork and extension of mAFQ 460
406 (42, 43). Generally, TRR of FA profiles and also TRR of 461
407 mean FA across subjects tend to be higher than those of MD. 462
408 This could be because the assessment of MD is more sensi- 463
409 tive to partial volume effects. In contrast to FA, MD is also 464
410 not bounded, which means that extreme values at the bound- 465
411 aries of tissue types can have a substantial effect on TRR. 466

412 **Robustness of tractometry.** As highlighted in the recent 467
413 work by Botvinik-Nezer *et al* (25) and in parallel by Schilling 468
414 *et al* (45), inferences from even a single dataset can vary sig- 469
415 nificantly, depending on the decisions and analysis pipelines 470
416 that are used. The analysis approaches used in tractometry 471
417 embody many assumptions made at the different stages of 472
418 analysis: the model of the signal in each individual voxel, the 473
419 manner in which streamlines are generated in tractography, 474
420 the definition of bundles, and the extraction of tract profiles. 475
421 While TRR is important, it does not guard against systematic 476
422 errors in the analysis approach. One way to test model as- 477
423 sumptions and software failures is to create ground truth data 478
424 against which different methods and implementations can be 479
425 tested (13, 49, 50). However, this approach also relies on 480
426 certain assumptions about the mechanisms that generate the 481
427 data that is considered ground truth, making this approach 482
428 more straightforward for some methods than others. Here, 483
429 we instead assessed the robustness of tractometry results to 484
430 perturbations of analytic components, focusing on the mod- 485
431 elling of ODFs in individual voxels and the approach taken 486
432 to bundle recognition. 487

488 to these choices may be missed when averaging along the
489 length of the tracts. Moreover, this may also reflect biases in
490 the measurement that cannot be overcome at either stage of
491 the analysis: tractography or bundle recognition.

492 Our high subject-level robustness results (Fig 6C, Fig 4C, and
493 Fig 5C) dovetail with the results of a recently-published study
494 that used tractometry in a sample of 45 participants (51), and
495 found high subject-level correlations between the mean tract
496 values of FA and MD for two different pipelines: determin-
497 istic tractography using the diffusion tensor model (DTI) as
498 the ODF model (essentially identical to a pipeline used in our
499 supplementary analysis, described in “DTI Configuration”),
500 and probabilistic tractography using CSD as the ODF model.
501 Consistent with our results on the HCP-TR dataset, slightly
502 higher subject robustness was found for MD than for FA.

503 **Exceptions & Limitations.** High profile robustness did not al-
504 ways imply high subject robustness (e.g., the FP in Fig 4
505 has high profile robustness, but low subject robustness). This
506 suggests that there are other sources of between-subject varia-
507 nce that do not correspond directly to profile robustness
508 within an individual.

509 There are still significant challenges to robustness that arise
510 from the way in which the major bundles are defined. This
511 problem was highlighted in recent work that demonstrated
512 that different researchers use different criteria to define bun-
513 dles of streamlines that represent the same tract (45). In
514 our case, this challenge is represented by the relatively low
515 robustness between the waypoint ROI algorithm for bundle
516 definition and the RecoBundles algorithm. In this compari-
517 son, the wDSC exceeds 0.8 in only one bundle and is below
518 0.4 in two cases. While both algorithms identify a bundle of
519 streamlines that represents the right ILF, this bundle differs
520 substantially between the two algorithms. Even so, profile
521 and subject robustness can still be rather high, even in some
522 cases in which rather middling overlap is found between the
523 anatomical extent of the bundles. This challenge highlights
524 the need for more precise definitions of the models of brain
525 tracts that are derived from dMRI, but also highlights the
526 need for clear, automated and reproducible software to per-
527 form bundle recognition.

528 In addition to decisions about analysis approach, which may
529 be theoretically motivated, software implementations may
530 contain systematic errors in executing the different steps and
531 different software may be prone to different kinds of failure
532 modes. Since other software implementations (9, 42) of the
533 AFQ approach have been in widespread use in multiple dif-
534 ferent datasets and research settings, we also compared the
535 results across different software implementations (Fig. 6).
536 While there are some systematic differences between imple-
537 mentations, tractometry is overall quite robust to differences
538 between software implementations.

539 Another important limitation of this work is that we have only
540 analyzed samples of healthy individuals. Where brains are
541 severely deformed (e.g., in TBI, brain tumors and so forth),
542 particular care would be needed to check the results of bundle
543 recognition, and separate considerations would be needed in
544 order to reach conclusions about the reliability of the infer-

545 **Subject robustness remains high despite differences in the 490
546 spatial extent of bundles.** We replicated previous findings 491
547 that the definition of major bundles can vary in terms of their 492
548 spatial extent (quantified via wDSC) (13, 37, 40, 45), depend- 493
549 ing on the software implementation or the ODF model used. 494
550 As we show, low wDSC robustness often corresponds to low 495
551 profile robustness, and vice versa (Fig 6B,C, Fig 4A,B, and 496
552 Fig 5A,B). That is, when two algorithms detect bundles with 497
553 small spatial overlap, the shape of the resulting tract profiles 498
554 are also different from each other. However, low wDSC and 499
555 profile robustness does not always translate to low subject 500
556 robustness. Algorithms can detect bundles with low spatial 501
557 overlap and of different shapes yet still agree on the ordering 502
558 of the mean of the profiles, i.e., which subjects have high or 503
559 low FA in a given bundle. A clear example of this is the SLF 504
560 and ARC in Fig 4 (wDSC and profile robustness are low, yet 505
561 subject robustness is very high). This suggests that tractome- 506
562 try can overcome failures in precise delineation of the major 507
563 bundles by averaging tissue properties within the core of the 508
564 white matter. Conversely, important details that are sensitive 509

510 ences made.

565

566

provide in this paper should be useful for anyone wishing to further explore reliability in tractometry.

ACKNOWLEDGEMENTS

This work was supported through grant 1RF1MH121868-01 from the National Institute of Mental Health/The BRAIN Initiative, through grant 5R01EB027585-02 to Eleftherios Garyfallidis (Indiana University) from the National Institute of Biomedical Imaging and Bioengineering and through Azure Cloud Computing Credits for Research & Teaching provided through University of Washington Research Computing and the University of Washington eScience Institute. We are also grateful for support from the Gordon & Betty Moore Foundation and the Alfred P. Sloan Foundation to the University of Washington eScience Institute Data Science Environment, as well as support from the Washington Research Foundation to the eScience Institute and to the University of Washington Institute for Neuroengineering. Thanks to Andreas Neef for feedback on the pyAFQ software. Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Bibliography

1. Steven E Petersen and Olaf Sporns. Brain Networks and Cognitive Architectures. *Neuron*, 88(1):207–219, October 2015. Publisher: Elsevier.
2. Danielle S Bassett and Olaf Sporns. Network neuroscience. *Nat. Neurosci.*, 20(3):353–364, February 2017.
3. T E Conturo, N Lori, T S Cull, E Akbudak, A Z Snyder, J S Shimony, R C McKinstry, H Burton, and M E Raichle. Tracking neuronal fiber pathways in the living human brain. *Proc. Natl. Acad. Sci. U. S. A.*, 96(18):10422–10427, August 1999.
4. Susumu Mori and Peter C M Van Zijl. Fiber tracking: principles and strategies—a technical review. *NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo*, 15(7-8):468–480, 2002. Publisher: Wiley Online Library.
5. Setsu Wakana, Hangyi Jiang, Lidia M Nagae-Poetscher, Peter C M van Zijl, and Susumu Mori. Fiber tract-based atlas of human white matter anatomy. *Radiology*, 230(1):77–87, January 2004.
6. Kenichi Oishi, Karl Zilles, Katrin Amunts, Andreia Faria, Hangyi Jiang, Xin Li, Kazi Akhter, Kegang Hua, Roger Woods, Arthur W Toga, G Bruce Pike, Pedro Rosa-Neto, Alan Evans, Jiangyang Zhang, Hao Huang, Michael I Miller, Peter C M van Zijl, John Mazziotta, and Susumu Mori. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. *Neuroimage*, 43(3):447–457, November 2008.
7. Fang-Cheng Yeh, Sandip Panesar, David Fernandes, Antonio Meola, Masanori Yoshino, Juan C. Fernandez-Miranda, Jean M. Vettel, and Timothy Verstynen. Population-averaged atlas of the macroscale human structural connectome and its network topology. *NeuroImage*, 178:57–68, 2018. ISSN 1095-9572. doi: 10.1016/j.neuroimage.2018.05.027.
8. Eleftherios Garyfallidis, Marc-Alexandre Côté, Francois Rheault, Jasmeen Sidhu, Janice Hau, Laurent Petit, David Fortin, Stephen Cunane, and Maxime Descoteaux. Recognition of white matter bundles using local and global streamline-based registration and clustering. *Neuroimage*, July 2017. doi: 10.1016/j.neuroimage.2017.07.015.
9. Jason D. Yeatman, Robert F. Dougherty, Nathaniel J. Myall, Brian A. Wandell, and Heidi M. Feldman. Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification. *PLOS ONE*, 7(11):e49790, November 2012. ISSN 1932-6203. doi: 10.1371/journal.pone.0049790. Publisher: Public Library of Science.
10. Marco Catani and Michel Thiebaut de Schotten. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. *Cortex*, 44(8):1105–1132, September 2008. Publisher: Elsevier.
11. Anastasia Yendiki, Patricia Panneck, Priti Srinivasan, Allison Stevens, Lilla Zöllei, Jean Augustinack, Ruopeng Wang, David Salat, Stefan Ehrlich, Tim Behrens, Saad Jbabdi, Randy Gollub, and Bruce Fischl. Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. *Front. Neuroinform.*, 5:23, October 2011.
12. Demian Wassermann, Nikos Makris, Yogesh Rathi, Martha Shenton, Ron Kikinis, Marek Kubicki, and Carl-Fredrik Westin. The white matter query language: a novel approach for describing human white matter anatomy. *Brain Struct. Funct.*, 221(9):4705–4721, December 2016.
13. Klaus H. Maier-Hein, Peter F. Neher, Jean-Christophe Houde, Marc-Alexandre Côté, Eleftherios Garyfallidis, Jidan Zhong, Maxime Chamberland, Fang-Cheng Yeh, Ying-Chia Lin, Qing Ji, Wilburn E. Reddick, John O. Glass, David Qixiang Chen, Yuanjing Feng, Chengfeng Gao, Ye Wu, Jieyan Ma, Renjie He, Qiang Li, Carl-Fredrik Westin, Samuel Deslauriers-Gauthier, J. Omar Ocegueda González, Michael Paquette, Samuel St-Jean, Gabriel Girard, François Rheault, Jasmeen Sidhu, Chantal M. W. Tax, Fenghua Guo, Hamed Y. Mesri, Szabolcs Dávid, Martijn Froling, Anneriet M. Heemskerk, Alexander Leemans, Arnaud Boré, Basile Pinsard, Christophe Bedetti, Matthieu Desrosiers, Simona Brambati, Julien Doyon, Alessia Sarica, Roberta Vasta, Antonio Cerasa, Aldo Quattrone, Jason Yeatman, Ali R. Khan, Wes Hodges, Simon Alexander, David Romascano, Muhammed Barakovic, Anna Aurià, Oscar Esteban, Alia Lemkadem, Jean-Philippe Thiran, H. Ertan Cetingul, Benjamin L. Odry, Boris Mailhe, Mariappan S. Nadar, Fabrizio Pizzagalli, Gautam Prasad, Julio E. Villalon-Reina, Justin Galvis, Paul M. Thompson, Francisco De Santiago Requejo, Pedro Luque Laguna, Luis Miguel Lacerda, Rachel Barrett, Flavio Dell'Acqua, Marco Catani, Laurent Petit, Emmanuel Caruyer, Alessandro Dadiucci, Tim B. Dyrby, Tim Holland-Letz, Claus C. Hilgetag, Bram Stieljes, and Maxime Descoteaux. The challenge of mapping the human connectome based on diffusion tractography. *Nature Communications*, 8(1):1349,

