

1 Sensitive visualization of SARS-CoV-2 RNA with

2 CoronaFISH

3

4 Elena Rensen^{1,\$}, Stefano Pietropaoli^{2,\$}, Florian Mueller^{1,\$, #}, Christian Weber¹, Sylvie Souquere³,

5 Pierre Isnard⁴, Marion Rabant⁴, Jean-Baptiste Gibier⁵, Etienne Simon-Loriere⁶, Marie-Anne

6 Rameix-Welti^{7,8}, Gérard Pierron^{9, #}, Giovanna Barba-Spaeth^{2, #}, Christophe Zimmer^{1, #}

7

8 ¹Imaging and Modeling Unit, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France

9 ²Structural Virology Unit, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France

10 ³Gustave Roussy, AMMICA UMS-3655, 94805 Villejuif, France

11 ⁴Anatomie et Cytologie Pathologiques, CHU Necker-Enfants Malades, 149 rue de Sèvres,
12 75015 Paris, France

13 ⁵Service d'Anatomo- pathologie, Centre de Biologie Pathologie, CHU Lille, Lille, France

14 ⁶Evolutionary genomics of RNA viruses, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris,
15 France

16 ⁷Université Paris-Saclay, INSERM, Université de Versailles St. Quentin, UMR 1173 (2I),
17 Montigny-le-Bretonneux 78180, France.

18 ⁸AP-HP, Université Paris Saclay, Hôpital Ambroise Paré, Laboratoire de Microbiologie,
19 Boulogne-Billancourt 92104, France

20 ⁹Gustave Roussy, CNRS-UMR 9196, 94805 Villejuif, France

21

22 ^{\$} Equal contribution, [#] Corresponding authors

23 Abstract

24 The current COVID-19 pandemic is caused by the severe acute respiratory syndrome
25 coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single
26 linear RNA segment that serves as a template for transcription and replication, leading to the
27 synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to
28 visualize viral RNA directly in infected cells are critical to analyze its replication cycle, screen for
29 therapeutic molecules or study infections in human tissue. Here, we report the design, validation
30 and initial application of fluorescence *in situ* hybridization (FISH) probes to visualize positive or
31 negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA
32 in African green monkey and several human cell lines, in patient samples and human tissue. We
33 further demonstrate the adaptation of CoronaFISH probes to electron microscopy (EM). We
34 provide all required oligonucleotide sequences, source code to design the probes, and a
35 detailed protocol. We hope that CoronaFISH will complement existing techniques for research
36 on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening and diagnostics.

37

38 **Introduction**

39 Coronavirus disease (COVID-19) emerged by the end of 2019 in Wuhan, China, and led to
40 more than 100 million infections and over 2.1 million deaths (Johns Hopkins University
41 Dashboard). Its causative agent, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
42 2), is an enveloped, positive-sense, single-stranded RNA virus. Upon infection, viral replication
43 occurs in the host cell's cytoplasm, which is massively reorganized (V'kovski *et al*, 2020). The
44 genomic positive-strand viral RNA serves as a template for transcription and replication. The
45 virus synthesizes its own RNA-dependent RNA polymerase (RdRP) to generate negative-sense
46 RNA replication intermediates. This negative strand acts as template for replication of new full-
47 length positive-stranded RNA genomes and for transcription of several smaller, subgenomic
48 positive-stranded RNAs (sgRNAs). These sgRNAs are then used to synthesize all other viral
49 proteins in spatially confined replication complexes. Mature virions are exocytosed and released
50 from the infected host cell. Despite recent progress, many aspects of the SARS-CoV-2 viral
51 replication cycle, including the subcellular location of viral RNA synthesis, are still not fully
52 understood and under active investigation (V'kovski *et al*, 2020).

53

54 Several established techniques allow studying SARS-CoV-2 and its interaction with its host.
55 Immunofluorescence (IF) permits the visualization of viral and host proteins in the spatial
56 context of a single cell. However, the development of specific antibodies against novel viruses is
57 time- and cost-intensive, especially if specificity over other closely related viruses is required.
58 Further, the presence in cells of structural viral proteins, such as the Spike protein, does not
59 necessarily imply active viral replication (Cheung *et al*, 2005; Tang *et al*, 2020) and their
60 subcellular localization may not reflect that of the vRNA strands. Other molecular methods, such
61 as RT-PCR, provide an accurate, quantitative readout of viral load and replication dynamics, but
62 are bulk measurements over large cell populations that mask variability between cells and

63 provide no information about the subcellular localization of the virus. RNAseq permits a
64 complete view of the transcriptome of both the host and virus, including in single cells, albeit
65 again without spatial information (Kim *et al*, 2020; Bost *et al*, 2020).

66

67 Unlike immunostaining, PCR or sequencing methods, fluorescence *in situ* hybridization (FISH)
68 offers the capacity to directly and specifically visualize viral RNA in single cells (Raj *et al*, 2008;
69 Itzkovitz & van Oudenaarden, 2011; Mueller *et al*, 2013). In RNA-FISH, single RNA molecules
70 are typically targeted with 10–50 fluorescently labeled probes consisting of short (20-30
71 nucleotides), custom synthesized oligonucleotides with bioinformatically designed sequences.
72 Individual RNAs are subsequently visible as bright, diffraction-limited spots under a microscope,
73 and can be detected with appropriate image analysis methods (Raj *et al*, 2008; Mueller *et al*,
74 2013). We recently introduced smiFISH (Tsanov *et al*, 2016), an inexpensive variant of this
75 approach that has been used in biological samples ranging from single-cell organisms such as
76 bacteria and yeast to whole tissue sections and organs (Trcek *et al*, 2012; Wu *et al*, 2018;
77 Wang, 2019; Chen *et al*, 2016; Skinner *et al*, 2013), and is ideally suited to visualize RNA
78 viruses and study their subcellular localization and kinetics in host cells (King *et al*, 2018;
79 Rensen *et al*, 2020).

80

81 In this study, we designed and validated smiFISH probes against the positive and negative RNA
82 strands of SARS-CoV-2 (CoronaFISH). We demonstrate highly specific viral detection in cell
83 culture, in patient isolates, and in tissue samples. We further demonstrate the flexibility of these
84 probes by adapting them for electron microscopy *in situ* hybridization (EM-ISH). CoronaFISH
85 provides a flexible, cost-efficient and versatile platform for studying SARS-CoV-2 replication at
86 the level of single cells in culture or in tissue, and can potentially be employed for drug
87 screening and diagnosis.

88 Results

89 Design of probes specific for SARS-CoV-2

90 Our RNA-FISH approach employs two types of bioinformatically designed DNA oligonucleotides
91 (oligos) (Tsanov *et al*, 2016): (i) unlabeled primary oligos consisting of two parts: a specific
92 sequence complementary to a selected subregion of the target RNA and a readout sequence
93 that is identical among all primary oligos (FLAP sequence), (ii) a fluorescently labeled
94 secondary oligo complementary to the FLAP sequence, allowing visualization by light
95 microscopy. These oligos are hybridized to each other *in vitro* before their use for cellular
96 imaging (**Fig 1a**).

97

98 A cell infected by SARS-CoV-2 can contain the incoming positive strand, the negative-strand
99 replication intermediate, as well as replicated full-length and sub-genomic positive-strand RNA
100 molecules (**Fig 1b**). We designed two sets of 96 probes, one against the positive strand, and
101 one against the negative strand of SARS-CoV-2 (**Fig 1c**). For more details on the probe design
102 workflow, see the Methods section and the source code
103 (<https://github.com/muellerflorian/corona-fish>). In brief, we identified an initial list of more than
104 600 potential probe sequences with our previously described method Oligostan (Tsanov *et al*,
105 2016). We then further screened these probes to be robust to known genomic variations of
106 SARS-CoV-2 (as of April 2020), while removing probes with affinity to other known β -
107 coronaviruses or viruses frequently causing similar respiratory diseases in human such as
108 Influenza. Lastly, we removed probes overlapping with the transcriptome of several relevant
109 host organisms (human, mouse, African green monkey, hamster and ferret). To establish the
110 final list of 96 probes (**Fig 1c**), we chose probes targeting regions with the highest NGS
111 coverage. The complete list of probe sequences is provided in **Supplementary Table S1**.

112 **Visualization of SARS-CoV-2 in Vero cells with CoronaFISH**

113 To test our probes, we first used Vero cells (African green monkey), which are known to be
114 permissive for SARS-CoV-2 replication (Takayama, 2020) (see Methods). We processed the
115 samples for FISH following the protocol detailed in **Supplementary Note 1** and imaged cells
116 18h post infection (p.i.) with a multiplicity of infection (MOI) of 0.2, as well as uninfected control
117 cells. The positive-strand and negative-strand probe-sets were both labeled with the fluorophore
118 Cy3 and imaged separately in distinct experiments.

119

120 In uninfected samples, cells displayed only weak and diffuse fluorescent signal when labeled
121 with either probe-set, consistent with unspecific background labeling common in RNA-FISH
122 (Tsanov *et al*, 2016), and occasional bright spots could be observed, mostly located outside
123 cells, presumably due to unspecific probe aggregation (**Fig 1d-e** and **S1a**). By contrast, in
124 infected samples, a large proportion of cells showed very strong and localized signal in large
125 regions of the cytoplasm (**Fig 1d-e** and **S1a**). Quantification of the fluorescent intensities per cell
126 (see Methods) indicated that 26% of infected cells labeled for the positive strand (n=242) had
127 intensities exceeding a threshold that excluded >99% of uninfected cells (n=83) (**Fig 1e**). The
128 fluorescence intensity in these cells was on average 23 times higher than this threshold (s.d. 27)
129 (**Fig 1e**). For the negative strands, we counted 5% of Vero cells with intensities above the
130 similarly defined threshold in infected samples (n=307), vs. <1% for uninfected cells (n=103),
131 with on average 2.5 times higher intensities (s.d. 2.2).

132

133 The fluorescent signal for the positive-strand was remarkably strong compared to the uninfected
134 control images (**Fig 1e**). This is consistent with an extremely high per-cell viral yield, which has
135 previously been reported for Vero cells (Ogando *et al*, 2020). The RNA signal was perinuclear
136 and restricted to the cytoplasm, consistent with cytoplasmic replication, as previously reported

137 for other *Coronaviridae* and recently for SARS-CoV-2 (Snijder *et al*, 2020; Fung & Liu, 2019;
138 Stertz *et al*, 2007; Klein *et al*, 2020). Interestingly, we observed bright foci of different sizes and
139 intensities, some of which displayed hollow structures reminiscent of the replication organelles
140 (RO) or double-membrane vesicle (DMV) structures described previously (Ogando *et al*, 2020;
141 Klein *et al*, 2020). The signal of the negative strand was substantially dimmer than for the
142 positive-strand (**Fig 1e**), in agreement with previous reports that the replication intermediate
143 negative strand is less abundant (Wolff *et al*, 2020), but potentially also reflecting diminished
144 labeling efficiency of this probe set. The negative-strand RNA likewise forms clusters of different
145 sizes and intensities in the proximity of the nucleus (**Fig 1d**, **Fig EV1a**).

146
147 We next wanted to demonstrate the ability of CoronaFISH to simultaneously visualize two RNA
148 species with dual-color imaging (Tsanov *et al*, 2016). For this purpose, we used different FLAP
149 sequences on the primary probes set (FLAP-X for positive-strand, and FLAP-Y for negative-
150 strand probes), and labeled them with spectrally different fluorophores (Atto488 and Cy5). We
151 then imaged infected Vero cells at 18 h p.i. These images clearly show the presence of both
152 positive and negative RNA strands in the same cells and the same subcellular regions, although
153 the relative abundance of both strands appeared to vary from cell to cell and colocalization was
154 only partial (**Fig 1f**, **Fig EV1b**). The ability to visualize positive and negative RNA together
155 opens the door to analyzing the intracellular organization of viral transcription and replication
156 dynamics.

