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Abstract:
Remdesivir (RDV) is used widely for COVID-19 patients despite varying results in recent

clinical trials. Here, we show how serially passaging SARS-CoV-2 in vitro in the presence of
RDV sdlected for drug-resistant viral populations. We determined that the EB02D mutation in the
RNA-dependent RNA polymerase was sufficient to confer decreased RDV sensitivity without
affecting viral fitness. Analysis of more than 200,000 sequences of globally circulating SARS-
CoV-2 variants show no evidence of widespread transmission of RDV-resistant mutants.
Surprisingly, we also observed changes in the Spike (i.e., H69 E484, N501, H655) corresponding
to mutations identified in emerging SARS-CoV-2 variants indicating that they can arise in vitro
in the absence of immune selection. This study illustrates SARS-CoV-2 genome plasticity and

offers new perspectives on surveillance of viral variants.

One Sentence Summary: SARS-CoV-2 drug resistance & genome plasticity
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Main Text:
The Covid-19 pandemic has caused more than 2 million deaths and placed the global economy

under consderable strain (1). The global effort to repurpose antiviral inhibitors and anti-
inflammatory compounds to stem virus replication and clinical pathology identified Remdesivir
(RDV), a broadly acting nucleoside analogue, as a frontline treatment for patients hospitalized
with severe acute respiratory syndrome virus-2 (SARS-CoV-2). RDV exhibits a potent ability to
restrict virus replication in vitro (2, 3). Three randomized trials (4—6) demonstrated that RDV
treatment reduced recovery time by 31% and demonstrated a non-significant trend towards lower
mortality, thus reducing long-term healthcare costs. This trend of reduced hospitalization time
and decreased morbidity was further supported by smaller non-randomized studies (7).
Conversdly, a larger trial conducted by WHO (Solidarity Therapeutics Trial) reported no effect
on patient survival (8). The timing of administration of RDV appeared to be critical for its
efficacy (3, 9, 10). Despite these inconsistent findings, countries including the USA and UK
routinely use RDV for the treatment of hospitalized SARS-CoV-2 patients requiring oxygen who
are still within the virological phase of infection (<10 days of illness). RDV is often prescribed in
combination with dexamethasone, a steroid treatment, which reduces mortality in ventilated

patients (11, 12). However, RDV and dexamethasone have yet to be trialed in combination.

Most viruses adapt and mutate to become resistant to antiviral therapy and this can affect patient
and disease management. This is exemplified by viruses including human immunodeficiency
virus type 1, hepatitis C virus, and influenza A which have all shown the ability to develop
resistance during single drug use therapies (13-16). Currently, there are no reports of circulating
RDV-resistant strains of SARS-CoV-2. We are reliant on models based on studies in murine
hepatitis virus (MHV), severe acute respiratory syndrome virus (SARS-CoV) and Ebola virus
(EBOV) (17-19) in order to predict the amino acid residues that could, if mutated, confer drug
resistance. Given the global threat presented by SARS-CoV-2, it is important to determine
whether SARS-CoV-2 can become resistant to RDV, identify which mutations confer resistance,
monitor the emergence of such variants in the population and adapt treatments in Covid-19

patients.

After determining optimal culture conditions (Fig.S1), SARS-CoV-2gn2 Was passaged serially
in either 1uM or 2.5uM RDV-supplemented media for 13 passages (SARS-CoV-2gng2 Was
isolated in February 2020; Fig. S2). Viruses serving as controls were passaged in paralel in
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either DM SO or media to monitor for cell culture adaptation. We passaged SARS-CoV-2gng2 in
parallel in 24 distinct cultures with different selective pressures (4 different conditions and 2
different virus inputs; Fig. S2). We monitored for cytopathic effect (CPE) during passaging of
the cultures. CPE was observed in 7 of the 12 lineages passaged in RDV, with the loss of 5
lineages between pl and p4 (Fig. 1A). There was general adaptation of the viruses to VeroE6
cells with an increase in overall viral titers by 0.5 to 1 logio (Fig. 1A) as well as a change in
plague phenotype (Fig. S3A) after 13 passages. Next, the replication kinetics and changein RDV
ICso of a subset of passaged virus populations (Rem2.5p13.5, DMSOpl13.5 and Mediapl3.4)
were assessed. Rem2.5p13.5 aone actively replicated in the presence of 7.5uM RDV (Fig. 1B).
Although, titers in the presence of RDV were lower than those grown in the absence of RDV.
Titers of control viruses, DMSOp13.5 and Mediap13.4 were consistently 5 logio lower when
cultured in the presence of RDV (Fig.1B). The Rem2.5p13.5, DM SOp13.5 and Mediapl3.4
lineages displayed similar replication kinetics when cultured in the absence of RDV (Fig. 1B).
When RDV sensitivity was assessed in VeroE6-ACE2 cells, Rem2.5p13.5 displayed a 2- to 2.5-
fold increase in ICsp over a range of virus inputs in comparison with DMSOp13.5, and
Mediapl3.4 (Fig.S3B). The partial resistance to a nucleoside analogue was specific for RDV, as
we observed a minimal change in ICsy of a second nucleoside analogue (EIDD2801), when
comparing Rem2.5p13.5 (ICsp ~9.14uM) to SARS-CoV-2gng2 (1Cso ~8.92uM) (Fig. 1C and Fig.
HA).

