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Abstract (150 words):

Interoception - the physiological sense of our inner bodies - has risen to the forefront of psychological and
psychiatric research. Much of this research utilizes tasks that attempt to measure the ability to accurately detect
cardiac signals. Unfortunately, these approaches are confounded by well-known issues limiting their validity and
interpretation. At the core of this controversy is the role of subjective beliefs about the heart rate in confounding
measures of interoceptive accuracy. Here, we recast these beliefs as an important part of the causal machinery of
interoception, and offer anovel psychophysical “heart rate discrimination“method to estimate their accuracy and
precision. By applying this task in 223 healthy participants, we demonstrate that cardiac interoceptive beliefs are
more biased, less precise, and are associated with poorer metacognitive insight relative to an exteroceptive control
condition. Our task, provided as an open-source python package, offers a robust approach to quantifying cardiac
beliefs.

Highlights (85 chars each):

e Current interoception tasks conflate cardiac beliefs with accuracy.
We introduce a Bayesian method for estimating cardiac beliefaccuracy and precision.
Individuals underestimate their heart rate by -7 BPM (95% CI [-8.6 -5.3]) on average.
Cardiac beliefs are associated with reduced precisionand metacognitive insight.
The task and modelling tools are provided in the Python Cardioception Package.

keywords: heart rate discrimination, heartbeat tracking, interoception, psychophysics,
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Introduction

Interoception denotes the ability to sense, perceive, and regulate internal visceral states (Chen
et al., 2021; Sherrington, 1952). This ability is thought to depend on unique neurobiological
pathways, which underpin the affective and somatic axes of selfhood (Craig, 2002; Critchley
& Garfinkel, 2017; Seth & Tsakiris, 2018; Strigo & Craig, 2016). Measuring the individual
interoceptive capacity to detect visceral signals, such as those arising from the lungs, heart, or
stomach has recently come to the forefront of psychological and psychiatric research (Khalsa
et al., 2018; Khalsa & Lapidus, 2016). A critical objective of this work is to determine the
mechanisms by which interoception interacts with cognition and emotion, to ultimately derive
sensitive and specific neuropsychiatric biomarkers from individual indices of visceral
sensitivity. The majority of studies along these lines attempt to measure “interoceptive
accuracy” (1ACC) in the cardiac domain, as measured by the Heartbeat Counting (HBC) task
(Dale & Anderson, 1978; Schandry, 1981), and similar heartbeat tracking or tapping tasks
(Flynn & Clemens, 1988). While easy to implement, these tasks suffer from serious
methodological challenges that obscure their interpretation. To overcome these challenges, we
developed a novel psychophysical approach to measure the accuracy, bias, and precision of
interoceptive beliefs in the cardiac domain.

The measurement of interoceptive accuracy presents a unique challenge compared to that
of exteroception: unlike vision or touch, the heart is not typically amenable to direct
experimental control. The inability to control the information present in the stimulus (e.g., the
heartbeat) places hard constraints on interoception research, such that most extant tasks ask
participants to count uncontrolled endogenous states (e.g., heartbeats) or to determine whether
exteroceptive stimuli are synchronized with said states. While these tasks are widely used, they
suffer from several confounds which place strong limitations on their reliability,
interpretability, and validity (for review see Brener & Ring, 2016; Desmedt et al., 2018;
Desmedt, Corneille, et al., 2020; Ring & Brener, 2018; Zamariola et al., 2018).

A central issue associated with the use of the HBC or similar tasks concerns the role of
subjective beliefs about one's heart rate. These simple measures require participants to silently
attend to and count their heartbeats for various intervals, or to tap inrhythm to felt beats. Several
authors point out that participants could exploit various strategies to increase their accuracy
(Clemens, 1979; Flynn & Clemens, 1988; Pennebaker & Hoover, 1984). Crucially, even when
the heart rate is directly modulated by as much as 60 beats per minute (BPM) via pacemaker,

counted heartbeats showed little alteration beyond expectations about different sitting or
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standing postures on the heart rate (Windmann et al., 1999). Accordingly, participants’
subjective prior beliefs about the heart rate have been repeatedly found to be more predictive
of counts than actual heartbeats (Ring & Brener, 1996), and it has been shown that these beliefs
can be manipulated via false feedback independently of any true change in heart rate (Ring et
al., 2015). A more accurate prior knowledge about one's heart rate, e.g. amongst medical
practitioners or athletes, can influence HBC accuracy scores (Murphy et al., 2018), such that
when explicitly instructing participants not to estimate beats, but to instead count felt ones, this
bias is reduced (Desmedt et al., 2018). More recently, the validity of the HBC task has been
further questioned by reports showing that interoceptive accuracy scores are largely driven by
under-counting (Zamariola et al., 2018), suggesting that HBC-derived scores are merely a
rough reflection of subjective beliefs about the heart rate (Desmedt, Luminet, et al., 2020).

These reports raise serious concerns given the rising interest in interoceptive
measurements as potential psychiatric biomarkers (Eggart et al., 2019; Forkmann et al., 2019;
Paulus & Stein, 2010). This poor construct validity could also explain why little to no
relationship between HBC-derived scores and various psychiatric symptom measures has been
found at the meta-analytic level (Desmedt, Houte, et al., 2020). Here, we argue that the
inconsistencies between these HBC-derived scores and interoceptive ability could be better
handled by more rigorous measurement and modelling of the role of subjective beliefs in
cardiac interoception. Although these tasks were originally designed to be objective and
selective measures of the ability to detect afferent cardiac sensory information, they fail to
account for factors confounding score variances, such as prior beliefs about the heart rate and
other common introspective or self-report biases. In particular, these approaches struggle to
dissociate interoceptive sensitivity, bias, and accuracy, confounding the role of subjective vs.
objective performance in interoceptive measures.

Another commonly used task, the Heartbeat Discrimination (HBD) task (Whitehead et
al., 1977), suffers from different, but similarly serious drawbacks. This method presents
participants with a series of tones whose onset times are delayed at different intervals relative
to the R-wave. Tones presented approximately at systole (typically, R + 170 ms) are treated in
signal theoretic terms as the “signal plus”, while tones presented at a variable time after systole
(typically, R + 300 ms) are treated as “signal minus”. This design is based on strong
assumptions about when, relative to the cardiac phase, participants are most likely to feel the
heartbeat. These assumptions have been challenged by results obtained using a similar task
based on a method of constant stimuli (MCS), where tones are presented at 5 different intervals
with respect to the R-wave.
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Using this MCS-based method, Brener and colleagues demonstrated that individuals vary
substantially in terms of when relative to r-wave, heartbeats are perceived (Brener et al., 1993;
Brener Jasper & Ring Christopher, 2016; for review see Ring & Brener, 2018) and that
calibrating the HBD offset intervals to each subject improves detection scores to above chance,
seriously undermining the notion that the HBD can be used as a signal theoretic measure to
delineate cardiac sensitivity and bias. However, while the MCS likely improves the
quantification of single-beat detection when compared to the HBD, both tasks require
participants simultaneously to attend to exteroceptive and interoceptive multi-sensory inputs, a
difficult cognitive task that further obscures the relationship to interoception. Moreover, the
MCS requires long testing times (as much as 1 hour), which can be problematic for clinical
populations, and further requires sophisticated equipment capable of achieving precise cardiac-
tone synchrony and stimulus time. As such, there is a need for robust, accessible measures that
are amenable to clinical settings, and which can flexibly dissociate the bias, sensitivity, and
precision of cardioceptive decisions.

To achieve this, we developed the heart rate discrimination task (HRD), a novel
psychophysical approach to quantifying cardioceptive decisions. Through Bayesian modelling
of cardiac psychophysics, the HRD delineates the accuracy of cardiac beliefs into the bias (i.e.,
the error between the perceived HR versus ground truth), and precision (i.e., the uncertainty
around this estimate) of trial by trial cardiac decisions. By presenting stimuli dynamically
across trials, titrated to the current heart rate, this approach estimates psychometric perceptual
and metacognitive curves indicating participants’ ability to update and monitor cardiac beliefs
under different conditional manipulations.

To demonstrate the utility of the HRD for measuring cardiac beliefs, characterize the
overall interoceptive psychometric function, and establish the face validity of this approach, we
measured HRD performance in 223 participants at a resting heart rate while seated upright in a
standard testing booth, together with heartbeat counting scores. To further quantify internal
(test-retest) reliability, we re-tested HRD performance in the same participants following 6
weeks. Our results demonstrate that cardioceptive beliefs are reliably and robustly measured by
the task across both sessions. Further, we find that cardioceptive beliefs are more negatively
biased, imprecise, and associated with poorer metacognitive insight relative to an exteroceptive

control condition.
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99 Methods

100 Heart Rate Discrimination task

101  Task Overview

102 To measure the bias, precision, and metacognitive calibration of interoceptive beliefs, we
103  created the Heart Rate Discrimination task (HRD) (See Fig. 1). The goal of the HRD is to
104  provide an efficient method for measuring the influence of subjective beliefs, viscerosensory
105 inputs, and other possible contextual factors on interoceptive decisions about heart rate. The
106  task asks participants to first attend to their cardiac sensations and then to decide on each trial
107  whether a “feedback” tone seriesis faster or slower than their heart rate in a 2-Interval Forced
108  Choice design (2-1FC). To control for possible non-interoceptive processes such as working
109 memory or general temporal estimation biases, we also implemented an exteroceptive control
110  condition, in which participants had to discriminate whether a series of tones was faster or

111 slowerthan another “reference” sequence of tones.

112
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114 LegendFigure 1: A. Heart Rate Discrimination Trial Design(Session1). Participants were presentedwith 160
115  trials testing their exteroceptive (blue) and interoceptive (red) bias and precision (80 in each condition in
116 randomised interleaved order). During interoceptive trials, participants were instructed to attend to their heart rate
117  for5seconds, while it was recorded using a pulse oximeter. The average heart rate for the trial was then computed
118  and used to select the frequency of the tones presented during the decision phase, increased or decreased by an

119 intensity value generated by the staircase, i.e. A-BPM. During exteroceptive trials, a sequence of tones was
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120  presented to the participant with a frequency between 40 and 100 BPM, drawn randomly from a uniform
121 distribution. This value then determined the frequency of the tones presented during the decision phase, increased
122 ordecreasedby a value generatedby the staircase procedure. A-BPM values were controlled by separate staircases
123  foreachcondition. To estimate metacognitive ability for each modality, at the end of each trial, participants were
124 asked to rate their subjective decision confidence (from 0 - guess to 100 - certain). B. Staircases for each
125  condition from an exemplary subject. Trials classified by participants as faster or slower are depicted with
126 circles or squares respectively. The shaded area represents the 95% CI of the threshold posterior distribution. On
127  the right panel, the resulting cumulative normal distribution is plotted using the final parameters estimated by the
128  Psiprocedure.