511 **Future Work.** There are many aspects of reliability that
512 could be further explored. We explored robustness with re-
513 spect to ODF models and bundle recognition algorithms; ro-
514 bustness could also be explored with respect to: data acquisi-
515 tion parameters within the same subject; preprocessing meth-
516 ods; profile extraction method (for example, comparing our
517 current approach with the BUndle ANalytics (BUAN) (56));
518 and the effects of profile realignment on tract profile reliabil-
519 ity (57). Another possibility for teasing apart measurement
520 and tractography effects would be to test profile TRR using
521 the streamline of one scan on the results of the second scan
522 (by registering the streamline themselves, to avoid data inter-
523 polation in volume registration). This could tease apart the
524 effects of tractography from the voxel-level models of tis-
525 sue properties, because it is not necessary that these would
526 be sensitive to the same constraints (e.g., different sensitiv-
527 ity to noise). The methods we demonstrate and resources we
528

645 November 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-01285-x. Number: 1 Pub- 731
646 lisher: Nature Publishing Group. 732

647 14. Cibu Thomas, Frank Q Ye, M Okan Irfanoglu, Pooja Modi, Kadharbatta S Saleem, David A 733
648 Leopold, and Carlo Pierpaoli. Anatomical accuracy of brain connections derived from diffu- 734
649 sion MRI tractography is inherently limited. *Proc. Natl. Acad. Sci. U. S. A.*, 111(46):16574– 735
650 16579, November 2014. 736

651 15. Kurt G Schilling, Laurent Petit, Francois Rheault, Samuel Remedios, Carlo Pierpaoli, 737
652 Adam W Anderson, Bennett A Landman, and Maxime Descoteaux. Brain connections de- 738
653 rived from diffusion MRI tractography can be highly anatomically accurate—if we know where 739
654 white matter pathways start, where they end, and where they do not go. *Brain Structure and 740
655 Function*, 225(8):2387–2402, 2020. 741

656 16. Ariel Rokem, Jason D. Yeatman, Franco Pestilli, Kendrick N. Kay, Aviv Mezer, Stefan van der 742
657 Walt, and Brian A. Wandell. Evaluating the Accuracy of Diffusion MRI Models in White 743
658 Matter. *PLOS ONE*, 10(4):e0123272, April 2015. ISSN 1932-6203. doi: 10.1371/journal. 744
659 pone.0123272. Publisher: Public Library of Science. 745

660 17. Dmitry S Novikov, Valerij G Kiselev, and Sune N Jespersen. On modeling. *Magn. Reson. 746
661 Med.*, 79(6):3172–3193, June 2018. 747

662 18. Derek K Jones, Adam R Travis, Greg Eden, Carlo Pierpaoli, and Peter J Basser. PASTA: 748
663 pointwise assessment of streamline tractography attributes. *Magn. Reson. Med.*, 53(6): 749
664 1462–1467, June 2005. 750

665 19. John B Colby, Lindsay Soderberg, Catherine Lebel, Ivo D Dinov, Paul M Thompson, and 751
666 Elizabeth R Sowell. Along-tract statistics allow for enhanced tractography analysis. *Neu- 752
667 roimage*, 59(4):3227–3242, February 2012. 753

668 20. Adam Richie-Halford, Jason Yeatman, Noah Simon, and Ariel Rokem. Multidimensional 754
669 analysis and detection of informative features in diffusion MRI measurements of human 755
670 white matter. *PLoS Computational Biology*, in press, 2021. doi: <https://doi.org/10.1371/journal.pcbi.1009136>. 756

671 21. Michael Dayan, Elizabeth Monohan, Sneha Pandya, Amy Kuceyeski, Thanh D Nguyen, 758
672 Ashish Raj, and Susan A Gauthier. Profilometry: A new statistical framework for the char- 759
673 acterization of white matter pathways, with application to multiple sclerosis. *Hum. Brain 760
674 Mapp.*, December 2015. 761

675 22. David L Donoho. An invitation to reproducible computational research. *Biostatistics*, 11(3): 762
676 385–388, July 2010. 763

677 23. Peter Irie and Douglas Thain. Reproducibility in Scientific Computing. *ACM Comput. Surv.*, 764
678 51(3):1–36, July 2018. Place: New York, NY, USA Publisher: Association for Computing 765
679 Machinery. 766

680 24. The Turing Way Community, Becky Arnold, Louise Bowler, Sarah Gibson, Patricia Herterich, 767
681 Rosie Higman, Anna Krystalli, Alexander Morley, Martin O'Reilly, and Kirstie Whitaker. *The 768
682 Turing Way: A Handbook for Reproducible Data Science*. March 2019. 769

683 25. Rotem Botvinik-Nezer, Felix Holzmeister, Colin F. Camerer, Anna Dreber, Juergen Huber, 770
684 Magnus Johannesson, Michael Kirchler, Roni Iwanir, Jeanette A. Mumford, R. Alison Ad- 771
685 cock, Paolo Avanesi, Blazej M. Baczkowski, Ahana Bajracharya, Leah Bakst, Sheryl Ball, 772
686 Marco Barilari, Nadège Bault, Derek Beaton, Julia Beitner, Roland G. Benoit, Ruud M. W. J. 773
687 Berkers, Jamil P. Bhanji, Bharat B. Biswal, Sebastian Bobadilla-Suarez, Tiago Bortolini, 774
688 Katherine L. Bottenhorn, Alexander Bowring, Senne Braem, Hayley R. Brooks, Emily G. 775
689 Brudner, Cristian B. Calderon, Julia A. Camilleri, Jaime J. Castrellon, Luca Cecchetti, 776
690 Edna C. Cieslik, Zachary J. Cole, Olivier Collignon, Robert W. Cox, William A. Cunningham, 777
691 Stefan Czoschke, Kamalaker Dadi, Charles P. Davis, Alberto De Luca, Mauricio R. Del- 778
692 gado, Lysia Demetriou, Jeffrey B. Dennison, Xin Di, Erin W. Dickie, Ekaterina Dobryakova, 779
693 Claire L. Donnat, Juergen Dukart, Niall W. Duncan, Joke Durnez, Ann Eed, Simon B. Eick- 780
694 hoff, Andrew Erhart, Laura Fontanesi, G. Matthieu Fricke, Shiguang Fu, Adriana Galván, 781
695 Remi Gau, Sarah Genon, Tristan Glatard, Enrico Gleean, Jelle J. Goeman, Sergej A. E. 782
696 Golowin, Carlos González-García, Krzysztof J. Gorgolewski, Cheryl L. Grady, Mikella A. 783
697 Green, João F. Guassi Moreira, Olivia Guest, Shabnam Hakimi, J. Paul Hamilton, Roeland 784
698 Hancock, Giacomo Handjras, Bronson B. Harry, Colin Hawco, Peer Herholz, Gabrielle 785
699 Herman, Stephan Heunis, Felix Hoffstaedter, Jeremy Hoogeveen, Susan Holmes, Chuan- 786
700 Peng Hu, Scott A. Huettel, Matthew E. Hughes, Vittorio Iacobelli, Alexandru D. Iordan, 787
701 Peder M. Isager, Ayse I. Isik, Andrew Jahn, Matthew R. Johnson, Tom Johnstone, Michael 788
702 J. E. Joseph, Anthony C. Juliano, Joseph W. Kable, Michalis Kassinopoulos, Cemal Koba, 789
703 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 790
704 800 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 795
705 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 796
706 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 797
707 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 798
708 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 799
709 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 800
710 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 805
711 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 806
712 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 807
713 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 808
714 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 809
715 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 810
716 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 815
717 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 816
718 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 817
719 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 818
720 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 819
721 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 820
722 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 825
723 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 826
724 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 827
725 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 828
726 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 829
727 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 830
728 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 835
729 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 836
730 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 837
731 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 838
732 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 839
733 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 840
734 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 845
735 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 846
736 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 847
737 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 848
738 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 849
739 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 850
740 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 855
741 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 856
742 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 857
743 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 858
744 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 859
745 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 860
746 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 865
747 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 866
748 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 867
749 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 868
750 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 869
751 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 870
752 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 875
753 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 876
754 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 877
755 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 878
756 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 879
757 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 880
758 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 885
759 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 886
760 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 887
761 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 888
762 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 889
763 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 890
764 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 895
765 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 896
766 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 897
767 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 898
768 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 899
769 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 900
770 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 905
771 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 906
772 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 907
773 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 908
774 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 909
775 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 910
776 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 915
777 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 916
778 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 917
779 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 918
780 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 919
781 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 920
782 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 925
783 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 926
784 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 927
785 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 928
786 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 929
787 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 930
788 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 935
789 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 936
790 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 937
791 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 938
792 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 939
793 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 940
794 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 945
795 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 946
796 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 947
797 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 948
798 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 949
799 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 950
800 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 955
801 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 956
802 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 957
803 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 958
804 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 959
805 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 960
806 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 965
807 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 966
808 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 967
809 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 968
810 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 969
811 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 970
812 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 975
813 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 976
814 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 977
815 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 978
816 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 979
817 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 980
818 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 985
819 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 986
820 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 987
821 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 988
822 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 989
823 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 990
824 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 995
825 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 996
826 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 997
827 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 998
828 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 999
829 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1000
830 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1005
831 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1006
832 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1007
833 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1008
834 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1009
835 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1010
836 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1015
837 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1016
838 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1017
839 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1018
840 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1019
841 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1020
842 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1025
843 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1026
844 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1027
845 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1028
846 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1029
847 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1030
848 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1035
849 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1036
850 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1037
851 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1038
852 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1039
853 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1040
854 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1045
855 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1046
856 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1047
857 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1048
858 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1049
859 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1050
860 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1055
861 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1056
862 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1057
863 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1058
864 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1059
865 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1060
866 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1065
867 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1066
868 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1067
869 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1068
870 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1069
871 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1070
872 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1075
873 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1076
874 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1077
875 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1078
876 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1079
877 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1080
878 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1085
879 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1086
880 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1087
881 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1088
882 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1089
883 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1090
884 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1095
885 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1096
886 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1097
887 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1098
888 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1099
889 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1100
890 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1105
891 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1106
892 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1107
893 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1108
894 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1109
895 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1110
896 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1115
897 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1116
898 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1117
899 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1118
900 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1119
901 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1120
902 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1125
903 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1126
904 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1127
905 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1128
906 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1129
907 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1130
908 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1135
909 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1136
910 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1137
911 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1138
912 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1139
913 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1140
914 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1145
915 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1146
916 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1147
917 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1148
918 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1149
919 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1150
920 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1155
921 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1156
922 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1157
923 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1158
924 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1159
925 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1160
926 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1165
927 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1166
928 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1167
929 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1168
930 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1169
931 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1170
932 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1175
933 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1176
934 sonne, Michael P. Notter, Emanuele Olivetti, Adrian I. Onicas, Paolo Papale, Kaustubh R. 1177
935 Patil, Jonathan E. Peele, Alexandre Pérez, Doris Pischedda, Jean-Baptiste Poline, Yanina 1178
936 Prystauka, Shruti Ray, Patricia A. Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, 1179
937 Jenny R. Rieck, Anais M. Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. 1180
938 McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Benjamin Moyer, 1185
939 Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Molin, Dylan M. Nielsen, Gustav Nil- 1186
940 sonne, Michael P. Notter,

