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ABSTRACT

Exposure to a pathogen elicits an adaptive immune response aimed to control and eradicate.
Interrogating the abundance and specificity of the naive B cell repertoire contributes to
understanding how to potentially elicit protective responses. Here, we isolated naive B cells from
8 seronegative human donors targeting the SARS-CoV-2 receptor-binding domain (RBD). Single
B cell analysis showed diverse gene usage with no restricted complementarity determining region
lengths. We show that recombinant antibodies engage SARS-CoV-2 RBD, circulating variants,
and pre-emergent coronaviruses. Representative antibodies signal in a B cell activation assay and
can be affinity matured through directed evolution. Structural analysis of a naive antibody in
complex with spike shows a conserved mode of recognition shared with infection-induced
antibodies. Lastly, both naive and affinity-matured antibodies can neutralize SARS-CoV-2.
Understanding the naive repertoire may inform potential responses recognizing variants or
emerging coronaviruses enabling the development of pan-coronavirus vaccines aimed at engaging

germline responses.

One Sentence Summary: I[solation of antibody germline precursors targeting the receptor binding

domain of coronaviruses.
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MAIN TEXT

Initial exposure to viral antigens by natural infection or vaccination primes an immune response
and often establishes an immune memory which can prevent or control future infections. The naive
repertoire contains potential B cell receptor (BCR) rearrangements capable of recognizing these
antigens, often the surface-exposed glycoproteins. An early step in generating humoral immunity
involves activation of these naive B cells through recognition of a cognate antigen (/) which in
turn can lead to affinity maturation through somatic hypermutation (SHM) and subsequent
differentiation (2). The initial engagement of the naive repertoire begins this cascade and often

coincides with the eventual generation of a protective or neutralizing antibody response (3, 4).

For SARS-CoV-2, the etiological agent of COVID-19, the development of a neutralizing antibody
response after primary infection or vaccination is associated with protection against reinfection in
non-human primates (5-9). In humans, the presence of neutralizing antibodies can predict disease
severity and survival after primary SARS-CoV-2 infection (/0) or vaccination (/) and correlates
with protection from symptomatic secondary infection (12, 13). Further, the two arms of humoral
immune memory, long-lived bone marrow plasma cells (/4) and circulating memory B cells (/5-
19), were induced by natural infection in humans and may persist for at least 8 months after
primary infection providing potentially durable long-term protection. Comparable levels of
neutralizing antibody titers were present in convalescent COVID-19 subjects and vaccine
recipients (20-22) further supporting the role of adaptive immune responses in helping to control

and prevent disease severity.
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Both infection- and vaccine-elicited antibodies target the major envelope glycoprotein, spike,
present on the virion surface (23). A substantial component of the neutralizing response engages
the receptor binding domain (RBD) (24-29) and does so by directly blocking interactions with the
viral receptor ACE2 (30-35). Isolated RBD-directed monoclonal antibodies derive from diverse
heavy- and light-chain variable gene segments suggesting that multiple biochemical solutions for
developing RBD-directed antibodies are encoded within the human B-cell repertoire (24, 26, 29,
36). Potential immunogenicity of this antigenic site is based on the human naive B cell repertoire,
and the overall frequency of naive BCRs that have some level of intrinsic affinity to stimulate their

elicitation (37-40). However, antigen-specificity of naive B cells is largely undefined.

Traditional approaches for studying antigen-specific naive B cells include bioinformatic mining
of available BCR datasets and inference of likely germline precursors by “germline-reverting”
mature BCR sequences, which can be limited by the availability of heavy and light chain paired
sequence data and unreliable CDR3 (complementarity-determining region 3) loop approximation,
respectively. Here, we address this limitation by characterizing human naive B cells specific for
the SARS-CoV-2 RBD directly from the peripheral blood of seronegative donors to understand
their relative abundance, intrinsic affinity, and potential for activation. Furthermore, we asked
whether the SARS-CoV-2 specific naive repertoire could also engage related circulating variants
of concern and pre-pandemic CoVs. We find that SARS-CoV-2 RBD-specific naive B cells were
of unrestricted gene usage and several isolated B cells had affinity for circulating SARS-CoV-2
variants and related CoV-RBDs. We determined the structure of a representative naive antibody
that binds the SARS-CoV-2 RBD with a mode of recognition similar to a multi-donor class of

antibodies prevalent in human responses to SARS-CoV-2 infection (41). Further, we improved the
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90 affinity for two representative naive antibodies to RBD and showed that the starting naive

91  specificity dictated the breadth of evolved clones to circulating variants. The analysis of the human

92  naive antigen-specific B cell repertoire for the SARS-CoV-2 RBD and its capacity to recognize

93  related variants and emerging CoVs may inform the rational design of epitope-focused

94  immunogens for next generation vaccines.

95

96 Isolated SARS-CoV-2-specific naive B cells are genetically diverse

97  To measure the reactivity of naive human B cells specific for the SARS-CoV-2 RBD we adapted

98 an ex vivo B cell profiling approach used previously to study epitope-specific naive precursors

99  targeting neutralizing sites on HIV (42-44) and influenza virus surface glycoproteins (37). We first
100  designed a SARS-CoV-2 RBD construct that positions two glycans at residues 475 and 501 to
101 selectively block binding to ACE2 and the receptor-binding motif (RBM)-directed antibody, B38
102 (fig. S1) (45). Using this “ARBM” probe, in addition to wildtype SARS-CoV-2 spike, and RBD
103 probes, we isolated naive (CD19*/IgD*/IgG") B cells specific to the RBD and, more finely, the
104  RBM from the peripheral blood of 8 SARS-CoV-2 seronegative human donors (Fig. 1A and fig.
105  S1E). We defined RBM-specificity as B cells that bound to fluorescently labeled spike and RBD,
106  but not the ARBM probe (fig. S2A). Although rare, all 8 donors had detectable populations of
107  RBM-specific naive B cells (fig. S2B). The median frequency of RBM-specific B cells among
108  total and naive B cells was 0.0021% and 0.0023%, respectively (Fig. 1B). Within spike-reactive,
109  naive cells, the median frequency of RBM-specific B cells was 3.2% (Fig. 1C); this potentially

110  suggests that a large proportion of spike epitopes targeted by naive responses reside outside of the
111 RBD. The majority of IgD* RBM-specific B cells were CD27" (mean frequency ~97%), in

112 agreement with the naive B cell phenotype (fig. S2C).
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113