157
158 Our data thus show that CoronaFISH probes can sensitively and specifically detect the positive
159 and negative strands of SARS-CoV-2 in infected Vero cells.

160

161 **Applicability of CoronaFISH to drug screening**

162 We next asked if CoronaFISH can be used to test pharmacological treatments against SARS-
163 CoV-2. To this end, we treated SARS-CoV-2 infected Vero cells with Remdesivir, an adenosine
164 nucleoside triphosphate analog that reduces viral replication *in vitro* by inhibiting the RdRP
165 (Gordon *et al*, 2020). We first established an inhibition curve that showed, in our system, an
166 IC₅₀ concentration of 2.8 μ M for Remdesivir (**Fig EV1c**). We then performed FISH against the
167 positive strand using Atto-488 labeled probes in infected cells left untreated or treated with 10
168 μ M of Remdesivir. In untreated samples, 26% of cells (n=143) displayed a strong fluorescence
169 signal (above the 99% threshold defined for n= 273 uninfected cells), as above, whereas
170 Remdesivir-treated cells only showed background signal similar to uninfected cells (0% of
171 n=179 cells above threshold) (**Fig 1g,e**). These data suggest that our CoronaFISH probes can
172 be used to test molecules for their ability to inhibit SARS-CoV-2 replication.

173 **Detection of SARS-CoV-2 RNA in human cell lines**

174 We next tested the probes in several human cell lines known to be permissive to SARS-CoV-2
175 (Takayama, 2020): Caco-2 (human intestinal epithelial cells), Huh7 (hepatocyte-derived
176 carcinoma cells), and Calu-3 (human lung cancer cells). Each cell line was infected with MOI
177 0.2 and fixed at 36 h p.i. Titration on the supernatants of the infected cells revealed vastly
178 different replication efficiencies as tested by focus forming assay (**Table 1**). Caco2 and Huh7
179 cells showed rather low virus levels in the same order of magnitude as Vero cells ($2-5 \times 10^3$
180 FFU/ml), while Calu3 showed two orders of magnitude higher levels of viral RNA (2×10^5
181 FFU/ml).

182

183 We then performed FISH against the positive RNA strand. As for the Vero cells above, the
184 uninfected controls of all human cell types showed only a weak background signal, while a

185 strong signal could be detected in the infected cells (**Fig 2a-c**). However, depending on the cell-
186 type, the number of infected cells, as well as the amount and cellular localization of vRNA
187 detected by CoronaFISH were very different, consistent with different replication dynamics of
188 SARS-CoV-2 in these cell lines. In Caco-2 cells, only a minority of cells appeared infected (19%
189 of n=1,752 cells above intensity threshold defined from n=229 uninfected cells as above),
190 displaying rather low-intensity values, indicating a low abundance of positive-strand viral RNA
191 (6.2-fold above threshold, s.d. 6.8). Huh7 cells were more permissive for viral infection
192 manifesting in more cells displaying vRNA (74% of n=546 above threshold defined on n=246
193 uninfected cells) and higher RNA signal intensity (11-fold above threshold, s.d. 10). Lastly, all
194 Calu cells were infected (100% of n=773 cells above threshold defined on n=479 uninfected
195 cells) and the signal intensity was higher than in Caco-2 and Huh7 cells (28-fold above
196 threshold, s.d. 14). These data show that CoronaFISH probes can also be used in cell lines of
197 human origin with similar detection performance as in Vero cells.

198 **Detection of SARS-CoV-2 RNA in human tissue**

199 Next, we aimed to test if our approach can be used to detect SARS-CoV-2 RNA in samples
200 from patients. The major histopathological finding of the pulmonary system of post mortem
201 COVID-19 patients with acute respiratory distress syndrome (ARDS) is diffuse alveolar damage
202 in the acute or organizing phases. Lung tissue examination mainly shows evidence of intra-
203 alveolar hemorrhage and edema with fibrin and hyaline membranes developed on alveolar walls
204 at the acute phase and proliferative and fibrotic lesions in the alveolar septal walls at the
205 organizing phase (Hanley *et al*, 2020; Bradley *et al*, 2020). However, these lesions are common
206 to multiple forms of ARDS and not specific to COVID-19 and do not shed light on the underlying
207 etiology. CoronaFISH therefore has the potential to specifically detect SARS-CoV-2 infection
208 and characterize viral tropism within the tissue.

209

210 As a negative control, we imaged a tissue section sample obtained from a deceased adult
211 patient with diffuse alveolar damage from ARDS prior to the COVID-19 pandemic (see
212 Methods). Histological analysis showed diffuse alveolar damage with an important alveolar
213 hemorrhage, an intra-alveolar and interstitial edema with polymorphic inflammatory infiltrate and
214 the presence of early hyaline membrane adjacent to alveolar walls (**Fig EV2a**). When staining
215 this sample with the positive-strand CoronaFISH probes, no strong fluorescent signal was
216 detected, despite the presence of alveolar damage comparable to patients suffering from
217 COVID-19 (**Fig EV2 b-c**).

218
219 As a positive control, we used samples from a COVID-19 patient who died 3 days after
220 admission to the intensive care unit. Histological analysis showed diffuse alveolar damage at
221 the organizing phase with intra-alveolar hyaline membranes and fibrin together with interstitial
222 fibrotic lesions with polymorphic inflammatory cell infiltrate of alveolar walls (**Fig EV2d**).
223 Whereas histology by itself is not sufficient to diagnose lung tissue infection, CoronaFISH
224 revealed infected cells with large cytoplasmic RNA aggregates (**Fig 3a**), illustrating that viral
225 presence can also be detected in tissue sections. Because of the extensive destruction of tissue
226 architecture, determining the affected area of the parenchyma is challenging. However, the cell
227 types (e.g. macrophages or type 2 pneumocytes) infected by SARS-CoV-2 could be revealed by
228 combining CoronaFISH with immunostaining.

229 **Detection of SARS-CoV-2 RNA in nasal swabs**

230 Motivated by the previous results, we next attempted to detect viral presence in human samples
231 used for COVID-19 diagnostics. Nasal swabs were collected from patients with respiratory
232 symptoms as part of routine care at the Hospital Ambroise Paré (Paris) (**Fig 3b**). Samples were
233 screened for the presence of SARS-CoV-2 with RT-PCR. The remainder of the sample not used
234 for diagnostics was deposited on coverglass and we performed CoronaFISH against the

235 positive-strand RNA of SARS-CoV-2. Negative samples (RT-PCR Ct value above detection
236 limit) gave no specific signal, but some areas showed substantially higher background than in
237 the cultured cell lines (**Fig EV3**). This background was rather homogenous, and thus distinct
238 from the RNA signal seen so far in infected cells above. However, in a RT-PCR positive sample
239 (Ct value = 21), we detected a strong RNA-FISH signal in a subset of cells (**Fig 3c**) when
240 staining for the positive strand. Therefore, although a systematic analysis on many more
241 samples will be required to assess specificity and sensitivity, our CoronaFISH probes may allow
242 the detection of SARS-CoV-2 in patient-derived samples in a clinical setting.

243 **Electron microscopy visualization of SARS-CoV-2 RNA**

244 Above, we demonstrated how CoronaFISH allows using different fluorescently labeled
245 secondary detector oligos. We reasoned that this flexibility extends beyond conventional
246 fluorescence microscopy, and could also allow for other imaging modalities including electron
247 microscopy (EM). EM is optimally suited to reveal how infection alters the cellular ultrastructure.
248 Indeed, conventional EM images of glutaraldehyde fixed samples showed a dramatic
249 reorganization of the cytoplasm of Vero cells upon SARS-CoV-2 infection, characterized by a
250 loss of Golgi stacks (**Fig EV4a,b**) and prominent new features, including numerous DMVs (**Fig**
251 **EV4c**), which have recently been identified as the main replication organelles of SARS-CoV-2
252 (Snijder *et al*, 2020; Cortese *et al*, 2020; Klein *et al*, 2020; Wolff *et al*, 2020). Budding of viral
253 particles appeared restricted to the lumen of the endoplasmic reticulum (ER) (data not shown)
254 and to electron-lucent vesicles derived from the ER-Golgi intermediate compartment (ERGIC)
255 that were distinct from DMVs (**Fig EV4d**), also in agreement with prior studies (Sicari *et al*,
256 2020).

257

258 Coupling EM with RNA *in situ* hybridization (EM-ISH) would allow for ultrastructural studies of
259 SARS-CoV-2 infected cells with direct visualization of the viral RNA. We previously used EM-
260 ISH to detect various cellular RNAs using DNA- or ribo-probes (Hubstenberger *et al*, 2017;
261 Yamazaki *et al*, 2018). Here, we adapted this labeling approach by using the same 96 primary
262 oligos against the positive strand of SARS-CoV-2 as before, hybridized to a secondary oligo
263 with Biotin at its 5' end. These hybrids were detected with an anti-biotin antibody conjugated to
264 10 nm gold particles (**Fig 4a**). EM imaging was performed on thin sections (80 nm) of Lowicryl
265 K4M-embedded Vero cells, either uninfected or infected (MOI 0.1, 36 h p.i.).

266

267 In uninfected samples, very few gold particles were detected (**Fig 4b**). Manual counting on
268 random fields yielded a mean of only 0.5 ± 0.3 gold particles/ μm^2 in nuclear and cytoplasmic
269 areas ($n=9$ regions, for a total of $94.4 \mu\text{m}^2$), indicative of low background labeling. Although a
270 much larger number of small particles was visible, their size was consistent with ribosomes
271 rather than gold particles (**Fig 4e,f**). In infected cells, gold particles were visible in large
272 numbers at several locations, notably at intracytoplasmic (**Fig 4c**) and extracellular viral
273 particles (**Fig EV4e**), as expected. However, DMVs were the most heavily labelled structures
274 (**Fig 4d**), with manual counts of 180 ± 39 gold particles/ μm^2 in DMV zones, a 360 fold
275 increase over uninfected cells ($n=11$ regions, for a total of $11.9 \mu\text{m}^2$). Strikingly, we observed
276 gold particles accumulating along DMV internal 10 nm thick fibers and at the periphery of DMVs
277 (**Fig 4d, Fig EV4f**). Although the nature of these fibers remains to be determined, this
278 accumulation of gold particles could reflect a slow export of the viral genomes through the
279 recently described pores spanning the DMV double membrane (Wolff *et al*, 2020). Finally, gold
280 particles also labeled large lysosomal organelles, shown to play a role in exocytosis of mouse β -
281 Coronaviruses (Ghosh *et al*, 2020) and containing densely-packed SARS-CoV-2 virions (**Fig**
282 **EV4f**).

283

284 These data demonstrate the flexibility of our probe sets, permitting their use for both
285 fluorescence and EM imaging, and their potential for ultrastructural studies of SARS-CoV-2
286 replication kinetics.

287

288 **Discussion**

289 Here, we presented CoronaFISH, an approach based on FISH (Tsanov *et al*, 2016) permitting
290 the detection of the positive and negative RNA strands of SARS-CoV-2. We validated sensitive
291 and specific detection of SARS-CoV-2 RNA by fluorescence microscopy in Vero cells, several
292 human cell lines (Caco-2, Huh7, and Calu-3), human lung tissue and nasal swabs. Lastly, we
293 demonstrated the flexibility of our approach, by adapting it for EM imaging of the viral RNA.

294

295 Our two probe sets each consist of 96 probes, each conjugated to two fluorescent dyes,
296 theoretically enabling 192 fluorescent dyes to target each RNA strand spaced along the entire
297 SARS-CoV-2 RNA. This results in a very bright signal, allowing viral RNA detection in
298 challenging samples, as demonstrated with the patient samples, where the increased signal
299 intensity helps to distinguish true signal despite high autofluorescence. Because our probes
300 span the entire length of the ~30 Kb viral RNA, they should enjoy high robustness against
301 mutations or partial RNA degradation. Probes are provided individually in a 96-well plate format,
302 therefore subsets of probes against specific regions (e.g. to target specific viral genes) can be
303 selected individually. Further, the secondary detector probes can easily be swapped, allowing
304 the use of different fluorophores and simultaneous imaging of positive and negative strands or
305 even change the imaging modality, as demonstrated by our EM-ISH experiments. This labeling
306 flexibility, together with the fact that our probes target the entire genome (as opposed to only the

307 Spike gene), make CoronaFISH a useful alternative to commercial FISH-based methods for
308 SARS-CoV-2 RNA detection such as HuluFISH and RNAscope.

