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Abstract:

Mathematical models of biomolecular networks are commonly used to study cellular processes;
however, their usefulness to explain and predict dynamic behaviors is often questioned due to
the unclear relationship between parameter uncertainty and network dynamics. In this work,
we introduce PyDyNo (Python Dynamic analysis of biochemical NetwOrks), a non-equilibrium
reaction-flux based analysis to identify dominant reaction paths within a biochemical reaction
network calibrated to experimental data. We first show, in a simplified apoptosis execution
model, that Bayesian parameter optimization can yield thousands of parameter vectors with
equally good fits to experimental data. Our analysis however enables us to identify the dynamic
differences between these parameter sets and identify three dominant execution modes. We
further demonstrate that parameter vectors from each execution mode exhibit varying
sensitivity to perturbations. We then apply our methodology to JAK2/STAT5 network in colony-
forming unit-erythroid (CFU-E) cells to identify its signal execution modes. Our analysis
identifies a previously unrecognized mechanistic explanation for the survival responses of the
CFU-E cell population that would have been impossible to deduce with traditional protein-
concentration based analyses.

Impact Statement:

Given the mechanistic models of network-driven cellular processes and the associated
parameter uncertainty, we present a framework that can identify dominant reaction paths that
could in turn lead to unique signal execution modes (i.e., dominant paths of flux propagation),
providing a novel statistical and mechanistic insights to explain and predict signal processing
and execution.
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INTRODUCTION

Many dynamic processes can be represented as networks of interconnected components such
as the internet, ecology networks, social networks, and biochemical reaction networks. In
cellular processes, networks comprising interactions between proteins, genes, and metabolites,
have enabled the study of signaling and steady-state dynamics and their associated
mechanisms (1-5). In systems biology applications, these studies typically entail building a graph
that represents biochemical species (nodes) and biochemical interactions (edges), either from
prior knowledge or through network inference, to then develop a mathematical representation
for calibration and analysis of model parameters (6-8). Throughout the years, small networks
with a handful of components have been studied with great success whereas the larger
networks with several components and complex interactions present multiple challenges due
to model parameter uncertainty. Depending on the network size, model complexity, i.e., the
interdependency between the model parameters, and the amount of prior knowledge, some
model parameters might be practically unidentifiable (9), which makes it very challenging to
infer the underlying mechanism.

Multiple approaches have been used to extract mechanistic insights from mathematical models
of network-driven processes. These approaches range from simple tracking of one or multiple
species in the network (10-14) to more complex applications, such as Information Theoretic
concepts to estimate the channel capacity between nodes in a network (15-20). Stoichiometric
flux balance analysis methods are perhaps the most widely used approaches to analyze reaction
flux in networks (21-25). These analyses allow computation of the steady-state flux distributions
in biochemical networks by solving a constrained linear optimization (26) with the assumption
that cells perform optimally with respect to a metabolic function of interest (23) such as growth
or synthesis of a biomass (27), ATP production (28), and production of a specific metabolic
product (29). Despite these advances to explore network-driven processes, they are typically
applied to the systems at equilibrium. However, in real-world conditions, considering the
dynamic interactions and flows of molecules, energy, and information within a network,
equilibrium assumptions may not hold. Therefore, methods to analyze non-equilibrium network
dynamics are of importance to gain a deeper understanding of emergent properties, system
resilience, and the impact of perturbations. That said, a truly systems-level interpretation of
non-equilibrium dynamics in a network and how these transient dynamics are impacted by
parameter uncertainty remains a standing challenge in the field. Addressing this challenge
might not only provide us with a better resolution of the signal processing mechanisms in
complex biological systems but also enable us to construct biological hypotheses to be tested in
the presence of parameter uncertainty.

In principle, the number of interactions and temporal dynamics present in a network makes it
difficult to identify emergent behaviors from myriad concurrent biochemical reactions. We,
therefore, developed PyDyNo, a Python-based dynamic network analysis tool, inspired in
Tropical Geometry and Ultradiscretization Theory methodologies to map continuous functions
into discrete spaces (30,31). The proposed dynamic analysis of biochemical networks enables us
to identify dominant reaction fluxes that could in turn lead to emergent signal execution modes
(i.e., uniqgue dominant paths of flux propagation) and their dependence on model parameters.
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We cast this analysis onto a Bayesian probability framework to assign statistical weight to the
identified modes of signal execution, thus providing a novel statistical and mechanistic
interpretation for network-driven dynamic processes.