114 To understand in more detail the properties of this naive repertoire, we obtained 163 paired heavy-
115  and light-chain antibody sequences from 5 of the 8 donors (Fig. 1D and Table S1). Sequence
116  analysis showed that all clones were unique with diverse gene usage for both heavy and light
117  chains and minimal gene pairing preferences (Table S1). These data reflect the polyclonal gene
118  usage observed in RBD-specific memory B cells sequenced from COVID-19 convalescent
119  individuals (26, 29, 36) and vaccine recipients (23), suggesting that a diverse pool of antibody
120  precursors can be activated upon antigen exposure. In comparing this naive repertoire to gene
121  usage distribution from non-SARS-CoV-2-specific repertoires (46), we observed an increase in
122 mean repertoire frequency of ~20% for IGHV3-9 in 4 out of 5 sequenced donors (fig. S3A).
123 Notably, this enrichment of IGHV3-9 was also observed in isolated memory B cells from
124 convalescent individuals (47) and vaccine recipients (23), as well as in expanded IgG* B cells
125  sequenced from a cohort of COVID-19 subjects during acute infection (36). These expanded
126  clones detected shortly after symptom onset displayed low levels of SHM (36), suggesting
127  potential IGHV3-9 usage in an early extrafollicular response in which naive B cells differentiate
128  into short-lived plasma cells (48). Additionally, IGHV3-53 and 3-30 gene segments, over-
129  represented in RBD-specific antibodies isolated from convalescent subjects (27, 35, 49), were
130  recovered from three sequenced donors (13 total clones; ~8.0% of total). The amino acid length of
131  heavy and light chain third complementarity-determining regions (CDR3) ranged from 8 to 27
132 (average length ~16) for HCDR3 and 4 to 13 (average length ~10) for LCDR3 (Fig. 1E). These
133 lengths are normally distributed relative to both unselected human repertoires (46, 50) and RBD-
134 specific memory B cell repertoires (23, 26, 27, 29); this is in contrast to antibody precursors

135  targeting the influenza and HIV receptor binding sites which have strict requirements for length
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136 (51) or gene usage (52, 53). These data suggest that overall HCDR3 length does not restrict
137  precursor frequency and there appears no inherent bias for CDR3 length conferring RBM-
138  specificity. The majority of obtained sequences were at germline in both the variable heavy (Vh)
139 and light (VL) chains. However, despite sorting B cells with a naive phenotype, some sequences
140  were recovered that deviated from germline. Specifically, the Vu ranged from 91.4 to 100%
141  identity to germline, with a median of 99.7%; the VL ranged from 93.6 to 100%, with a median of
142 99.3% (Fig. 1F, fig. 2B, C).

143

144  Naive antibodies engage SARS-CoV-2 RBD with high affinity

145  To obtain affinities of the isolated naive antibodies, we cloned and recombinantly expressed 44
146 IgGs selected to reflect the polyclonal RBD-specific repertoire with representatives from diverse
147  variable region gene segments (Table S1). Additionally, we ensured diversity in terms of HCDR3
148  length, kappa and lambda usage, as well as representation from all 5 donors. By ELISA, we
149  identified [gGs with detectable binding to SARS-CoV-2 RBD; we summarize these results for all
150  antibodies (Fig. 2A) and parsed by donor (fig. S3D). Across 5 donors, 36 (~81%) bound to
151  monomeric SARS-CoV-2 RBD (Fig. 2A) with ECso values ranging from 3.3 to 410 nM and a
152  mean of 62 nM (Fig. 2A and fig. S3E). These antibodies included 32 unique variable heavy and
153 light chain pairings (Table S1). Of the binding population, there is no apparent predisposition for
154  HCDR3 length or light chain pairing (Fig. 2 C, D). We further defined the epitopic region of these
155  IgGs using the ARBM construct and the individual glycan variants, ASO1 and A475, both of which
156  independently block ACE2 cell-surface binding but are on opposite sides of the RBM (fig. S1E,
157  F). 11 IgGs had no detectable ARBM binding (e.g., ab079, ab119), while 21 1gGs had reduced

158  ELISA binding relative to wild-type RBD, reflected in the reduced ARBM median ECso values
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159  (fig. S3E). We also identified examples of antibodies sensitive to only A475 (e.g., ab185) and only
160  AS01 (e.g., ab007) (Fig. 2A and fig. S3E).

161

162 To obtain binding kinetics independent of avidity effects from bivalent IgGs, 12 antibodies were
163  selected for expression as Fabs to determine monovalent binding affinity (Kps) by biolayer
164  interferometry (BLI). Using monomeric RBD as the analyte, 10 of the 12 Fabs had detectable
165  binding with Kps ranging from ~6.5 to ~75 uM; the other two remaining Fabs (ab177, ab185),
166  gave unreliable affinity measurements (i.e., >100 uM) (fig. S4). Notably, all Fabs had
167  characteristically fast off rates (kog). This observation is consistent for germline B cells where fast
168  off-rates are compensated by avidity due to overall BCR surface density (54); subsequent affinity
169  gains via SHM often result in slowing of the off-rate and is a canonical mechanism of improved
170  antigen binding (55-57).

171

172 Naive antibodies engage SARS-CoV-2 variants of concern

173 The emergence of SARS-CoV-2 variants with mutations in RBD has raised significant concern
174  that antigenic evolution will impair recognition of RBD-directed antibodies elicited by prior
175  infection and vaccination with an antigenically distinct SARS-CoV-2 variant (58-67). We
176  therefore asked whether these naive antibodies, isolated using wild-type SARS-CoV-2 RBD, could
177  recognize circulating viral variants, B.1.1.7 (mutations N501Y) (62) and B.1.351 (mutations
178  K417N/E484K/N501Y) (63); the former has now become the most prevalent circulating variant
179  in the US and many other countries (64). we find that 89% of the antibodies with wild-type RBD
180 affinity also bound to the B.1.1.7 variant with a comparable mean affinity of 68.9 nM (Fig. 2D,

181  F). For B.1.351, a concerning variant prevalent in South Africa (64), 62% of the wild-type SARS-
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182  CoV-2 RBD binding IgGs also bound to the B.1.351 variant, many of which displayed reduced
183  ELISA binding relative to wild-type RBD with a mean affinity of 262 nM (Fig. 2E, F). A more
184  pronounced reduction in cross-reactivity to the B.1.351 variant may be predictive of reduced sera
185  binding and neutralization titers from convalescent individuals and vaccine-recipients (22, 58, 65).
186

187  Naive antibodies engage pre-emerging CoVs

188  We next tested the cross-reactivity of these naive antibodies to related sarbecovirus RBDs, which
189  also use ACE2 as a host receptor (66). Our panel included the previously circulating SARS-CoV
190  RBD and representative preemergent bat CoV RBDs from WIV1 (67), RaTG13 (68), and SHC014
191  (69). These RBDs share 73 to 90% paired-sequence identity with the highest degree of amino acid
192  conservation in residues outside of the RBM (70). 13 antibodies cross-reacted with at least one
193 additional RBD in our panel, with decreasing affinity for RBDs with more divergent amino acid
194  sequence identity (Fig. 2A, G). Notably, ab017, ab072, ab109, and ab114 had broad reactivity to
195  all tested sarbecovirus RBDs, suggesting binding to highly conserved epitopes. Of these cross-
196  reactive antibodies, ab017 and ab114, derive from the same IGHV3-33 and IGVL2-14 paring but
197  were isolated from different donors, suggesting a shared or public clonotype.