McKnight, Joseph Yuan-Mou Yang, Jian Chen, Claire E Kelly, Chun-Hung Yeh, Jerome 903
 818 Cochereau, Jerome J Maller, Thomas Welton, Fabien Almairac, Kiran K Seunarine, Chris A 904
 819 Clark, Fan Zhang, Nikos Makris, Alexandra Golby, Yogesh Rathi, Lauren J O'Donnell, Yi 905
 820 hao Xia, Dogu Baran Aydogan, Yonggang Shi, Francisco Guerreiro Fernandes, Mathijs 906
 821 Raemaekers, Shaun Warrington, Stijn Michielse, Alonso Ramírez-Manzanares, Luis Con- 907
 822 cha, Ramón Aranda, Mariano Rivera Meraz, Garikoitz Lerma-Usabiaga, Lucas Roitman, 908
 823 Lucius S Fekonja, Navona Calcaro, Michael Joseph, Hajar Nakua, Aristotle N Voineskos, 909
 824 Philippe Karan, Gabrielle Grenier, Jon Haitz Legarreta, Nagesh Adluru, Veena A Nair, 910
 825 Vivel Prabhakaran, Andrew L Alexander, Koji Kamagata, Yui Saito, Wataru Uchida, 911
 826 Christina Andica, Abe Masahiro, Roza G Bayrak, Claudia A Gandini, Egidio D'Angelo, 912
 827 Fulvia Palesi, Giovanni Savini, Nicolò Rolandi, Pamela Guevara, Josselin Houenou, Nar- 913
 828 ciso López-López, Jean-François Mangin, Cyril Poupon, Claudio Román, Andrea Vázquez, 914
 829 Chiara Maffei, Mavilde Arantes, José Paulo Andrade, Susana María Silva, Rajikhla Raja, 915
 830 Vincenzo D Calhoun, Eduardo Caverzasi, Simone Sacco, Michael Lauricella, Franco Pestilli, 916
 831 Daniel Bullock, Yang Zhan, Edith Brignoni-Perez, Catherine Lebel, Jess E Reynolds, Igor 917
 832 Nestrasil, René Labounek, Christophe Lenglet, Amy Paulson, Stefania Aulicica, Sarah Heil- 918
 833 bronner, Katja Heuer, Adam W Anderson, Bennett A Landman, and Maxime Descoteaux. 919
 834 Tractography dissection variability: what happens when 42 groups dissect 14 white matter 920
 835 bundles on the same dataset? October 2020. doi: 10.1101/2020.10.07.321083. 921

46. Gregory Kiar, Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit, Ariel Rokem, Gaël 922
 836 Varoquaux, Bratislav Misic, Alan C. Evans, and Tristan Glatard. Numerical Instabilities in 923
 837 Analytical Pipelines Lead to Large and Meaningful Variability in Brain Networks. *bioRxiv*, 924
 838 page 2020.10.15.341495, October 2020. doi: 10.1101/2020.10.15.341495. Publisher: Cold 925
 839 Spring Harbor Laboratory Section: New Results. 926

47. Robert F Dougherty, Michal Ben-Shachar, Roland Bammer, Alyssa A Brewer, and Brian A 927
 840 Wandell. Functional organization of human occipital-callosal fiber tracts. *Proc. Natl. Acad. 928*
 841 *Sci. U. S. A.*, 102(20):7350–7355, May 2005. 929

48. Karl J. Friston. Statistical Parametric Mapping. In Rolf Kötter, editor, *Neuroscience 930*
 842 *Databases: A Practical Guide*, pages 237–250. Springer US, Boston, MA, 2003. ISBN 931
 978-1-4615-1079-6. doi: 10.1007/978-1-4615-1079-6_16. 932

49. Garikoitz Lerma-Usabiaga, Noah Benson, Jonathan Winawer, and Brian A Wandell. A 933
 843 validation framework for neuroimaging software: The case of population receptive fields. *934*
 844 *PLoS Comput. Biol.*, 16(6):e1007924, June 2020. 935

50. Peter F Neher, Frederik B Laun, Bram Stieljes, and Klaus H Maier-Hein. Fiberbox: facil- 936
 850 itating the creation of realistic white matter software phantoms. *Magn. Reson. Med.*, 72(5): 937
 851 1460–1470, November 2014. 938

51. Maya Yablonski, Benjamin Menashe, and Michal Ben-Shachar. A general role for ventral 939
 852 white matter pathways in morphological processing: Going beyond reading. *Neuroimage*, 940
 853 226:117577, November 2020. 941

52. Jason D Yeatman, Adam Richie-Halford, Josh K Smith, Anisha Keshavan, and Ariel Rokem. 942
 854 A browser-based tool for visualization and analysis of diffusion MRI data. *Nat. Commun.*, 9 943
 855 (1):940, March 2018. 944

53. Satrajit S. Ghosh, Jean-Baptiste Poline, David B. Keator, Yaroslav O. Halchenko, Adam G. 945
 856 Thomas, Daniel A. Kessler, and David N. Kennedy. A very simple, re-executable neu- 946
 857 roimaging publication. *F1000Research*, 6:124, June 2017. ISSN 2046-1402. doi: 947
 858 10.12688/f1000research.10783.2. 948

54. Jakob Wassermann, Peter Neher, and Klaus H Maier-Hein. Tractseg-fast and accurate white 949
 860 matter tract segmentation. *NeuroImage*, 183:239–253, 2018. 950

55. Giulia Bertò, Daniel Bullock, Pietro Astolfi, Siochi Hayashi, Luca Zigootti, Luciano Annic- 951
 861 chiarico, Francesco Corsini, Alessandro De Benedictis, Silvio Sarubbo, Franco Pestilli, et al. 952
 862 Classifier, a robust streamline-based linear classifier for white matter bundle segmen- 953
 863 tation. *bioRxiv*, 2020. 954

56. Bramsh Qamar Chandio, Shannon Leigh Risacher, Franco Pestilli, Daniel Bullock, Fang- 955
 864 Cheng Yeh, Serge Koudoro, Ariel Rokem, Jaroslav Harezlak, and Eleftherios Garyfallidis. 956
 865 Bundle analytics, a computational framework for investigating the shapes and profiles of 957
 866 brain pathways across populations. *Scientific Reports*, 10(1):17149, October 2020. ISSN 958
 867 2045-2322. doi: 10.1038/s41598-020-74054-4. Number: 1 Publisher: Nature Publishing 959
 868 Group. 960

57. Samuel St-Jean, Maxime Chamberland, Max A. Viergever, and Alexander Leemans. Re- 961
 869 ducing variability in along-tract analysis with diffusion profile realignment. *NeuroImage*, 199: 962
 870 663–679, October 2019. ISSN 1095-9572. doi: 10.1016/j.neuroimage.2019.06.016. 963

58. Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cour- 964
 871 neapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J 965
 872 van der Walt, Matthew Brett, Joshua Wilson, K Jarrod Millman, Nikolay Mayorov, Andrew 966
 873 R J Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W 967
 874 Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, 968
 875 E A Quintero, Charles R Harris, Anne M Archibald, António H Ribeiro, Fabian Pedregosa, 969
 876 Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for sci- 970
 877 entific computing in python. *Nat. Methods*, 17(3):261–272, March 2020. 971

59. Sphinx, November 2020. 972

60. Sphinx-Gallery, November 2020. 973

61. Brian Hansen and Sune Nørhøj Jespersen. Data for evaluation of fast kurtosis strategies, 974
 880 b-value optimization and exploration of diffusion MRI contrast. *Scientific Data*, 3(1):160072, 975
 881 August 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.72. Number: 1 Publisher: Nature 976
 882 Publishing Group. 977

62. Matthew Rocklin. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. 978
 883 pages 126–132, Austin, Texas, 2015. doi: 10.25080/Majora-7b98e3ed-013. 979

63. Adam Richie-Halford and Ariel Rokem. Cloudknot: A Python Library to Run your Existing 980
 884 Code on AWS Batch. *Proceedings of the 17th Python in Science Conference*, pages 8–14, 981
 885 2018. doi: 10.25080/Majora-4af1f417-001. Conference Name: Proceedings of the 17th 982
 886 Python in Science Conference. 983

64. Tom Preston-Werner. toml, January 2021. original-date: 2013-02-24T03:57Z. 984

65. Tristan Glatard, Gregory Kiar, Tristan Aumentado-Armstrong, Natacha Beck, Pierre Bellec, 985
 887 Rémi Bernard, Axel Bonnet, Shawna T. Brown, Sorina Camarasu-Pop, Frédéric Cervenans- 988
 888 sky, Samir Das, Rafael Ferreira da Silva, Guillaume Flandin, Pascal Girard, Krzysztof J. 989
 889 Gorgolewski, Charles R. G. Guttmann, Valérie Hayot-Sasson, Pierre-Olivier Quirion, Pierre 988

66. Rioux, Marc-Étienne Rousseau, and Alan C. Evans. Boutiques: a flexible framework to in- 990
 890 tegrate command-line applications in computing platforms. *GigaScience*, 7(5), May 2018. 991
 891 doi: 10.1093/gigascience/giy016. Publisher: Oxford Academic. 992

67. Tal Yarkoni, Christopher J. Markiewicz, Alejandro de la Vega, Krzysztof J. Gorgolewski, 993
 892 Taylor Salo, Yaroslav O. Halchenko, Quinten McNamara, Krista DeStasio, Jean-Baptiste 994
 893 Poline, Hans Johnson, Oscar Esteban, Dmitry Petrov, James D. Kent, Stefan Appelhoff, 995
 894 Valérie Hayot-Sasson, Dylan M. Nielson, Johan Carlin, Gregory Kiar, Kirstie Whitaker, 996
 895 Satrajit Ghosh, Adina Wagner, Elizabeth DuPre, Andrew Janke, Alexander Ivanov, Ash- 997
 896 ley Gillman, Johannes Wennberg, Lee S. Tirrell, Steven Tilley II, Adam Li, Jon Haitz 998
 897 Legarreta, Mainak Jas, Michael Hanke, Russell Poldrack, Chadwick Boulay, Chris Hold- 999
 898 graf, Evgenii Kalenkovich, Isla Staden, Remi Gau, Ariel Rokem, Bertrand Thirion, Dave F. 999
 900 Kleinschmidt, Erin W Dickie, John A. Lee, Mathias Goncalves, Matteo Visconti di Oleg- 999
 901 gio Castello, Michael Philipp Notter, Pauline Roca, and Ross Blair. PyBIDS: Python tools 999
 902 for BIDS datasets, July 2020. 999

68. Tal Yarkoni, Christopher J. Markiewicz, Alejandro de la Vega, Krzysztof J. Gorgolewski, 999
 903 Taylor Salo, Yaroslav O. Halchenko, Quinten McNamara, Krista DeStasio, Jean-Baptiste 999
 904 Poline, Dmitry Petrov, Valérie Hayot-Sasson, Dylan M. Nielson, Johan Carlin, Gregory Kiar, 999
 905 Kirstie Whitaker, Elizabeth DuPre, Adina Wagner, Lee S. Tirrell, Mainak Jas, Michael Hanke, 999
 906 Russell A. Poldrack, Oscar Esteban, Stefan Appelhoff, Chris Holdgraf, Isla Staden, Bertrand 999
 907 Thirion, Dave F. Kleinschmidt, John A. Lee, Matteo Visconti Oleggio di Castello, Michael P. 999
 908 Notter, and Ross Blair. PyBIDS: Python tools for BIDS datasets. *Journal of Open Source 999
 909 Software*, 4(40):1294, August 2019. ISSN 2475-9066. doi: 10.21105/joss.01294. 999

69. Krzysztof J. Gorgolewski, Tibor Auer, Vince D. Calhoun, R. Cameron Craddock, Samir 999
 910 Das, Eugene P. Duff, Guillaume Flandin, Satrajit S. Ghosh, Tristan Glatard, Yaroslav O. 999
 911 Halchenko, Daniel A. Handwerker, Michael Hanke, David Keator, Xiangru Li, Zachary 999
 912 Michael, Camille Maumet, B. Nolan Nichols, Thomas E. Nichols, John Peltman, Jean- 999
 913 Baptiste Poline, Ariel Rokem, Gunnar Schaefer, Vanessa Sochat, William Triplett, Jessica A. 999
 914 Turner, Gaël Varoquaux, and Russell A. Poldrack. The brain imaging data structure, a for- 999
 915 mat for organizing and describing outputs of neuroimaging experiments. *Scientific Data*, 3(1):160044, June 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.44. Number: 1 Publisher: 999
 916 Nature Publishing Group. 999