Subsequent analyses identified a second lineage, Rem1p13.5 with reduced sensitivity to RDV
(Fig. 1D). The ICs of Rem1p13.5 (~0.828uM) was comparable to Rem2.5p13.5 (~0.8281uM)
and corresponded to a 3.5- to 3.7-fold increase from the parental virus (1Cs~0.233uM). The
RDV ICs for virus passaged in ether media alone (1Csp~0.293-0.3159uM) or DMSO
(I1C50~0.124-0.221uM) corresponded with 1Cs for the parental stock virus (Fig. 1D & 1E). The
changes in RDV senditivity paralleled those previously reported for MHV, SARS-CoV and
EBOV resistant viruses (3, 18).

Direct comparison of the consensus sequences from all the passaged stocks with the original
SARS-CoV-2eng2 Sequence revealed two fixed non-synonymous mutations in lineages with
decreased RDV susceptibility in two independently generated populations (Rem1pl3.5 &
Rem2.5p13.5). These mutations were not present in either viruses passaged in absence of RDV,
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or the input virus (SARS-CoV-2gng2) or SARS-CoV-2w1 (DataFileSl). The first mutation was
identified as glutamine to aspartate at amino acid 802 (E802D) in the RNA-dependent RNA
polymerase (RdRp) NSP12 (Fig. 2A). A glutamate at this position is highly conserved between
al betacoronaviruses including SARS-CoV, MERS-CoV and unclassified sarbecoviruses (Fig.
2B; DataFileS2). The E802 mutation occurs within the palm sub-domains (T680 to Q815;
Fig.2A) and in proximity to amino acids predicted to interact with newly synthesized RNA
(C813, S814 and Q815 (20); Fig.2A). We propose that the E802D mutation results in minor
structural changes which reduce in steric hinderance in the region (Fig.2A), thereby influencing
binding of nt+3 during synthesis of template RNA and allowing elongation when the active form
of RDV isincorporated into the RNA. The mutation identified in NSP12 differs from amino acid
residue involved with decrease RDV sensitivity in other betacornonaviruses, (MHV, SARS-CoV
& MERS-CoV), and EBOV and predicted sitesin SARS-CoV-2 (17-19).

The second mutation was an isoleucine to threonine substitution (I168T) in NSP6, a highly
conserved protein involved in restricting autophagosome expansion (21). This site is not highly
conserved across coronaviruses with either an isoleucine (SARS-CoV-2) or valine (SARS-CoV
& MERS-CoV) or leucine (MHV) in this position (Fig.2C; Data File S2). We predict that the

mutation may alter the structure of the transmembrane and extracellular domains (Fig.S5A).

To ascertain whether a mutation of NSP12 E802 was sufficient to mediate partial RDV
resistance, we introduced either an E802D or EB02A mutation at this site into the backbone of
SARS-CoV-2w,1 and recovered infectious virus using a reverse genetics system. While unlikely
to play a role, we also recovered virus with 1168T mutation in NSP6 either alone or in
combination with the NSP12 mutations (E802D or E802A). There were no significant
differences observed in virus replication due to the mutations. All rescued virus mutants
replicated similarly to the parental rSARS-CoV-2 in human lung cells, Calu-3, with similar
replication kinetics and achieving similar peak virustiters (Fig. 3A). Both the ES02D and E802A
mutations in NSP12 recapitulated partial resistance observed in the virus populations continually
passaged in RDV (Fig. 3B). We observed a 2.47-to 2.097-fold change in RDV ICsy; from
2.298uM for rSARS-CoV-2 to 5.676uM and 4.818uM for the EB02D and E802A mutants,
respectively (Fig. 3B; Table. S1). This change in RDV sensitivity was evident over a range of
virus inputs for both NSP12 mutants (Fig. S6A). NSP6 1168T substitution did not confer
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decreased sensitivity to RDV (Fig. 3B), with the 1Cs calculated comparable to rSARS-CoV-2
(Table S1).