198

199  Naive antibodies are not polyreactive and do not engage seasonal coronaviruses.

200  Prior studies have shown that germline antibodies are more likely to display polyreactivity relative
201  to affinity-matured antibodies with higher levels of SHM from mature B cell compartments (71-
202 74). We therefore tested the polyreactivity of all 44 naive antibodies using three common
203  autoantigens, double-stranded DNA (dsDNA), Escherichia coli lipopolysaccharide (LPS), and

204  human insulin in ELISA (Fig. 2A) We observed no polyreactivity of any naive antibody, including
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205  those that are broadly reactive. Furthermore, none of the naive antibodies bound RBDs from the
206  human seasonal betacoronaviruses (hCoVs), OC43 and HKU1 (Fig. 2A), which share 22 and 19%
207  paired-sequence identity to SARS-CoV-2 RBD, respectively. Together, these results suggest that
208 the isolated naive B cells encode BCRs with specificity to sarbecoviruses.

209

210  Invitro reconstitution of naive B cell activation

211  Physiological interactions between a naive BCR and cognate antigen occurs at the B cell surface.
212 Naive BCRs are displayed as a bivalent membrane-bound IgM and multivalent antigen binding
213 can initiate intracellular signaling resulting in an activated B cell with the capacity to differentiate
214  to antibody secreting plasma cells or memory cells (75). To determine whether the isolated RBD-
215  specific naive BCRs have the capacity to be activated, we generated stable Ramos B cell lines
216  expressing ab090 or ab072 as cell-surface BCRs and measured their activation by monitoring
217  calcium flux in vitro (76). These antibodies were selected to represent divergent germline gene
218  wusage and specificities: 1) ab090 (IGHV 1-2/IGKV3-15) bound SARS-CoV-2 and variant B.1.1.7
219  RBDs, but not variant B.1.351 and WIV1 RBDs (Fig. 3A); and 2) ab072 (IGHV3-23/IGLV2-14)
220  had broad reactivity to all RBDs (Fig. 3B). To assess BCR activation, we generated ferritin-based
221  nanoparticles (NPs) for multivalent RBD display using SpyTag-SpyCatcher (70, 77, 78); these
222  RBD NPs included SARS-CoV-2, B.1.1.7, B.1.351 and WIV RBDs. We found that ab090
223  expressing Ramos B cells were only activated by SARS-CoV-2 RBD and variant B.1.1.7 RBD
224  NPs (Fig. 3C), while ab072 Ramos B cells were activated by all RBD-NPs (Fig. 3D). Notably,
225  these data parallel the observed recombinant binding specificity of each antibody. Importantly,
226  neither ab090 nor ab072 Ramos B cell lines were activated by influenza hemagglutinin NPs,

227  suggesting that this activation is sarbecovirus RBD-specific (Fig. 3C, D).

10
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228

229  ab090 engages the SARS-CoV-2 RBM

230  To further characterize the epitope specificity of a representative naive antibody, we determined
231  the structure of ab090 in complex with SARS-CoV-2 spike (S) by electron cryomicroscopy (cryo-
232 EM). A ~6.7-A structure showed one Fab bound to an RBD in the “up” conformation (Fig. 4A, B
233  and fig. SS). Based on this modest resolution structure, we make the following general descriptions
234  of the antibody-antigen interface. The interaction between ab090 and the RBD is mediated
235  primarily by the antibody heavy chain, with the germline encoded HCDR1, HCDR2, and the
236  framework 3 DE-loop centered over the RBM epitope (Fig. 4B). The ab090 light chain is oriented
237  distal to the RBD and does not appear to substantially contribute to the paratope (Fig. 4B). IGHV1-
238 2 antibodies represent a prevalent antibody class in human responses to SARS-CoV-2 infection,
239  many of which display high neutralization potency (41, 79). ab090 shares a Vu-centric mode of
240  contact and angle of approach similar to members of this class of infection-elicited antibodies (Fig.
241  4D), despite varying HCDR3 lengths and diverse light chain pairings (Fig. 4D) (41, 79).
242 Additionally, members of the IGHV1-2 antibody class contain relatively few SHMs (fig. S5B).
243 We note that many of the infection-elicited IGHV1-2 RBD-specific memory B cells derive from
244 the IGHV1-2*02 allele, while ab090 is encoded by the IGHV 1-2*06 allelic variant (fig. SSB). The
245 IGHVI1-2*06 allele is represented by a single nucleotide polymorphism encoding an arginine
246  rather than a tryptophan at position 50 (80) (fig. SSB). Notably, a potent neutralizing antibody,
247  HA4, derives from the same *06 allele (34). In conjunction with the structure, we biochemically
248  defined the sensitivity of ab090 to variant B.1.351 by testing the binding to individual mutations.
249  Binding affinity was detected to SARS-CoV-2 RBDs with either N501Y or K417N mutations, but

250  not to E484K alone (Fig. 4C). Based on the structure, the E484K mutation, is grossly positioned

11
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251  proximal to the CDRH2 loop (Fig. 4C), which has a germline-encoded motif critical for IGHV1-
252 2 antibody binding to RBD (fig. S5B) (47). Indeed, infection-elicited IGHV1-2 antibodies are
253  susceptible to escape by E484K alone, which disrupts a CDRH2 hydrogen binding network (87).
254  Together, the cryo-EM structure and binding data suggest that ab090 represents a precursor of a
255 class of RBM directed SARS-CoV-2 neutralizing antibodies. More generally, structural
256  characterization of germline antibody complexes has been limited to hapten antigens (82), simple
257  peptides (83) and to protein antigens bearing engineered affinity to inferred germline
258  sequences(84). We present, to our knowledge, the first structure of a naturally occurring naive
259  human antibody bound to non-engineered viral protein.

260

261  in vitro affinity-matured naive antibodies retain intrinsic specificity

262  After initial antigen recognition and subsequent activation, naive B cells can undergo successive
263  rounds of somatic hypermutation within the germinal center (GC) that ultimately result in higher
264  affinity antibodies for the cognate antigen. To determine how somatic hypermutation might
265 influence overall affinity and specificity, we used yeast surface display to in vifro mature ab072
266  and ab090. We randomly mutagenized the single chain variable fragment (scFv) variable heavy
267  and light chain regions to generate ab072 and ab090 variant display libraries (85). After two rounds
268  of selections using SARS-CoV-2 RBD, we enriched the ab072 and ab090 libraries for improved
269  binding over their respective parental clones (Fig. SA, D and fig. S6A). We also observed
270  increased binding to B.1.351 for the ab072 library but not for ab090; notably this corresponded
271  with the respective specificity of the parent clones (Fig. SA, D).

272

12
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273  We next isolated and sequenced individual clones from the enriched libraries. For ab090, we
274  observed a dominant mutation, R72H, in the FRWH3 region present in 60% of sequenced clones
275  (fig. S6B). Notably, multiple mutations at position 72 conferred a ~3- to 5-fold improvement in
276  monovalent affinity relative to parental ab090 for wild-type and B.1.1.7 RBDs, with no detectable
277  B.1.351 binding for affinity matured progeny (Fig. SB, C). We observed no mutations within the
278  light chain which appears to be consistent with the Vu-centric binding mode in the cryo-EM
279  structure (Fig. 4). For the broadly reactive ab072, isolated clones had mutations in both the Vi and
280  Vir; ~35% of the sequenced clones had mutation S31P in the HCDR1 (fig. S6B, C). There was 3-
281  to ~5-fold improvement in monovalent affinity of abO72 progeny relative to parent for SARS-
282 CoV-2, B.1.1.7 and B.1.351 RBDs (Fig. SE, F). Collectively, these data identify potential
283  mutations that can improve affinity while retaining initial parental antigen specificity.