129

130  To estimate psychometric functions for both conditions, we applied a well-established adaptive
131  Bayesian psychophysical method (“Psi”) (Kingdom & Prins, 2016; Kontsevich & Tyler, 1999;
132 Prins & Kingdom, 2018). This technique adaptively estimates the probability of a participant
133  responding that the feedback tones were “faster” or “slower” than the true heart rate
134  (interoception), or the reference tone (exteroception) on each trial, given the frequency
135 difference between the two stimuli, or A-Beats Per Minute (A-BPM). This procedure estimates
136 the point of subjective equality (PSE) both for interoceptive and exteroceptive decision
137  processes in the same A-BPM units. The PSE is henceforth referred to as the threshold of the
138  psychometric function. This threshold represents the difference between the true frequency of
139 the heart rate and the estimated cardiac frequency by the participant (see Fig. 1. the threshold
140 is denoted «). A negative threshold, therefore, indicates the degree to which a participant
141  underestimates their cardiac frequency, while a positive threshold indicates an overestimation.
142  In addition to the threshold measure, the procedure further estimates the slope of the
143 psychometric function (denoted B in Fig. 1.), which represents the precision, or uncertainty,
144 around this estimated perceptual bias, also in units of A-BPM. A larger slope value reflects a
145  less steep psychometric curve, indicating increased uncertainty (i.e. reduced precision) in the
146  cardioceptive decision process.

147 HRD Trial Design

148  During interoceptive trials, participants silently attend to their heart rate for 5 seconds, e.g., in
149  a “heart listening” phase (see Fig.1), during which the heart rate is monitored using a soft-clip
150  pulse oximeter placed on one of the fingers of the non-dominant hand. The raw signal is
151  analyzed in real-time using a systolic peak detection algorithm, and the heart rate is calculated
152  as the average of the inter-pulse interval (see Physiological Analyses, below). After this

153  listening phase another sequence of five auditory tones was presented (frequency: 440 Hz;
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154 duration: 200 ms). This “two-interval” design is a deliberate choice so that participants attend
155  solely to their cardiac sensation before the presentation of auditory feedback.

156 At any point during the auditory feedback, the participant can press the right or left mouse
157  button to indicate whether the feedback sequence was faster or slower than their estimated
158  average heart rate, terminating the response and feedback period. The maximum response time
159  for the type 1 decision task was 8 seconds. Following the decisioninterval, participants provide
160  a subject confidence rating (from O - uncertain to 100 - certain, minimum possible response
161 time: 0.5 seconds; maximum: 5 seconds), and the next trial begins. To prevent motor
162  preparation of the confidence rating, the starting point of the rating scale cursor is randomly
163  jittered around the midpoint by about +/- 70% of the scale length.

164 Crucially, the frequency of the second tones was adjusted to the frequency of the first
165  tones (exteroceptive modality) or the recorded cardiac frequency (interoceptive modality). This
166  difference is denoted A-BPM and corresponds to the stimulus intensity manipulated by the
167  staircases (see the Staircase procedure section below). For example, if the heart rate recorded
168  during the listening condition is 60 BPM, and the A-BPM value is -15, the feedback tone
169  frequency will be set to 45 BPM. In this example, if the participant answers “Slower”, this is
170  considered a correctanswer, otherwise, this is considered an incorrect answer. In this way, the
171  staircase procedure hones in on the point of subjective equality, or threshold (e), at which the
172  participant is equally likely to respond “Faster” or “Slower”.

173 During exteroceptive trials, participants compared two sequences of tones, instead of
174  comparing their heart rate with the feedback tone sequence. Here, the first (“reference”) tone
175  sequence frequency was randomly selected from a uniform distribution (lower bound = 40
176  BPM, upper bound = 100 BPM, signal frequency: 440 Hz; tone duration: 200 ms), and the
177  second tone sequence frequency presented at a BPM above or below this value as determined
178 by the staircase procedure. After this listening phase, the participants underwent the same
179  decisionand confidence task as in the interoceptive trials, that is, to decide whether the second
180  sequence was faster or slower than the first one. The tone presentation ceased when the response
181  was provided (maximum response time: 8 seconds). As in the interoceptive condition, the
182 intensity A-BPM was adjusted across trials using the same adaptive Bayesian approach for

183  estimating threshold and slope.

184  Adaptive Staircase Procedure

185  The primary aim of the HRD task is to estimate the difference between the objective heart rate

186  and the participant's subjective perception of this heart rate (i.e., the threshold a), as well as the

6
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187  precisionor uncertainty around this perceptual belief (i.e., the slope B). The HRD achieves this
188  viaan adaptive staircase procedure which manipulates the A value that was added to the true
189  BPM to produce the feedback tone frequency. This psychophysical procedure can be described
190 as an appearance-based 2-Interval Forced Choice (2-1FC) similar to the 2-Alternative Forced
191  Choice procedure implemented in the Vernier-alignment task, (Kingdom & Prins, 2016,
192  Chapter 3.3), where varying the degree of difference between two stimuli allows estimating the
193  threshold (a)and the slope (B) of the underlying decision process. In our implementation, HRD
194  thresholds are adaptively estimated using either two interleaved standard n-up/n-down
195  staircases (the first steps were manually fixed to: {20, 12, 12,7, 4, 3, 2, 1}; starting value: -40.5
196 and 40.5) (Dixon & Mood, 1948), or using an adaptive method known as Psi (Kontsevich &
197  Tyler, 1999).

198 Psi is a Bayesian adaptive psychophysical method that manipulates the A-BPM deviation
199  values and estimates the slope and the threshold of the underlying sensory psychometric
200  function (Kingdom & Prins, 2016; Prins & Kingdom, 2018). The psychometric function relates

201  the deviation A to the proportion of “Faster” decisions using the following formula:
202 V(A e, B, A) =7+ (1 =7 = A)F(A;a,58)

203  inwhich A refers to stimulus intensity, v refers to the proportion of trials rated as faster by the
204  participant, and y and 1—A are nuisance parameters corresponding to the lower and upper
205  asymptote, respectively. F is the cumulative normal distribution parameterized using threshold
206  aand slope . The parameter A is often referredto as the lapse rate and describes the probability
207  of a stimulus-independent negative response (here, the probability of answering “slower”
208  regardless of the frequency of the tones). In appearance-based 2-1FC tasks like the HRD, the
209  lapse rate determines both yand 1—A. Here, this parameter was fixed, because it isassumed that
210  responses obtained from this kind of task only contain limited information on the real value of
211  this parameter. Further, the estimation of the lapse rate as a free parameter can potentially
212  introduce bias (Prins, 2012). Here, we assumed that y=1=0.02.

213 Irrespective of the staircase procedure (i.e., n-up/n-down or Psi), it should be noted that
214  the psychometric function was not fitted to the proportion of correct trials given the A intensity,
215  but on the probability of a participant making a “Faster” response given the A intensity (see
216  Fig. 1b). This procedure is known as an appearance-based staircase and entails that the
217  probability of a participant answering “Faster” given an increasing A-BPM value is expected

218  to follow a monotonic psychometric function. However, this is not the case for the probability
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219  that the response is correct relative to the ground truth HR. Here, the probability of answering
220  correctly increases with A-BPM increments towards either positive or negative infinity and is
221 0.5 around the threshold. As a consequence, the online estimation of an accuracy-based
222  staircase requires dedicated adaptive methods for non-monotonic psychometric functions
223 (Garcia-Pérez, 2014).

224  Python Cardioception Package

225  We implemented two interoception tasks using Psychopy v3.2.3 (Peirceetal., 2019), the classic
226  Schandry Heartbeat Counting Task (Dale & Anderson, 1978; Schandry, 1981), and the Heart

227  Rate Discrimination task. The code for the two interoception tasks is made publicly available

228 in the Cardioception Python Package (https://github.com/embodied-computation-

229  group/Cardioception). The package natively supports recording and processing pulse rate

230 activity as recorded by the Nonin 3012LP Xpod USB pulse oximeter together with a Nonin
231  8000SM “soft-clip” fingertip sensor (https://www.nonin.com/) by interfacing with the Systole

232  python package for pulse oximetry (Legrand & Allen, 2021).
233

234 Participants

235 223 participants between the ages 18 and 56 (130 females, 93 males, 1 other, age =25.0 £ 5.50)
236  participated in the study. They were recruited through the Center of Functionally Integrative
237  Neuroscience (CFIN) SONA system participant pool, local advertisements and flyers, social

238  media, and the aarhusbrain.org website. All measures took place at Aarhus University Hospital,

239  Denmark, and were performed on a computer in a behavioural testing room. All participants
240  had normal or corrected to normal vision, and were of at least average proficiency in both
241  Danish and English. All participants were healthy and did not take psychoactive, psychiatric,
242  or cardiovascular medications. Participants who could potentially be pregnant or were
243  breastfeeding had MRI contraindications (e.g., claustrophobia), or reported that they were not
244 able to abstain from alcohol and drugs 48 hours before study participation, were not included
245 in the study. All participants took part in a larger experiment including multiple brain scans,
246  psychiatric inventories, and other behavioural measures (data not reported here). Participants
247  were invited to complete two separate experimental sessions of the HRD task (henceforth
248  referred to as “Session 1” and “Session 2”), separated by 46.89 days on average (min=10;

249  max=97; std=23.87, statistics from participants that completed both sessions). Among the 223
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250  participants, 218 participants completed session 1 and data were lost for 5 of them due to
251  technical difficulties. 192 participants (86% of the total sample) completed session 2. 11
252  participants were excluded from session 1 due to poor signal quality and/or for not having
253  performed the HRD task correctly (detail concerning the exclusion of participants based on
254  insufficient staircase convergence are provided in Supplementary Material). 1 participant was
255  excluded from session 1 and 2 due to a prior psychiatric diagnosis. After exclusion, 206
256  participants had completed Session 1 and 191 participants had completed Session 2. Among
257  the 191 participants that completed session 2, 179 had also completed session 1 (5 were
258 removed due to technical difficulties, and 7 were removed due to signal quality). When
259  analysing confidence ratings, 1 participant from Session 1 and 1 participant from session 2 were
260 dropped due to insufficient variance for estimation of M-ratio (see Analysis). 214
261  participants completed the HBC task, and 7 of them were removed due to poor physiological
262  signal quality. 193 participants had completed both the HBC task and the HRD task during
263  session 1. Participants received monetary compensation for each session (350 DKK). The study
264  was conducted in accordance with the Declaration of Helsinki and was approved by the Region
265  Midtjylland Ethics Committee.