The remainder of the article is organized as follows. We first exemplify how model calibration
can yield tens of thousands of parameter vectors that all reproduce an experimental data set
equally well using Bayesian parameter inference on a simplified extrinsic apoptosis model. On
this simplified model, we then introduce our method and define a dynamic signal execution
fingerprint, which we then use to find whether execution modes can cluster despite the
uncertain model parameters. Later, we demonstrate that choosing a single parameter vector
offers a biased description of the signaling process, which could easily lead to misleading
interpretations of execution mechanisms. Finally, we apply our approach to the Janus kinase
2/signal transducer and activator of transcription 5 (JAK2/STATS5) signal transduction pathway
in erythroid progenitor cells, identify its signal execution modes that contribute to cellular
survival responses upon stimulation with erythropoietin, and show how networks may switch
their execution modes depending on the input dosage. Overall, our work introduces a
probability-based methodology to explore non-equilibrium network-driven processes and to
understand mechanistic model predictions in the presence of parameter uncertainty while
providing an opportunity to gain novel insights into signal processing mechanisms in complex
biological systems as elaborated in the subsequent sections.

RESULTS

Solutions from model optimization conflate protein concentration trajectories

To investigate the impact of parameter uncertainty on biochemical signal execution and gain
mechanistic insights into non-equilibrium network dynamics, we present our method using a
simplified early apoptosis execution model calibrated to experimental data using Bayesian
parameter inference (32). Apoptosis is a ubiquitous biological process in metazoans used as a
mechanism to maintain cell numbers and overall organism homeostasis (33). We explored the
calibration of various versions of the Extrinsic Apoptosis Reaction Model (EARM) (34) to ensure
that inferred model parameter values would converge to a distribution and could therefore be
identified. The abridged EARM (abbreviated as aEARM in the rest of the paper), depicted in
Figure 1A, was the largest model we could build that would both preserve key biochemical
interactions and achieve convergence for all model parameters after model calibration. The
abridged model preserves key biological features of apoptosis execution including signal
initiation by TNF-Related Apoptosis Inducing Ligand (TRAIL), subsequent activation of initiator
caspases (Caspase 8) (35), type 1 and type 2 activation of effector caspases (Caspase 3) (36), and
completion of apoptosis execution by cleavage of Poly(ADP-ribose) polymerase (PARP) (37).
Overall, aEARM comprises 22 molecular species and 34 kinetic parameters (see Materials and
Methods for details).

We used PyDREAM —a python implementation of the MT-DREAM(ZS) algorithm (8) — to
calibrate the model to previously published experimental data that comprises the
concentration dynamics of truncated Bid (tBid) and cleaved PARP (cPARP) in Hela cells (38). As
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Hela cells are Type-Il cells, the simulated results are representative of signal processing and
execution of Type-Il cells treated with death-inducing ligands such as TRAIL (38). The Bayesian
model calibration yielded 27,242 unique parameter vectors that fit the experimental data
equally well (see Materials and Methods). We note that throughout the manuscript, a
parameter vector refers to a set of positive real values, one value for each of the kinetic
parameters defined in aEARM, used to run a simulation. A parameter distribution refers to the
frequency of occurrence of different values from the same kinetic parameter (Figure 1B, Figure
S1) that provide equally good-fit to the experimental data (Figure 1C). Each model parameter
distribution converged by the Gelman-Rubin diagnostics (40) (Table S1 and Figure S2). The
probability distribution of parameter vectors exhibits characteristic exponential-like decay
shape indicating that some parameters are more likely than others (Figure S3). Once we
obtained a rigorously calibrated model, we then explored signal execution in aEARM from a
probabilistic perspective.

A discretized flux-based analysis of non-equilibrium signal execution in networks

As shown in Figure 1C, all parameter vectors obtained from Bayesian calibration yield protein
concentration dynamics indistinguishable from the experimental trajectories of tBid and cPARP.
Individual parameters from these vectors take widely different values as depicted by their
distributions (Figure 1B). This uncertainty in the parameter values affects the reaction rates of
the protein interactions generating different reaction flux patterns in the network during signal
execution. We, therefore, studied the non-equilibrium flux of the reactions in the aEARM
network to explore whether parameter uncertainty yields specific patterns of signal execution.

Analysis of flux dynamics during signal execution requires tracking the signal flow through a
network at all simulation time points as multiple concurrent reaction rates consume or produce
molecular species. For a particular species, we assume that the reactions with the highest flux
at any given time dominate the network signal execution and provide a proxy to observe the
effect of different parameter vectors in the network. Our aim is thus to identify the reaction
rates with the highest flux throughout the whole network as simulations evolve. To analyze the
non-equilibrium flux and find the dominant reaction paths during signal execution, we
developed an algorithm inspired by Ultradiscretization Theory and Tropical Algebra (31,41) as
described in the Materials and Methods section. This approach enables us to identify paths
relevant for flux propagation in non-equilibrium states. We refer to these paths of flux
propagation through the network as execution modes for the remainder of this manuscript.