284

285  SARS-CoV-2 pseudovirus neutralization by naive and affinity-matured Abs

286  We next used a SARS-CoV-2 pseudovirus assay (/0) to ask whether any of the isolated naive
287  antibodies and affinity matured clones were capable of blocking transduction of target cells. We
288  found that of the 36 RBD-binding antibodies tested in this assay, 5 had detectable levels of
289  neutralization (~14%) (Fig. 6A). These antibodies, obtained from multiple donors, have no
290  commonality with respect to their gene usages and HCDR3 lengths (Fig. 6B). While these naive
291  antibodies were not as potent as B38, isolated from a memory B cell (34), the observation,
292  nevertheless, that the naive repertoire has antibodies that neutralize is noteworthy.

293

294  To determine whether improved affinity correlated with enhanced neutralization potency, we

295  evaluated the affinity matured progeny of ab090 in a SARS-CoV-2 pseudovirus neutralization
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296  assay (Fig. 6B). We find that all three ab090 progeny that had higher affinity for SARS-CoV-2
297  RBD also had increased neutralization potency. ab090_AO8 bearing the R72H mutation had the
298  highest affinity gain and was the most potent neutralizer with a Kp of 1.7uM and an IC50 of 0.37
299  ug/ml, respectively. Notably, ab090 progeny had IC50 values similar to other IGHV 1-2 memory
300 B cells isolated from convalescent donors (47); this increase in potency is conferred through
301  minimal somatic hypermutation.

302

303  DISCUSSION

304  The development of a protective humoral immune response upon infection or vaccination relies
305 on the recruitment, activation, and maturation of antigen-specific naive B cells. However, the
306  specificity of the naive B cell repertoire remains largely undefined. Here, we showed that
307  coronavirus-specific naive B cells are present across distinct seronegative donors, are of
308  unrestricted gene usage and when recombinantly expressed as IgGs, have affinity for SARS-CoV-
309 2 RBD, circulating variants of concern, and at least four related coronaviruses. These data suggest
310 that RBD-specific precursors are likely present across a large fraction of individual human naive
311  repertories, consistent with longitudinal studies of SARS-CoV-2 infected individuals in which
312 most convalescent individuals seroconverted with detectable RBD serum antibodies and
313  neutralization titers (/7, 86, 87). The naive B cells characterized here engage epitopes across the
314 RBM with a range of angles of approach as defined by our glycan variant probes and cross-
315 reactivity profiles; this is also consistent with infection and vaccine elicited, RBD-specific
316  repertoire characterized by epitope-mapping, deep mutational scanning and structural analyses

317 (30, 32, 88). Having naive BCRs recognizing distinct or partially overlapping epitopes across the
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318 RBM may be advantageous for eliciting a polyclonal response more able to recognize variants of
319  concern.

320

321  The presence of broadly reactive naive B cells inherently capable of recognizing sarbecovirus
322  RBDs and circulating variants suggests that these precursors could be vaccine-amplified. Recent
323  work showed that uninfected individuals have pre-existing SARS-CoV-2 S-reactive serum
324  antibodies (89-91) and memory B cells (28, 92) which cross-react with hCoVs and can be boosted
325 upon SARS-CoV-2 infection. These cross-reactive antibodies appear to be specific to the S2
326  domain and are predominantly IgG or IgA. Notably, this observation contrasts the cross-reactive
327 B cells described here that engage the RBD, have no reactivity to hCoV and are IgG™ naive B cells
328  suggesting that they are distinct from previously described S-reactive pre-existing antibodies.
329

330  Data suggests that the competitive success of a naive B cell within a GC is influenced by precursor
331 frequencies and antigen affinities (40). However, the biologically relevant affinities necessary for
332 activation remain unclear—indeed several studies suggest that B cell activation and affinity
333  maturation is not restricted by immeasurably low affinity BCR interactions (93-95). Recently, two
334  studies involving naive precursors of receptor-binding site (RBS) directed HIV-1 broadly
335 neutralizing antibodies (bnAbs) contributed to our understanding of these parameters (38, 39).
336  Using an in vivo murine adoptive transfer model, these RBS-directed precursors were recruited
337 into a GC reaction at a precursor frequency of ~1:10,000 and a monovalent antigen affinity of
338  14uM (39). For comparison, here we defined the SARS CoV-2 RBM-specific naive precursor
339  frequency as 1:41,000 by flow cytometric gating (fig. S2) with monovalent affinities ranging from

340 6.5 to >100uM. These data suggest that these isolated naive B cells, especially those with
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341  demonstrable monomeric affinity, could be readily elicited upon antigen exposure. However,
342  longitudinal studies tracking antigen specific naive B cells pre- and post-exposure are required to
343  determine the fate (i.e., plasma cell, memory, or germinal center B cell compartments) of potential
344  precursors and define relevant naive affinities for elicitation by SARS-CoV-2.

345

346  Through biochemical and structural analyses, we characterized a naive antibody, ab090, which
347  resembles a commonly elicited class of potent neutralizing antibodies utilizing the IGHV1-2 gene
348  (41). This class of antibodies share restricted binding specificity for wild-type SARS-CoV RBD
349  (the vaccine strain) and the prevalent B.1.1.7 variant. This recombinant binding pattern also
350  paralleled the reconstituted in vitro B cell activation dynamics of ab090 in the highly avid assay
351  with the capacity to detect immeasurably low affinity interactions (54). In vitro affinity maturation
352 of ab090 against corresponded to a single H-FR3 mutation, which improved monovalent affinity
353  ~5-fold to wild-type SARS-CoV-2 and B.1.1.7 RBDs relative to parent and pseudovirus
354  neutralization to IC50 values less than 1pg/ml. This observation is consistent with the low levels
355 of SHM within IGHV1-2 neutralizing antibodies (4/) and with reports of other potent RBD-
356  directed neutralizing antibodies with a limited level of somatic hypermutation (24, 26, 29, 36, 96).
357  Further, a recent study monitoring RBD-specific memory B cell evolution up to 12 months after
358  SARS-CoV-2 infection revealed examples of affinity matured clones with increased neutralizing
359  breadth over time against circulating RBD variants (97). While in vitro affinity gains and
360 neutralization potency are generally correlated (98), we note that affinity does not necessarily
361 correlate to neutralization potency for all SARS-CoV-2 RBD targeting antibodies, where fine
362  epitope specificity appears to be most relevant (28, 99).