266

267 Physiological recordings
268  Physiological signals in both sessions were recorded using the Nonin 3012LP Xpod USB pulse

269  oximeter together with a Nonin 8000SM “soft-clip” fingertip sensor (https://www.nonin.conv)

270 by interfacing with the “Systole” python package (v0.1.3) for pulse oximetry (Legrand & Allen,
271  2021). Previous work reported that the pressure exerted by some pulse oximeters on the surface
272  of the skin could provide sensory feedback to some participants, therefore potentially biasing
273  the estimation of interoceptive accuracy (Murphy et al., 2019). We selected the Nonin Pulse
274 softouch pulse oximeter as Murphy and colleagues demonstrated that this device did not elicit
275  fingertip pulse sensations. We further attempted to mitigate this effect by asking the participants
276  to move the device from the index finger to another fingertip if they felt any such sensory
277  feedback, although we did not record the proportion of participants for which this adjustment
278  was made. Participants were further asked to keep their hand still on the table or on their thighs

279 so asto not introduce heart rate measurement errors, due to movements.
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280 Heartbeat Counting Task

281  The Heartbeat Counting (HBC) task is perhaps the most widely used and easily implemented
282  task for measuring interoceptive accuracy (Dale & Anderson, 1978; Schandry, 1981). However,
283  this procedure has been previously criticized, in part because it could be confounded by beliefs
284  about one's heart rate (Desmedt, Corneille, et al., 2020). To better validate and interpret our
285 new HRD measure, we implemented a revised version of the HBC (Garfinkel et al., 2015),
286  together with specialized instructions to reduce the role of bias in the derived interoceptive
287  accuracy (IACC) scores. Considering the substantial evidence that HBC scores are influenced
288 by beliefs in the heart rate, we expected to observe significant correlations between HBC iACC
289  scores and individual HRD thresholds. Participants were asked to count their heartbeats for
290  various periods of time while sitting silently. The HBC task consisted of 6 trials and lasted 25,
291 30, 35, 40, 45 or 50 seconds. The order of the trials was randomized across participants. The

292  HBC task was measured only in Session 1.

293 HRD Task Procedure - Session 1

294 At Session 1, the task comprised 160 trials, equally distributed between the interoceptive and
295  the exteroceptive conditions. For each condition, the first 30 trials were run using an adaptive
296  1-up/1-down staircase procedure, and the remaining 50 trials were run using a Psi procedure
297  (Kontsevich & Tyler, 1999). Our intention in combining these two staircase procedures was to
298  ensure that each experiment started with a mixture of trials that would be clearly perceived as
299  “Faster” or “Slower” by the participant. The initial up/down staircases consisted of 2 randomly
300 interleaved 1-up 1-down staircases per condition initialized at high (A-BPM = 40) and low (A-
301 BPM = -40) starting values following the recommendations of Cornsweet (Cornsweet, 1962).
302  The Psi staircases were initialized at starting values informed by the 1-up 1-down staircases,
303 achieved by updating Psi in the background with the intensity values and responses recorded
304  during the first 30 up/down trials. Based on our pilot studies, Psi was initialized such that the
305  prior for a was uniformly distributed between -40.5 and 40.5 and the prior for B was uniformly
306  distributed between 0.1 and 20. The a precisionwas 1 BPM to ensure that the intensity A-BPM
307 =0 wasexcluded apriori and never presented. The B precisionwas set to 0.1.

308 The main task was preceded by a tutorial phase, which comprised 5 interoception and
309  5exteroception trials with accuracy feedback after the decisionand without confidence ratings,
310 as well as 5 interoception trials without feedback, but with confidence ratings, as in the main

311  experiment. For these trials, we fixed the absolute A value to 20 BPM and randomly selected
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312  for negative or positive differences at each trial. This was intended to clarify the instructions,
313 to provide the participant with an easier version of the task, and ensure that they had an
314  opportunity to practice and adapt before the staircase procedure, which can be biased by initial
315 lapses. All auditory tones in Session 1 were presented through the stimulus PC speakers. The
316  total duration of the HRD task was 31.31 minutes on average (SD = 3.32, MIN = 24.27, MAX
317  =42.46).

318 HRD Task Procedure - Session 2

319  To assess the internal (test-retest) reliability of HRD performance, all participants were invited
320  back for a second testing session. Here, all aspects of the HRD were as in Session 1, minus the
321  following, detailed below.

322 The total duration of the HRD at Session 2 was 22.69 minutes on average (SD = 2.45,
323 MIN = 18.81, MAX = 31.81). Due to a change in our testing environment, which exposed
324  participants to additional MRI noise, we opted to deliver auditory stimuli via over-the-ear
325  headphones to limit external distractions. We also decreased the maximum decisiontime from
326  8to 5 seconds. To optimize psychometric estimation, we made the following changes to the
327  parameters and overall adaptive procedure. In particular, we observed a ceiling effect in the
328  Session 1 slope parameters (See Supplementary Fig. 2.b), likely induced by an overly
329  restrictive range on the slope prior distribution. To improve the estimation of this parameter,
330  we increased this range from 0.1-20 in Session 1, to 0.1-25 in Session 2. The range of the
331  threshold was increased from [-40.5, 40.5] in Session 1 to [-50.5, 50.5] in Session 2. We also
332 simplified the staircase procedure in Session 2, running only the Psi staircase instead of the
333  dual staircase approach described earlier. As the 1-up/1l-down staircase initialization was
334  intended to ensure participants heard a sufficient number of positive and negative A-BPM trials
335  (i.e.,trialsin which the feedback was truly faster or slower than their true heart rate), we instead
336  implemented “catch” trials presented at fixed intervals above and below zero A-BPM. The catch
337  trial responses were not used to update the Psi staircases, yet ensured that once the staircase
338 had converged, subjects still occasionally received faster or slower ground-truth trials. In
339  Session 2, for each modality (Interoception, Exteroception) we used 12 catch trials, along with
340 48 Psi trials, for a total of 60 trials. In general, these changes improved the stability and

341 reliability of staircase convergence (see Supplementary Fig. 2.e).
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342 Analysis

343  Statistical Analysis and Software

344  For both Session 1 and 2, we conducted planned statistical comparisons of threshold, slope,
345  confidence ratings, meta-d and SDT parameters (d’ & M-ratio), across the two modalities using
346  paired-samplest-tests at each timepoint separately. We further conducted an apriori assessment
347  of test-retest reliability using the Pearson correlation coefficient for threshold and slope
348  between Session 1 and 2. We further hypothesized that HRD thresholds would correlate with
349  heartbeat counting scores, assessed via a priori correlationanalysis. In addition to these planned
350 analyses, we conducted exploratory group by time repeated measures ANOVAs on HRD
351 parameters to assess possible interaction effects, and also estimated exploratory cross-
352  correlation matrices for all HRD and HBC parameters at both time points.

353 Statistical analyses were conducted using Pingouin v0.3.9 (Vallat, 2018). The Bayes
354  Factors were computed using a Cauchy scale of 0.707 and the p-values for the 2-way repeated
355 measure ANOVAs were adjusted using the Greenhouse-Geisser correction. Correlation
356  coefficients were tested using skipped correlations as implemented in Pingouin, which are
357  robust to outliers (Pernet etal., 2013). We controlled for multiple comparisons in the correlation
358  matrices using FDR correction (pror < 0.01). Where applicable, outliers were detected and
359  rejected using the absolute deviation around the median rule (Leys et al., 2013). Test-retest
360 reliabilitywas tested using the Pearson correlationfrom the same package. Figures were created
361 using Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2020) and Arviz (Kumar et al.,
362  2019). Distributions for repeated measures are represented using an adaptation of raincloud
363  plots (Allen et al., 2021). All preprocessed data and analysis scripts supporting the results
364  described in this paper are available at https://github.com/embodied-computation-

365  group/CardioceptionPaper.

366 Bayesian Modelling of Psychometric Functions

367  Although Psi adaptively estimates slope and threshold parameters at each trial, we elected to
368 apply a post hoc modelling approach to improve psychometric estimation. The post hoc
369  modelling was applied after rejecting trials with extremely fast ( < 100ms) responses or during
370  epochs containing unreliable cardiac signals. In general, this approach yielded highly similar
371  results as the Psi estimates - see supplementary materials (Supp Fig. 1 & 2) for a

372  comprehensive analysis. We used the absolute deviation around the median rule (Leys et al.,
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373  2013) to identify and reject outliers in the instantaneous heart rate time series. Trials were
374  rejected if the average of the heart rate was considered an outlier, or if the standard deviation
375  of the pulse-to-pulse intervals was detected as outliers when compared to the other trials. This
376  ensured that we only included responses in which the participant was in principle able to
377  correctly estimate their cardiac frequency. We implemented Bayesian modelling of the
378  psychometric functions using PyMC3 (Salvatier etal., 2016, p. 3). We used the NUTS sampling
379  algorithm (Hoffman & Gelman, 2011) to update and estimate the posterior probability of the
380  slope (B) and threshold (o) parameters (Nchains=2, Ntuning=4000, Nsamples=1000) for each subject
381  and modality separately. We used a cumulative normal function so the results can be compared
382  to what isestimated by the Psi staircase (see Supplementary Material Fig. 2). The psychometric

383  model parameters were defined as:

384 a ~ Uni form(—40.5,40.5)
385 B~ Uni form(0,40)

386 0, = ®(zi, a, B)

387 r; = Binomial(6;,n;)

388  Considering the ith intensity levels, for the trials with a stimulus intensity x; we observed a total
389  of n; responses, among which r; were “Faster* responses. Here, ¢ is the cumulative normal

390  function defined by:
1 1 Tr—

392  Because we aimed to correlate the resulting scores with other variablesand were not interested

393 in group-level means, we fitted the model for each subject and each modality separately in a
394  non-hierarchical manner. These post hoc models are included in the cardioception toolkit, and
395  future releaseswill provide easy to use hierarchical group estimation, to facilitate for example
396  between groups analyses (Valton et al., 2020). All subsequent psychometric behavioural

397  analyses were performed on the post hoc estimated parameters.