Indeed, viruses bearing both the NSP12 and NSP6 mutations were more sensitive to RDV in
comparison to NSP12 single mutant viruses (rNSP6-1168T+NSP12-E802D, 1Csy 3.728uM;
rNSP6-1168T+NSP12-E802A, ICsp 3.096uM). Importantly, introduction of NSP6 and/or NSP12
mutations did not significantly affect sensitivity to EIDD2801 (Table.S2). These data confirm
results obtained with other viruses indicating EIDD2801 sensitivity was not influenced by
mutations conferring decreased RDV sensitivity (18, 22). We further assessed the anti-viral
activity of RDV in Calu-3. While a dose-dependent reduction in titer for all viruses was
observed, rINSP12-E802D and rNSP12-E802A titers were consistently higher than wild-type and
rNSP6-1168T at 24 and 48h (Fig. 3C). Interestingly, at 24h pi, a dight shift in an increase
rNSP6-1168T infectious titer was observed in comparison with wild type, though this effect
disappeared by 48h.

We next examined the available SARS-CoV-2 genome sequences in the CoV-GLUE database
(n=242865 as of January 2021) and searched for sequences with replacements at NSP12 E802
and NSP6 1168. Only 8 viral sequences in total were identified with a mutation at E802; four
sequence had E802A (3 sequences sampled in May 2020 from the same geographic region)
while four sequences with E802D were geographically dispersed. As one of these sequences,
hCoV-19/Scotland/CVR2716/2020 was isolated from a patient who was not treated with RDV,
these suggests mutation of E802 can be selected in the community in the absence of drug
selection. The observed global frequency of the E802 substitutions was the same as mutations at
either NSP12 F480 or V557; sites known to confer partial RDV resistance in other coronaviruses
(18). There were a handful of sequences with changes at either F480 (n=5) or V557 (n=6).
Replacement of NSP6 1168 occurred in 33 sequences with isoleucine replaced with threonine,
valine, leucine or methionine. These dataindicate that in absence of selective pressure, mutations
of either NSP12 E802 or NSP6 1168 are rare events. However, the identification of these
sequences in the genome databases demonstrate that these viruses are viable and could

potentially acquire a resistant phenotype when a selective pressure is applied.

To our knowledge there are no reports identifying signatures within the genome of SARS-CoV-2
which lead to resistance (or partial resistance) to RDV. We should consider that our partially-
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resistant RDV populations arose rapidly with a fixed lineage within 4 passages rather than 23 to
30 passages as observed for MHV and Ebola, respectively (18, 19). The potential for resistance
to occur in RDV non-responding patients may be a an issue that needs to be examined in order to
discern whether it is due to a genomic mutation or drug tolerance by synchronization (23). The
change in sengitivity to RDV was similar to single NSP12 mutation in either MHV or SARS
CoV (18) but lower than EBOV (19).

We observed our SARS-CoVeng RDV-resistant viruses and the reverse-genetic derived SARS-
CoV-2wu NSP12 mutants increased the ICsp by at least 2-fold regardless of the cell type used for
the experiments. Thus, we are confident that the change in 1Cso was not due to cellular drug
metabolism or differences in virus entry and replication between wild-type and RDV -resistant
viruses. We also noted that the cell-culture adaptation in viruses passaged in the absence of RDV
resulted in a shift in 1Csp in VeroE6 based assays in comparison with input SARS-CoV-2gng2
(Fig.$4) but this shift was not as predominant as the RDV-selected viruses. We hypothesi ze that
this was due to more efficient virus entry and spread as many of the mutations observed occurred
within the spike protein (see below). Difference in ICs due to adaptation, availability of
receptors and ability to metabolize RDV iswidely acknowledged (3, 24).

We next focused on those mutations arising in the in vitro passaged virus populations that were
likely not directly linked to RDV resistance. The consensus sequences of al the passaged stocks
displayed atotal of 41 distinct non-synonymous mutations and 10 Ssynonymous mutations across
the genome compared to the parental SARS-CoV-2g.g2 sequence (Fig. 4). Importantly, we did
not observe any previously identified mutations in the proof-reading ExoN (NSP14) that would
change the sensitivity of the virus to RDV (Fig. 4). Deletions of ExoN have been demonstrated
toincrease RDV sensitivity for other coronaviruses (18). While there was clear positive selection
pressure across the entire genome (Table S3), there were no major differences in the number of
mutations that accumulated in any specific population, and in the ratio or type of transition vs
transversion change (Fig 4B & S5B). Although, Rem2.5p13.5 displayed a dlight eevation in
non-synonymous changes (Fig 4C), we are unable to draw conclusions on the effect of RDV
concentration on virus mutation rate due to recovery of an insufficient number of populations
selected in RDV.