309

310

311 Compared to immunofluorescence, our hybridization based technique offers several
312 advantages. First, CoronaFISH directly visualizes the viral genome (and/or its replication
313 intermediate) rather than viral proteins. This provides a more specific indication of viral presence
314 and replication, since viral proteins may be found in cells or subcellular compartments where the
315 viral genome is absent and/or where it does not replicate. Thus, CoronaFISH could be
316 instrumental in distinguishing productive from non productive (abortive) infection (Fehr &
317 Perlman, 2015), as has been reported for example in the context of antibody dependent
318 enhancement of SARS-CoV-2 infection (Lee *et al*, 2020). Thereby, CoronaFISH offers a
319 powerful tool to help define the molecular mechanisms of SARS-CoV-2 pathogenesis. In
320 addition, the ability to distinguish and simultaneously visualize positive and negative RNA
321 strands permits the study of replication kinetics in single cells and to uncover spatiotemporal
322 aspects of the infection cycle. Second, the high specificity of these probes owing to their unique
323 complementarity to the SARS-CoV-2 sequence allows to distinguish it from other related
324 viruses, which can be a common problem for antibodies against similar epitopes of different
325 related viral strains. Third, probes can be synthesized within a few days, permitting quick
326 turnover compared to antibody production. Fourth, the CoronaFISH approach is inexpensive.
327 Primary probes can be ordered at low cost, and the provided quantities (smallest synthesis
328 scale provides nanomoles for each oligo) suffice for thousands of experiments. This makes
329 CoronaFISH attractive for high throughput image-based screening of large libraries of antiviral
330 compounds, as illustrated by our Remdesivir experiment.

331

332 CoronaFISH can also be used in combination with immunofluorescence for the detection of viral
333 or host proteins (Rensen *et al*, 2020) and is compatible with GFP stains (Tsanov *et al*, 2016).
334 Furthermore, RNA-FISH and IF combined have also been shown to be suitable for flow
335 cytometry and fluorescence activated cell sorting (FACS) (Arrigucci *et al*, 2017). More complex
336 implementations enable multiplexed detection of multiple RNA species (Pichon *et al*, 2018), and
337 will thus permit to probe the host-pathogen interaction at the single-cell-single-virus level.

338

339 Compared to the analysis of viral RNA using (single-cell) RNA-seq, CoronaFISH provides
340 information on single cells in their spatial context, since experiments do not require cell
341 dissociation. Our approach can thus deliver insights into the viral life-cycle, including occurrence
342 and abundance of positive and negative-strand RNA, their subcellular localization, and their
343 interplay with the host, as well as with structures induced by SARS-CoV-2 infection (DMVs,
344 replication compartments, ERGIC). CoronaFISH also provides a unique tool to study virus-host
345 interactions in tissue. Furthermore, studying viral RNA presence in thousands of cells is
346 possible by using automated image analysis, and can hence allow the detection of rare events.
347 This will allow examining the effects of infection on aspects such as cell morphology, cell fusion,
348 cell-to-cell transmission, or tissue (re)organization.

349

350 Our data on nasal swabs suggest that CoronaFISH may be used on clinical samples and
351 potentially as the basis for diagnostic tests. Unlike standard RT-PCR tests, CoronaFISH does
352 not require RNA extraction or enzymatic reagents, which have at times been in short supply. As
353 mentioned above, because we chose probes targeting the whole length of the SARS-CoV-2
354 genomes, CoronaFISH detection is also likely to be more robust to mutations, such as the
355 recently identified VUI-202012/01 (aka B.1.1.7) variant, which has been reported to yield
356 negative results in some PCR tests based on the Spike gene (Investigation of novel SARS-
357 COV-2 variant Variant of Concern 202012/01, 2). The cost of CoronaFISH reagents also

358 compares favorably to those used in standard PCR assays. Despite these advantages, a
359 diagnostic test based on CoronaFISH would face two hurdles: speed and a need for a
360 fluorescence microscope. The duration of the FISH experiment (~2 days) is currently too long
361 for a rapid test. However, microfluidic devices can be used to reduce this delay to less than 15
362 minutes comparable to fast antigenic tests (Shaffer *et al*, 2015). The requirement for a
363 fluorescence microscope may also be alleviated using cheap do-it-yourself imaging systems, for
364 example smartphones combined with inkjet-printed lenses (Sung *et al*, 2017; Cybulski *et al*,
365 2014). Such portable and low-cost imaging systems could potentially facilitate point-of-care
366 diagnostics.

367

368 We believe that the probes and complementary labeling approaches described here expand the
369 toolbox for studying SARS-CoV-2 and hope that the resources provided (sequences, protocol,
370 and source code) will facilitate their adoption by the community to better understand, diagnose
371 and fight this virus.

372 **Acknowledgments**

373 We would like to thank Edouard Bertrand, who originally developed smiFISH, and Hans
374 Johansson for insightful discussions. We also thank Felix Rey for having helped set up the
375 collaboration and Guillaume Dumenil (Ultrastructural Bioimaging UTechS of Institut Pasteur) for
376 having suggested the application of CoronaFISH to electron microscopy and for follow-up
377 discussions. We thank Nathalie Jolly and Nathalie Clément (Center for Translational Science,
378 Institut Pasteur) for their help in obtaining authorization to use patient samples. ESL
379 acknowledges funding from the French Government's Investissement d'Avenir program,
380 'INCEPTION' (ANR-16-CONV-0005). GBS acknowledges funding by the Institut Pasteur

381 Coronavirus task force (don AXA COVID-19 project COVID-SPREAD). This work was funded by

382 Institut Pasteur.

383

384 Materials and Methods

385 Probe design

386 Entire code for probe-design is available on GitHub:

387 <https://github.com/muellerflorian/corona-fish>.

388

389 The probe-design involves several steps to ensure high sensitivity for the detection of SAR-
390 CoV-2 RNA, while minimizing false positive detection of other β -coronaviruses, other pathogens
391 provoking similar symptoms, and transcripts of the host organism. In parenthesis, we list how
392 many probes remain after each selection step for +strand and -strand targeting probes.

393

394 The initial list of probes for the plus and minus strand was generated with Oligostan (N=615 /
395 608) (Tsanov *et al*, 2016). We then selected all probes with a GC content between 40-60%,
396 probes satisfying at least 2 out of 5 previously established criteria for efficient oligo design (Xu
397 *et al*, 2009) (N=385 / 362).

398

399 To guarantee that the probes are insensitive towards known mutations of SARS-CoV-2, we
400 selected only probes with not more than 2 mismatches with any of 2500 aligned SARS-CoV-2
401 sequences (N=333 / 311).

402

403 We then performed a local blast against other β -coronaviruses (SARS, MERS, HKU1, OC43,
404 NL63, or 229E), other pathogens and viruses causing similar symptoms (Mycobacterium
405 tuberculosis, Human parainfluenza virus type 1-4, Respiratory syncytial virus, Human
406 metapneumovirus, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Influenza A-D,
407 Rhinovirus/enterovirus), as well as the transcriptome of the most common host organisms

408 (homo sapiens, mus musculus, African Green monkey, hamsters, ferret). We excluded all
409 probes with more than 22 matches in any of these blast searches (N=115 / 114).

410

411 Lastly, we selected the 96 probes with the highest NGS coverage. Probe sequences are
412 provided in **Supplementary Table 1**.

413 **smiFISH**

414 To visualize vRNA molecules, we used the smiFISH approach (Tsanov *et al*, 2016). Unlabelled
415 primary probes are designed to target the RNA of interest, and can be pre-hybridized with
416 fluorescently labeled secondary detector oligonucleotides for visualization. Probes were
417 designed as described above.

418

419 A detailed protocol is available in **Supplementary Note 1**. Cells were fixed in 4% PFA for 30
420 min, washed twice with PBS++ and stored in nuclease-free 70% ethanol at -20 °C until labeling.
421 On the day of the labeling, the samples were brought to room temperature, washed twice with
422 wash buffer A (2x SSC in nuclease-free water) for 5 min, followed by two washing steps with
423 washing buffer B (2X SSC and 10% formamide in nuclease-free water) for 5 min. The target-
424 specific primary probes were pre-hybridized with the fluorescently labeled secondary probes via
425 a complementary binding readout sequence. The reaction mixture contained primary probes at
426 a final concentration of 40 pm, and secondary probes at a final concentration of 50 pm in 1X
427 NEBuffer buffer (New England Biolabs). Pre-hybridization was performed in a PCR machine
428 with the following cycles: 85 °C for 3 min, followed by heating to 65 °C for 3 min, and a further 5
429 min heating at 25 °C. 2 µL of this FISH-probe stock solution was added to 100 µL of
430 hybridization buffer (10% (w/v) dextran, 10% formamide, 2X SSC in nuclease-free water).
431 Samples were placed on Parafilm in a humidified chamber on 100 µL of hybridization solution,
432 sealed with Parafilm, and incubated overnight at 37°C. The next day, cells were washed in the

433 dark at 37°C without shaking for >30min twice with pre-warmed washing buffer B. Sample were
434 washed once with PBS for 5 min, stained with DAPI in PBS (1:10000) for 5 min, and washed
435 again in PBS for 5 min. Samples were mounted in ProLong Gold antifade mounting medium.

436 **Infection of cell lines**

437 The viral stock used originates from BetaCoV/France/IDF0372/2020 and was kindly gifted by
438 the National Reference Centre for Respiratory Viruses at Institut Pasteur, Paris, and originally
439 supplied through the European Virus Archive goes Global platform.

440 **Vero cells**

441 The day before the infection, Vero cells were trypsinized and diluted in DMEM – Glutamax 10%
442 FBS. They were then seeded, 8*10⁴ / well, in a 12-multiwell with coverslips. The day of the
443 infection the medium of the cells was discarded and the monolayers were infected with SARS-
444 CoV-2 virus in DMEM – Glutamax 2% FBS for 1h at 37°C 5% CO₂ at a multiplicity of infection
445 (MOI) of 0.02. The MOI used were 0.02. After the desired infection duration, the supernatant
446 was collected for virus titration and the cells were washed with PBS++, fixed with 4% EM-grade
447 PFA for 30 minutes at RT and processed for smiFISH.

448 **Vero cells for EM-ISH**

449 The day before the infection, Vero cells were trypsinized and diluted in DMEM – Glutamax 10%
450 FBS. They were then seeded, 7 x 10⁵ cells / well, in a 6 multiwell plate. The day of the infection
451 the medium of the cells was discarded and cells were infected with SARS-CoV-2 virus in DMEM
452 – Glutamax 2% FBS at multiplicity of infection (MOI) of 0.1. After 36h, the supernatant was
453 collected for virus titration and the cells were washed with PBS++. The monolayers were fixed
454 using 4% EM-grade PFA in 0.1M Sorensen's buffer for 1 hour at 4°C.

455 **Human cell lines**

456 The day before the infection, Huh7, CaCo-2, Calu-3 and Vero cells were trypsinized and diluted
457 in DMEM – Glutamax 10% FBS (Huh7 and Vero), MEM 20% FBS + NEAA, Sodium Pyruvate
458 and Glutamax (CaCo-2), RPMI 20% FBS + NEAA (Calu-3). After 6 hours the medium of the
459 cells was discarded and the monolayers were infected in triplicate with a multiplicity of infection
460 (MOI) of 0.2 with SARS-CoV-2 virus in DMEM – Glutamax 2% FBS. After 36h the supernatant
461 was collected for virus titration and the cells were washed with PBS++. The monolayers were
462 fixed using 4% EM-grade PFA for 30 minutes at RT and processed for smiFISH.