398 Signal Theoretic Modelling of Perceptualand Metacognitive Sensitivity

399  For these analyses, accuracy was coded such that a “Faster” response was correct only when
400 the intensity A-BPM was greater than 0, and a “Slower” response was correct only when the
401  intensity A-BPM wassmaller than 0. Confidence ratings were binned into 4 equally spaced bins
402  before modelling using the discreteRatings() functions from metadPy, a custom python package

403  for metacognition modelling (https://github.conVLegrandNico/metadPy). We used a standard
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404  Signal Detection Theory (SDT) approach to estimate type 1 (i.e., perceptual) and type 2 (i.e.,
405  metacognitive) bias and sensitivity from the binned confidence ratings. Briefly, this model
406  operationalizes metacognitive “insight” as the sensitivity of subjective confidence ratings to
407  ground truth accuracy; e.qg., by defining a receiver-operating characteristic (ROC) curve relating
408  metacognitive “hits” - p(Confidence = High|Response = Correct) - and “misses” -
409 p(Confidence = High|Response = Incorrect) - (Fleming & Lau, 2014; Maniscalco
410 & Lau, 2012a). This measure is known as meta-d’, and is an index of metacognitive sensitivity
411  akin to d’. However, as meta-d is known to be influenced by overall d’, and interoceptive
412  accuracy is generally lower than exteroceptive on our task, we analyzed the parameter M-ratio
413  (meta-d’/d’), also known as “metacognitive efficiency”. This parameter operationalizes
414 metacognitive insight in signal theoretic units; e.g., the proportion of available sensory evidence
415  utilized by the subjective confidence response. Perceptual and Metacognitive parameters were
416  estimated using an adapted hierarchical Bayesian model from the HMeta-d toolbox (Fleming,
417  2017). We reparameterized this model to implement a paired-samples t-test estimating the
418  within-subject impact of modality (interoceptive vs. exteroceptive) on M-ratio. The
419  significance of this effect was then assessed by checking if the 94% highest density interval
420  (HDlgay) includes zero or not.

421

422  Physiological Analysis

423  The time-series recorded through photoplethysmography (PPG) were analysed using Systole
424 v0.1.3 (Legrand & Allen, 2021). The PPG signal, sampled at 75 Hz, is a measure of peripheral
425  blood oxygenation level, in which cardiac cycles can be tracked by detecting abrupt increases
426  following cardiac contraction and blood circulation (i.e., systolic peaks). The signal was first
427  resampled to 1000Hz using linear interpolation. This procedure simplifies the measurement of
428  the pulse-to-pulse intervals and can refine the peak detection precision, and the resulting heart
429  rate when the initial sampling rate is low (Quintana et al., 2016). Clipping artefacts were
430 removed using cubic spline interpolation (van Gent et al., 2019), the signal was then squared
431  for peak enhancement and normalized using the mean + standard deviation using a rolling
432  window (window size: 0.75 seconds). All positive peaks were labelled as systolic (minimum
433  distance: 0.2 seconds). This procedure was applied both for the online heart rate recording
434  during the Heart Rate Discrimination task (segments of 5 seconds) and for the Heartbeat
435 Counting task. If any interbeat interval higher than 120 BPM or lower than 40 BPM was
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436  detected during the online recording of the Heart Rate Discrimination task, an error message
437  was presented on the screen to ask the participant to stay still, and the trial was started again,
438 up to 5times consecutively before dropping the trial. As the correct detection of heartbeats is
439  critical for the Heartbeat Counting task, we ran additional artefacts correction steps to control
440  for erroneous or missed detection of some heartbeats. Extra heartbeats (i.e., erroneous labelling
441  of peaks in PPG signal) were automatically removed using an artefact correction algorithm
442  (Lipponen & Tarvainen, 2019) implemented in Systole (Legrand & Allen, 2021). All raw time
443  series were manually inspected to ensure correct systolic peak detection. The HTML reports
444  detailing these preprocessing steps of the HRD and the HBC tasks are made available online

445  with the GitHub Repository associated with this paper.

446  Heartbeat Counting Analysis

447  We derived an accuracy score following previous recommendations (Garfinkel et al., 2015;
448  Hart etal., 2013) as follows:

Score =1 — Nreat = Nreported|

449 2
450  This score has a maximum of 1 and indicates the similarity between the objective recorded

451  number of heartbeats and the number reported by the participant (a score of 1 indicating a
452  perfect match). We used the absolute deviation around the median rule (Leys et al., 2013) to
453  automatically detect and remove extreme responses that are more likely to reflect erroneous
454  numbers provided by the participant. The remaining scores were subsequently averaged for

455  each participant.

s56  Results

457 Characterizing the Interoceptive and Exteroceptive Psychometric Function

458  We first analyzed the threshold (o) and slope (B) psychometric parameters using the estimates
459  from the post hoc Bayesian model, separately for both sessions (see Methods for more details
460 and Supplementary Results for comparison of Psi and post hoc parameters). These analyses
461  serve to both characterize the overall shape of the two psychometric functions, which can
462  inform the setting of prior parameters in future experiments, and assess how belief accuracy,
463 bias, and precisiondiffered between the two conditions. Further, to explore possible Session by

464  Modality interactions, we fit repeated measures ANOVAs to each parameter of interest.
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465 A paired sample t-test at Session 1 revealed that threshold was significantly lower in
466  the interoceptive condition than in the exteroceptive condition (meanintero = -6.97, Closy [-8.59,
467  -5.37], meanexero = 1.36, Closos [0.9, 1.85], toos) =-9.89, p < 0.001, BFy = 1.15e+16, d =-0.93),
468 indicating a robust negative bias; i.e., heart rate underestimation. This effect was replicated at
469  Session 2 (MeaNintero = -8.50, 95% Clgsy, [-10.09, -6.91], meanegero = 0.008, 95% CI [-0.48,
470  0.50], tage) =-11.15, p< 0.001, BF1g =2.85e+19, d =-1.03). We further noted a marked increase
471  ininter-subject variance for interoceptive thresholds, rangenwero = [-38.3, 34.0] vs. exteroceptive
472  thresholds, rangeecero = [-9.8, 16.39], indicating substantially more inter-individual variance in
473  the magnitude of interoceptive biases. In contrast, when compared to a null hypothesis of 0
474  bias, follow-up one-sample t-tests on exteroceptive thresholds revealed a slight but highly
475  significant positive bias at Session 1 (mean = 1.39, Clgs = [0.9, 1.89], t(203=5.58, p < 0.001,
476  BFip = 1.28e+05, d = 0.99), which was not present at Session 2, in which we observed instead
477  astrong evidence for an absence of difference (mean =0.01, Clgs =[-0.48, 0.52], t(1s9) = 0.06, p
478 = 0.94, BFy = 0.08, d = 0.05). Finally, exploratory repeated measures ANOVA revealed
479  significant main effects of Session (F,178 = 13.20, 77,2 = 0.06, p < 0.001) and Modality (F1,17s)
480 =127.53, np2 = 0.41, p < 0.001), indicating that thresholds were significantly reduced across
481  sessions for both modalities, and that interoception was more biased across both sessions, but
482  with no Session by Modality interaction (F.178 = 0.60, 7,2 = 0.003, p = 0.43). See Fig. 2 and
483 6B for illustration of these effects. Collectively these results show that interoceptive heart rate
484  beliefsare robustly biased towards underestimation, and show greater inter-individual variance,
485  than the exteroceptive control condition.

486 We next consider the slope of the interoceptive and exteroceptive functions. While the
487  threshold indicates the overall accuracy and bias of the decision-making process, the slope
488  characterizes the precisionor uncertainty of this process. A higher slope indicates a less steep
489  (i.e., more shallow) psychometric function, indicating lower precision (higher uncertainty) for
490 that condition. A paired sample t-test revealed that slope was significantly higher in the
491  interoceptive condition as compared to the exteroceptive (meaninero = 15.34, Clgsy, [14.39,
492  16.36], meansgero = 9.58, Clgsys [8.89, 10.39], teos) = 9.05, p < 0.001, BFyo = 4.97e+13, d = -
493 0.88). This effect was reproduced in Session 2, with interoceptive slope again greater than
494  exteroceptive slope at retest (meanintero = 11.96, 95% CI [11.17, 12.76], meangxero = 8.69, 95%
495  CI [8.11, 9.26], tag = 7.29, p < 0.001, BFy = 9.12e+08, d = 0.67). Exploratory repeated
496  measures ANOVA further revealed main effects of Session (Fui7s = 31.27, 7,2 = 0.14, p <
497  0.001) and Modality (F,178) = 106.29, 7,2 =0.37, p < 0.001), as well as an interaction between
498  these two factors (Faize) = 9.46, 7,2 = 0.05, p = 0.002). Thus, interoceptive slope showed a
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499  greater reduction across sessions (taz) = -5.35, p < 0.001, BFy = 4.13+04, d = -0.53) than
500 exteroceptive slope (taz) =-2.19, p = 0.029, BF1o = 0.875, d = -0.20). Collectively, these results
501 demonstrate that interoceptive beliefs are less precise than exteroceptive. Further, we could
502  hypothesize that interoceptive precision is more sensitive to practice and training effects than
503 exteroceptive precision. This notion cannot be fully tested here due to the methodological
504  differences that we introduced between the two sessions. See, however, Fig. 2 and
505 Supplementary Fig. 1 for the comparison between the two conditions.