363
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Probing and characterizing the human naive B cell antigen-specific repertoire can identify
precursors for vaccine or infection-specific naive B cells and expand our understanding of basic B
cell biology. Germline-endowed specificity for neutralizing antibody targets on the RBD may also
contribute to the strong clinical efficacy observed for the current SARS-CoV-2 vaccines (100,
101). Furthermore, understanding the naive B cell repertoire to potential pandemic coronaviruses
may reveal commonalties in antigen-specific precursors, enabling the development of pan-

coronavirus vaccines aimed at engaging broadly protective germline responses.
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374 METHODS

375  Donor Samples

376  PBMCs were isolated from blood donors obtained from the MGH blood donor center (8 donors
377  total). Prior to donating blood, subjects were required to sign a donor attestation/consent statement,
378  as per hospital requirements, stating ‘‘I give permission for my blood to be used for transfusion to
379  patients or for research’’. The gender and age are not recorded, however eligible donors are of at
380  least 16 years old and weigh a minimum of 110lbs. All experiments were conducted with MGH
381 Institutional Biosafety Committee approval (MGH protocol 2014B000035). Isolated PBMCs were
382  used for B cell enrichment and single cell sorting (described below); plasma was aliquoted and
383 stored at -80 °C until further use. Additionally, the control convalescent sera used for ELISA was
384  obtained under the approved Partners Institutional Review Board (protocol 2020P000895) for use

385  of patient samples for the development and validation of SARS-CoV-2 diagnostic tests (0).

386

387  Expression and purification of recombinant CoV Antigens

388  Plasmids encoding the receptor binding domains (RBDs) were designed based on GenBank
389  sequences MN975262.1 (SARS-CoV-2), ABD72970.1 (SARS-CoV), AGZ48828.1 (WIV-1),
390 MN996532.2 (RaTG13), QJES0589.1 (SHCO014), AAT98580.1 (HKU1), and AAT84362 (OC43).
391  Constructs were codon optimized and synthesized by IDT. QuikChange Mutagenesis (Agilent)
392 was used to insert glycosylation sites at SARS-CoV-2 RBD residues 501 and/or 475 as well as for
393  RBD variant mutations, B.1.351 (K417N/E484K/N501Y) and B.1.1.7 (N501Y). SARS-CoV-2
394  spike contained a C-terminal foldon trimerization domain and HRV 3C-cleavable 6xHis and
395  2xStrep II tags (102). All proteins were transiently expressed in Expi293F cells (ThermoFisher).

396 5 to 7 days post-transfection, supernatants were harvested by centrifugation and further purified
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397  using immobilized metal affinity chromatography (IMAC) with cobalt-TALON resin (Takara)
398  followed by Superdex 200 Increase 10/300 GL size exclusion column (GE Healthcare).

399

400  Expression and purification IgGs and Fabs

401  IgG and Fab genes for the heavy- and light-chain variable domains were synthesized and codon
402  optimized by IDT and subcloned into pVRC protein expression vectors and sequence confirmed
403  (Genewiz). Fabs and IgGs were similarly expressed and purified as described above for RBDs.
404  IgGs were buffer exchanged into PBS while Fabs were concentrated and further purified by
405  Superdex 200 Increase 10/300 GL size exclusion column.

406

407 ELISA

408  Both sera and monoclonal antibody reactivity to CoV antigens were assayed by ELISA. Briefly,
409  96-well plates (Corning) were coated with 5 pg/ml of monomeric RBDs in PBS at 100ul/well and
410  incubated overnight at 4°C. Plates were blocked with 1% BSA in PBS containing 1% Tween-20
411  (PBS-T) for lhr at room temperature (RT). Blocking solution was discarded and 4-fold serial
412  dilutions of human plasma (1:20 starting dilution) or isolated monoclonal antibodies (150 pg/ml
413  starting concentration) in PBS were added to wells and incubated for 1hr at RT. Plates were then
414  washed three times with PBS-T. Secondary, anti-human IgG-HRP (Abcam), was added to each
415  well at 1:20,000 dilution in PBS-T and incubated for 1hr at RT. Plates were then washed three
416  times with PBS-T and developed with 1-Step ABTS substrate (ThermoFisher) per manufacturer
417  recommendations. Absorbance was measured using a plate reader at 405nm. ECso values were

418  determined for monoclonal antibodies by non-linear regression (sigmoidal) using GraphPad Prism
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419  8.4.3 software. ELISAs against OC43 and HKU1 RBDs were done at a single IgG concentration
420 (150 pg/ml) in replicate. Positive binding was defined by an ODa4os > 0.30.

421

422 For polyreactivity ELISAs against human insulin (MilliporeSigma) and dsDNA (Calf Thymus
423  DNA; Invitrogen), plates were coated with 2ug/ml and 50ug/ml, respectively, in PBS at
424 100ul/well and incubated overnight at 4°C. Plates were then blocked and incubated with IgGs as
425  described above for CoV antigens. LPS ELISAs were measured according to a previously
426  described method (103, 104). Briefly, plates were coated with 30ug/ml LPS (Escherichia coli
427  0O55:B5; MilliporeSigma) in carbonate buffer (100mM NaxCO2, 20mM EDTA, pH 9.6) at
428 100ul/well for 3hrs at 37°C, washed three times with water, and air-dried overnight at RT. Coated
429  plates were blocked with 200ul/well of HS buffer (50mM HEPES, 0.15mM NaCl, pH 7.4) plus
430  10mg/ml. Plates were incubated with IgGs diluted in HS buffer containing 1mg/ml BSA for 3hrs
431  at 37°C, washed three times with HS buffer, and developed as detailed above for CoV antigens.
432 All polyreacivity ELISAs were performed at a single IgG concentration (15ug/ml) in replicate
433 with positive binding was defined by an ODa4os > 0.30.

434

435  ACE-2 cell binding assay

436  ACE-2 expressing 293T cells were incubated with 200 nM of RBD antigen in PBS for 1hr on ice.
437  Cells were resuspended in S0uL. of secondary stain containing streptavidin-PE (Invitrogen) at a
438  1:200 dilution and incubated for 30 min on ice. Cell binding was analyzed by flow cytometry using
439  a Stratedigm S1300Exi Flow Cytometer equipped with a 96 well plate high throughput sampler.
440  Rsulting data were analyzed using FlowJo (10.7.1).

441
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442  Probe Generation

443  SARS-CoV-2 RBD and ARBM constructs were expressed as dimeric murine-Fc (mFc; 1gG1)
444 fusion proteins containing a HRV 3C-cleavable C-terminal 8xHis and SBP tags and purified as
445  described above. SBP-tagged RBD- and ARBM-mFc dimers were individually mixed with
446  fluorescently labeled streptavidin, SA-BV650 and SA-BV786 (BioLegend), to form RBD-mFc-
447  BV650 and ARBM-mFc-BV786 tetramers. SARS-CoV-2 spike with a C-terminal Strep II tag was
448  labeled separately with StrepTactin PE and APC (IBA) to form spike-PE and -APC tetramers,
449  respectively. Both labeling steps were performed for 30 min at 4 °C prior to sorting.