70. Matthew Brett, Christopher J. Markiewicz, Michael Hanke, Marc-Alexandre Côté, Ben- 999
 917 Cipollini, Paul McCarthy, Dorota Jarecka, Christopher P. Cheng, Yaroslav O. Halchenko, 999
 918 Michiel Cottaar, Eric Larson, Satrajit Ghosh, Demian Wassermann, Stephan Gerhard, 999
 919 Gregory R. Lee, Hao-Ting Wang, Erik Kastman, Jakub Kaczmarzyk, Roberto Guidotti, 999
 920 Or Duek, Jonathan Daniel, Ariel Rokem, Cindee Madison, Brendan Moloney, Félix C. 999
 921 Morency, Mathias Goncalves, Ross Markello, Cameron Riddell, Christopher Burns, Jar- 999
 922 rod Millman, Alexandre Gramfort, Jaakko Leppäkangas, Anibal Sólón, Jasper F. J. van den 999
 923 Bosch, Robert D. Vincent, Henry Braun, Krish Subramanian, Krzysztof J. Gorgolewski, 999
 924 Pradeep Reddy Raamana, Julian Klug, B. Nolan Nichols, Eric M. Baker, Soichi Hayashi, 999
 925 Basile Pinsard, Christian Haselgrave, Mark Hymer, Oscar Esteban, Serge Koudorov, 999
 926 Fernando Pérez-García, Nikolasa N. Oosterhof, Bago Amirkabir, Ian Nimmo-Smith, 999
 927 Ly Nguyen, Samir Reddigari, Samuel St-Jean, Egoi Panfilov, Eleftherios Garyfallidis, 999
 928 Gael Varoquaux, Jon Haitz Legarreta, Kevin S. Hahn, Oliver P. Hinds, Bennet Fauber, 999
 929 Jean-Baptiste Poline, Jon Stutters, Kesshi Jordan, Matthew Cieslak, Miguel Estevan- 999
 930 Moreno, Valentin Haenel, Yannick Schwartz, Zvi Baratz, Benjamin C Darwin, Bertrand 999
 931 Thirion, Carl Gauthier, Dimitri Papadopoulos Orlano, Igor Solovey, Ivan Gonzalez, 999
 932 Jath Palasubramaniam, Justin Lecher, Katrin Leinweber, Konstantinos Raktivan, Markéta 999
 933 Calábková, Peter Fischer, Philippe Gervais, Syam Gadde, Thomas Ballinger, Thomas Roos, 999
 934 Venkateswara Reddy Reddam, and freec84. nipy/nibabel: 3.2.0, October 2020. 999

71. Maxime Descoteaux, Rachid Deriche, Thomas R. Knösche, and Alfred Anwander. De- 999
 935 terministic and probabilistic tractography based on complex fibre orientation distributions. 999
 936 *IEEE transactions on medical imaging*, 28(2):269–286, February 2009. ISSN 1558-254X. 999
 937 doi: 10.1109/TMI.2008.2004424. 999

72. P. J. Basser and D. LeBihan. Estimation of the effective self-diffusion tensor from the NMR spin echo. *Journal of Magnetic Resonance. Series B*, 103(3):247–254, March 999
 938 1994. ISSN 1064-1866. doi: 10.1006/jmrb.1994.1037. 999

73. Peter J. Basser and Carlo Pierpaoli. Microstructural and physiological features of tissues 999
 939 elucidated by quantitative-diffusion-tensor MRI. 1996. *Journal of Magnetic Resonance (San 999
 940 Diego, Calif.)*, 1997, 213(2):560–570, December 2011. ISSN 1096-0856. doi: 10.1016/j.jmr. 999
 941 2011.09.022. 999

74. Ali Tabesh, Jens H. Jensen, Babak A. Ardekani, and Joseph A. Helpern. Estimation of 999
 942 tensors and tensor-derived measures in diffusion-limited kurtosis imaging. *Magnetic Resonance 999
 943 in Medicine*, 65(3):823–836, March 2011. ISSN 1522-2594. doi: 10.1002/mrm.22655. 999

75. J.-Donald Tournier, Fernando Calamante, David G. Gadian, and Alan Connelly. Direct es- 999
 944 timation of the fiber orientation density function from diffusion-weighted MRI data using 999
 945 spherical deconvolution. *NeuroImage*, 23(3):1176–1185, November 2004. ISSN 1053- 999
 946 8119. doi: 10.1016/j.neuroimage.2004.07.037. 999

76. Ben Jeurissen, Jacques-Donald Tournier, Thijs Dhollander, Alan Connelly, and Jan Sijbers. 999
 947 Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell dif- 999
 948 fusion MRI data. *NeuroImage*, 103:411–426, December 2014. ISSN 1095-9572. doi: 10.1016/j. 999
 949 neuroimage.2014.07.061. 999

77. Gabriel Girard, Kevin Whittingstall, Rachid Deriche, and Maxime Descoteaux. Towards 999
 950 quantitative connectivity analysis: reducing tractography biases. *NeuroImage*, 98:266–278, 999
 951 September 2014. ISSN 1095-9572. doi: 10.1016/j.neuroimage.2014.04.074. 999

78. Robert E. Smith, Jacques-Donald Tournier, Fernando Calamante, and Alan Connelly. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. *NeuroImage*, 62(3):1924–1938, September 999
 952 2012. ISSN 1095-9572. doi: 10.1016/j.neuroimage.2012.06.005. 999

79. Marc-Alexandre Côté, Gabriel Girard, Arnaud Boré, Eleftherios Garyfallidis, Jean- 999
 953 Christophe Houdé, and Maxime Descoteaux. Tractometer: towards validation of tractog- 999
 954 raphy pipelines. *Medical Image Analysis*, 17(7):844–857, October 2013. ISSN 1361-8423. 999

989 doi: 10.1016/j.media.2013.03.009.
990 80. Fidel Alfaro-Almagro, Mark Jenkinson, Neal K. Bangerter, Jesper L. R. Andersson, Ludovica Griffanti, Gwenaëlle Douaud, Stamatios N. Sotiropoulos, Saad Jbabdi, Moïses Hernandez-Fernandez, Emmanuel Vallee, Diego Vidaurre, Matthew Webster, Paul McCarthy, Christopher Rorden, Alessandro Daducci, Daniel C. Alexander, Hui Zhang, Iulius Dragoun, Paul M. Matthews, Karla L. Miller, and Stephen M. Smith. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. *NeuroImage*, 166:400–424, February 2018. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2017.10.034.
991
992
993
994
995
996
997 81. Karla L. Miller, Fidel Alfaro-Almagro, Neal K. Bangerter, David L. Thomas, Essa Yacoub, Junqian Xu, Andreas J. Bartsch, Saad Jbabdi, Stamatios N. Sotiropoulos, Jesper L. R. Andersson, Ludovica Griffanti, Gwenaëlle Douaud, Thomas W. Okell, Peter Weale, Iulius Dragoun, Steve Garratt, Sarah Hudson, Rory Collins, Mark Jenkinson, Paul M. Matthews, and Stephen M. Smith. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. *Nature Neuroscience*, 19(11):1523–1536, November 2016. ISSN 1546-1726. doi: 10.1038/nn.4393. Number: 11 Publisher: Nature Publishing Group.
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

82. Eleftherios Garyfallidis, Omar Ocegueda, Demian Wassermann, and Maxime Descoteaux. Robust and efficient linear registration of white-matter fascicles in the space of streamlines. *NeuroImage*, 117:124–140, August 2015. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2015.05.016.
83. Oscar Esteban, Rastko Ceric, Christopher J. Markiewicz, Yaroslav O. Halchenko, Mathias Goncalves, Satrajit S. Ghosh, Russell A. Poldrack, and Krzysztof J. Gorgolewski. Template-Flow: Standardizing standard 3D spaces in neuroimaging, November 2019.
84. Nobuyuki Otsu. A Threshold Selection Method from Gray-Level Histograms. *IEEE Transactions on Systems, Man, and Cybernetics*, 9(1):62–66, January 1979. ISSN 2168-2909. doi: 10.1109/TSMC.1979.4310076. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics.
85. David Chen, Flavio Dell'Acqua, Ariel Rokem, Eleftherios Garyfallidis, Jidan Zhong, and Mojgan Hodaie. Diffusion Weighted Image Co-registration: Investigation of Best Practices. December 2019. doi: 10.1101/864108.
86. Setsu Wakana, Arvind Caprihan, Martina M. Panzenboeck, James H. Fallon, Michele Perry, Randy L. Gollub, Kegang Hua, Jiangyang Zhang, Hangyi Jiang, Prachi Dubey, Ari Blitz, Peter van Zijl, and Susumu Mori. Reproducibility of Quantitative Tractography Methods Applied to Cerebral White Matter. *NeuroImage*, 36(3):630–644, July 2007. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2007.02.049.
87. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. *NeuroImage*, 15(1):273–289, January 2002. ISSN 1053-8119. doi: 10.1006/nimg.2001.0978.
88. C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex hulls. *ACM Transactions on Mathematical Software*, 22(4):469–483, December 1996. ISSN 0098-3500, 1557-7295. doi: 10.1145/235815.235821.
89. FURY, October 2020.
90. Plotly Python Graphing Library, October 2020.
91. David C. Van Essen, Stephen M. Smith, Deanna M. Barch, Timothy E. J. Behrens, Essa Yacoub, and Kamil Ugurbil. The WU-Minn Human Connectome Project: An overview. *NeuroImage*, 80:62–79, October 2013. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2013.05.041.
92. Lin-Ching Chang, Derek K. Jones, and Carlo Pierpaoli. RESTORE: robust estimation of tensors by outlier rejection. *Magnetic Resonance in Medicine*, 53(5):1088–1095, May 2005. ISSN 0740-3194. doi: 10.1002/mrm.20426.
93. J-Donald Tournier, Robert Smith, David Raffelt, Rami Tabbara, Thijss Dhollander, Maximilian Pietsch, Daan Christiaens, Ben Jeurissen, Chun-Hung Yeh, and Alan Connelly. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. *NeuroImage*, 202:116137, November 2019.
94. Lee R. Dice. Measures of the Amount of Ecologic Association Between Species. *Ecology*, 26(3):297–302, 1945. ISSN 00129658, 19399170. doi: 10.2307/1932409. Publisher: Ecological Society of America.
95. Matthew Cieslak, Philip A Cook, Xiaosong He, Fang-Cheng Yeh, Thijss Dhollander, Azeez Adegbime, Geoffrey K Aguirre, Danielle S Bassett, Richard F Betzel, Josiane Bourque, et al. Qsiprep: An integrative platform for preprocessing and reconstructing diffusion mri. *bioRxiv*, 2020.
96. J-Donald Tournier, Robert Smith, David Raffelt, Rami Tabbara, Thijss Dhollander, Maximilian Pietsch, Daan Christiaens, Ben Jeurissen, Chun-Hung Yeh, and Alan Connelly. Mrtrix3: A fast, flexible and open software framework for medical image processing and visualisation. *NeuroImage*, 202:116137, 2019.
97. Lindsay M Alexander, Jasmine Escalera, Lei Ai, Charissa Andreotti, Karina Febre, Alexander Mangone, Natan Vega-Potler, Nicolas Langer, Alexis Alexander, Meagan Kovacs, Shannon Litke, Bridget O'Hagan, Jennifer Andersen, Batya Bronstein, Anastasia Bui, Marijayne Bushey, Henry Butler, Victoria Castagna, Nicolas Camacho, Elisha Chan, Danielle Citera, Jon Clucas, Samantha Cohen, Sarah Dufek, Megan Eaves, Brian Fradera, Judith Gardner, Natalie Grant-Villegas, Gabriella Green, Camille Gregory, Emily Hart, Shana Harris, Megan Horton, Danielle Kahn, Katherine Kabotyanski, Bernard Karmel, Simon P Kelly, Kayla Kleinman, Bonhwang Koo, Eliza Kramer, Elizabeth Lennon, Catherine Lord, Ginny Mantello, Amy Margolis, Kathleen R Merikangas, Judith Milham, Giuseppe Minniti, Rebecca Neuhaus, Alexandra Levine, Yael Osman, Lucas C Parra, Ken R Pugh, Amy Racanello, Anita Restrepo, Tian Saltzman, Batya Septimus, Russell Tobe, Rachel Walz, Anna Williams, Anna Yeo, Francisco X Castellanos, Arno Klein, Tomas Paus, Bennett L Leventhal, R Cameron Craddock, Harold S Koplowicz, and Michael P Milham. An open resource for transdiagnostic research in pediatric mental health and learning disorders. *Sci Data*, 4:170181, December 2017.
98. Martin Lindquist. Neuroimaging results altered by varying analysis pipelines. *Nature*, 582(7810):36–37, June 2020. doi: 10.1038/d41586-020-01282-z. Number: 7810 Publisher: Nature Publishing Group.
99. Robert F Dougherty, Michal Ben-Shachar, Gayle K Deutsch, Arvel Hernandez, Glenn R Fox, and Brian A Wandell. Temporal-callosal pathway diffusivity predicts phonological skills in children. *Proc. Natl. Acad. Sci. U. S. A.*, 104(20):8556–8561, May 2007.