506
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508 Legend Figure 2: Psychometric parameter estimates and fitted interoception and exteroception
509  psychometric functions (Session 1). A. Repeated measures raincloud plots visualizing threshold and slope
510 parameters of the psychometric functions across the two modalities (interoception and exteroception). Data points
511  foreweryindividual are connected by a grey line to highlight the repeated measure effect. B. The grey lines show
512 individual subjectfits. The dark red and blue lines showthe grand mean psychometric function, depicting averaged
513  threshold and slope. Grand mean thresholds are marked by the large point, where the psychometric function
514  crosses 0.5 on the ordinate axis. We observed a strong effect of interoception on both slope and threshold as
515  compared to the exteroceptive control condition. The negative bias observed on threshold demonstrates that
516  participants underestimated their heart rate on average. The greater slope indicates a less precise decision process.
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517 Perceptualand Metacognitive Sensitivity

518 In addition to the psychometric function underlying the subjective decision process, we also
519  compared objective overall perceptual and metacognitive sensitivity between interoception and
520  exteroception. To assess between condition differences on these indices, we performed paired-
521  sample t-tests comparing interoceptive and exteroceptive performance on each key type 1 and
522  type 2 measure (d’, average confidence, and M-ratio), as well as exploratory Modality by
523  Session repeated measures ANOVAs on these variables.

524 The d’, which reflects discrimination sensitivity, was signifigantly lower in the
525 interoception condition as compared to the exteroception condition during Session 1 (meanintero
526 = 1.43, Clgsy, = [1.34, 1.52], meangxero = 2.05, Closy, = [1.96, 2.14]), teos) = -9.42, p < 0.001,
527  BF10 =5.06e+17, d = -0.97). We replicated this effect in Session 2 (meanintero = 1.87, Closy, =
528  [1.79, 1.96], meanggero = 2.25, Closy, = [2.21, 2.3], tass) = -7.98, p < 0.001, BF1o = 4.45e+10, d
529  =-0.77). We also performed an exploratory Session by Modality repeated measures ANOVA
530 on these measures to assess overall interactions between these factors. We observed significant
531 effects of both Session (F176) = 59.82, 1,2 = 0.25, p < 0.001), Modality (F.17 = 114.81, 2
532 =0.39,p <0.001), and a Session by Modality interaction (F17 =7.19, 1,2 =0.03, p = 0.008).
533  This result shows that across both conditions, sensitivity increased from Session 1 to 2, with
534  the greatest increase being observed in the interoceptive condition.

535 We next analyzed average subjective confidence, an indicator of metacognitive bias.
536 We found that confidence ratings were significantly lower during the interoception condition
537 as compared to the exteroception condition, both during the first session (meanintero = 51.52,
538  Closy = [49.16,53.87], meanexero = 61.44, Closy, =[59.51, 63.57], t20s) =-10.01, p < 0.001, BF10
539 = 2.3e+16, d = -0.62) and the second session (meanintero = 57.47, Clgsy, = [55.41, 59.77],
540  meanexero = 64.27, Closy, = [62.4, 66.03], tase) = -7.15, p < 0.001, BFyo = 4.18e+08, d =-0.49).
541  An exploratory repeated measures ANOVA revealed a main effect of Session (F17) = 26.37,
542 np2 = 0.13, p < 0.001), Modality (Fai7 = 101.37, 5,2 = 0.36, p < 0.001) and a Session by
543  Modality interaction (F17 = 8.72, 17,2 = 0.04, p < 0.003). The average confidence was higher
544 in the second session as compared to the first one (tuz =5.13, p < 0.001, BFyo = 1.52+04, d =
545  0.30), and this increase was larger for the interoceptive condition (tuze = 6.02, p < 0.001, BF1o
546  =9.68+05, d = 0.36) than for the exteroceptive condition (tuz = 2.54, p <0.01, BFy =1.93,d
547  =0.18). Overall, confidence was generally lower for interoceptive vs. exteroceptive confidence.
548 To assess metacognitive sensitivity for both modalities, we estimated metacognitive
549  efficiency using hierarchical modelling of M-ratio (meta-d’/d’) (Fleming & Lau, 2014;
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550 Maniscalco & Lau, 2012a). We observed that the individual estimated M-ratio values, as
551 estimated by the repeated measure model, were lower during the interoception condition
552  (meanintero = 0.81, Clgsy, = [0.78, 0.86]) as compared to the exteroception condition (meanextero
553 = 0.96, Clgsy» = [0.92, 1.01], see Fig. 3.b). This tendency is confirmed by inspecting the
554  posterior distribution of the log-transformed repeated measure effect (mean = -0.19, HDlgay, =
555  [-0.36, -0.06], see Fig. 3.c). Because the M-ratio reflects the relation between the amount of
556  evidence for metacognitive judgement and the amount of evidence for the objective decision,
557  our results suggest that 19% of the interoceptive evidence used for decision in the type 1 task
558 s lost during the metacognitive evaluation of confidence, compared to just 4% evidence loss
559  for exteroception.

560 We replicated this finding in Session 2, where interoception M-ratio estimates were
561 again lower (meanintero = 0.83, Closy = [0.8, 0.87]) than those for exteroception (meanggero =
562  0.96, Closy =[0.92,1.01]), as well asin the posterior distribution of the repeated measure effect
563  (mean =-0.17 HDlay, = [-0.26, -0.03], see Supplementary Material, Fig. 3).
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565 Legend Figure 3: Visualization of metacognitive performance for interoception and exteroception
566  conditions (Session 1). A. Histogram showing the distribution of binned confidence ratings for correct (green) vs.
567  error (red) trials. Higher bins represent higher confidence ratings. Overall, participants were significantly less
568  confident in the interoceptive condition and showed reduced metacognitive sensitivity as indicated by the
569 flattening of the confidence distributions. B. To quantify this effect, we estimated “metacognitive efficiency”, a
570  signal theoretic model of introspective accuracy which controls for differences in type 1 (discrimination)
571  performance.Here,an M-ratio of 1 indicates optimal metacognitionaccordingto an ideal observer model, whereas
572  values lower than this indicate inefficient use of the available perceptual signal. This model demonstrated that
573  metacognitive efficiency was substantially decreased for interoceptive relative to exteroceptive judgements. C.
574  Histogram of posterior samples from the betavalue encoding the difference of interoception-exteroception in the

575  repeated measures hierarchical model.
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576 Cross-modal Correlations

577  To investigate the construct validity of HRD performance measures, we conducted an
578  exploratory correlation analysis relating individual differences in perceptual and metacognitive
579  performance within and between the interoceptive and exteroceptive modalities. For this
580 analysis, we refitted the meta-d” model (Fleming, 2017) separately to each participant (i.e., in
581 a non-hierarchical model), and extracted individual M-ratio values. Here, we sought to verify
582  whether threshold, slope, or other type 1 or type 2 parameters were correlated across the two
583  conditions. For example, if HRD performance primarily indexed general temporal estimation
584  ability, we would expect a high correlation between interoceptive and exteroceptive thresholds,
585  aswellaswith other type 1 performance variables. Alternatively, if participants used additional
586 information, such asafferent cardiac sensory information and/or prior beliefs specificallyabout
587 the heart rate, then we would expect little to no correlation between these parameters.
588  Additionally, previous studies found that interoceptive metacognition is typically uncorrelated
589  to exteroceptive metacognition, suggesting unique inputs for these self-estimates (Garfinkel et
590 al., 2016). However, more recent work suggested the existence of a “metacognitive g-factor”
591 indexed by high inter-modal correlations in metacognitive ability (Mazancieux et al., 2020;
592  Rouault et al., 2018). We, therefore, included both type 1 measures (i.e., threshold, slope, d’,
593 response time, and criterion) and type 2 measures (confidence, meta-d’, M-ratio) in one
594  exploratory between-subject correlation analysis to probe the degree of within and between
595  modality overlap in parameter estimates. To do so, we performed robust pairwise correlation
596  tests between exteroception and interoception task parameters (Pernet et al., 2013), using a
597  skipped correlation approach and correcting for multiple comparisons using a false-discovery
598 rate (FDR, pror < 0.01) correction. The resulting Spearman’s r coefficients for Session 1 are
599  summarized in Fig. 4.

600 We observed more robust and consistent correlations between task parameters within
601 each modality (interoception or exteroception), but few significant correlations between task
602  modalities, indicating a high degree of independence between performance on the two task
603  conditions. Interestingly, with the exception of reaction time, type 1 performance was largely
604  uncorrelated between modalities, whereas at the metacognitive level only subjective confidence
605  was highly correlated (rs= 0.60, Clgsy = [0.52, 0.69], p < 0.001, n = 204, Noutiiers = 5). These
606 results may suggest that individuals use similar “self-beliefs” about their performance on both
607  task modalities (Fleming & Daw, 2017). A similar overall pattern was observed in Session 2,
608 albeit with a modest but significant relationship between interoceptive and exteroceptive
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thresholds (rs= 0.26, Clgsy = [0.13, 0.39], p <0.001, n = 190, Noutiiers = 6, See Supplementary
Results for the full correlation matrix).

Cross-modal correlations matrix
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Legend Figure 4: Cross-modal correlation heatmap of task parameters for interoception and exteroception
conditions (Session 1). Owerall, we observed that behavioural results were correlated within modalities but with
limited dependence across modalities, the only exceptions were confidence and response time (RT). Only
significant skipped Spearman correlations are represented. The upper triangle only shows results surviving
FDR correction (pppr < 0.01), while the lower right triangle of the matrix shows the uncorrected
comparisons. Colour and size of individual points indicate the sign and strength of estimated correlation
coefficients. See supplementary Fig. 4 for Session 2 cross-correlations.

Correlation with the heartbeat counting task parameters

As a final check of construct validity, we assessed how our new task relates to the standard
heartbeat counting task. We thus correlated HRD performance variables (psychometric

thresholds and slopes) with the HBC scores. We found that the interoceptive thresholds from
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624  Session 1 were positively correlated with the global heartbeat counting score (see Fig. 5.a; rs=
625 0.29, Clgsy = [0.16, 0.42], p < 0.001, n = 193, Noutiiers = 1). No significant correlation was found
626  between the heartbeat counting score and the exteroceptive threshold (rs=-0.04, Clgsy, =[-0.18,
627 0.1], p = 0.58, n = 193, Noutiers = 13). We further replicated the correlation between HRD
628  threshold and HBC iACC scoresin Session2 (rs=0.19, Clgsy = [0.05, 0.33], p=0.01, n = 178,
629  Noutliers = 0).

