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Abstract

Summary: SpatialExperiment is a new data infrastructure for storing and accessing spatially resolved
transcriptomics data, implemented within the R/Bioconductor framework, which provides advantages of
modularity, interoperability, standardized operations, and comprehensive documentation. Here, we
demonstrate the structure and user interface with examples from the 10x Genomics Visium and
seqFISH platforms, and provide access to example datasets and visualization tools in the
STexampleData, TENxVisiumData, and ggspavis packages.

Availability and Implementation: The SpatialExperiment, STexampleData, TENxVisiumData, and
ggspavis packages are available from Bioconductor. The package versions described in this manuscript
are available in Bioconductor version 3.15 onwards.
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Introduction

Spatially resolved transcriptomics (ST) refers to a new set of high-throughput technologies, which
measure up to transcriptome-wide gene expression along with the spatial coordinates of the
measurements. Technological platforms differ in terms of the number of measured genes (from
hundreds to full transcriptome) and spatial resolution (from multiple cells per coordinate to
approximately single-cell to sub-cellular). Examples of ST platforms include Spatial Transcriptomics [1],
10x Genomics Visium [2], Slide-seq [3], Slide-seqV2 [4], sci-Space [5], seqFISH [6,7], seqFISH+ [8],
osmFISH [9], and MERFISH [10-12]. These can be classified into spot-based and molecule-based
platforms. Spot-based platforms measure transcriptome-wide gene expression at a series of spatial
coordinates (spots) on a tissue slide (Spatial Transcriptomics, 10x Genomics Visium, Slide-seq,
Slide-seqV2, and sci-Space), while molecule-based platforms detect large sets of distinct individual
messenger RNA (mMRNA) molecules in situ at up to sub-cellular resolution (seqFISH, seqFISH+,
osmFISH, and MERFISH). ST platforms have been applied to investigate spatial patterns of gene
expression in a variety of biological systems, including the human brain [13], mouse brain [14], cancer
[15,16], and mouse embryogenesis [5,17]. By combining molecular and spatial information, these
platforms promise to continue to generate new insights about biological processes that manifest with
spatial specificity within tissues.

However, to effectively analyze these data, specialized and robust data infrastructures are required, to
facilitate storage, retrieval, subsetting, and interfacing with downstream tools. Here, we describe
SpatialExperiment, a new data infrastructure developed within the R/Bioconductor framework, which
extends the popular SingleCellExperiment [18] class for single-cell RNA sequencing (scRNA-seq) data
to the spatial context, with observations taking place at the level of spots or molecules instead of cells.
Several recent studies have reused or extended existing single-cell infrastructure to store additional
spatial information [13,17]. In addition, several comprehensive analysis workflows have been
developed using modified single-cell infrastructure adapted for spatial data, including Seurat [19], Giotto
[20], and Squidpy [21]. However, while each of these workflows enables powerful analyses, it remains
difficult for users to combine elements in a modular way, since each workflow relies on a separate
infrastructure. There does not yet exist a common, standardized infrastructure for storing and accessing
ST data in R, which would allow users to easily build workflows combining methods and software
developed by different groups. A well-designed independent data infrastructure simplifies the work of
various users, including developers of downstream analysis methods who can reuse the structure to
store inputs and outputs, and analysts who can rely on the structure to connect packages from different
developers into analysis pipelines. By working within the Bioconductor framework, we take advantage
of long-standing Bioconductor principles of modularity, interoperability, continuous testing, and
comprehensive documentation [18,22]. Furthermore, we can ensure compatibility with existing analysis
packages designed for the SingleCellExperiment structure for single-cell data, providing a robust,
flexible, and user-friendly resource for the research community. In addition to the SpatialExperiment
package, we provide the STexampleData and TENxVisiumData packages (example datasets) and
ggspavis package (visualization tools) for use in examples, tutorials, demonstrations, and teaching.
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Results

The SpatialExperiment package provides access to the core data infrastructure (referred to as a class),
as well as functions to create, modify, and access instances of the class (objects). Objects contain the
following components adapted from the existing SingleCellExperiment class: (i) assays, tables of
measurement values such as raw and transformed transcript counts (note that within the Bioconductor
framework, rows usually correspond to features, and columns to observations); (ii) rowData, additional
information (metadata) describing the features (e.g. gene IDs and names); (iii) colData, metadata
describing the observations (e.g. barcode IDs or cell IDs); and (iv) reducedDims, reduced dimension
representations (e.g. principal component analysis) of the measurements. SpatialExperiment objects
also contain the following further components to store spatial information: (v) additional metadata
stored in colData describing spatial characteristics of the spatial coordinates (spots) or cells (e.g.
indicators for whether spots are located within the region overlapping with tissue); (vi)
spatialCoords, spatial coordinates associated with each observation (e.g. x and y coordinates on
the tissue slide); and, (vii) imgData, image files (e.g. histology images) and information related to the
images (e.g. resolution in pixels) (Figure 1).