1075 Supplementary Methods

1076 **Automated Fiber Quantification in Python (pyAFQ).** Inspired by a previous MATLAB implementation (9), We developed
1077 a software library that automates dMRI-based tractometry analysis. The library is called pyAFQ (Python Automated Fiber
1078 Quantification), and it is implemented as open-source software here: <https://github.com/yeatmanlab/pyAFQ>. The
1079 software is developed under the permissive OSI-approved BSD license. It allows users to specify the methods and parame-
1080 terers they want to use for tractometry. pyAFQ uses many components of the scientific Python ecosystem (58). In particular,
1081 it relies heavily on implementations of algorithms for diffusion reconstruction, orientation determination, tractography and
1082 image registration implemented in Diffusion Imaging in Python (DIPY), an open-source, Python library for computational neu-
1083 roanatomy (28). The pyAFQ software implements extensive documentation with Sphinx (59), including a gallery of executable
1084 examples, implemented using Sphinx Gallery (60). Unit testing is implemented using pytest, with continuous integration im-
1085 plemented to test proposed changes to the library, as well as longer nightly tests that check that pipelines of operations are
1086 not adversely affected by changes that are introduced in developing the software. pyAFQ's test suite uses the HARDI data
1087 collected for (16), CFIN (61), and data from the Human Connectome Project. pyAFQ can be parallelized across subjects and
1088 sessions using dask (62). The analysis performed in this paper primarily used pyAFQ run using Cloudknot (63) on Amazon
1089 Web Services (AWS).

1090 There are many ways to analyze dMRI data and to estimate tractometry-based tract-profiles. For example, many different
1091 models are used to determine the directions of tracking within each voxel and to connect different voxels with a variety of
1092 tractography algorithms. Similarly, different models can be used to determine the tissue properties within a voxel. However, it
1093 is hard to determine which methods to use, because different methods may be appropriate for different datasets, depending on
1094 their characteristics: the measurements conducted, the signal to noise ratio (SNR) of the data and so forth. Software to support
1095 analysis of a variety of datasets should make it easy to use many different methods and to compare results between methods.
1096 All of the choices the user can make in each of the steps of pyAFQ are delineated below and summarized in Fig. S2. The
1097 software implements a library with an object-oriented application programming interface (API), as well as a command-line
1098 interface (CLI). Using pyAFQ's API, pyAFQ can be run with only a few lines of code. The API is also flexible, giving the user
1099 the ability to choose which algorithms and parameters to use. For users unfamiliar with python, pyAFQ has a command line
1100 interface (CLI) which uses a configuration file written in TOML (64). pyAFQ also has a Boutiques configuration file and can
1101 be executed using Boutiques (65).

1102 **Locating and mapping data (BIDS).** The first step in analysis is to find the files that the software will use. pyAFQ relies on
1103 pyBIDS (66, 67) to query data that is provided in the BIDS format (68). It looks for dMRI, b-value, and b-vector files stored
1104 in standard formats (see <https://yeatmanlab.github.io/pyAFQ/usage/data.html> for details). Additionally,
1105 the user can provide files from other processing pipelines to be used as a brain mask during registration or as start or stop
1106 masks during tractography, as well as completed tractography results. We typically use the Nibabel software library to interact
1107 with neuroimaging files (69). Following the BIDS standard, the outputs of pyAFQ are put in the BIDS derivatives folder, in a
1108 pipeline directory labelled as "afq". The derivative BIDS format follows as much as possible the draft implementation of the
1109 BIDS derivatives for dMRI data.

1110 **Tractography.** There are several methods for computational tractography. The pyAFQ software exposes many of these as op-
1111 tions. It allows users to choose from multiple fiber orientation distribution functions (70) that determine the direction of tracking
1112 in each step of the process: based on Diffusion Tensor Imaging (DTI) (71, 72), Diffusion Kurtosis Imaging (DKI) (73), Con-
1113 strained Spherical Deconvolution (CSD) (74, 75), and Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-
1114 CSD) (76). Deterministic and probabilistic tractography algorithms can be used and stopping criteria can be implemented for
1115 particle filtering tractography, using the continuous map criterion (77) or anatomically-constrained tractography (78). The de-
1116 fault tractography setting uses DTI, deterministic direction finding, a max turning angle per step of 30°, one seed per voxel, and
1117 retains only streamlines between 10 and 1000mm long. Many of our tractography defaults are inspired by the results of (79)
1118 and (9). The default seed and stop masks are created by thresholding FA at 0.2. All of these parameters can be customized
1119 using pyAFQ's API or CLI.

1120 **Template registration.** The user can specify their own template and subject image to register, however pyAFQ also provides four
1121 builtin options: register subject non-diffusion weighted image (also known as b0) to the Montreal Neurological Institute (MNI)
1122 T2 template (29, 30); register subject FA to a group mean fractional anisotropy (FA) template from the UK Biobank (80, 81);
1123 register a subject's anisotropic power map (APM) (31, 32) to the MNI T1 template; and register subject streamlines to the 16
1124 bundles human connectome project (HCP) atlas (7) using streamline registration (SLR) (82). The first three of these builtin
1125 techniques use the nonlinear Symmetric Diffeomorphic Registration (SyN) (33) after an optional linear preregistration, both
1126 implemented in DIPY. pyAFQ uses Templateflow (83) to get MNI T1/T2 templates for registration. The default registration
1127 behavior is to consider all b-values under 50 to be b0, mask the subject's APM using DIPY's median_otsu image recognition
1128 algorithm (84) on the subject b0, and register the masked power map to the masked MNI T1 template. Per default, we chose to

1129 use the APM for registration based on previous findings that show this is a good choice (85) and based on our own experience.
1130 All of these parameters can be customized using pyAFQ's API and CLI.

1131 **Bundle recognition and cleaning.** To identify the streamlines that best represent a particular anatomical pathway, we perform
1132 bundle recognition. The default behavior is to perform the initial classification using probability maps, and then segment with
1133 waypoint ROIs defined in (86), then filter the classified streamlines by their termination locations, using the AAL atlas (87),
1134 where streamlines must be within 4mm of the expected endpoint region. Waypoint ROIs are moved into the subject space and
1135 then patched up using the Quickhull Algorithm (88). There is also an option, turned off by default, to clip streamline edges at
1136 the ROIs (86).

1137 In addition to the waypoint-based recognition described above, pyAFQ also allows the user to choose to use a streamline atlas
1138 based bundle recognition method, called RecoBundles (44). Parameters for either algorithm can be customized using pyAFQ's
1139 API and CLI.

1140 After recognition, cleaning is performed based on the Mahalanobis distance of each streamline from the mean in each node.
1141 This process was originally described in (9). By default, pyAFQ resamples streamlines to 100 points (nodes) and performs
1142 5 rounds of cleaning with a distance threshold of 5 standard deviations from the mean of the node coordinates at each point,
1143 and a length threshold of 4 standard deviations from the mean length. Cleaning is also stopped if a bundle has less than 20
1144 streamlines. All of these parameters can be customized using pyAFQ's API and CLI.

1145 **Tract Profile Extraction.** After cleaning, pyAFQ computes and visualizes tract profiles. The mean profile (called a "tract profile")
1146 is calculated using the same Mahalanobis distance-based weighting strategy as in Yeatman et al. (9), implemented in DIPY.
1147 Visualization can be performed using one of two backends: fury (89) or plotly (90), which create either animated gifs or
1148 interactive html files respectively. Visualizations are created for the whole brain tractometry and for each individual bundle.

1149 **Data.** We measured the reliability of tractometry using two datasets with contrasting characteristics.

1150 **Human Connectome Project (HCP-TR).** The WU-Minn Human Connectome Project (HCP) (91) includes measurements of
1151 diffusion MRI data from almost all of the 1,200 participants. Here, we focus our analysis on a subset of these subjects for
1152 which test-retest data are available. We refer to this data as HCP-TR. This dataset contains dMRI data from 44 individuals.
1153 This represents a relatively high-quality, high-resolution dataset, with multiple diffusion directions and multiple b-values. The
1154 acquisition parameters of HCP-TR are described in detail elsewhere (36). We used data that had been preprocessed through the
1155 HCP pipelines, as provided through the AWS Open Data program (<https://registry.opendata.aws/hcp-openaccess/>).

1156 **University of Washington Pre-K (UW-PREK).** Two measurements were conducted in each participant 1 day apart. These were
1157 acquired with 32 directions, $b=1,500 \text{ s/mm}^2$, 2 mm^3 isotropic resolution, TR/TE=7200/83 msec. Data were preprocessed using
1158 FSL for eddy current, motion correction, and susceptibility distortion correction. Analysis using the mAFQ was conducted as
1159 previously described (9). We converted UW-PREK to BIDS format (68) for input into pyAFQ's API.
1160 We attempted to configure pyAFQ to most closely match the mAFQ configuration. We used robust estimation of tensors by
1161 outlier rejection (RESTORE) (92) to fit the DTI model. In tractography, we used 160,000 seeds randomly distributed wherever
1162 DTI FA is higher than 0.3. We used only 1 round of cleaning. We ran this on both the UW-PREK pre and post sessions, and
1163 compared its reproducibility to the results on the same datasets with mAFQ. We also compared the robustness of the results
1164 between the pyAFQ and mAFQ algorithms on the pre-session data only.

1165 **Configurations.** For all configurations, we used the Freesurfer brain segmentation provided by HCP to calculate a permissive
1166 brain mask, with all portions of the image not labelled as 0, considered part of the brain. The brain mask is used when fitting
1167 the ODF models. We compared the TRR of each configuration, as well as the robustness of the results across configurations.
1168 We also compared the TRR of these configurations to the TRR of results published by Lerma-Usabiaga and colleagues (43),
1169 denoted RTP.

1170 **DTI Configuration.** In addition to the three configurations enumerated in the present paper, we processed HCP-TR with a fourth
1171 configuration. We used only measurements with b-values between 990 and 1010 s/mm^2 . We used DTI as the ODF model for
1172 tractography and profile extraction. We compared this configuration to RTP in 3D, E. We also analysed DTI for robustness and
1173 found its results to be nearly identical to DKI.

1174 **RecoBundles Configuration.** One of the configurations we ran on the HCP-TR data used RecoBundles (8). pyAFQ provides
1175 programmatic access to two atlases, one being the full 80 bundles human connectome project (HCP) atlas (7), and other being
1176 a 16 bundle subset of that atlas. We ran RecoBundles on HCP-TR using the full 80 bundles atlas. We use the following
1177 RecoBundles parameter configuration: a model cluster threshold of 1.25, a reduction threshold of 25, no refinement, a pruning
1178 threshold of 12, local streamline-based linear registration on with an asymmetric metric. We used this configuration for all 80
1179 bundles. Multi-shell data and the DKI ODF model were used. We used nonlinear symmetric diffeomorphic registration and a
1180 brain mask based on the HCP-provided segmentation.