630
Correlation with the heartbeat counting task parameters
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632 Legend Figure 5: Correlation between the psychometric threshold and heartbeat counting performance.
633  (Session1) A. We found that heart rate discrimination (HRD) thresholds correlate positively with heartbeat
634  counting (HBC) interoceptive accuracy scores. Alower threshold (i.e., amore negative bias) on the HRD task was
635  associated with lower performance on heartbeat counting. We suggest that low scores onthe heartbeat counting
636 task are associated with a tendency to undercount the number of heartbeats. B. The psychometric threshold was
637  associated with the total number of heartbeats reported during the heartbeat counting task. The correlationwas
638 also found while controlling for the heart rate during the task (not shown). These results suggest that participants’
639 inability to reliably count their heartbeats is partially explained by lower interoceptive thresholds. Outliers detected
640 by the skipped correlation are reported inred. The rsand p values are from the bootstrapped Spearman coefficient.
641  The regressionlineisonly fittedto non-outlier datapoints. The shaded arearepresentsthe bootstrapped confidence
642  interval (95%).

643
644  The previous results suggest that the bias observed in the heartbeat counting task might be at
645 leastpartially explained by the participants’ tendency to underestimate their own heart rate. To

646  corroborate this notion, we attempted to verify the association between the psychometric
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647  threshold obtained during the HRD task, which quantifies the heart rate underestimation, and
648 the total number of heartbeats reported by the participant during the HBC task (see Fig. 5.b).
649  The psychometric threshold was positively correlated with the total number of heartbeats
650 counted by the participants (rs=0.14, Closy = [0.01, 0.28], p = 0.04, n = 193, Noutliers = 1). It
651  could be argued here that the actual heart rate of the participant may directly influence the total
652 number of counted heartbeats, as the number of heartbeats that can be potentially counted
653 naturally increases with increments in heart rate frequency. To control for this possible
654  confound, we performed a semi-partial correlation between the psychometric threshold and the
655  total number of counted heartbeats while controlling for the relation between the number of
656  counted heartbeats and the number of actual heartbeats detected inthe PPG signal. This analysis
657  revealed a positive correlation between these two variables (rs= 0.20, Clgsy = [0.07,0.34], p =
658  0.004, n =193, Noutliers = 2).

659 Reliability of psychometric parameters

660 Intrinsic or test-retest reliability is a critical feature of any measurement, in particular, if itisto
661  be useful for clinical diagnostic or intervention purposes. To evaluate reliability, we calculated
662 the correlation coefficient for Session 1 and 2 interoceptive thresholds and slopes, obtained on
663  average 46.79 days apart from each other. Threshold was highly correlated between sessions,
664  showing good reliability (r = 0.51, p < 0.001, BF1o = 5.04e+10, see Fig. 6). In contrast, Slope
665  was not correlated across sessions (r = 0.10, p = 0.15, BF1 = 0.25), potentially indicating a
666  poor reliability of this parameter.

667
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a. Test re-test reliability b. Psychometric threshold estimates
of the psychometric threshold across modalities and sessions
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Legend Figure 6: Test-retest reliability of the psychometric threshold. The psychometric threshold estimated
using a Bayesian post hoc approach provided correct test-retest reliability. A. Correlation between the
interoception threshold estimates in Sessions 1 and 2. Outliers detected by the skipped correlation were removed
and the reliability was tested using a Pearson correlation. The rs and p values were calculated using the
bootstrapped Spearman coefficient. The regression line was only fitted to non-outlier data points. The shaded area
represents the bootstrapped confidence interval (95%, 1000 iterations). B. Distribution of threshold Bayesian
estimates across sessions and modalities (n=204 for Session 1;n=190 for Session 2). The error bars represent the
bootstrapped confidence interval (95%, 1000 iterations).
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680 DIiscussion

681 The measurement of cardiac interoception is a methodological puzzle that has challenged
682  generations of psychologists and psychophysiologists (Ainley et al., 2020; Brener Jasper &
683  Ring Christopher, 2016; Chen et al., 2021; Zamariola et al., 2018; Zimprich et al., 2020). Here,
684  we suggest that this difficulty arises in part from a reluctance to treat subjective perceptual
685  Dbeliefs about the heart rate as a core component of interoception. To remedy this gap, we
686 introduce a new Heart Rate Discrimination (HRD) task, which incorporates a Bayesian
687  psychophysical procedure for measuring the accuracy, precision, and metacognitive sensitivity
688  of cardiac decisions. In a study of 223 healthy participants, we observed robust and consistent
689  heart rate underestimation. We also found that interoceptive beliefs and metacognition are more
690 imprecise as compared to the exteroceptive control condition. Our results indicate that
691 interoceptive beliefs as measured by the HRD are not strongly correlated with other
692  exteroceptive temporal beliefs, but share some variability with indexes of interoception
693 measured by the Heartbeat Counting task. In general, these effects were robustly replicated
694  acrosstwo testing sessions, with interoceptive thresholds, in particular, exhibiting good within-
695 participant test-retest reliability. These features make the HRD well-suited for the measurement
696  of interoceptive biomarkers in clinical populations, and for basic research probing the
697  underlying mechanisms underlying cardiac beliefs and their influence on behaviour.

698 Our principal finding is that participants consistently underestimate their resting heart
699 rate by 7 BPM on average, with substantial inter-individual variation around this value (A-BPM
700 threshold range = [-39, 30]) (Fig. 2). This finding is consistent with repeated reports that
701  heartbeat counting scores are driven by undercounting (Zamariola etal., 2018) - for discussion,
702  see (Ainley et al., 2020; Corneille et al., 2020; Zimprich et al., 2020). We also find that
703 interoceptive HRD thresholds are moderately correlated with HBC iACC scores, such that
704  fewer counted heartbeats correlate with a lower HRD threshold (see Fig. 5). When comparing
705 interoceptive and exteroceptive thresholds, we further found a similar positive correlation at
706  session 2 (see Supp Fig. 4). These results highlight the unique sources of variance influencing
707  interoceptive beliefs, such that HRD thresholds (and by extension, HBC scores) are likely to be
708 driven by a combination of general temporal estimation ability, bottom-up cardio-sensory
709  inputs, and top-down beliefs about the heart rate.

710 The ability to distinguish these contributions is a unique strength of the HRD. Future
711 clinical investigations will benefit from including both interoceptive and exteroceptive

712  conditions to tease apart these different potential causes of apparent interoceptive dysfunction.

26


https://doi.org/10.1101/2021.02.18.431871
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431871; this version posted November 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

713 For example, if a participant group shows general cross-domain main effects on both
714  interoceptive and exteroceptive thresholds, this would indicate a general deficit in temporal
715  estimation rather than an alteration of interoceptive beliefs. In contrast, group or conditional
716  interaction effects on the interoceptive threshold or slope, in the absence of any exteroceptive
717  effects, would indicate a specific deficit in monitoring bodily sensations and updating cardiac
718  beliefs. In this way, investigating conditions by group interactions on HRD parameters should
719  hopefully improve the specificity of interoception research.

720 Another important finding is that interoceptive precision, as measured by the slope of
721  the psychometric function, was substantially lower than exteroceptive precision (Fig. 2 and
722  Supp Fig. 1). This is an interesting finding in light of recent theoretical and computational
723  models which hypothesize that interoceptive sensory signals inthe brain may generally be more
724 imprecise than their exteroceptive counterparts (Ainley et al., 2016; Allenet al., 2019; Allen &
725  Tsakiris, 2018). This hypothesis is based on influential “interoceptive predictive processing”
726  models which emphasize the top-down, belief-driven nature of embodied self-perception. On
727  these accounts, subjective interoceptive sensations are more likely to reflect the integration of
728  top-down, prior expectations about the bodily self with ascending sensory inputs, with each
729  signal weighted by their respective precisionor confidence (Allen, 2020; Allen & Friston, 2018;
730  Barrett & Simmons, 2015; Seth, 2013). The finding that interoceptive decisions are associated
731  with lower precisionmay thus indicate that ascending cardiac signals are themselves inherently
732 imprecise, or those prior beliefs encoding expected interoceptive precisionare themselves more
733 uncertain.

734 It should be noted however that “precision” as measured by the HRD indicates the
735  uncertainty of the psychological decision process, and should not yet be treated as a directread-
736  out or measurement of the computational process by which prediction error signals are
737  “precision-weighted”, which is thought to depend on neurobiological gain control (Bastos et
738 al., 2012; Feldman & Friston, 2010). While previous investigations inthe exteroceptive domain
739  demonstrated a link between behavioural variability of this sort and neurocomputational
740  precision (Eldar et al., 2013; Hénaff et al., 2020; van Bergen et al., 2015; Warren et al., 2016),
741  inadvance of direct evidence in the interoceptive domain this link should be interpreted with
742  caution. Nevertheless, a unique benefit of our approachis that future studies could combine the
743  HRD with computational modelling and direct neuronal recordings to conclusively establish
744 the potential link between these parameters, and to tease apart the contributions of prior versus
745  sensory precisionto the imprecision observed here in heart-rate decisions (see e.g. Allen et al.,
746 2019; Smith et al., 2020, 2021 for potential modelling applications).
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747 Finally, we observed a robust reduction in metacognitive efficiency for interoceptive
748  versus exteroceptive decisions. Although individual levels of subjective confidence (i.e.,
749  metacognitive bias) were highly correlated between modalities, metacognitive efficiency itself
750  was not. This speaks to ongoing debates about the modularity of metacognition (Rouault et al.,
751  2018), indicating that metacognitive ability in the interoceptive domain is largely unrelated to
752  exteroceptive self-monitoring, in line with previous findings on this topic (Beck et al., 2019;
753  Garfinkel etal., 2016). In light of these results, it is interesting to speculate as to the divergent
754 mechanisms that might underlie metacognition in these two domains.