Most of the mutations (22 mutations) occurred within the spike (S) open reading frame. Unlike
other studies (25-27), the furin-like cleavage site was preserved in all but one of the passaged

6
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populations;, DM SOp13.2 displayed a 24nt deletion of the entire furin-like cleavage site at ahigh
but unfixed frequency of 77%. Further comparative analysis with the SARS-CoV-2y,1 Sequence
identified a further 2 synonymous and 8 non-synonymous mutations present in the original
SARS-CoV-2gng2 population (Fig. 4A). SARS-CoV-2gng2 Was a 50:50 mix of two virus
populations with 5 of the mutations present at a frequency ~50%, all but one of these became
fixed in all passaged populations by p13 (Fig. 4A).

Importantly, in our in vitro passaged viruses we observe substitutions at the same sites within
Spike (H69, E484, N501, H655, P681) that were also identified in the emerging SARS-CoV-2
variants of concern (B.1.1.7: A69/70, N501, P681; P.1: E484, N501Y, H655Y; B.1.351: E484K,
N501Y) (Fig.4). Except for synonymous P681P, these substitutions were not present in SARS-
CoV-2eng» (Data File S1). Of note, while the E484 mutation appeared in the consensus sequence
of Rem2.5p13.5 and Rempl1pl13.1 (Fig.4A & 4D), it was present at a frequency of 20-40% in all
the other viruses with the exception of DMSOp13.2 (Fig. 4D). The N501 substitution was
present in one virus at consensus (Mediapl3.1) and also present in the subconsensus of a second
(Rem2.5p13.5) (Fig. 4D). It is important to stress these emerging variants of concern,
collectively, share a combination of three amino acid mutationsin Spike: E484, N501 and K417,
with N501 common to all. Two of these mutations are observed in our in vitro evolution studies.
The probability of large overlap (5 codons) between the substitutions observed in vitro, and
variants of concern defining mutations without a common selective pressure driving
convergence, was exceptionally small (P=3.1x10>; Fig. S8). This demonstrates commonality in
the fitness landscape that these in vitro populations and the circulating lineages are evolving
under. We further examine the global distribution of all circulating amino acid replacements
within Spike to determine whether our in vitro substitutions occurred within hot spots for
change. There were 1384 replacements observed in a minimum of 5 sequences (n=242865
sequence up dated 14™ December 2020), many of these were clustered into certain regions within
Spike, creating visible hot spots of diversity (Fig. 4E). For example, the window surrounding
amino acid E484 appears to be a relative hot spot for replacement. These observations underline
the plasticity of the SARS-CoV-2 genome and suggests independent emergence of
geographically different variants sharing common mutations have not necessarily occurred due
to immune-based selection pressure. Our data shows these mutations arise in vitro in the absence

of any immune selection.
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In summary, we have identified in in vitro evolution studies a genome signature in SARS-CoV-2
which allow replicative advantage in the presence of RDV. In the US, RDV treatment is
currently prescribed to at least half of all hospitalized SARS-CoV-2 patients (28). Our data
demonstrates that selection of RDV resistance in SARS-CoV-2 can occur but there is no
evidence of global spread of RDV-resistant strains. In addition, we have shown that key amino
acid residues that have been identified in emerging variants of concerns in three different
continents can occur in vitro in the absence of immune pressure. Overall, our study offers new
perspectives for the surveillance of new SARS-CoV-2 variants and the clinical management of
patients treated with RDV.
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Fig. 4. Sequence analysis of partial resistance RDV populations. A. Alignment of serially passaged
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changes from Wuhan-1 are highlighted. Light pink are sites fixed at 50% in SARS-CoV-2gng, and black
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observed in continually passaged virus populations compare to input SARS-CoV -2gng,. C. Transversion vs
transitional changes observed in continually passaged virus populations compare to input SARS-CoV-
2eng2. D. Number of in vitro passaged viruses with non-synonymous changes in Spike in comparison to
SARS-CoV -2g,42. Mutation fixed in the consensus genomes (dark blue) are compared to the total number
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of viruses with evidence of the mutation at sub-consensus levels (light blue). Amino acid residues in
common with the emerging variants of concern (UK B.1.1.7, Brazil P.1; and South Africa B.1.351) are
highlighted by a star. E. Worldwide diversity of Spike protein sites of circulating SARS-CoV-2 variants.
The average number of different substitutions at each codon is calculated along a 20 amino acid residues
wide diding windows. Data was calculated using only substitutions observed in a minimum of 5
sequences from the publicly available SARS-CoV-2 genomes (n=1384). The position of the amino acid
substitutions in the in vitro passaged viruses are indicated at the bottom, residues are red are shared with
variants of concerns, black are specific to in vitro virus, residuesin italics were synonymous. Mutationsin
amino acid residues that are also mutated in the variants of concern (UK B.1.1.7, Brazil P.1, & South
AfricaB.1.351) are shown in purple triangles.
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