463 **Titration protocol (Focus Forming Assay)**

464 Vero cells were seeded in 96-multi wells at 2×10^4 cells/well in DMEM – Glutamax 10% FBS.
465 The following day the supernatants to be titered were thawed and serially diluted in tenfold
466 steps in DMEM – Glutamax 1% FBS. 100 ul of the dilutions were used to infect the Vero
467 monolayers, and incubated for 2 h at 37°C 5% CO₂. The infection medium was then discarded
468 and a semi-solid media containing MEM 1X, 1.5% CMC, 10% FBS was added to the
469 monolayers. The cells were incubated at 37°C 5% CO₂ for 36 hours. Cells were then fixed with
470 4% formaldehyde and foci were revealed using a rabbit anti-SARS-CoV N antibody and
471 matching secondary HRP-conjugated secondary antibodies. Foci were visualized by
472 diaminobenzidine (DAB) staining and counted using an Immunospot S6 Analyser (Cellular
473 Technology Limited CTL). Viral titers were expressed as focus forming units (FFU)/ml.

474 **Inhibitors assay**

475 To determine IC50 of Remdesivir in our system, Vero cells were pre-treated with serial dilution
476 of Remdesivir (100nM-100μM) for 1h at 37C before infection with SARS-CoV-2 at MOI 0.02.
477 After 2hs infection the virus inoculum was removed, cells were replenished with drug-containing
478 media and incubated for two days. Supernatant was then collected and titered by focus forming

479 assay. IC50 values were calculated by non linear regression analysis (log(inhibitor) vs response
480 – Variable slope (four parameters)) using Prism 6, GraphPad software. For the FISH experiment
481 Vero cells infected at MOI 0.1 were treated with Remdesivir 10 μ M and fixed 24hs p.i.

482 **Image-analysis of infected cell lines**

483 Nuclei were automatically segmented in 2D images with an ImJoy (Ouyang *et al*, 2019) plugin
484 using the CellPose model (Stringer *et al*, 2020). Source code for segmentation is available here:
485 <https://github.com/fish-quant/segmentation>. Equidistant regions with a width of 50 pixels were
486 calculated around each nucleus. Overlapping regions from different nuclei were removed. 3D
487 FISH images were transformed into 2D images with a maximum intensity projection along z.
488 Signal intensity for each cell was determined as the 90% quantile of all pixels in the equidistant
489 region around its nucleus.

490 **Lung tissue**

491 Lung autopsy material from the COVID-19 patient was provided by the human biological sample
492 bank of the Lille COVID working group "LICORN" (Lille, France). The use of this autopsy
493 material for research purposes was approved by local ethics review committees at Lille Hospital
494 (Lille, France). Lung autopsy material from the control patient with diffuse alveolar damage prior
495 COVID-19 pandemic was provided by the Pathological department of Necker-Enfants maladies
496 Hospital (Paris, France).

497

498 Lung autopsy material was fixed in 10% neutral buffered formalin and paraffin embedded, 4 μ m
499 sections were stained with haematoxylin and eosin staining for histological analysis using light
500 microscopy. SARS-CoV-2 RNA was detected as described above.

501 **Nasal swab patient samples**

502 Respiratory specimens (nasal swabs) have been collected from patients with respiratory
503 symptoms as part of routine care at the Hospital Ambroise Paré (Paris) in late March 2020. No
504 additional samples were collected in the course of this work. Patients were contacted, informed
505 about the research project, and given the possibility to oppose the use of their samples for this
506 project. Lack of opposition to participate in clinical research was verified in the records of all
507 patients whose samples were used here. This project has been recorded in the French public
508 register Health-data-Hub (n°F20200717122429). Processing of personal data for this study
509 complies with the requirements of the “reference methodology MR-004” established by the
510 French Data Protection Authority (CNIL) regarding data processing in health research.

511

512 Samples were screened for the presence of SARS-CoV-2 with RT-PCR as described below.
513 Thin-layer preparation from respiratory specimens was achieved through the cytocentrifugation
514 (800rpm, 10min) of 150µL of the remaining respiratory sample with a Thermo Scientific Cytospin
515 4 cytocentrifuge. Cells were fixed in PBS-PFA 4% for 30 min and then conserved frozen in
516 100% ethanol until FISH was performed.

517

518 **RT-PCR**

519 RNA extraction: 400 µL of clinical samples were extracted in 300 µL of elution buffer (Total NA
520 Lysis/Binding buffer) for 20 min at room temperature with gentle agitation. RNA was extracted
521 with the MagnaPURE compact (Roche) and the MagNA Pure Compact DNA Isolation Kit I
522 (Roche) following the protocol “Total_NA_Plasma_external_lysis purification protocol”. Final
523 dilution of RNA was in 50 µL elution buffer.

524

525 RT-PCR: Screening for SARS-CoV-2 was performed by RT-PCR following a modified protocol
526 recommended by the French National Reference Center for Respiratory Viruses, Institut
527 Pasteur, Paris using Ag Path-ID One-Step RT-PCR kit® (Thermofisher). PCR reaction was run
528 on the ABI PRISM® 7900 system (Applied Biosystems) with the following cycle settings: 45°C
529 10'; 95°C 5'; 45 X (95°C 15"; 58°C 45"). Primer sequences and concentration are provided in
530 Supplementary Table 2.

531 **FISH**

532 Thin-layered samples on a cover-slide suitable for FISH were obtained with a Cytospin protocol.
533 150 µL of the sample were deposited in a Cytofunnel (Thermo Scientific 1102548). Samples
534 were then centrifuged (800 rpm, 10 min, room temperature) with a Cytospin 4 cytocentrifuge
535 (Thermo Scientific) on Cytoslides (Thermo Scientific 5991059). Cells were fixed in PBS-PFA 4%
536 for 30 min and then conserved frozen in 70% ethanol at -20°C. FISH protocol was performed
537 with Cy3-labeled plus-strand probes labeled with as described above, with one exception: for
538 hybridization 400 µL hybridization buffer was used per sample instead of 100 µL (with the same
539 final probe concentration).

540 **EM-ISH**

541 **Fixation and embedding for electron microscopy**

542 For Epon embedding, cell cultures were fixed for 1 hour at 4°C in 2% glutaraldehyde (Taab
543 Laboratory Equipment, Reading, UK) in 0.1 M phosphate buffer, pH 7.3. During fixation, cells
544 were scraped off from the plastic substratum and centrifuged at 5000g for 15 min. Cell pellets
545 were dehydrated in increasing concentrations of ethanol and embedded in Epon.
546 Polymerization was carried out for 48 hours at 64°C. Ultrathin sections were collected on

547 Formvar-carbon-coated copper grids (200 mesh) and stained briefly with standard uranyl-
548 acetate and lead-citrate solutions.

549
550 Embedding in Lowicryl K4M (Chemische Werke Lowi, Waldkraiburg, Germany) was carried
551 out on Vero cells fixed either in 4% formaldehyde (Merck, Darmstadt, Germany) or in 2%
552 glutaraldehyde at 4°C. Cell pellets were equilibrated in 30% methanol and deposited in a Leica
553 EM AFS2/FSP automatic reagent handling apparatus (Leica Microsystems). Lowicryl
554 polymerization under UV was for 40 h at – 20°C followed by 40 h at +20°C Ultrathin-sections of
555 Lowicryl-embedded material were collected on Formvar-carbon-coated gold grids (200 mesh)
556 and stored until use.

557

558 **Electron microscopic *in situ* hybridization (EM-ISH)**

559 At the EM level, the SARS-CoV-2 RNA (+) strand probe was composed of the same set of 96
560 oligodeoxynucleotides that was used for RNA-FISH. The secondary oligonucleotide, however,
561 was modified by a custom-added biotin residue at its 5'-end (Qiagen). Hybrids of the CoV-2
562 RNAs with the probe were detected with a goat anti-biotin antibody conjugated to 10 nm gold
563 particles (BBI international).

564
565 High resolution *in situ* hybridization was carried out essentially as described previously
566 (Hubstenberger *et al*, 2017; Yamazaki *et al*, 2018). The hybridization solution contained 50%
567 deionized formamide, 10% dextran sulfate, 2 x SSC, and a final concentration of 80 ng/ml of a
568 mix of 1 µg/µl primary oligonucleotides and 1.2 µg/µl of biotinylated secondary oligonucleotide
569 stored at -20°C. EM-grids, with ultra-thin sections of either formaldehyde- or glutaraldehyde-
570 fixed cells side down, were floated for 3 h at 37-42°C on a 1.5 µl drop of hybridization solution
571 deposited on a parafilm in a moist glass chamber. EM-grids were then briefly rinsed over three

572 drops of PBS and incubated 30 min at RT on a drop of goat anti-biotin antibody (BBI
573 International) conjugated to 10 nm gold particles diluted 1/25 in PBS. EM-grids were further
574 rinsed on 2 drops of PBS and finally washed with a brief jet of deionized water at high intensity.
575 Following a 10 min drying on filter paper with thin-sections on top, the EM grids were stained 1
576 min on a drop of 4% uranyl acetate in water and dried on filter paper 30 min before observation
577 under the EM. Standard lead citrate staining was omitted to favor higher contrast of gold
578 particles over the moderately-stained cellular structures.

579

580 Sections were analyzed with a Tecnai Spirit transmission electron microscope (FEI, Hillsboro,
581 OR), and digital images were taken with an SIS MegaviewIII charge-coupled device camera
582 (Olympus, Tokyo, Japan). Quantitation was performed by manually counting gold particles on
583 surfaces that were measured using analySIS software (Olympus Soft Imaging Solutions,
584 Munster, Germany). Statistics were calculated using Excel (Microsoft, Redmond, WA).

585

586

587 References

588 Arrigucci R, Bushkin Y, Radford F, Lakehal K, Vir P, Pine R, Martin D, Sugarman J, Zhao Y,
589 Yap GS, *et al* (2017) FISH-Flow, a protocol for the concurrent detection of mRNA and
590 protein in single cells using fluorescence in situ hybridization and flow cytometry. *Nat
591 Protoc* 12: 1245–1260

592 Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, Blecher-Gonen R, Cohen M, Medaglia C, Li
593 H, *et al* (2020) Host-Viral Infection Maps Reveal Signatures of Severe COVID-19
594 Patients. *Cell* 181: 1475–1488.e12

595 Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H, Najafian B, Deutsch G, Lacy JM,
596 Williams T, *et al* (2020) Histopathology and ultrastructural findings of fatal COVID-19
597 infections in Washington State: a case series. *The Lancet* 396: 320–332

598 Chen F, Wassie AT, Cote AJ, Sinha A, Alon S, Asano S, Daugherty ER, Chang J-B,
599 Marblestone A, Church GM, *et al* (2016) Nanoscale imaging of RNA with expansion
600 microscopy. *Nat Methods* 13: 679–684

601 Cheung CY, Poon LLM, Ng IHY, Luk W, Sia S-F, Wu MHS, Chan K-H, Yuen K-Y, Gordon S,
602 Guan Y, *et al* (2005) Cytokine Responses in Severe Acute Respiratory Syndrome
603 Coronavirus-Infected Macrophages In Vitro: Possible Relevance to Pathogenesis. *J Virol*
604 79: 7819–7826

605 Cortese M, Lee J-Y, Cerikan B, Neufeldt CJ, Oorschot VMJ, Köhrer S, Hennies J, Schieber NL,
606 Ronchi P, Mizzon G, *et al* (2020) Integrative Imaging Reveals SARS-CoV-2-Induced
607 Reshaping of Subcellular Morphologies. *Cell Host Microbe* 28: 853–866.e5