450

451  Single B Cell Sorting

452 Naive B cells were purified from PBMCs using the MACS Human B Cell isolation kit (Miltenyi
453  Biotec) and incubated with 25nM of each SARS-CoV-2 probe (RBD-mFc-BV650, ARBM-mFc-
454  BV786, spike-PE, and spike-APC) for 30 min at 4°C. Cells were stained with anti-human CD19
455  (Alexa-700), CD3 (PerCP-Cy5), IgD (PE-Cy7), IgG (BV711), CD27 (BV510), LiveDead Violet
456  (Invitrogen), and Calcien (Invitrogen) for an additional 30 min. RBM-specific naive B cells,
457  defined as CD19*/CD3/1gG/IgD*/spike PE*/spike APC*/RBD*/ARBM™, were single-cell sorted
458  using BD FACS Aria Il (BD Biosciences) into 96-well plates containing lysis buffer supplemented
459  with 1% BME. Within the CD19*/IgG/IgD* gated cells, we also confirmed that 97% of the events
460  were CD27 negative. Plates were stored at -80 °C for subsequent analysis. Flow cytometry data
461  was analyzed using FlowJo software version 10.7.1.

462

463  BCR Sequencing
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464  BCR Sequencing was carried out as described previously (37). Briefly, whole transcriptome
465  amplification (WTA) was performed on the sorted cell-lysates according to the Smart-Seq2
466  protocol (105). We then amplified heavy and light chain sequences from the WTA products
467  utilizing pools of partially degenerate pools of V region specific primers (Qiagen HotStar Taq
468  Plus). Heavy and light chain amplifications were carried out separately, with each pool containing
469  pooled primers against human IGHV and heavy chain constant region genes, or human IGLV,
470  IGKYV, and light chain constant region genes. Cellular barcodes and index adapters (based on
471  Nextera XT Index Adapters, Illumina Inc.) were added using a step-out PCR method. Amplicons
472  were then pooled and sequenced using a 250x250 paired end 8x8 index reads on an Illumina Miseq
473  System. The data were then demultiplexed, heavy and light chain reads were paired, and
474  overlapping sequence reads were obtained (Panda-Seq) (/06) and aligned against the human
475  IMGT database (107).

476

477  Interferometry binding experiments

478  Interferometry experiments were performed using a BLItz instrument (ForteBio). Fabs (0.1 mg/ml)
479  were immobilized on Ni-NTA biosensors. The SARS-CoV-2 RBD analyte was titrated (10uM,
480  S5uM, 2.5uM, and 1uM) to acquire binding affinities; the Kp was obtained through global fit of the
481  ttration curves by applying a 1:1 binding isotherm using vendor-supplied software.

482

483  Pseudotyped neutralization assay

484  SARS-CoV-2 neutralization was assessed using lentiviral particles pseudotyped as previously
485  described (10, 108). Briefly, lentiviral particles were produced via transient transfection of 293T

486  cells. The titers of viral supernatants were determined via flow cytometry on 293T-ACE2 cells
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487  (108) and via the HIV-1 p24“A antigen capture assay (Leidos Biomedical Research, Inc.). Assays
488  were performed in 384-well plates (Grenier) using a Fluent Automated Workstation (Tecan). IgGs
489  starting at 150 pg/ml, were serially diluted (3-fold) in 20uL followed by addition of 20 puL of
490  pseudovirus containing 250 infectious units and incubated at room temperature for 1 hr. Finally,
491 10,000 293T-ACE2 cells (/08) in 20 puL cell media containing 15 pg/ml polybrene were added to
492  each well and incubated at 37 °C for 60-72 hrs. Following transduction, cells were lysed using a
493  previously described assay buffer (/09) and shaken for 5 min prior to quantitation of luciferase
494  expression using a Spectramax L luminometer (Molecular Devices). Percent neutralization was
495  determined by subtracting background luminescence measured from cells control wells (cells only)
496  from sample wells and dividing by virus control wells (virus and cells only). Data were analyzed
497  using Graphpad Prism.

498

499  cryo-EM sample preparation, data collection and processing

500  SARS-CoV-2 spike HexaPro was incubated with ab090 Fab at 0.6 mg/mL at a molar ratio of 1.5:1
501  Fab:Spike for 20 minutes at 4°C and two 3 pl aliquots were applied to UltrAuFoil gold R0.6/1
502  grids and subsequently blotted for 3 seconds at blot force 3 twice, then plunge-frozen in liquid
503  ethane using an FEI Vitrobot Mark IV. Grids were imaged on a Titan Krios microscope operated
504  at 300 kV and equipped with a Gatan K3 Summit direct detector. 10,690 movies were collected in
505  counting mode at 16e/pix/s at a magnification of 81,000, corresponding to a calibrated pixel size
506  of 1.058 A. Defocus values were at around -2.00 um. Micrographs were aligned and dose weighted
507  using Relion’s (/10) implementation of MotionCorr2 (//7). Contrast transfer function estimation
508  was done in GCTF (/12). Particles were picked with crYOLO (/13) with a model trained with 12

509 manually picked micrographs with particle diameter value of 330A. Initial processing was
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510  performed in Relion. The picked particles were binned to ~ 12A/pixel and subjected to a 2D
511 classification. Selected particles were then extracted to ~6A/pixel then subjected to a second round
512 of 2D classification. An initial model was generated on the selected particles at ~6A/pixel and used
513  as areference for two rounds of 3D classification; first to select particles containing SARS-CoV-
514 2 spike then to select particles containing both spike and ab090. Selected particles were unbinned
515  then aligned using 3D auto-refine and subjected to a third round of 3D classification to select for
516  asingle class with SARS-CoV-2 spike bound with one ab090 Fab. Selected particles were aligned
517 wusing 3D auto-refine before undergoing CTF refinement and Bayesian polishing. Polished
518  particles were then simultaneously focus-aligned relative to the RBD and ab090 region (Figure S5
519 A) to aid in model building of this region of interest and imported to cryoSPARC (7 /4). Imported
520  particles were aligned using non-uniform refinement and local resolution estimation (Figure S5B).
521  Non-uniform refined maps were then sharpened with DeepEMhancer then used to dock a
522 previously built SARS-CoV-2-spike model (PDB ID 7LQW).

523

524  cryo-EM model building

525  Backbone models were built by docking the variable regions of structurally similar Fabs (PDB ID
526  2D2P and 6FG1 for heavy and light chains, respectively) and a previously built RBD (6M0J) into
527  the focus refined maps using UCSF Chimera (//5) variable regions were then mutated and
528  manually built using COOT (116). For the remainder of the spike, a previously published model
529  (PDB ID 6VXX) was docked into the full, sharpened map in UCSF Chimera.

530

531  RBD nanoparticle production and conjugation
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532 Monomeric SARS-CoV-2 wild-type, B.1.1.7, B.1.351, and WIV1 RBDs were recombinantly
533  produced and purified as described above with an 8xHis and SpyTag (cite) at the C-terminus.
534 Helicobacter pylori ferritin nanoparticles (NP) were expressed separately with N-terminal 8xHis
535  and SpyCatcher tags. SpyTag-SpyCatcher conjugations were performed overnight at 4°C with a
536  4-fold molar excess of SpyTag-RBD relative to SpyCatcher-NP. The conjugated RBD-NPs were
537  repurified by size-exclusion chromatography to remove excess RBD-SpyTag.