1181 **RTP.** As a point of comparison, we used an open dataset of HCP-TR derivatives that was published by Lerma-Usabiaga and
1182 colleagues (43). They processed HCP-TR using the Reproducible Tract Profiles (RTP) pipeline (42). This pipeline is a full
1183 end-to-end pipeline and system for deployment of analysis that receives as input raw MRI data as acquired on the scanner.
1184 While it applies different preprocessing steps and uses different tractography algorithms than mAFQ, relying on MRTRIX for
1185 many of these steps (93), the bundle recognition steps closely resemble the ones used in mAFQ, relying on functions that stem
1186 from the same MATLAB codebase as mAFQ. The end result of RTP are tract profiles in an easy-to-use and data-science ready
1187 JSON format. We denote their results as RTP and compare them to the HCP-TR results computed with pyAFQ.

1188 **Measures of reliability.** pyAFQ gives the user the choice of which underlying algorithms to use when performing tractometry,
1189 as shown in Fig. S2. We use this feature of pyAFQ to run multiple analyses on HCP-TR and UW-PREK, which both have test-
1190 retest data. The analyses we selected represent only a small subset of the possible configurations of pyAFQ. However, because
1191 the software is freely available and easily configurable with the API or CLI, it would be straightforward to test other analyses. To
1192 compare the results on test-retest data (TRR) and compare results across analyses (robustness), we use four different measures
1193 of reliability. Each one of these measures emphasizes different aspects of reliability.

1194 **Weighted Dice similarity coefficient (wDSC).** The anatomical reliability of bundle recognition solutions is assessed by com-
1195 paring their spatial overlap in the white matter volume. First, for every voxel in the white matter, we count the number of
1196 streamlines that pass through that voxel for a given bundle, then divide by the total number of streamlines in that bundle. This
1197 creates what we call a streamline density map (28). We could compare streamline density maps using a Dice similarity coeffi-
1198 cient (94), but that would require applying a threshold to the density maps, and could give a few streamlines a large influence
1199 on the calculation. Instead, we use the weighted Dice similarity coefficient (wDSC) (37):

$$D(i, j) = \frac{\sum_{v \in \mathcal{V}_i \cap \mathcal{V}_j} W_{i,v} + W_{j,v}}{\sum_{v \in \mathcal{V}_i} W_{i,v} + \sum_{v \in \mathcal{V}_j} W_{j,v}} \quad (1)$$

1200 where v is a voxel index, $W_{i,v}$ is the streamline density for a bundle i in voxel v , and v' are voxels where the two bundles i and
1201 j intersect. wDSC provides a measure of the reliability in the spatial extent of bundles, in a manner that is independent from
1202 the assessment of tract profiles.

1203 **Adjusted contrast index profile (ACIP).** We use an adjusted contrast index to directly compare the values of individual nodes in
1204 the tract profiles in different measurements. For two values (V_1, V_2) in different profiles, the adjusted contrast index (ACI) is
1205 calculated using Eq (2).

$$ACI(V_1, V_2) = 2 \frac{V_2 - V_1}{V_2 + V_1} \quad (2)$$

1206 We multiply by 2 to make the contrast index have comparable values to fractional difference. In contrast to fractional difference,
1207 however, the ACI does not require one of the variables to be a reference, and $ACI(V_1, V_2) = -ACI(V_2, V_1)$. Calculating and
1208 then plotting the ACI for each point between two profiles highlights the differences between profiles, producing the adjusted
1209 contrast index profile (ACIP). ACIP emphasizes discrepancies in estimates along the length of the tract in a manner that does
1210 not depend on the scale of the measurement (e.g., the different scales of FA and MD).

1211 **Supplementary Discussion of pyAFQ**

1212 **pyAFQ is embedded in an ecosystem of tools for reproducible neuroimaging.** The wider ecosystem of tools and standards
1213 surrounding pyAFQ is shown in Fig. S6. Each tool has its own place in the ecosystem. We rely heavily on implementations
1214 of dMRI analysis algorithms implemented in DIPY (28). Reproducibility and interoperability are also facilitated by relying on
1215 the BIDS format (68) and the pyBIDS software (66, 67). Requiring a BIDS-like input makes integration with other software in
1216 the ecosystem easier. For example, it is fairly straightforward to use the outputs of BIDS-compatible preprocessing pipelines,
1217 such as qsiprep (95), as inputs to pyAFQ. Furthermore, the modularity of the pyAFQ pipeline means that outputs of other
1218 tractography software (e.g., MRTRIX (96)) can be used as inputs to bundle recognition, with BIDS filters as the metadata that
1219 allows finding and incorporating through the right data.

1220 Cloud-based processing is going to be more important as large datasets are processed. pyAFQ does not depend on proprietary
1221 software and can be scaled to large datasets using cloud computing platforms. In this paper, we used Cloudknot (63) to scale
1222 pyAFQ across subjects and methods on AWS. However, because pyAFQ is a Python package, it can easily be run on any cloud
1223 computing platform. Computing in the public cloud also supports reproducible research, as computations conducted on the
1224 public cloud are perfectly portable to other users of the software. Our software is written with that in mind, including functions
1225 that know how to easily access datasets that are already stored in the cloud (e.g., HCP and Healthy Brain Network (97) datasets).
1226 We know that one of the most important ways in which users can diagnose whether processing worked as expected is by visually
1227 inspecting the results. Thus, we provide several different visualization methods, relying on the VTK-derived FURY library, or
1228 on browser-friendly visualizations with Plotly. pyAFQ outputs are also fully compatible with AFQ-Browser, a browser-based
1229 tool for interactive visualization and exploration of tractometry results (52).

1230 Finally, beyond visualization and summary of the results, and tools for analysis of reliability presented in this work, pyAFQ
1231 does not provide a substantial set of tools for statistical analysis of tractometry results. Instead, the outputs of pyAFQ are
1232 provided as “tidy” CSV tables (27). This means that it is compatible as inputs to the AFQ Insight tool for statistical analysis
1233 (20), but also amenable to many other statistical analysis approaches. This output should facilitate interdisciplinary use of
1234 dMRI data, as it is provided in a format that is widely used in statistics and machine learning.

1235 **pyAFQ is extensible.** In general, variability in results would be reduced with a standard pipeline that could be used across all
1236 studies and datasets. However, as noted by Lindquist, “studies tend to be too varied for one pipeline to always be appropriate” (98). This is particularly true as new measurement techniques, new processing methods and new analysis approaches for
1237 dMRI are evolving. Therefore, the pyAFQ pipeline was designed to be flexible, making it easier to reproduce results, while
1238 providing researchers with many choices for the appropriate analysis, depending on their data and questions. pyAFQ allows the
1239 user to make many decisions (Fig S2), and all of those decisions can be encoded in a configuration file. That configuration file
1240 can be used to reproduce the same analysis pipeline given the same version of pyAFQ is used. By providing the configuration
1241 file or the arguments passed to the main API, one can clearly satisfy the requirement for a re-executable workflow outlined
1242 in (53).

1243 To extend to new bundles, pyAFQ allows users to define new queries that recognize bundles that are not part of the set of 18
1244 detected by the original mAFQ software. For a simple example, we use a set of alternative waypoint ROIs to detect different
1245 portions of the corpus callosum (99) (Fig S7A). These alternative ROIs are included in pyAFQ but not used by default. In more
1246 complicated example, another set of ROIs is used to recognize the location of the optic radiations (OR; Fig S7). Because these
1247 are relatively small and winding, their delineation requires additional components: it requires several waypoint ROIs used not
1248 only as inclusion criteria, but also as exclusion criteria, and it requires delineation of endpoints in the cortex that are not part of
1249 the AAL atlas, which is used in the standard set of bundles. It also requires oversampling of streamlines, so in order to obtain
1250 a proper definition of the OR, tractography is configured to use 125 seeds per voxel (instead of the default 8). All of these
1251 components can be integrated into calls to the software API, without needing to change any of its internals. This includes any
1252 custom waypoint ROIs, inclusive or exclusive, as well as probability maps, endpoint locations, and whether the bundle crosses
1253 the midline.

1255 **Supplementary Figures and Tables**

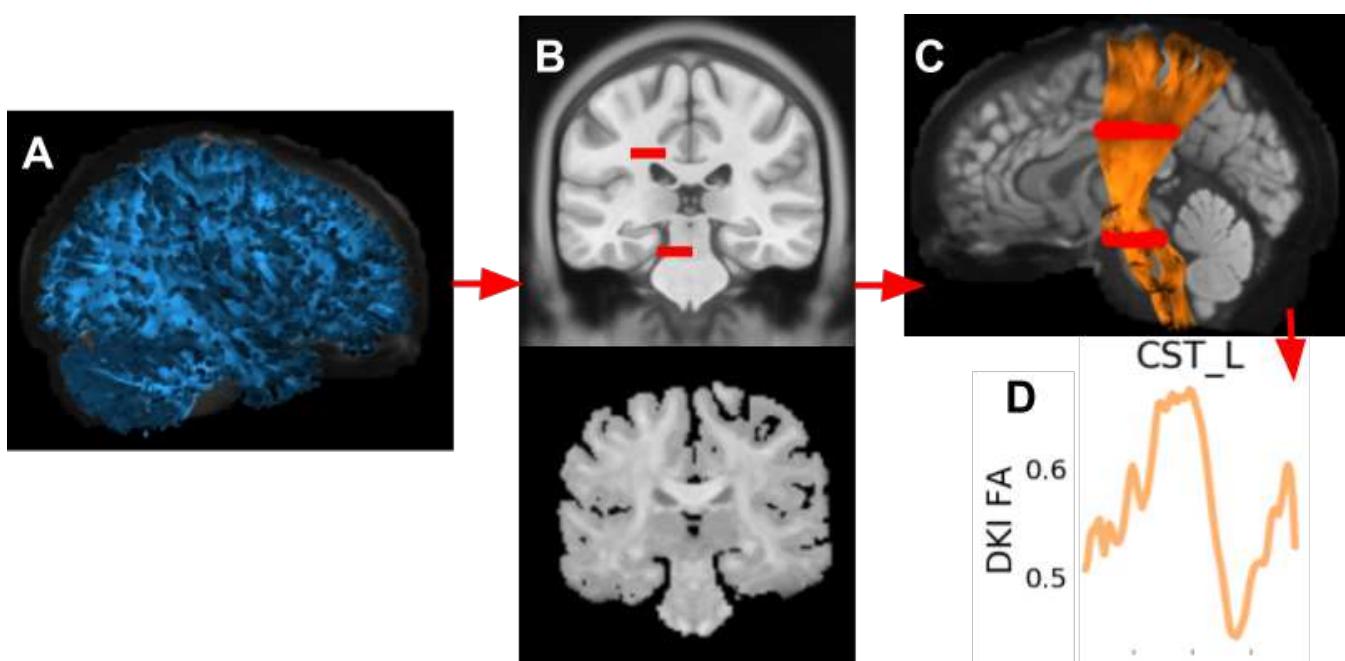


Fig. S1. The stages of tractometry. **A** Computational tractography generates streamlines estimating the trajectories of white matter connections. **B** An anatomical template is registered to each subject's individual brain. Here, in a mid-coronal view, the MNI T1-weighted template (29, 30), shown with the locations of waypoint ROIs for classification of the left corticospinal tract (5) (slightly enlarged for visualization purposes). The subject's anisotropic power map (APM) (31) is used as the target for registration, due to its similarity to the T1 contrast. **C** Classification of the streamlines. Here, in a lateral view, the streamlines classified as belonging to the left corticospinal tract (CST L), overlaid on a mid-sagittal slice of the subject's non diffusion-weighted (b0) image. The streamlines are shaded by the subject's fractional anisotropy (FA) along their length. **D**, Tract profiles are extracted from the bundles. Here, the FA profile for CST L.