608 Cybulski JS, Clements J & Prakash M (2014) Foldscope: Origami-Based Paper Microscope.
609 *PLoS ONE* 9

610 Fehr AR & Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis.
611 *Methods Mol Biol Clifton NJ* 1282: 1–23

612 Fung TS & Liu DX (2019) Human Coronavirus: Host-Pathogen Interaction. *Annu Rev Microbiol*
613 73: 529–557

614 Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, Takvorian PM, Bleck C, Hsu
615 VW, Fehr AR, *et al* (2020) β -Coronaviruses Use Lysosomes for Egress Instead of the
616 Biosynthetic Secretory Pathway. *Cell* 183: 1520–1535.e14

617 Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP & Götte M (2020)
618 Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from
619 severe acute respiratory syndrome coronavirus 2 with high potency. *J Biol Chem* 295:
620 6785–6797

621 Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, Thursz M, Manousou P,
622 Corbett R, Goldin R, *et al* (2020) Histopathological findings and viral tropism in UK
623 patients with severe fatal COVID-19: a post-mortem study. *Lancet Microbe* 1: e245–
624 e253

625 Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M, Chouaib R, Yi Z, Morlot
626 J-B, Munier A, Fradet M, *et al* (2017) P-Body Purification Reveals the Condensation of
627 Repressed mRNA Regulons. *Mol Cell* 68: 144–157.e5

628 Investigation of novel SARS-CoV-2 variant Variant of Concern 202012/01

629 Itzkovitz S & van Oudenaarden A (2011) Validating transcripts with probes and imaging
630 technology. *Nat Methods* 8: S12–S19

631 Johns Hopkins University Dashboard

632 Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN & Chang H (2020) The Architecture of SARS-CoV-
633 2 Transcriptome. *Cell* 181: 914–921.e10

634 King BR, Samacoits A, Eisenhauer PL, Ziegler CM, Bruce EA, Zenklusen D, Zimmer C, Mueller

635 F & Botten J (2018) Visualization of Arenavirus RNA Species in Individual Cells by
636 Single-Molecule Fluorescence In Situ Hybridization Suggests a Model of Cyclical
637 Infection and Clearance during Persistence. *J Virol* 92

638 Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, Stanifer ML,
639 Boulant S, Bartenschlager R & Chlonda P (2020) SARS-CoV-2 structure and replication
640 characterized by in situ cryo-electron tomography. *Nat Commun* 11: 5885

641 Lee WS, Wheatley AK, Kent SJ & DeKosky BJ (2020) Antibody-dependent enhancement and
642 SARS-CoV-2 vaccines and therapies. *Nat Microbiol* 5: 1185–1191

643 Mueller F, Senecal A, Tantale K, Marie-Nelly H, Ly N, Collin O, Basyuk E, Bertrand E, Darzacq
644 X & Zimmer C (2013) FISH-quant: automatic counting of transcripts in 3D FISH images.
645 *Nat Methods* 10: 277–278

646 Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens RWAL, van der Meer Y, Caly L,
647 Druce J, de Vries JJC, Kikkert M, Bárcena M, et al (2020) SARS-coronavirus-2
648 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. *J
649 Gen Virol*

650 Ouyang W, Mueller F, Hjelmare M, Lundberg E & Zimmer C (2019) ImJoy: an open-source
651 computational platform for the deep learning era. *Nat Methods* 16: 1199–1200

652 Pichon X, Lagha M, Mueller F & Bertrand E (2018) A Growing Toolbox to Image Gene
653 Expression in Single Cells: Sensitive Approaches for Demanding Challenges. *Mol Cell*
654 71: 468–480

655 Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A & Tyagi S (2008) Imaging individual
656 mRNA molecules using multiple singly labeled probes. *Nat Meth* 5: 877–879

657 Rensen E, Mueller F, Scoca V, Parmar JJ, Souque P, Zimmer C & Di Nunzio F (2020)
658 Clustering and reverse transcription of HIV-1 genomes in nuclear niches of
659 macrophages. *EMBO J*: e105247

660 Shaffer SM, Joshi RP, Chambers BS, Sterken D, Biaesch AG, Gabrieli DJ, Li Y, Feemster KA,
661 Hensley SE, Issadore D, et al (2015) Multiplexed detection of viral infections using rapid
662 in situ RNA analysis on a chip. *Lab Chip* 15: 3170–3182

663 Sicari D, Chatzilooannou A, Koutsandreas T, Sitia R & Chevet E (2020) Role of the early
664 secretory pathway in SARS-CoV-2 infection. *J Cell Biol* 219

665 Skinner SO, Sepúlveda LA, Xu H & Golding I (2013) Measuring mRNA copy number in
666 individual Escherichia coli cells using single-molecule fluorescent in situ hybridization.
667 *Nat Protoc* 8: 1100–1113

668 Snijder EJ, Limpens RWAL, Wilde AH de, Jong AWM de, Zevenhoven-Dobbe JC, Maier HJ,
669 Faas FFGA, Koster AJ & Bárcena M (2020) A unifying structural and functional model of
670 the coronavirus replication organelle: Tracking down RNA synthesis. *PLOS Biol* 18:
671 e3000715

672 Sertz S, Reichelt M, Spiegel M, Kuri T, Martínez-Sobrido L, García-Sastre A, Weber F & Kochs
673 G (2007) The intracellular sites of early replication and budding of SARS-coronavirus.
674 *Virology* 361: 304–315

675 Stringer C, Wang T, Michaelos M & Pachitariu M (2020) Cellpose: a generalist algorithm for
676 cellular segmentation. *Nat Methods*

677 Sung Y, Campa F & Shih W-C (2017) Open-source do-it-yourself multi-color fluorescence
678 smartphone microscopy. *Biomed Opt Express* 8: 5075–5086

679 Takayama K (2020) In Vitro and Animal Models for SARS-CoV-2 research. *Trends Pharmacol
680 Sci*

681 Tang T, Bidon M, Jaimes JA, Whittaker GR & Daniel S (2020) Coronavirus membrane fusion
682 mechanism offers a potential target for antiviral development. *Antiviral Res* 178: 104792

683 Trcek T, Chao JA, Larson DR, Park HY, Zenklusen D, Shenoy SM & Singer RH (2012) Single-
684 mRNA counting using fluorescent in situ hybridization in budding yeast. *Nat Protoc* 7:
685 408–419

686 Tsanov N, Samacoits A, Chouaib R, Traboulsi A-M, Gostan T, Weber C, Zimmer C, Zibara K,
687 Walter T, Peter M, *et al* (2016) smiFISH and FISH-quant - a flexible single RNA
688 detection approach with super-resolution capability. *Nucleic Acids Res* 44: e165
689 V'kovski P, Kratzel A, Steiner S, Stalder H & Thiel V (2020) Coronavirus biology and replication:
690 implications for SARS-CoV-2. *Nat Rev Microbiol*: 1–16
691 Wang S (2019) Single Molecule RNA FISH (smFISH) in Whole-Mount Mouse Embryonic
692 Organs. *Curr Protoc Cell Biol* 83: e79
693 Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S, Jong AWM de, Koning
694 RI, Agard DA, Grünwald K, Koster AJ, *et al* (2020) A molecular pore spans the double
695 membrane of the coronavirus replication organelle. *Science* 369: 1395–1398
696 Wu C, Simonetti M, Rossell C, Mignardi M, Mirzazadeh R, Annaratone L, Marchiò C, Sapino A,
697 Bienko M, Crosetto N, *et al* (2018) RollFISH achieves robust quantification of single-
698 molecule RNA biomarkers in paraffin-embedded tumor tissue samples. *Commun Biol* 1:
699 1–8
700 Xu Q, Schlabach MR, Hannon GJ & Elledge SJ (2009) Design of 240,000 orthogonal 25mer
701 DNA barcode probes. *Proc Natl Acad Sci U S A* 106: 2289–2294
702 Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, Bond CS, Nakagawa S,
703 Pierron G & Hirose T (2018) Functional Domains of NEAT1 Architectural lncRNA Induce
704 Paraspeckle Assembly through Phase Separation. *Mol Cell* 70: 1038–1053.e7
705

706 **Tables**

707

Cell line	Viral titer [FFU/ml]
Caco2	2×10^3
Huh7	4×10^3
Calu3	2×10^5
Vero	5×10^3

708

709 **Table 1.** Titration on the supernatant of infected mammalian cells.

710

711

712

713

714

715

716

717

718

719

720

721 **Figure Legends**

722 **Figure 1. Visualizing SARS-CoV-2 with CoronaFISH**

723 **(a)** Principle of CoronaFISH. 96 primary probes are pre-hybridized *in vitro* with dye-carrying
724 secondary probes via the FLAP sequence. Resulting duplexes are subsequently hybridized in
725 cells to target the SARS-CoV-2 positive or negative RNA. **(b)** Replication cycle of SARS-CoV-2.
726 Incoming, genomic positive-strand RNA is used to produce viral polymerase. Polymerase
727 produces a negative-strand replication intermediate, which serves as a template for synthesis of
728 full-length positive-strand and shorter sub-genomic RNAs. The latter are used to produce other
729 viral proteins. **(c)** Genome of SARS-CoV-2 with indicated probe positions targeting the positive
730 and negative strand. **(d)** Images of uninfected and infected Vero cells with either the positive or
731 negative strands detected with Cy3-labeled probes. Shown are zoom-ins on individual cells.
732 Full-size images in **Fig EV1a**. First column shows uninfected control, second and third column
733 infected cells with different intensity scalings as indicated in brackets (the first and second
734 values in brackets indicate the pixel values corresponding to the lowest and brightest intensities
735 in the displayed image, respectively). Scale bars 5 μ m. Scale bar in red inset 1 μ m. **(e)**
736 Quantification of signal intensities in individual cells. Dashed line is the 99% quantile estimated
737 from uninfected samples. **(f)** Simultaneous imaging of positive and negative strands with dual-
738 color CoronaFISH. Scale bar in full image 10 μ m, in inset 2 μ m. **(g)** Images of Remdesivir
739 treated (right) or untreated cells (left). Scale bars 30 μ m. **(h)** Quantification of Remdesivir
740 treated cells performed as in e).

741

742 **Figure 2. CoronaFISH in human cell lines**

743 **(a-b)** FISH against the positive strand of SARS-CoV-2 in three different cell lines. **(a)** Full field of
744 views, scale bars 30 μ m, **(b)** zoom-ins on indicated green rectangles, scale bars 10 μ m. **(c)**
745 FISH signal intensities of cells in a small region around the nucleus of each cell. Box plots as in
746 **Fig 1e.**

747

748 **Figure 3. CoronaFISH in human tissue and nasal swabs**

749 **(a)** Detection of positive-strand SARS-CoV-1 in human lung tissue. Scale bar 20 μ m. Right
750 image is a magnified view of the green boxed region of interest. Negative control and
751 histopathology images in **Fig EV3**. **(b)** Nasal swabs were used to perform RT-PCR and the
752 surplus was used for imaging experiments. **(c)** FISH against SARS-CoV-2 RNA in a patient
753 sample tested positive for SARS-CoV-2. Positive-strand RNA was labeled with Cy3 (white),
754 nucleus in blue (DAPI). Scale bar 20 μ m. Large field of view and negative controls in
755 **Fig EV2b,c**

756

757

758 **Figure 4. CoronaFISH for electron microscopy**

759 **(a)** Principle of EM-ISH performed on thin sections of Lowicryl K4M-embedded infected and
760 uninfected Vero cells. The asterisk indicates biotin at the 5'-end of the secondary oligo that is
761 recognized by the anti-biotin antibody conjugated to 10 nm gold particles. As sketched, only
762 virions with a section on the upper face of the ~80 nm ultrathin section will be labelled. **(b)**
763 Uninfected control samples. Blue oval surrounds an example of sparse background staining by
764 electron-dense gold particles. The less defined punctate structures such as those lining up the

765 ER (middle panel) are ribosomes (see panels **e,f**). Nu: nucleus; M: mitochondria; ER:
766 endoplasmic reticulum. **(c, d)** Overviews of SARS-CoV-2 infected Vero cells showing major
767 cytoplasmic vacuolization by virus-induced DMVs. Positive strand of SARS-CoV-2 can be
768 detected over intracytoplasmic aggregates of viral particles **(c)**. See **Fig EV4e** for extracellular
769 aggregates. DMVs were the most heavily labelled structures, and displayed viral RNAs
770 accumulating especially on peripheral 10 nm fibers **(d, rightmost frame and Fig EV4f)**. By
771 contrast, mitochondria or nuclei were not significantly labelled. DMV: double membrane
772 vesicles. Nu: nucleus; M: mitochondria. **(e)** Averaged image from punctate structures in panels
773 **b-d** detected with FISH-quant and aligned to the same center (Mueller *et al*, 2013). **(f)** Line
774 profiles through the averaged spots in **e**. The punctate structures visible in infected cells have a
775 size in agreement with the 10 nm nano-gold particles, whereas the punctate structures in
776 uninfected cells are substantially larger and consistent with 30 nm ribosomes.