Accessor and replacement functions allow each of these components to be extracted or modified.
Since SpatialExperiment extends SingleCellExperiment, methods developed for single-cell analyses
[18] (e.g. preprocessing and normalization methods from scater [23], downstream methods from scran
[24], and visualization tools from iSEE [25]) can be applied to SpatialExperiment objects, treating spots
as single cells. Spatial coordinates are stored in spatialCoords as a numeric matrix, allowing these
to be provided easily to downstream spatial analysis packages in R outside Bioconductor (e.g.
packages from geostatistics such as sp [26] and sf [27]), consistent with reducedDims in
SingleCellExperiment. For spot-based data, assays contains a table named counts containing the
gene counts, while for molecule-based data, assays may contain two tables named counts and
molecules containing total gene counts per cell as well as molecule-level information such as spatial
coordinates per molecule (formatted as a BumpyMatrix [28]). For datasets that are too large to store
in-memory, SpatialExperiment can reuse existing Bioconductor infrastructure for sparse matrices and
on-disk data representations through the DelayedArray framework [29]. Image information is stored in
imgData as a table containing sample IDs, image IDs, any other information such as scaling factors,
and the underlying image data. The image data can be stored as either a fully realized in-memory
object (for small images), a path to a local file that is loaded into memory on demand (for large images),
or a URL to a remotely hosted image that is retrieved on demand. SpatialExperiment objects can be
created with a general constructor function, SpatialExperiment (), or alternatively with a dedicated
constructor function for the 10x Genomics Visium platform, read10xVisium (), which creates an
object from the raw input files from the 10x Genomics Visium Space Ranger software [30]. For Visium
data, colData includes the columns in tissue, array row,and array col. Measurements from
multiple biological samples can be stored within a single object, and linked across the components by
providing unique sample IDs. In addition, we provide the associated data packages STexampleData
(example datasets from several platforms) and TENxVisiumData (publicly available Visium datasets
provided by 10x Genomics), and the ggspavis package providing visualization functions designed for
SpatialExperiment objects (Supplementary Figure 1 and Supplementary Table 1).
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Figure 1. Overview of the SpatialExperiment class structure, including assays (tables of measurement values),
rowData (metadata describing features), reducedDims (reduced dimension representations), colData
(nonspatial and spatial metadata describing observations), spatialCoords (spatial coordinates associated with
the observations), and imgData (image files and information).

Discussion

Standardized data infrastructure for scRNA-seq data (e.g. SingleCellExperiment [18] within the
R/Bioconductor framework) has greatly streamlined the work of data analysts and downstream method
developers. For example, relying on common formats for inputs and outputs from individual packages
allows users to connect packages into complete analysis pipelines, and operations such as subsetting
by row (gene) or column (barcode or cell) across the entire object helps avoid errors. For single-cell
data, this has enabled the development of comprehensive workflows and tutorials [18,31], which are an
invaluable resource for new users. Here, we provide a new data infrastructure for ST data, extending
the existing SingleCellExperiment class within the Bioconductor framework. In addition, we provide
associated packages containing example datasets (STexampleData and TENxVisiumData) and
visualization functions (ggspavis), for use in examples, tutorials, demonstrations, and teaching.

Existing alternative infrastructure for ST data includes object classes provided in the Seurat [19] and
Giotto [20] packages in R, and Squidpy/AnnData [21,32] in Python, which provide similar underlying
functionality such as storing annotated tables of measurement values and related spatial and image
information. Compared to these alternatives, a key advantage of SpatialExperiment is that it has been
developed independently of any individual analysis workflow and is compatible with any downstream
analysis packages that use the SpatialExperiment or SingleCellExperiment class within Bioconductor.
This allows analysts to easily build customized, modular workflows consisting of packages developed
by various research groups, including the latest methods (which may not yet have been integrated into
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published workflows) as well as any of the wide variety of methods for single-cell data that have been
released through Bioconductor.

ST technologies are still in their infancy, and the coming years are likely to see ongoing development of
existing platforms as well as the emergence of novel experimental approaches. SpatialExperiment is
ideally positioned to be extended to accommodate data from new platforms in the future, e.g. through
extensions of the more general underlying SummarizedExperiment [33] or by integrating with
MultiAssayExperiment [34] to store measurements from further assay types (transcriptomics,
proteomics or spatial immunofluorescence, or epigenomics) or multiple assays from the same spatial
coordinates. For example, the SingleCellMultiModal package [35] stores MultiAssayExperiment objects
containing scRNA-seq and ST data as SingleCellExperiment and SpatialExperiment objects,
respectively. Three-dimensional spatial data [36] or data from multiple timepoints could be
accommodated within SpatialExperiment by storing additional spatial or temporal coordinates. Datasets
that are too large to store in-memory can be stored using existing Bioconductor infrastructure for sparse
matrices and on-disk data representations through the DelayedArray framework [29]. The ability to
store image files within the objects (in-memory, locally, or remotely) will assist with correctly keeping
track of images in datasets with large numbers of samples, e.g. from consortium efforts. Interoperability
between SpatialExperiment and other data formats (e.g. in Python) can also be ensured through the
use of existing conversion packages such as zellkonverter [37] and LoomExperiment [38].
SpatialExperiment provides the research community with a robust, flexible, and extendable core data
infrastructure for ST data, assisting both method developers and analysts to generate reliable and
reproducible biological insights from these platforms.
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Supplementary Tables