755 Numerous computational accounts emphasize that accurate metacognitive self-
756  monitoring is likely to depend on a process by which the precision of the sensory signals
757  underlying the type 1 decision is “read-out” by a higher-order metacognitive module, such that
758 noisy, imprecise signals can be expected to degrade both perceptual performance and
759  metacognitive sensitivity (Fleming et al., 2012; Maniscalco & Lau, 2016). However, other
760  accounts emphasize that top-down “self-beliefs” may play a crucial role in shaping the
761  interaction between low-level precision and higher-order metacognition (Allen et al., 2020;
762  Fleming & Daw, 2017). Speculatively, our findings may suggest that in the cardiac domain,
763  metacognition is largely dominated by top-down beliefs, rather than pure sensory read-out.
764  Alternatively, if the reduced interoceptive precision observed here relates primarily to the
765  uncertainty of cardiac sensory afferents, then this effect may be simply a result of the
766  metacognitive system accurately reading out the low sensory precision. Teasing apart these
767  different hypotheses through targeted causal manipulations of cardiac sensory signals and prior

768  beliefs will hopefully shed new light on metacognitive insight into the bodily self.

769  Strengths of the Heart Rate Discrimination Task

770  The HRD has several important methodological and practical strengths that support its utility
771  in both basic and clinical research. First, the psychometric curve is estimated across trials
772  relative to the ground truth heart rate. This allows us to differentiate the bias and precision of
773  cardiac beliefs, in a way in which previous tasks such as HBC and HBD cannot. For example,
774 it could be expected that the overall shape of the psychometric function may change under
775  cardiovascular arousal, and the magnitude of this change could be an important marker of inter -
776  individual differences in interoceptive reactivity.

777 A second feature of the HRD is the inclusion of an exteroceptive control condition,

778  enabling measurements in the same units (A-BPM) in both modalities. This provision of
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779  sensible, easy to interpret units enables precise, meaningful comparisons across different
780  studies, improving metric interpretability. The exteroceptive control condition itself has several
781  additional benefits; it facilitates the use of the task in neuroimaging studies aiming to isolate
782  more specific neural correlates of cardioceptive beliefs and allows for the differentiation of
783  clinical symptoms into specific interoceptive deficits and more general temporal estimation
784  deficits.

785 A third strength is that up to 100 HRD trials can be collected in as little as 25 minutes
786  using standard physiological recording equipment. This is critical for clinical studies where
787  testing time is often limited. A core contribution of the HRD is that it provides a novel decision
788  axis through which researchers can probe interoceptive beliefs and percepts: the moment to
789  moment decision of how fast one's heart is beating. This trial design means that the HRD is
790 amenable to a variety of quantitative modelling techniques such as hierarchical modelling of
791  psychometric functions, or through computational modelling using reinforcement learning and
792  similar approaches (Mathys et al., 2014; Petzschner et al., 2021). This feature facilitates testing
793  mechanistic hypotheses about how cardioceptive beliefs are formed and updated and could be
794  paired with, for example, the probabilistic manipulation of attention or performance feedback
795  to delineate the role of prior beliefs and sensory prediction errors.

796 In general, we believe the HRD will be particularly useful as a clinical biomarker when
797  comparing how specific populations update their cardiac beliefs under differing contexts - for
798 example, one could test whether participants with anxiety show a tendency towards
799  overestimating the heart rate at rest, or instead exhibit larger shifts in threshold and/or precision

800  when comparing aroused vs. resting state performance.

go1 Limitations

802  The HRD offers several improvements to existing cardioceptive measures, including increased
803 face validity, adaptability, and amenability to signal theoretic and other computational
804  approaches to quantifying cardiac decisions. However, there are a few potential limitations of
805  the task, and the results demonstrated here.

806 First, the HRD depends upon the online estimation of the heart rate within a five-second
807 interval. While instantaneous measures of heart rate are generally robust, even within this time
808  window there are likely to be within-trial shifts in high-frequency heart rate variability (HRV).
809  Effectively this means that there is a theoretical lower bound on the precision with which one

810 canestimate HRD thresholds, below which their interpretation becomes suspect. To control for
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811  this effect, we ensured that HRD step sizes (e.g., in terms of the minimum increment on A-
812 BPM) are never lowerthan 1 BPM intervals, and also excluded trials with an extreme standard
813  deviation of within-trial beat to beat intervals.

814 Another limitation is related to our implementation of the task as a two-interval forced-
815  choice response. On each trial, participants first attended to their cardiac sensations and were
816 then immediately presented with auditory feedback during the choice interval. This is a
817  deliberate design decision, as the 2-1FC structure both ensures that participants have a window
818  of interoception-only focus on each trial and renders the underlying behaviour more amenable
819 to the signal theoretic assumptions of the metacognitive model (Galvin et al., 2003; Lee et al.,
820 2018; Maniscalco & Lau, 2012b). We see this as an improvement over measures such as the
821  heartbeat discrimination task, where subjects must perform a difficult simultaneous
822  multisensory judgement, and it makes the task more amenable for identifying the neural or
823  physiological correlates of HRD measures in the interoception-only time window. However, as
824  a trade-off, this does induce a slight working-memory component to the task, as participants
825 must form a belief about the heart rate and then hold it in mind while comparing it to the
826  auditory feedback tones. This may be a limitation for studies comparing, for example, clinical
827  populations with known working memory deficits. In this case, a variant of the task could easily
828  be implemented in which the feedback tone is presented simultaneously with the listening
829 interval, similar to recent tasks using a method of adjustment (Palmer et al., 2019).

830 The HRD task also includes an exteroceptive condition that has been designed to
831 correspond as closely as possible to the interoceptive condition in terms of trial structure, timing
832 and cognitive content that makes it appropriate for contrast-based analyses, e.g., in
833  neuroimaging or physiological studies. It should be noted however that across trials, the
834  frequency of the first “reference” stimulus is not derived from the heart rate but rather a random
835  uniform distribution from 40 to 100 bpm. This means that the range of presented tones is greater
836  inthe exteroceptive vs interoceptive condition and that the exteroceptive psychometric function
837 is essentially averaged across relatively slow and fast stimuli. If a participant has a large
838  difference in responses across these bins, it could potentially limit the interpretation of the
839 relative difference in interoceptive versus exteroceptive thresholds. One could alternatively
840  generate these stimuli from a distribution matching that of the participants own heart rate, albeit
841  with the trade-off of potentially feeding the participant implicit information about their heart
842  rate. Future work should rigorously compare these possibilities to achieve optimal control over

843  temporal and other cognitive confounds.
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844 Finally, we do not present the HRD as measuring the objective sensitivity to ascending
845  (i.e., baroreceptor mediated) cardiac sensations specifically. In the absence of further empirical
846  data, interoceptive thresholds and/or precisions obtained by the HRD method should not be
847  interpreted as a straightforward measure of the objective ability to discriminate viscerosensory
848  sensations, as a variety of different strategies utilizing, for example, semantic beliefs or tactile
849  inputs are likely to underlie decisions on the task, in particular under resting conditions (Khalsa
850 et al., 2009). For researchers targeting specifically visceral ascending sensitivity, we would
851  recommend approaches such as the MCS (Brener et al., 1993). Our task instead measures the
852  bias and precision of subjective beliefs about the heart rate, which are likely to combine prior
853  beliefs, contextual factors, and ascending (interoceptive and exteroceptive) sensory information
854  where available. Future studies will pair causal manipulations of ascending cardiac signals with
855  threshold measurement, to better delineate the degree to which these sensory inputs shape
856  cardiac beliefs.

s57  Conclusion

858 In this study, we reported observations from the experimental use of the Heart Rate
859  Discrimination task to measure the bias and precision of cardiac beliefs among a group of 223
860 individuals in a test-retest design. Our results have documented a robust tendency across
861  participants to underestimate their heart rate, and have shown that interoceptive decisions are
862 imprecise as compared to an exteroceptive control condition. We argue that the ability to
863  objectively quantify these perceptual beliefs is a powerful tool for both basic and clinical
864 interoception research. As this procedure is supported by psychophysics and Bayesian
865  modelling of metacognition, italso calls for future methodological refinement and hypothesis -
866  driveninvestigation to delineate the computational and physiological sources of cardiac beliefs.
867

868
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s SUpPPlementary material

879  Psychometric estimates using the Psi method

880 During Session 1, we used a 1-up/1-down procedure together with a Psi staircase to estimate
881  the threshold of the psychometric function. During the first 30 trials of each condition, the
882 intensity value was controlled by a 1-up/1-down staircase (Dixon & Mood, 1948) and the
883  results were provided to the Psi staircase for initialization. We used this procedure to control
884  for threshold convergence between the two techniques (results non reported here). During
885  Session 2, we used only a Psi staircase procedure (Kontsevich & Tyler, 1999). The
886  experimental setup was also slightly optimized between Sessions 1 and 2 (see Material and
887  Methods). All these points could impact the efficiency and the parameters estimates of the Psi
888  staircases. To check for possible deviation, we report in Figure 1 of the Supplementary
889  Materials the psychometric parameters estimates for slope and threshold across the two
890  modalities and across the two sessions.
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894  staircase using the Psi method from Sessions 1 and 2. Slope and threshold parameters of the psychometric
895  functions for interoception (red) and exteroception (blue) conditions during Session 1 (n=206) (A.) and Session 2
896 (n=191) (C.). Psychometric functions fitted across interoceptive and exteroceptive conditions for Session1 (B.)
897  and Session2 (D.). The grey lines show individual subject fits. The dark blue and red lines show the grand mean
898  psychometric function, depicting the average threshold and slope. Both sessions show a strong effect of
899 interoception onslope and threshold as compared to the exteroceptive control condition, with a negative bias and
900  reduced precision for interoception.

901
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902 Here, our results mirrored what we observed using the Bayesian estimates and comparing
903 the two modalities conditions. We observed a bias in the interoceptive threshold as compared
904 to the exteroceptive one in both Session 1 (tpes) =-9.89, p < 0.001, BFyo = 1.20e+16, d =-0.90)
905 and Session 2 (tas) = -11.66, p < 0.001, BFyo = 8.31e+20, d = -1.06). The slope, reflecting the
906 imprecision of the decision, wasalso higher during interoception in both Session 1 (tqos = 7.86,
907 p<0.001, BFy=3.06e+10, d = 0.80) and Session 2 (tag) = 8.92, p < 0.001, BF1p=1.50e+13, d
908 =0.86). Here, a higher slope reflects a less precise decision process. These results suggest that
909 the two main psychometric effects (i.e., the threshold bias and slope increase during

910 interoception) are robust and are not specific to one analytical approach in particular.