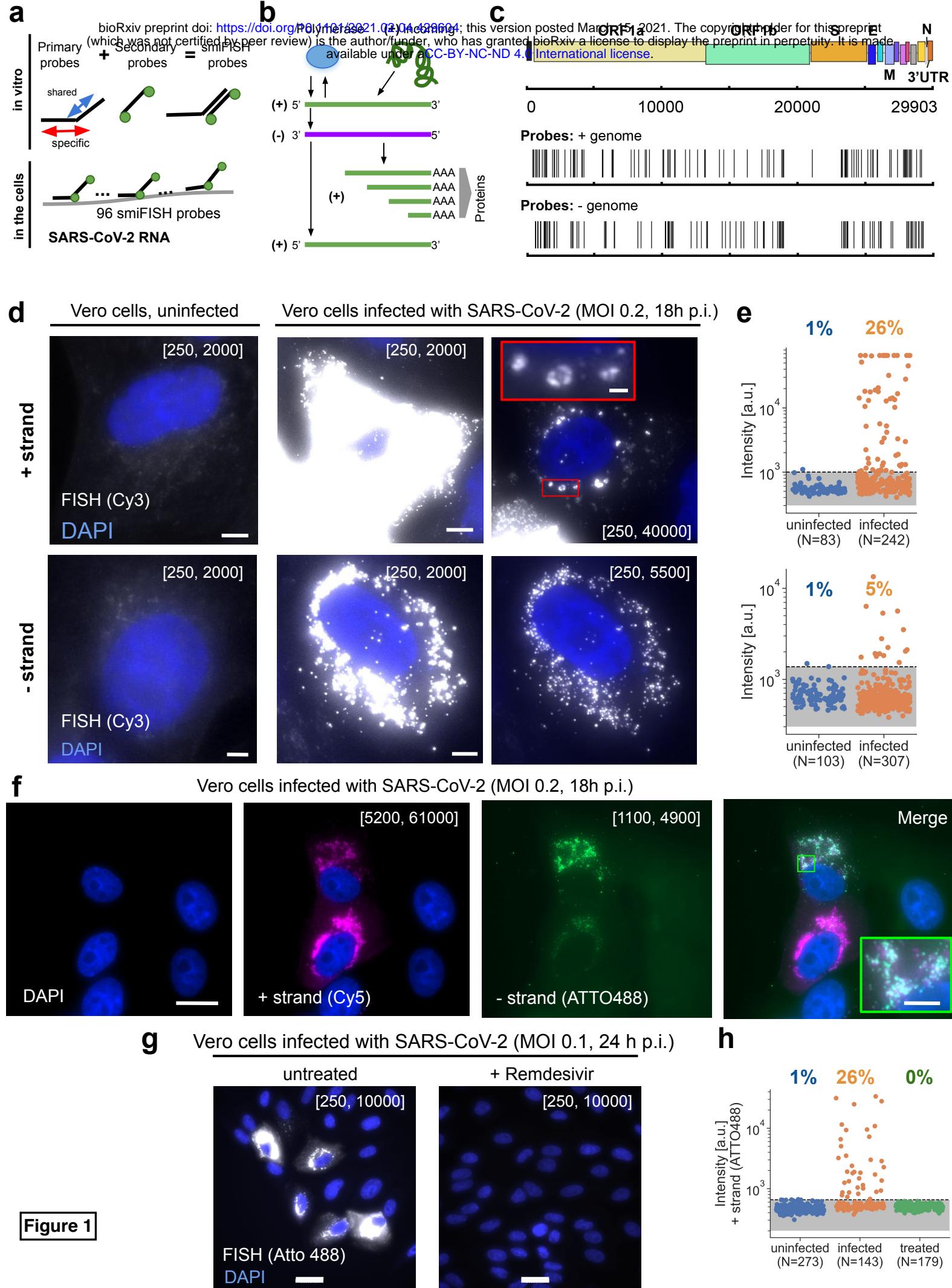
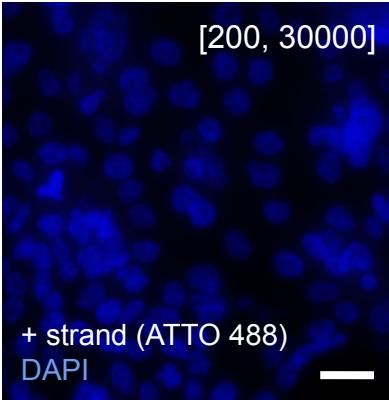
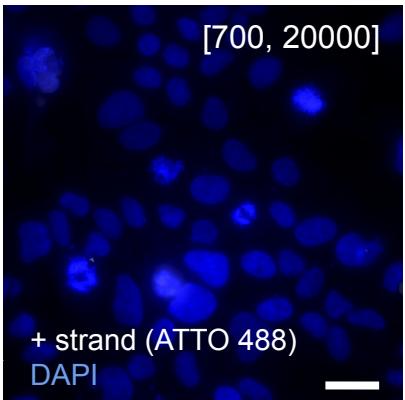
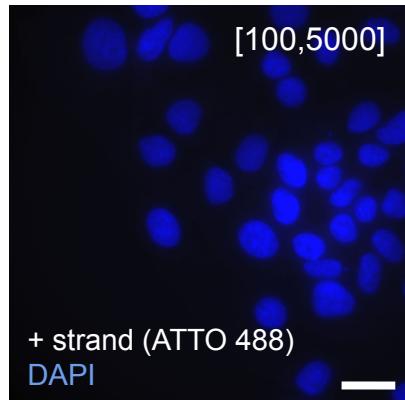
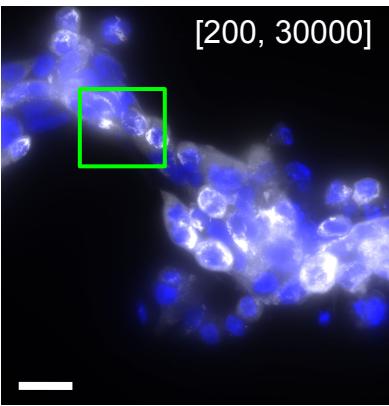
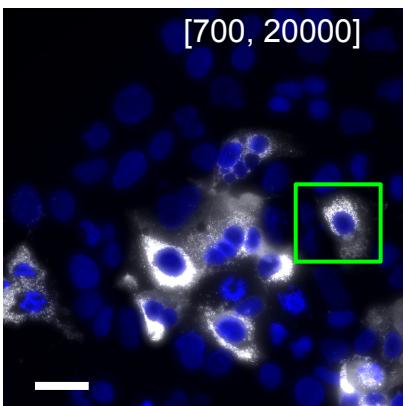
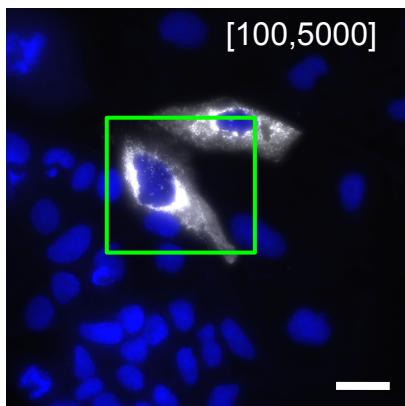
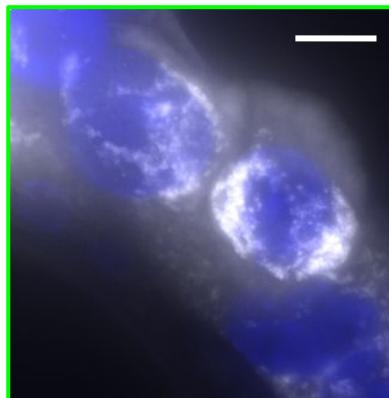
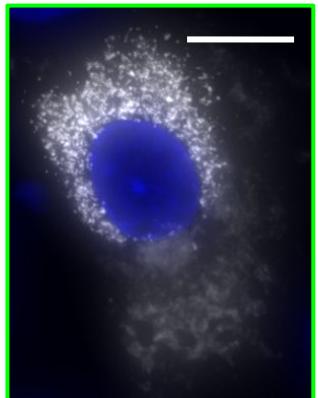
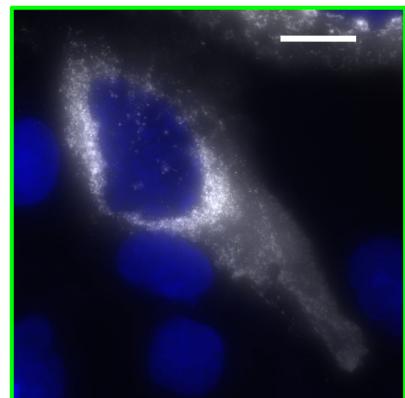


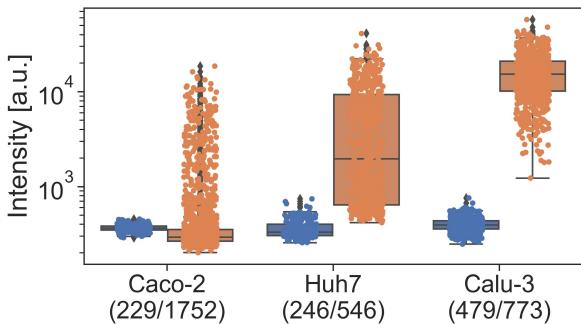
Figure 1

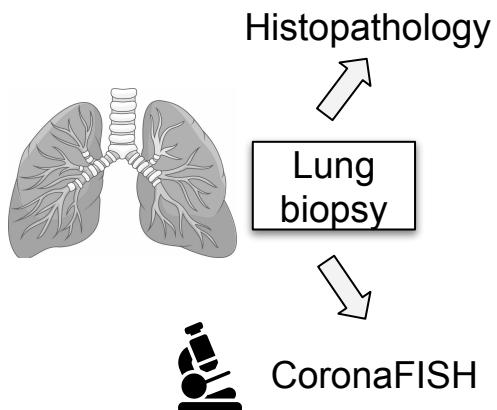
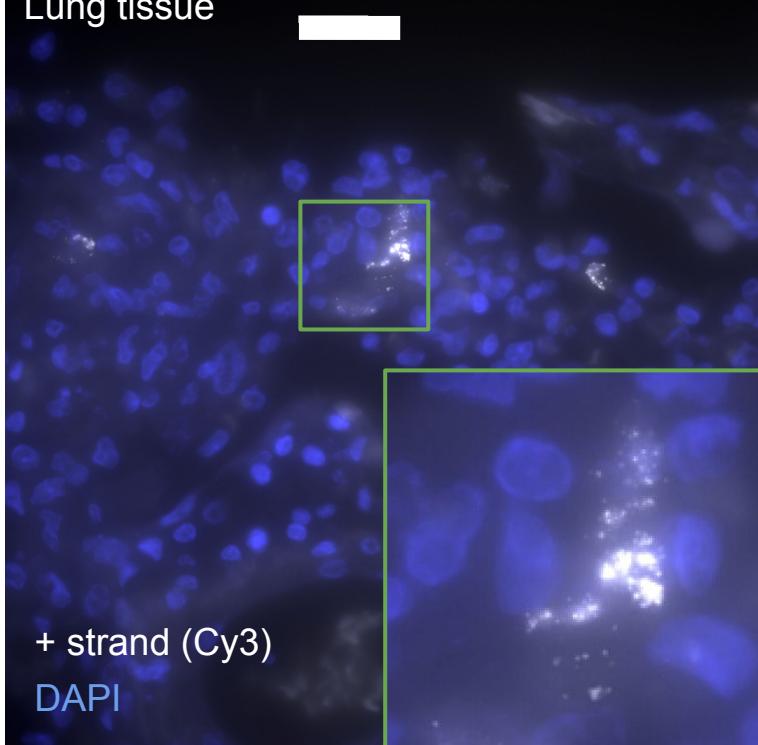
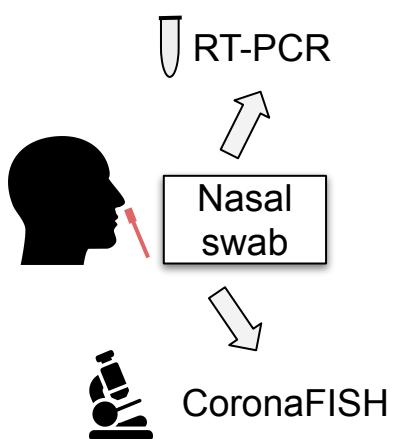