538

539  Invitro BCR triggering

540  The capacity of RBD-NPs to trigger naive BCR signaling was determined through activation of
541  Ramos cells engineered to display mono-specific IgM BCRs of interest, as previously described
542 (76). Briefly, BCRs for ab090 and ab072 were stably expressed in an IgM negative Ramos B cell
543  clone by lentiviral transduction. Five to seven days post transduction, confluent BCR-expressing
544 B cells were FACS sorted on IgM (APC anti-human IgM; BioLegend) and kappa light chain (PE
545  anti-human kappa light chain; BD Biosciences) double positivity using a SH800S Cell Sorter
546  (Sony Biotechnology). Sorted cells were expanded in RPMI (GIBCO) and evaluated for B cell
547  activation by labeling 10 million cells with 0.5pug/ml Fura red dye (Invitrogen) in 2ml of RPMI at
548  37°C for 30 min. Cells were then washed and resuspended to 4 million cells/ml in RPMI. BCR
549  triggering was measured in response to the RBD-NPs described above by flow cytometry (LSR II,
550  BD Biosciences) as the ratio of Ca** bound/unbound states of Fura red. Ratiometric measures for
551 individual B cell lines were normalized to the maximum Ca?* flux as measured by exposure to
552 10ug/ml ionomycin.

553

554 in vitro affinity maturation of ab090 and ab(072
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555 To build yeast display libraries for ab090 and ab072, variable heavy and light chains were
556  reformatted into an scFv and synthesized as gBlocks (IDT). gBlocks were amplified by polymerase
557  chain reaction (PCR) using Q5 polymerase (New England BioLabs) following the manufacturer’s
558  protocol. The amplified DNA purified and subsequently mutagenized by error-prone PCR (ePCR)
559  via the GeneMorph II Random Mutagenesis Kit (Agilent Technologies) with a target nucleotide
560  mutation frequency of 0-4.5 mutations/kb. Mutagenized scFv DNA products were combined with
561  the linearized yeast display vector pCHA (/17) and electroporated into EBY 100 grown to mid-log
562  phase in YPD media, where the full plasmid was reassembled by homologous recombination (85).
563  The final library size was estimated to be 4 x 107.

564

565  The scFv libraries and selection outputs were passaged in selective SDCAA media (20 g/L
566  dextrose, 6.7 g/LL Yeast Nitrogen base, 5 g/LL Bacto casamino acids, 5.4 g/: Na2HPO4 and 8.56 g/LL
567  NaH2POs-H:20) at shaking at 30°C and induced in SGCAA media (same as SDCAA wit 20 g/L
568  galactose instead of dextrose) at 20°C. The scFv libraries were induced covering at least 10-fold
569  of their respective diversities and subject to three rounds of selection for binding to SBP-tagged
570  SARS-CoV-2 RBD-Fc. Induced yeast libraries were stained for antigen binding (RBD-Fc APC
571  tetramers) and scFv expression (chicken anti-c-myc IgY; Invitrogen). Following two washes in
572 PBSF (1x PBS, 0.1% w/v BSA), yeast was stained with donkey anti-chicken IgY AF488 (Jackson
573  ImmunoResearch). Two gates were drawn for cells with improved RBD binding over parental
574  clones, a more stringent “edge” gate represented ~1% and a “diversity” gate represented ~3-5% of
575  the improved output. Yeast from the final round of selection were resuspended in SDCAA media
576  and plated on SDCAA agar plates for single colony isolation and Sanger sequencing from which

577  IgGs and Fabs were cloned and recombinantly expressed as described above.
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Fig. 1. SARS-CoV-2-specific naive B cells isolation and characterization. (A) RBM-specific
naive B cells from seronegative human donors were isolated by fluorescence-activated cell sorting
gated on CD19*IgD*IgG ; representative plot from donors 1 and 2 is shown. ARBM is a sorting
probe with N-linked glycans at residues 501 and 475. RBM-specific B cell frequency among (B)
total, naive, and (C) spike-positive cells from each donor (n = 8). (D) Heat map showing variable-
gene usage for all paired B cell sequences. Scale indicates percent of total sequences for each
donor separately. (E) Heavy (H) and light (L) CDR3 amino acid length distribution determined
using IMGT numbering. Red bars indicate median amino acid length. (F) Divergence from
inferred germline gene sequences. Red bars indicate the median percent values.
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624  Fig. 2. Binding properties and specificity of isolated naive antibodies. (A) ELISA binding heat
625  map of 44 naive IgGs. Binding to wildtype SARS-CoV-2 RBD (SARS-2), ARBM, individual RBD
626  glycan variants, circulating variants, related CoVs, hCoVs and polyreactivity antigens. (B) Pearson
627  correlation analysis of SARS-CoV-2 RBD affinities and HCDR3 length. (C) ELISA ECsos for
628  IgGs with detectable SARS-CoV-2 RBD binding (n = 36) based on kappa or lambda gene usage.
629  Red bars indicate the mean ECso values. (D) Wildtype SARS-CoV-2 RBD ELISA ECsos plotted
630 against ECsos for B.1.1.7 RBD (E) B.1.351 RBD. (F) Proportion of SARS-CoV-2 RBD binders
631  with detectable ELISA affinity for variants of concern (VOC) B.1.1.7 and B.1.351 RBDs. (G)
632  ELISA ECso values to related sarbecovirus RBDs displayed in decreasing order of paired-sequence
633  identity.
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635
636  Fig. 3. In vitro reconstitution of naive B cell activation. (A) ELISA binding reactivity shows