911 Correlation between psychometric parameters estimated using the

912 Psi method and a Bayesian post hoc model

913 In this paper, the psychometric parameters were estimated using a Bayesian model fitted on
914  post-processed response data. This provides, in our opinion, a more robust framework for
915  between session comparisons, and has the advantage to allow for behavioural and physiological
916 data cleaning before model fitting. However, the values of the parameters can also differ
917  Dbetween the Psi procedure and the final Bayesian estimates. We report in Fig. 2 of the
918 Supplementary Materials the relation between the values estimated by these two methods for
919  both sessions.

920 When testing covariance using a Pearson correlation, we observed that the threshold
921  estimates were highly consistent across the two estimation methods in both Session 1
922  (Exteroception: r = 0.63, Clgsy, = [0.55, 0.71], n = 206; Interoception: r = 0.92, Clgsy, = [0.91,
923 0.94], n = 206) and Session 2 (Exteroception: r = 0.96, Clgsy» = [0.95, 0.97], n = 154;
924  Interoception: r = 0.98, Clgsy, = [0.98, 0.99], n = 147). These effects are illustrated in
925  Supplementary Material Fig. 2. a-c.

926 We observed more variability in the estimation of slope, as reflected by the slightly
927  lower correlation coefficients in Session 1 (Exteroception: r = 0.69, Clgsy = [0.62, 0.76], n =
928  206; Interoception: r = 0.80, Clgsy, = [0.75, 0.84], n = 206) compared to Session 2
929  (Exteroception: r = 0.90, Clgsy, = [0.87, 0.93], n = 154; Interoception: r = 0.78, Clgsy, = [0.71,
930 0.84], n = 147). Notably, a ceiling effect and a systematic shift of the slope estimates was
931  observed on Session 1 (see Supplementary Material Fig. 2. b-d). The ceiling effect was
932  corrected in Session 2 by using larger parameter ranges. Here, the Bayesian approach included
933 alargerpriorrange and was able to infer different slope values when the maximum was reached.
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934 This analysis illustrates the power of a simple post hoc Bayesian modelling approach to
935 improve and correct potential issues in the settings of the Psi staircase. This approach can be
936  further expanded in future works, for example using fully hierarchical (i.e., mixed-effects)
937  Bayesian modelling across participants and groups, improving the estimation of conditional
938 differences inthreshold or slope values. This could enhance statistical power by pooling and it
939  further limits the influence of unlikely or outlier responses through group shrinkage effects on

940 the parameter estimates.
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943 Legend Supplementary Material 2: Comparison between online and post hoc Bayesian estimation of slope
944  and threshold parameters of the psychometric functions. Adaptive Bayesian staircases can be biased if their
945 initial parameter settings poorly fit the underlying generative psychometric function, or if a subject makes
946  unrepresentative responses early in the experiment. For example, in this sample we observed that the prior width
947 [0 - 20] on the slope parameter was too low, resultingin a ceiling effect that biased our estimates in a subset of
948 participants. One solutionto control these biases is to implement post hoc Bayesian modelling of the observed
949 psychophysical data. We thus re-analyzed the responses for each participant and each condition separately using
950  a Bayesian model to fit a cumulative normal distribution. A. The thresholds estimates remained stable, although
951  with a reduced variance for the exteroceptive condition. B. The ceiling effect onthe slope was normalized by the
952  post hoc modelling, which shifts the posterior mass away from the extremes. The post hoc procedure can thus
953 improve the estimation of the interoceptive and exteroceptive psychophysical parameters. In session 2, both

954  threshold (C.) and slope (D.) were more reliably estimated after changes we made on the experimental design and

35


https://doi.org/10.1101/2021.02.18.431871
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431871; this version posted November 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

955  prior ranges of the Psi parameters. E. We created an index of staircase convergence to quantify the estimation
956  errorsobservedin session 1 (see below for details). A higher value reflects more imbalanced intensities around
957  the threshold, which is often associated with improper estimates and convergences of the staircases.

958

959 Another reason for using a Bayesian model was the presence of incomplete convergence
960  of the Psi staircase during the first session. The Psi algorithm (Kontsevich & Tyler, 1999) is
961  designed to test intensity values that would first increase the precision of the posterior density
962  for threshold. When this confidence around the threshold level is high enough, the staircase
963 starts to improve precision for the slope estimate by testing intensity values around the
964  threshold. This results in a recognizable pattern of higher and lower intensities values
965  alternating regularly around the inferred threshold. Interfering with the Bayesian updating
966  during the first 30 trials of the task, asin Session 1, could result in biased estimation of threshold
967  values. Further, erroneous responses during the first trials may hinder convergence.

968 Here, we quantified the amount of incomplete Psi staircase convergence through the
969  two sessions. Incomplete convergence is characterized by stimulus intensity values that are
970  consistently higher or lower than the inferred threshold even at the end of the task. To quantify
971 this effect, we calculated an incomplete convergence index using the ratio of high-intensity
972  versus low-intensity values compared to the inferred threshold in the last 40 trials. This ratio
973  was then converted using the following formula:

974 IncompleteConvergence = |ratio — 0.5] * 2

975 This formula returns a real number between 0 and 1. 0 indicates that the intensity values
976  were equally distributed around the inferred threshold in the last 40 trials. Instead, 1 indicates
977  divergence between the tested intensity values and the inferred threshold. The incomplete
978  convergence indexes for Interoception and Exteroception through Session 1 and 2 are reported
979  inSupplementary Material Fig. 2. e). These results revealed a high proportion of incomplete
980 convergence in the first session, in both interoception and exteroception conditions. For
981 example, setting an arbitrary threshold for quality assessment at 0.5 revealed that 63 and 41
982 participants had poor convergence for interoception and exteroception, respectively. These
983  numbers dropped radically in Session 2 (see Material and Method) and corresponded to only
984  3and 0 staircases for interoception and exteroception, respectively. The improved convergence
985 in Session 2 is likely due to the introduction of different design choices, aimed at solving the
986  convergence issues observed in Session 1.
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987  Psychometric results (Session 2)

988  We reproduced the approach used in the first session and compared threshold and slope values
989  between the interoception and the exteroception conditions. This revealed that during
990 interoception participants had significantly lower psychometric thresholds (meanintero = -8.50,
991  Closy [-10.06, -6.92], meangxero = 0.01, Clgsy, [-0.47, 0.52], tagg = -11.15, p < 0.001, BFyo =
992  2.85e+19, d =-1.03) and higher psychometric slopes (meanintero = 11.96, Closy, [11.22, 12.74],
993  meanexero = 8.69, Closy, [8.14, 9.28], tugg = -7.29, p < 0.001, BFy = 9.12e+08, d = 0.67). See
994  Fig. 2 and Supplementary Fig. 1 for illustration of these effects. Similarly to the results in the
995  first session, the negative bias of the threshold parameters suggests that participants
996  underestimated their heart rate on average. The greater slope on the other side, indicates a less

997  precise decision process.
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998

999  Legend Supplementary Material 3: Psychometric parameter estimates and fitted interoception and
1000 exteroception psychometric functions (Session 2). A. Repeated measures raincloud plots visualizing threshold
1001  and slope parameters of the psychometric functions across the two modalities (interoception and exteroception).
1002 Data points for every individual are connected by a grey line to highlight the repeated measure effect. B. The grey
1003 lines show individual subject fits. The dark red and blue lines show the grand mean psychometric function,
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depicting averaged threshold and slope. Grand mean thresholds are marked by the large point, where the
psychometric function crosses 0.5 on the ordinate axis. We observed astrong effect of interoception on both slope
and threshold parameters as compared to the exteroceptive control condition.

Metacognition results (Session 2)

The d’, which reflects discimination sensitivity, was lower in the interoception condition
(meanintero = 1.88, Clgsy = [1.78, 1.96], meanegero = 2.25, Closy = [2.21, 2.3], tsg = -8.10, p <
0.001, BF19=9.67e+10, d =-0.77). Further, as in the first session, we found that metacognitive
sensitivity was significantly lower during interoception. The interoceptive M-ratio estimates
were lower (meanntero = 0.83, Closy, = [0.8,0.87]) than the exteroceptive ones (meanexero = 0.96,
Clgsy, = [0.92, 1.01]). The posterior distribution of the repeated measure effect was also lower
(mean =-0.17 HDlgy = [-0.28, -0.05].
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a. Confidence ratings for correct and incorrect responses
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Legend Supplementary Material 3: Visualization of metacognitive performance for interoceptive and
exteroceptive conditions (Session 2). A. Histogram showing the distribution of binned confidence ratings for
correct(green) vs.error (red) trials. Higher bins represent higher confidenceratings. Participants were significantly
less confident overall inthe interoceptive condition and showed reduced calibration as indicated by the flattening
of the confidence distributions. To quantify this effect, we estimated “metacognitive efficiency”, a signal theoretic
model of introspective accuracy which controls for differences intype 1 (discrimination) performance. Here, an
M-ratio of 1 indicates optimal metacognitionaccording to an ideal observer model, whereas values lower than this

indicate inefficient use of the available perceptual signal. B. This model demonstrated that metacognitive
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efficiency was substantially decreased for interoceptive relative to exteroceptive judgements. C. Histogram of

posterior samples from the betavalue coding the effect of interoception.

Cross-modal correlation (Session 2)

We observed more robust and consistent correlations between task parameters within each
modality (interoception or exteroception), but few significant correlations between task
modalities, indicating a high degree of independence between performance on the two task
conditions. Across modalities, response times during the decision process (type 1 measure)
were correlated between the interoception and the exteroception conditions (rs= 0.66, Clgsy =
[0.58, 0.74], p < 0.001, n = 190, noutiiers = 5), as well as between confidence ratings (rs = 0.54,
Clgsy = [0.44, 0.64], p < 0.001, n = 190, Noutiiers = 3).

Cross-modal correlations matrix
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Legend Supplementary Material 4: Cross-modal correlation heatmap of task parameters for interoception
and exteroception conditions (Session 2). We replicated several of the observations reported in Session 1.

Behavioural results were correlated within modalities but with limited dependence across modalities. The only

40


https://doi.org/10.1101/2021.02.18.431871
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431871; this version posted November 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1038  exceptions, already observed in Session 1, were confidence ratings and response times (RT). The figure depicts
1039  significant skipped Spearman correlations. The upper triangle shows results surviving FDR correction (pepr
1040 < 0.01). The colour and size of individual points indicate the sign and strength of the estimated correlation
1041  coefficients.
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