a

Caco-2

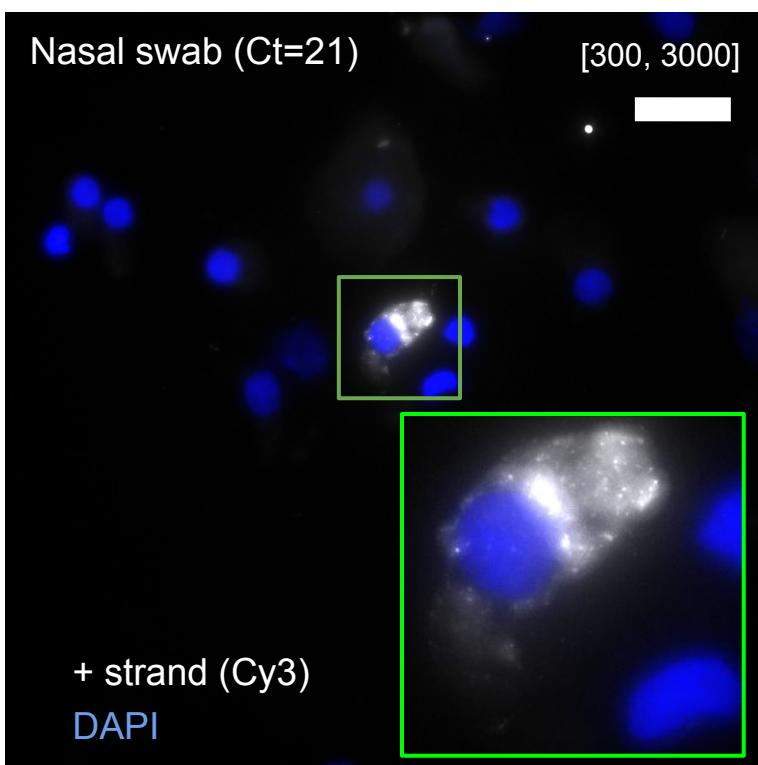






Huh7

Calu-3


Uninfected

Infected (MOI 0.2, 36 p.i.)