637  restricted specificity of ab090 and (B) broad binding of ab072 to wildtype (WT) SARS-CoV-2,
638 B.1.1.7, B.1.351, and WIV1 RBDs. (C) BCR activation as measured by calcium flux in a Ramos
639 B cell line expressing ab090 membrane-anchored IgM (mIgM) and (D) and ab072 mIgM in
640  response to ferritin nanoparticles (NPs) displaying WT SARS-CoV-2,B.1.1.7, B.1.351, and WIV1
641  RBDs. Influenza hemagglutinin (HA) NP was used as a negative control.
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Fig. 4. ab090 recognizes the SARS-CoV-2 RBM. (A) Cryo-EM structure of the SARS-CoV-2
spike trimer (grey) with ab090 Fab bound to one RBD in the up position. (B) ab090 recognizes the
SARS-CoV-2 RBM with through a paratope centered on the Vi (blue). (C) Close-up view showing
the approximate locations of HCDR loops proximal to the RBM epitope and B.1.351 RBD
mutations highlighted in red (top). ELISA binding reactivity of ab090 to individual mutations from
B.1.351 RBD (bottom). (D) ab090 binds to the RBM with a similar mode and angle of approach
to IGHV1-2 neutralizing antibodies isolated from memory B cells from convalescent COVID-19
donors. RBDs (grey) are shown in the same relative orientation in each panel with PBD codes and
sequence attributes listed in the below.
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656  Fig. 5. in vitro affinity-matured naive antibodies retain intrinsic specificity. (A) Enrichment
657  of ab090 parent (grey) and affinity matured (blue) libraires to 100nM SARS-CoV-2 or B.1.351
658  RBD using flow cytometry (B) Fold enrichment in monovalent Kp over ab090 parent for selected
659  affinity matured progeny. (C) Kinetic analysis using biolayer interferometry (BLI) for ab090
660  parent and progeny Fabs to monomeric WT and variant RBDs. (D) Enrichment of ab072 parent
661  (grey) and affinity matured (blue) libraires to 100nM SARS-CoV-2 or B.1.351 RBD using flow
662  cytometry (E) Fold enrichment in monovalent Kp over ab072 parent for selected affinity matured
663  progeny. (F) Kinetic analysis using biolayer interferometry (BLI) for ab072 parent and progeny
664  Fabs to monomeric WT and variant RBDs.
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Fig. 6. SARS-CoV-2 pseudovirus neutralization by naive and affinity-matured Abs. (A)
SARS-CoV-2 pseudovirus neutralization assay for 36 purified IgGs. Curves in color highlighted
antibodies with neutralizing activity with donor and monovalent wild-type RBD affinity listed for
this subset of antibodies. The neutralizing monoclonal antibody, B38, was used as a positive
control. Dashed lines indicate ICso values and data represent means = SD of two technical
replicates. (B) SARS-CoV-2 pseudovirus neutralization for select affinity matured progeny from
the ab090 lineage with respective mutations relative to ab090 parent sequence, monovalent wild-

type RBD affinity, and IC50 listed.
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980 fig. S1. Design and characterization of SARS-CoV-2 antigens and healthy donor sera
981  binding. (A) SARS-CoV-2 RBD in complex with viral receptor, ACE2 shown in blue and grey,
982  respectively (PDB 6M0J). Wild-type RBD with, the receptor binding motif (RBM), shown in
983  orange (left panel). Structural model of the ARBM probe designed to abrogate binding to ACE2
984  (right panel). Putative N-linked glycosylation sites engineered onto the RBM are shown in red
985  spheres at amino acid positions 501 and 475. (B) SDS-PAGE gel under reducing (R) and non-
986  reducing (NR) conditions for monomeric RBD, RBD-Fc and ARBM-Fc. (C) Wildtype RBD,
987  ARBM and single glycan variant binding to ACE2-expressing 293T cells by flow cytometry. Wild-
988  type RBD binding shown in blue, glycan variant binding shown in red. Streptavidin-PE was used
989  to detect the relative intensity of antigen binding to cell-surface ACE2. A PBS control (gray)
990 indicates secondary-only staining. (D) Control antibody ELISA binding to RBD and ARBM
991 antigens. RBM-specific antibody, B38 (left). Non-RBM-specific control antibody, CR3022
992  (right). (E) ARBM and A501 and A475 variants analyzed by SDS-PAGE gel under reducing
993  conditions; wildtype RBD is shown for comparison. (E) SARS-CoV-2 spike (left) and RBD (right)
994  sera ELISA from human subjects 1-8. Sera from a COVID-19 convalescent patient and control
995 antibody, B38, were included as positive controls.
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998 fig. S2. PBMC flow cytometry analyses. (A) Representative gating strategy used for FACS of

999  PBMCs pooled from donors 1 and 2. Gating was on naive B cells defined by single living
1000  lymphocytes that were CD19*CD31gD*1gG. Sorted cells were RBM-specific as defined by spike-
1001  PE*/spike-APC*/RBD-Fc-BV650*/ARBM-Fc-BC650-. Sort gate is denoted by the blue arrow. The
1002  bottom right plot shows CD27 staining of sorted RBM-specific naive B cells. (B) Flow cytometry
1003  showing the sort gate and percentage of RBM-specific B cells for the remaining 6 healthy human
1004  donors. (C) RBM-specific B cell frequency among CD27* and CD27" cells. Each symbol
1005  represents a different donor (n = 8).
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1008  fig. S3. Repertoire comparison, germline identity, and IgG binding by individual donor. (A)
1009  Heatmap showing Vu-gene usage of isolated antibodies derived from donors 1-5. Unselected
1010  repertoire gene usage derive from a high-throughput sequencing data set of circulating B cells
1011 across 10 human subjects (46). Heatmap scale represents percent of total paired sequence from
1012 each donor. Divergence from inferred germline gene sequences separated by individual donor for
1013 (B) Vu and (C) VL. Red bars indicate the median percent values, and each dot represents an
1014  individual paired sequence. (D) Heatmap showing IgG binding to RBDs (n = 44) sorted by donor.
1015  (E) ELISA ECso values for IgGs with detectable SARS-CoV-2 RBD binding (n = 36) against RBM
1016  glycan probes. Red bars indicate the mean ECso values.
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1019
1020 fig. S4. SARS-CoV-2 RBD-binding Kkinetics of isolated naive antibodies. (A) Biolayer
1021  interferometry (BLI) binding kinetic analysis of titrated SARS-CoV-2 RBD to immobilized Fabs.
1022 Dotted line at 60 s denotes the start of the dissociation phase. (B) Kinetic and equilibrium constants
1023 for binding to RBD calculated from a 1:1 binding model using a global fit to all curves for each
1024 Fab using vendor supplied software. B38 Fab is used as a positive control.
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1030  fig. S5. Structural characterization and analysis. (A) Cryo-EM data processing scheme of
1031  ab090 Fab bound with SARS-CoV-2 spike. See the Methods section for more details. (B) Heavy
1032 chain amino acid sequence alignment of ab090 with IGHVI1-2 derived antibodies from
1033 convalescent COVID-19 patients. Sequences were obtained from CoV-AbDab (/78) and aligned
1034 to the IGHV1-2*06 reference. Residues forming the germline-encoded HCDR1 and HCDR2 motif
1035  contacting the SARS-CoV-2 RBD are highlighted in blue. The single nucleotide polymorphism in
1036  the *06 allele at position 50 is highlighted red. The site of the dominant mutation from in vitro
1037  affinity maturation efforts with ab090 is highlighted in green.
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1039  fig. S6. Representative affinity maturation selection strategy and output sequence overview.
1040  (A) Flow cytometric sorting of diversified single chain variable fragment (scFv) libraries of ab090.
1041  Gates represent the yeast population sorted for subsequent selections. After 2 rounds of enrichment
1042 for wildtype SARS-CoV-2 binding, a “stringent” and “diversity gate were sorted in round 3
1043 indicating the yeast populations sorted for individual colony isolation and sequencing. Alignment
1044  ofthe Vu sequencing output clones for ab090 (B) and ab072 (C) with the output frequency of each
1045  mutation from a total of 48 single colonies. (D) Alignment of the VL sequencing output clones
1046 ab072 with the output frequency of each mutation from a total of 48 single colonies. The VL output
1047  for ab090 was exclusively parent.
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