Number Contains
Number Number of ground Contains
of of spots features truth image
Dataset name Platform Type Tissue samples or cells (genes) labels? data? Source
Visium_humanDLPFC 10x Genomics  Spot- Human 1 3,639 33,538 Yes Yes [13,39]
Visium [2] based brain
Visium_mouseCoronal 10x Genomics  Spot- Mouse 1 2,702 32,285 Yes Yes [40]
Visium [2] based brain
seqFISH_mouseEmbryo seqFISH [6,7] Molecule- Mouse 1 11,026 351 No No [17]
based embryo
ST_mouseOB Spatial Spot- Mouse 1 262 15,928 Yes No [1]
Transcript- based brain
omics [1]
SlideSeqV2_mouseHPC  Slide-seqV2 Spot- Mouse 1 53,208 23,264 Yes No [4,41]
[4] based brain

Supplementary Table 1. Summary of example datasets provided in SpatialExperiment format in the
STexampleData package. Table columns describe characteristics for each dataset, and provide the original
references. For the Visium_humanDLPFC and seqFISH_mouseEmbryo datasets, the objects in the
STexampleData package contain small subsets of the full original datasets, allowing users to easily download and
load these datasets for examples and tutorials. The full datasets can be obtained from the original references.
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Number Number Number

Dataset name Tissue of samples Targeted panel(s) of spots of genes

HumanBreastCancer|IDC Human invasive ductal 2 - 7,785 36,601
carcinoma breast

HumanBreastCancerILC Human invasive lobular 1 - 4,325 36,601
carcinoma breast Immunology 1,056

HumanCerebellum Human cerebellum 1 - 4,992 36,601

Neuroscience 1,186

HumanColorectalCancer Human invasive 1 - 3,138 36,601
adenocarcinoma Gene signature 1,142
of the large intestine

HumanGlioblastoma Human glioblastoma 1 - 3,468 36,601
multiforme Pan-cancer 1,253

HumanHeart Human heart 1 - 4,247 36,601

HumanLymphNode Human lymph node 1 - 4,035 36,601

HumanOvarianCancer Human ovarian 1 - 3,493 36,601
endometrial Immunology 1,056
adenocarcinoma Pan-cancer 1,253

HumanSpinalCord Human spinal cord 1 - 2,812 36,601

Neuroscience 1,186

MouseBrainCoronal Mouse brain 1 - 2,702 32,285
(coronal plane)

MouseBrainSagittalAnterior Mouse brain (sagittal 2 - 5,520 32,285
slice of the posterior)

MouseBrainSagittalPosterior Mouse brain (sagittal 2 - 6,644 32,285
slice of the anterior)

MouseKidneyCoronal Mouse kidney 1 - 1,438 32,285

Supplementary Table 2. Summary of example datasets provided in SpatialExperiment format in the
TENxVisiumData package. All data are spot-based, and were obtained using the 10x Genomics Visium platform
[2]. Table columns describe characteristics for each dataset. For some datasets, targeted expression panels were
measured in addition to whole-transcriptome analysis; these are indicated with the name of the panel and

corresponding number of genes in italics. The original datasets can be obtained from [42].
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Supplementary Figures
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Supplementary Figure 1. (A) Example of visualization of spot-based ST data (Visium_humanDLPFC object from
the STexampleData package). Image shows a histology image as background, grid of spatial coordinates (spots),
highlighting for spots that overlap with tissue, and colors for ground truth cluster labels. The dataset represents a
single biological sample (sample 151673) from the human brain dorsolateral prefrontal cortex (DLPFC) region
[13,39], measured with the 10x Genomics Visium platform. The full dataset contains 12 biological samples, and is
available in SpatialExperiment format in the spatialL/IBD Bioconductor package [13,39]. (B) Example of
visualization of molecule-based ST data (seqFISH_mouseEmbryo object from the STexampleData package).
Color scale shows total mMRNA counts per cell for the Sox2 gene. The dataset represents a subset of cells
(embryo 1, z-slice 2) from a published dataset investigating mouse embryogenesis [17], generated using the
segFISH platform. Additional details on the datasets are provided in Supplementary Table 1. Figures were
generated using plotting functions from the ggspavis package.
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