b**c**

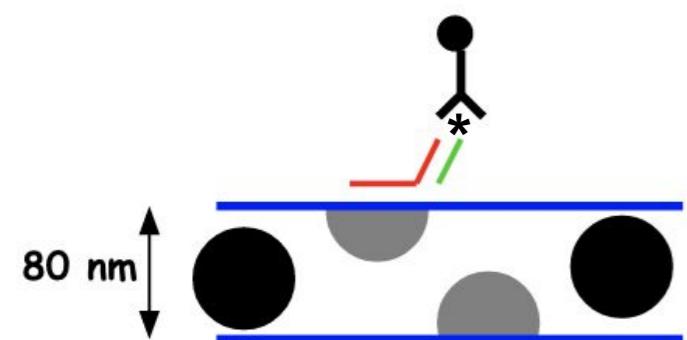
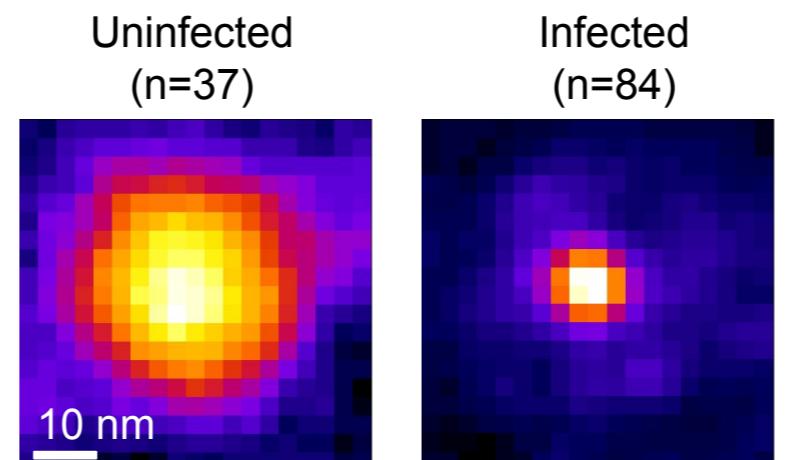
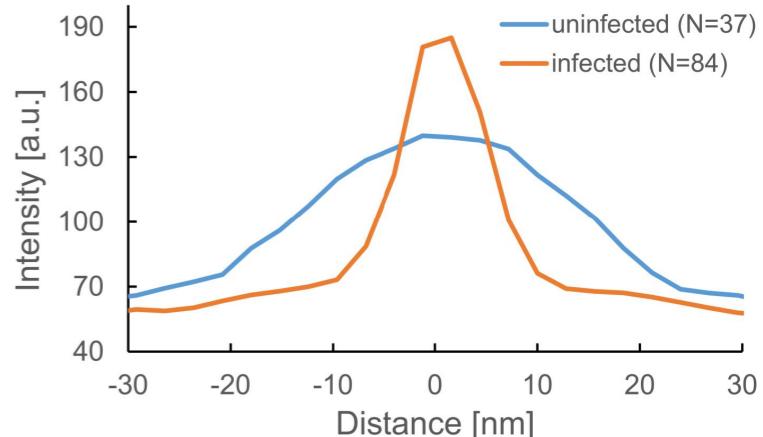
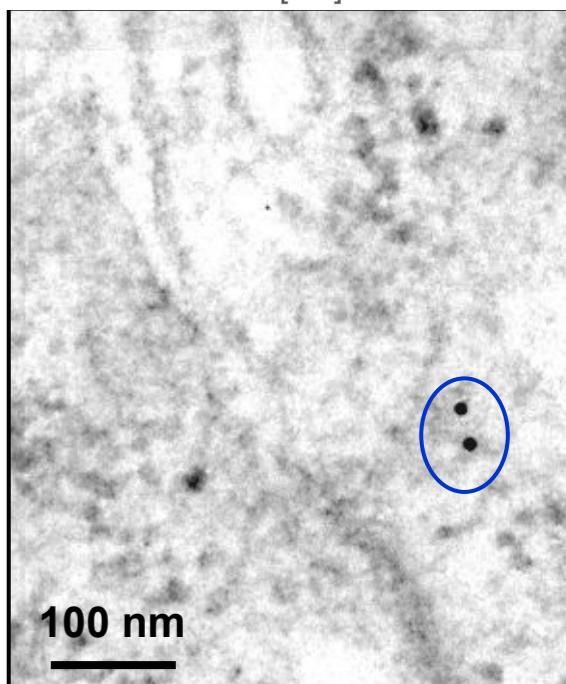
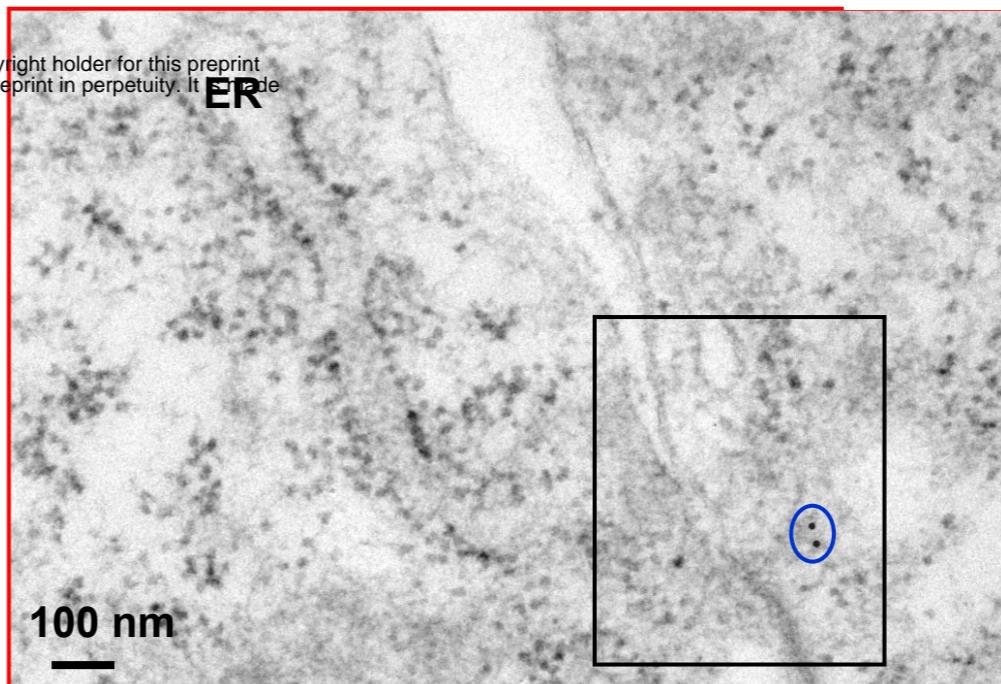
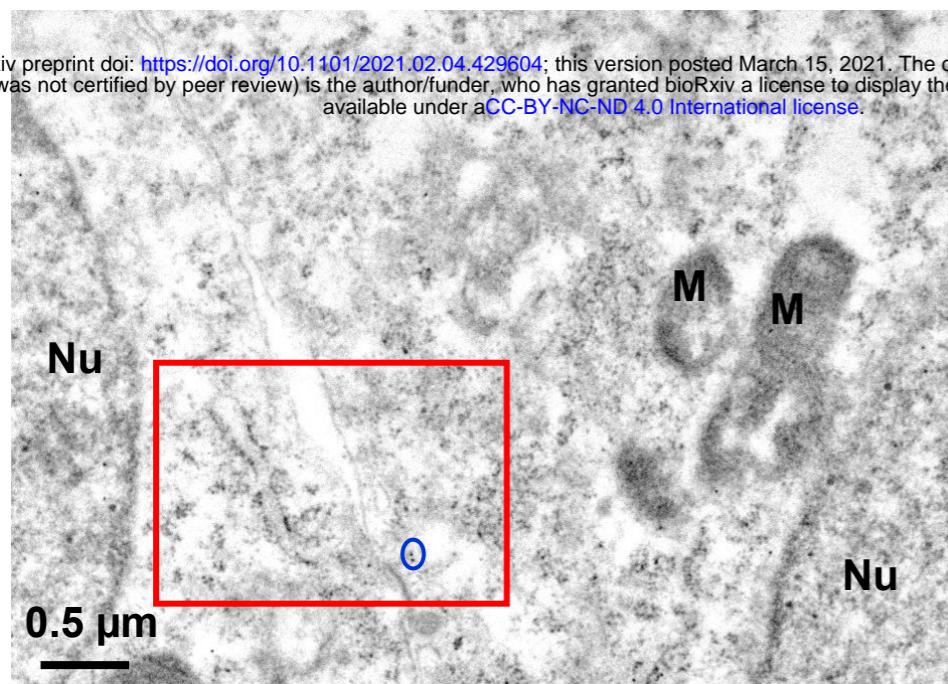
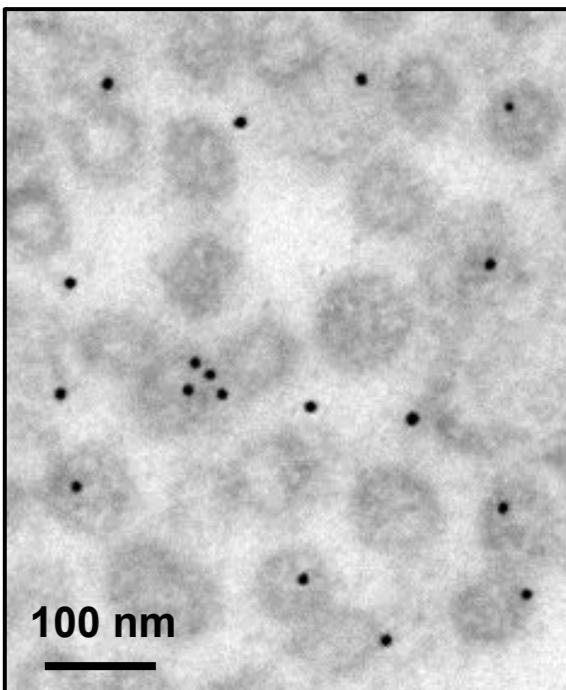
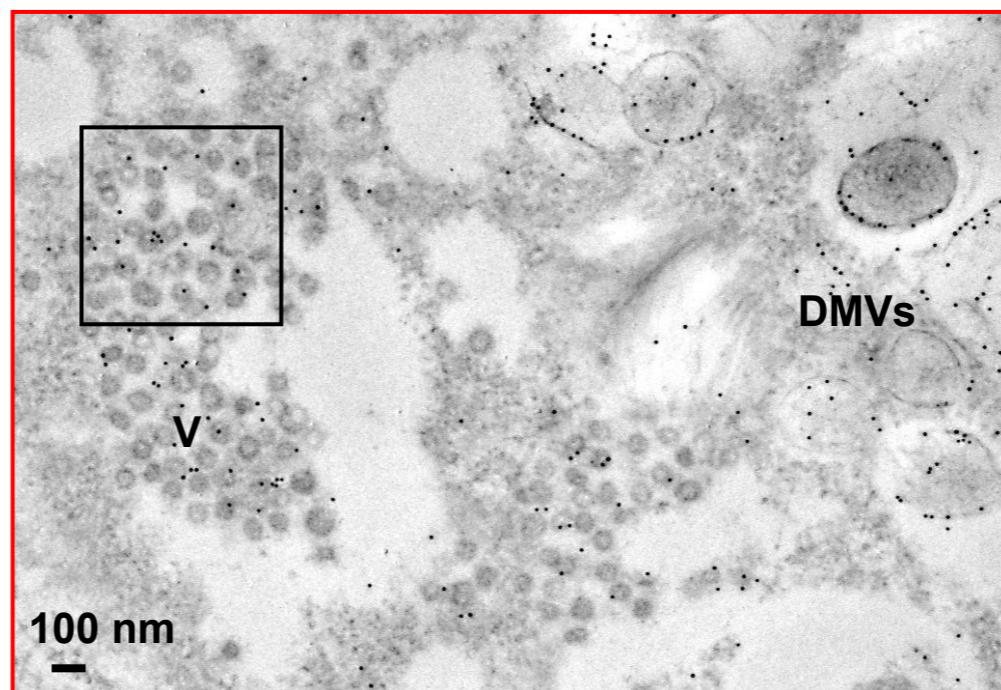
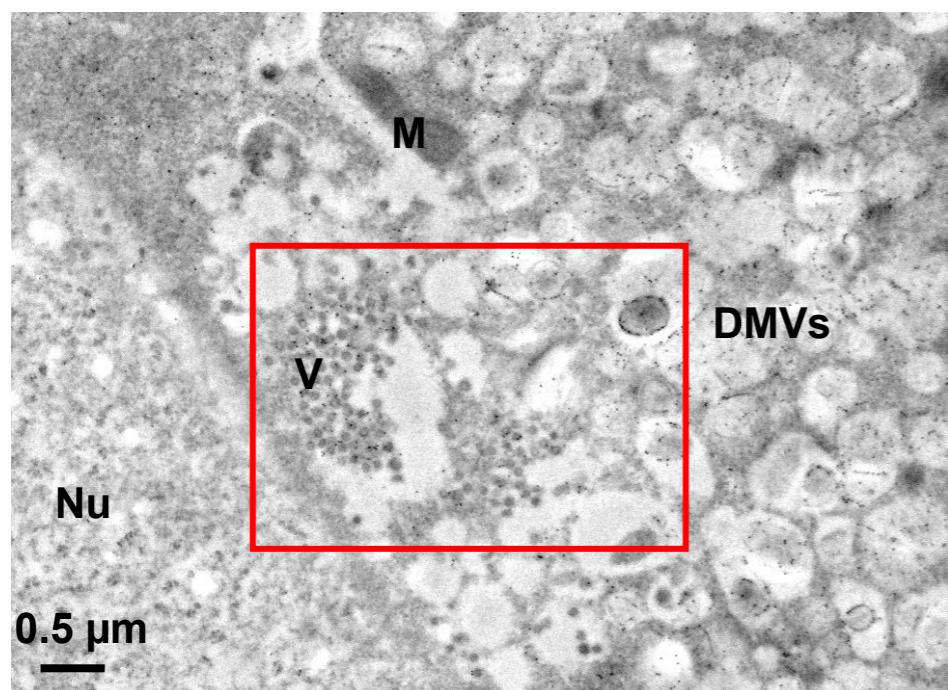
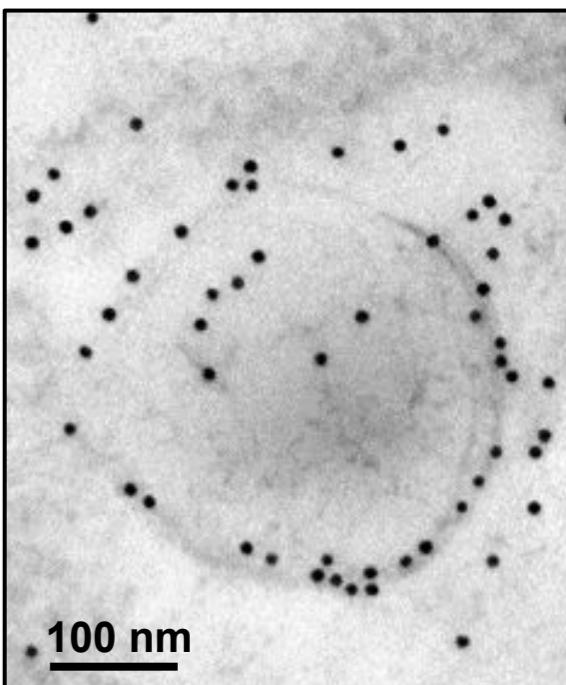
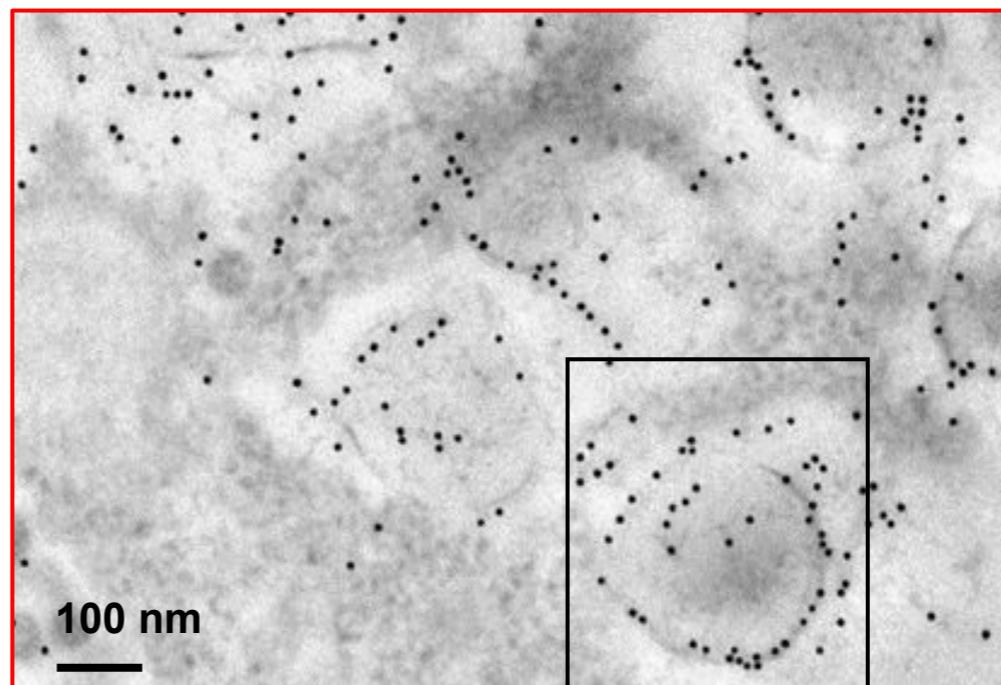
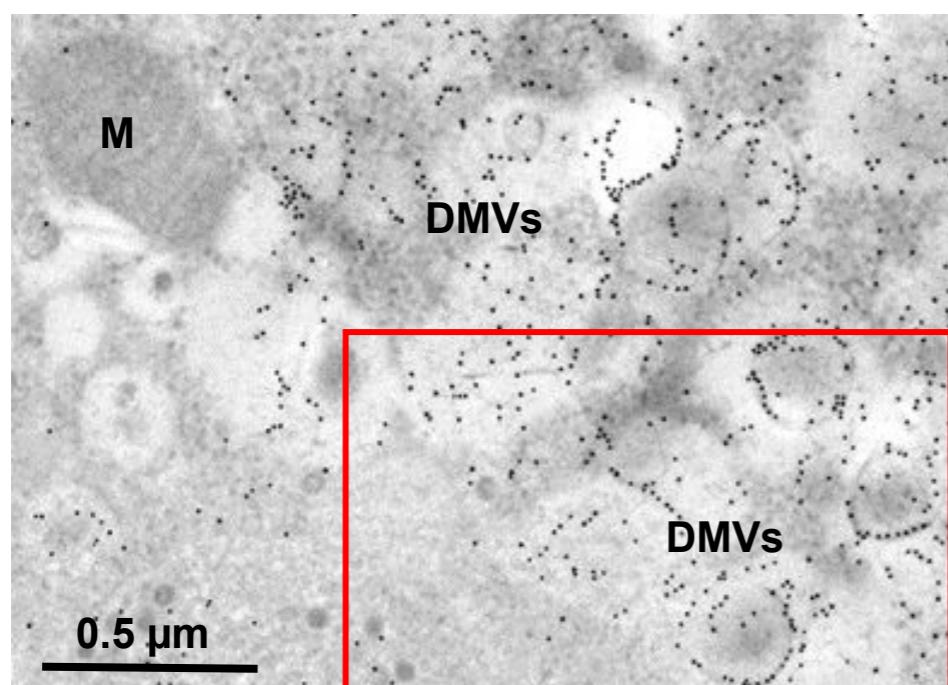



1% 19% 1% 74% 1% 100%

Figure 2










a**Lung tissue****b****c****Nasal swab (Ct=21)**

[300, 3000]

Figure 3

a**e****f****b**

bioRxiv preprint doi: <https://doi.org/10.1101/2021.02.04.429604>; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Uninfected**c****Infected with SARS-CoV2 (MOI 0.1, 24h p.i.)****d**