ARC L	Left Arcuate
ARC R	Right Arcuate
ATR L	Left Thalamic Radiation
ATR R	Right Thalamic Radiation
CGC L	Left Cingulum Cingulate
CGC R	Right Cingulum Cingulate
CST L	Left Corticospinal
CST R	Right Corticospinal
FA	Callosum Forceps Minor
FP	Callosum Forceps Major
IFO L	Left Inferior Fronto-occipital Fasciculus
IFO R	Right Inferior Fronto-occipital Fasciculus
ILF L	Left Inferior Longitudinal Fasciculus
ILF R	Right Inferior Longitudinal Fasciculus
SLF L	Left Superior Longitudinal Fasciculus
SLF R	Right Superior Longitudinal Fasciculus
UNC L	Left Uncinate
UNC R	Right Uncinate

Table S1. Abbreviations of the major white matter pathways recognized by pyAFQ.

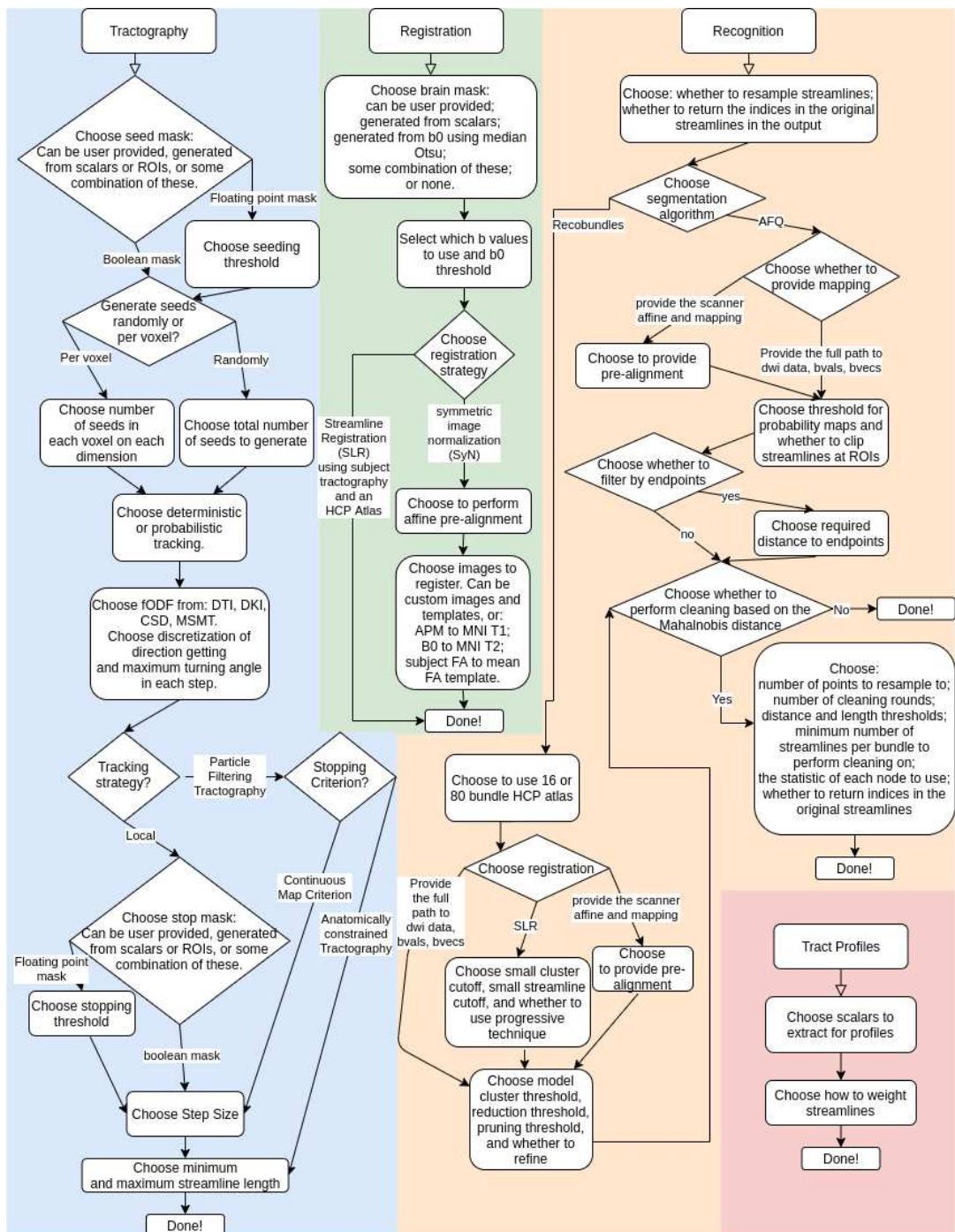


Fig. S2. Choices the user can make for how to run pyAFQ. The colors represent different steps of tractometry. Tractography is shaded blue, registration is shaded green, recognition is shaded orange, and tract profiles is shaded red. Every rounded box and diamond contains one or more choices, except for the rounded boxes marked “Done!”, which indicates all choices have been made. Diamonds indicate the path you take depends on the choice in the diamond. pyAFQ has reasonable defaults for all of these decisions; however it also makes it simple for the user to customize their tractometry pipeline according to their needs.

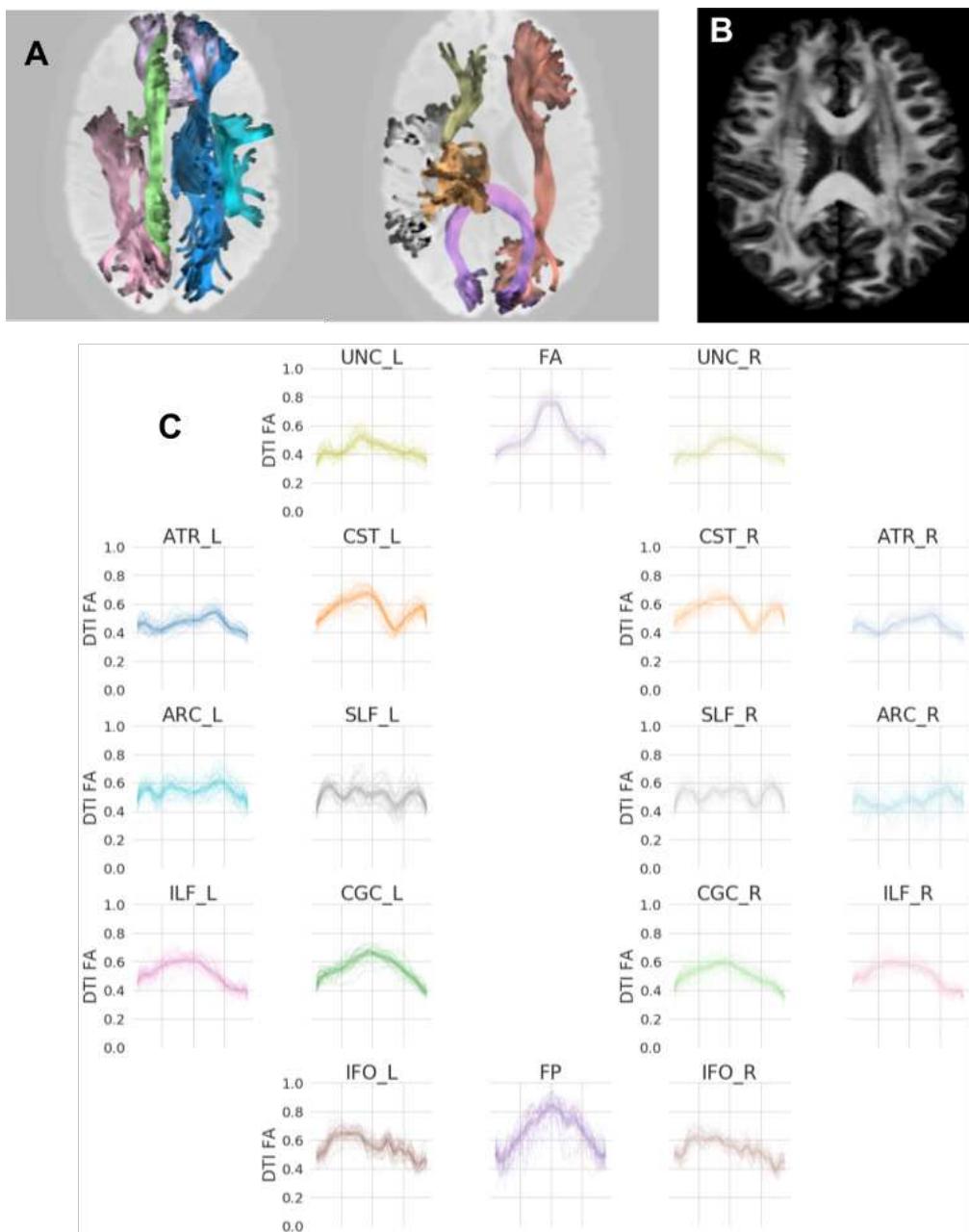


Fig. S3. Extraction of tract profiles from the recognition of white matter into major bundles of streamlines. **A** Representative bundles from an example subject in the HCP-TR dataset. Streamlines are colored by bundle, and are shaded by the interpolated FA value at each point. The background is the mean non diffusion-weighted image (b0). **B** The same subject's fractional anisotropy (FA). **C** extracting FA along each bundle and plotting the FA in a tract profile. Individual tract profiles are plotted with thin lines and the mean tract profile is plotted with a thick line. The tract profiles are colored according to their bundle are laid out in positions that reflect their anatomical positions (compare **A** and **C**).

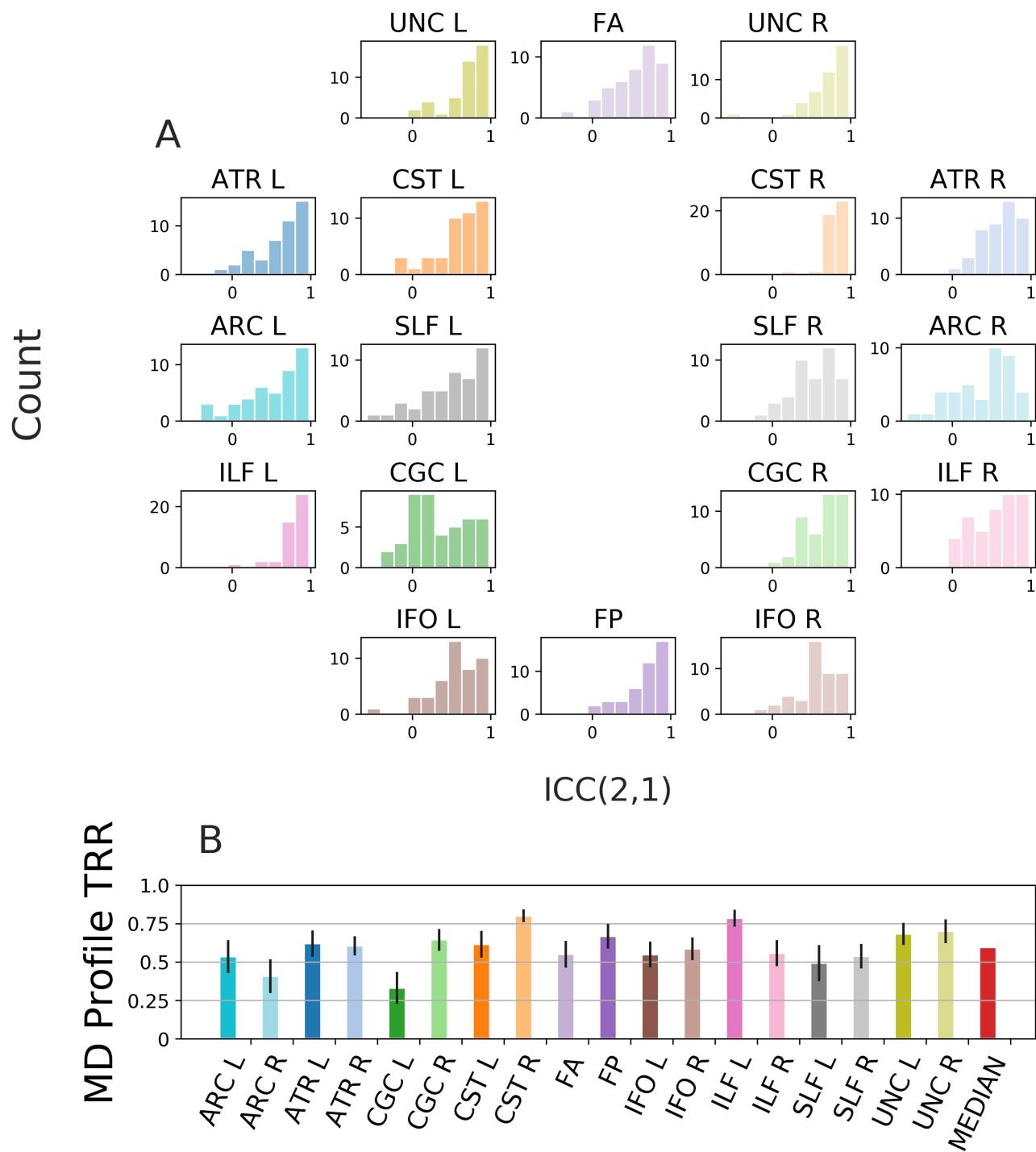


Fig. S4. MD profile test-retest reliability **A:** Histograms of individual subject ICC between the MD tract profiles across sessions for a given bundle. Colors encode the bundles, matching the diagram showing the rough anatomical positions of the bundles for the left side of the brain (center). **B:** Mean (\pm 95% confidence interval) TRR for each bundle, color-coded to match the histograms and the bundles diagram, with median across bundles in red.

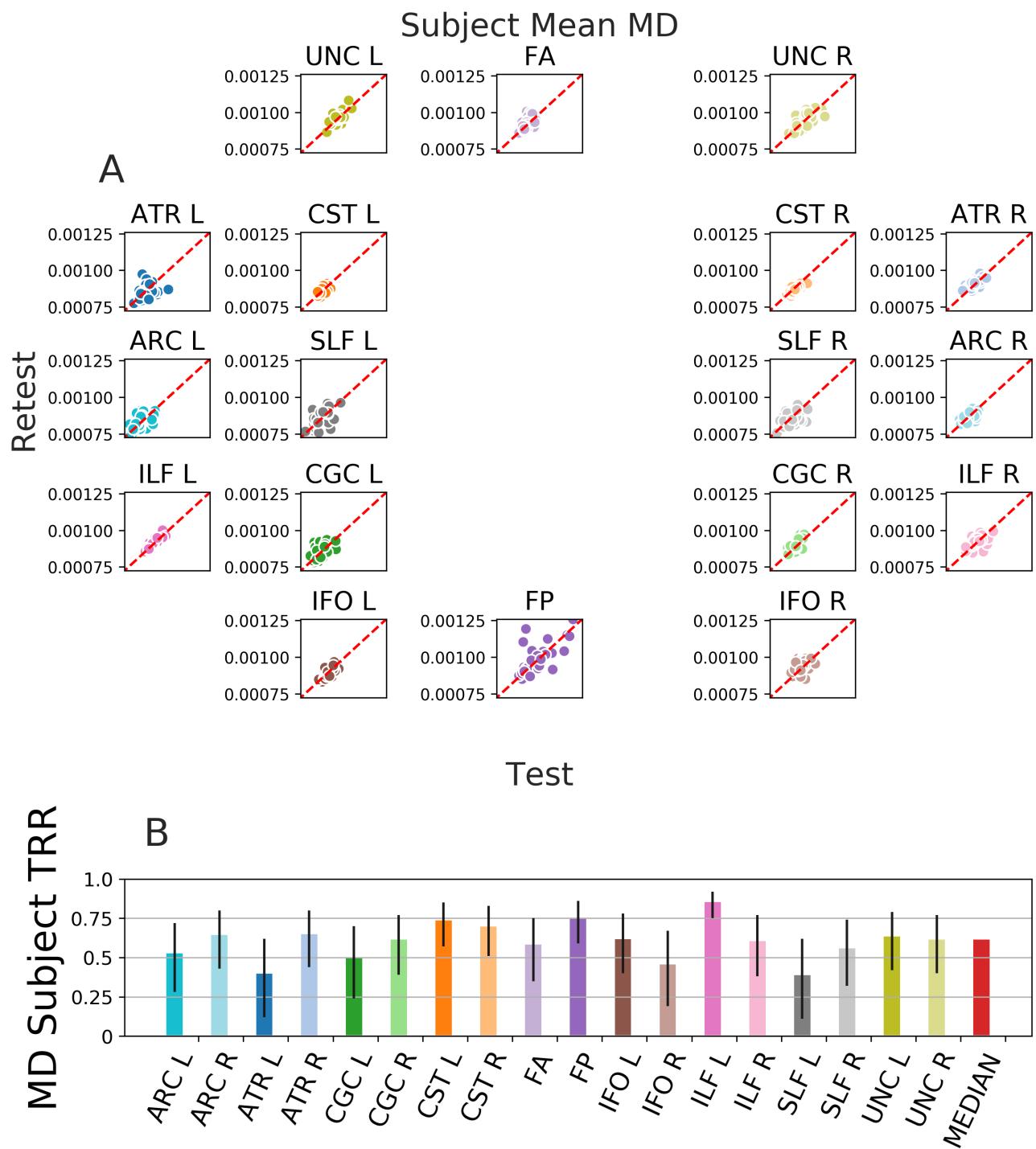


Fig. S5. Subject test-retest reliability **A:** Mean tract profiles for a given bundle and the MD scalar for each subject using the first and second session of HCP-TR. Colors encode bundle information, matching the core of the bundles (center). **B:** subject reliability is calculated from the Spearman's ρ of these distributions, with median across bundles in red. Error bars show the 95% confidence interval.

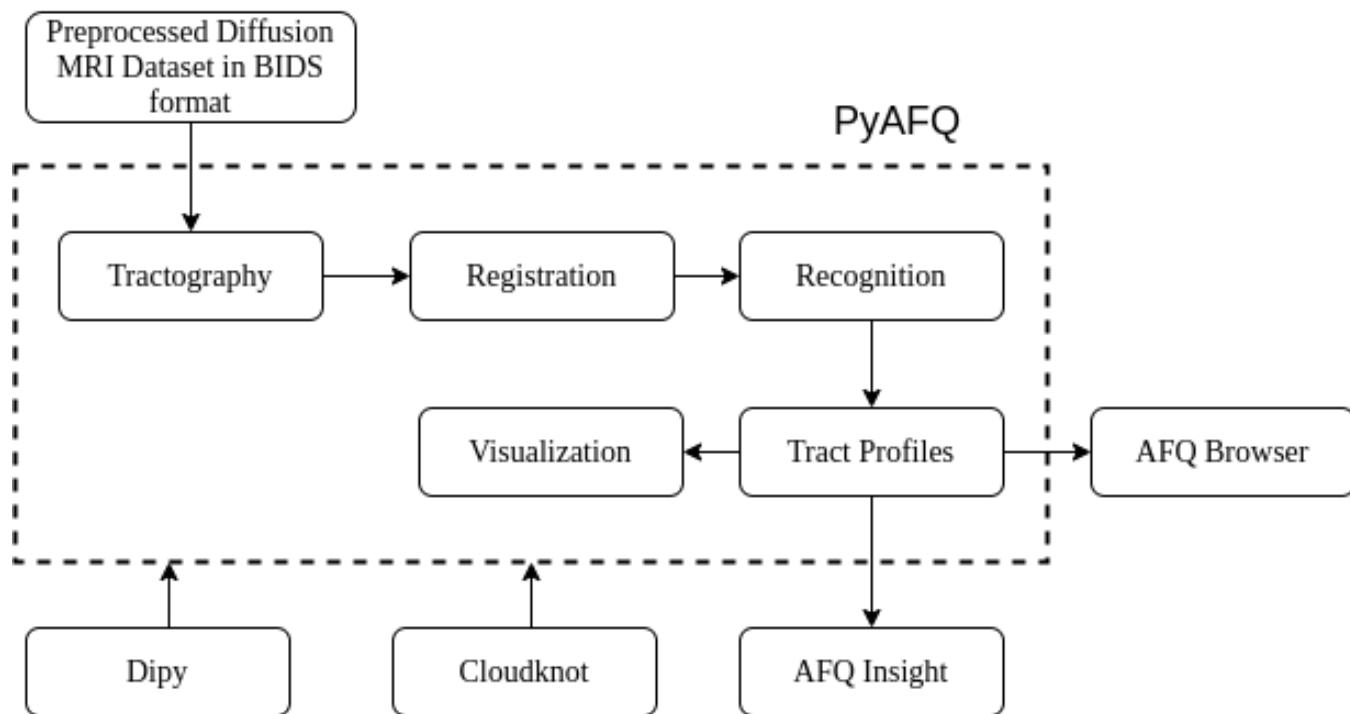


Fig. S6. The pyAFQ software is integrated into an ecosystem for reproducible tractometry. Steps performed by pyAFQ are enclosed in the dotted rectangle, whereas steps outside that rectangle are performed by other software. Upper left: pyAFQ requires preprocessed diffusion MRI data in BIDS format. This could be from QSIprep (26) or dMRIprep (<https://github.com/nipreps/dmriprep>). Bottom right: pyAFQ outputs can serve as inputs to AFQ Browser for further interaction and visualization (52) or AFQ Insight for statistical analysis (20). Bottom left: pyAFQ uses DIPY (28) for the implementation of dMRI algorithms. pyAFQ uses Cloudknot (63) to scale processing by parallelizing across subjects in AWS.

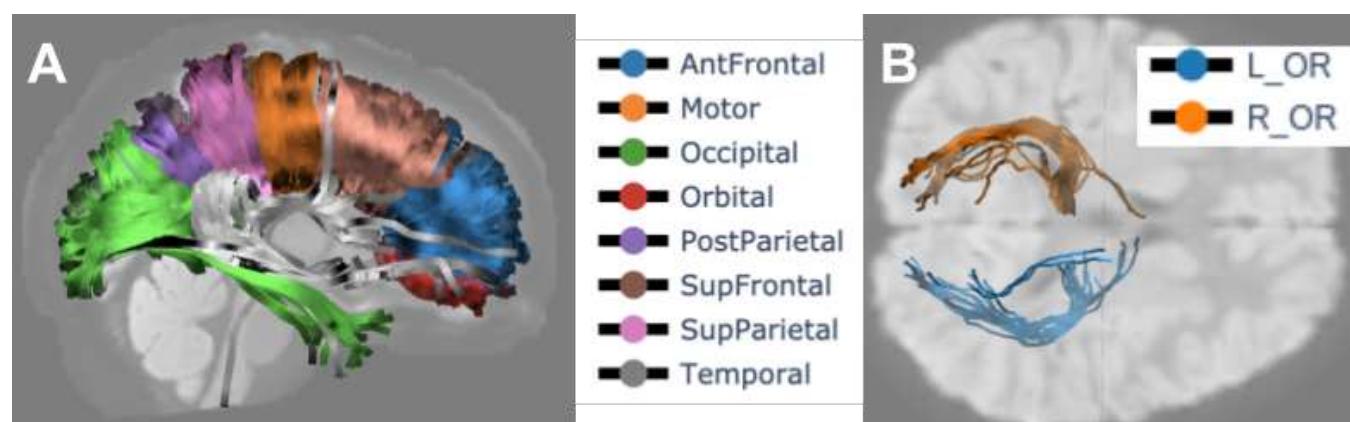


Fig. S7. Callosal bundles from HCP-TR, optic radiations from UW-PREK, found by pyAFQ. Streamlines are colored according to their bundles and shaded according to FA. The background images are each a b0 slice. **A** callosal bundles found by pyAFQ on an example subject from HCP-TR. **B** optic radiations found by pyAFQ on an example subject from UW-PREK.