We introduce the workflow for reaction flux discretization and execution mode identification as
shown schematically in Figure 2. Signal discretization requires three steps. First, we identify a
target node (Figure 2A) for which the signal flux will be tracked. Second, we calculate the
reaction rates that produce or consume the target node, identify the largest reaction rate (x)
and test whether it is dominant over other reactions (y) using the discretization operation

x| — |y | > p, where p is the order of magnitude difference necessary to consider
dominance (see Materials and Methods). Third, we identify the chemical species produced by
the dominant reaction(s) and jump to that species, thus starting the process again from the first
step, and thereby tracking the dominant signal fluxes through the whole network and obtaining
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a subnetwork. This dominant subnetwork is assigned a unique integer label as shown in Figure
2A. The procedure is repeated for all simulation time points. As a result, the dynamic nature of
signal execution for a given parameter vector is abstracted to a sequence of labels (Figure 2B)
that can be compared to other sequences using a suitable metric. We call this sequence of
labels obtained from a simulation as dynamic fingerprint because it is unique for a given signal
processing event with a specific parameter set. The overall workflow of the algorithm is
presented in Figure S4.

Key execution modes emerge despite parameter uncertainty

To identify the dynamic execution patterns in aEARM in response to death ligand cues, we
carried out our signal discretization analysis for the 27,242 unique parameters and obtained
dynamic fingerprints for each parameter vector. We then asked whether there were similarities
among dynamic fingerprints across parameter sets. To investigate this question, we quantified
the distance between each dynamic fingerprint using the Longest Common Subsequence (LCS)
metric (see Materials and Methods) (42). We chose this metric due to its sensitivity to order
differences in which successive subnetworks labels appear (43). This metric thus assigns a larger
distance to a pair of dynamics fingerprints that execute the signal differently. Calculation of the
pairwise distance between all dynamic fingerprints resulted in a 27,242 by 27,242 distance
matrix. This matrix enabled us to use an agglomerative clustering algorithm (44) to probe
whether clusters of dynamic fingerprints would emerge. As shown in Figure 2C, we found that
all 27,242 dynamic fingerprints could be classified into three clusters (Table S2), which we
denominate as “execution modes”. Given that each parameter vector has a defined probability
(Figure S3) and is associated with a dynamic fingerprint, we calculated the probabilities of signal
execution through each mode as 42%, 36%, and 22% for Execution Mode 1 (EM1), Execution
Mode 2 (EM2), and Execution Mode 3 (EM3), respectively. These three execution modes
account for all the parameter vectors inferred from the explored parameter space and no
vectors were found that did not belong to either of these clusters. We note that these
execution modes comprise three of the eight possible subnetworks for signal flow.

The dominant flux subnetwork for each execution mode is shown schematically in Figure 2D.
The highlighted paths represent the dominant reaction fluxes, i.e., these fluxes are within an
order of magnitude of the largest reaction at each node for the given parameter set and
simulation time point. As shown in Figure 2D (yellow pathway), EM1 comprises events from
initial death-ligand binding to the receptor, through the formation of the Death Inducing
Signaling Complex (DISC), and subsequent activation of initiator Caspase (iC). The iC then
truncates and activates Bid, which in turn activates MOMP, a species that abstracts
mitochondrial outer membrane pore formation. As highlighted in Figure 2D (EM1), activated
MOMP is dominantly used to both activate more MOMP, through the positive feedback loop,
and activate the effector Caspase (eC). Note that although the species MOMP is represented as
a single node in the model (Figure 1A), it indeed represents a more complex pathway through
iCs, Bid, Bax, Smac, XIAP, and apoptosome which eventually leads to eC activation (10).
Therefore, the direct interaction between MOMP and eC in the aEARM model is a simplification
of the indirect interaction elaborated above.
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The flux through the network in EM2 is similar to that of EM1 but the execution path differs at
MOMP regulation. As highlighted in blue in Figure 2D (EM2), activated MOMP is largely
consumed in the positive feedback loop to activate more MOMP. The signal flux downstream of
activated MOMP is at least an order of magnitude less than the highlighted route for the
parameters in EM2. Therefore, eC activation and apoptosis execution take place due to a
smaller reaction flux in the network relative to the MOMP-level activity in EM2. For those
parameters belonging to EM3, signal execution seems to flow largely toward PARP cleavage,
with less MOMP-level regulation. Our results, therefore, show that despite uncertainties in
inferred model parameters due to limited available data, the modes of signal execution are
identifiable. Identifying a limited number of execution modes highlights the need to thoroughly
characterize the model parameter space, given experimental constraints, to understand and
make inferences about execution mechanisms. We note that using a single vector of
parameters would lead to incomplete model prediction as no one single parameter vector
captures the rich dynamics exhibited by all the statistically inferred parameter vectors.

Overall, the three execution modes arise from several parameter sets with equally well
experimental data fitness. Although the difference between the dominant pathways in the
observed execution modes might seem visually insignificant (i.e., a few interactions), they are
indeed considerably different when considering the coarse-grained aspect of the aEARM model,
as each execution mode is elaborated above. In addition, we would like to note that it does not
mean that the nondominant pathways or interactions are not important or do not have any
effect on the model responses, but rather it means that they are not the dominant interaction
during the execution of the network process. For instance, eC is not included in the dominant
pathway of EM2 (Figure 2D) while it exists in the other two modes. However, perturbing eC
results in different responses in all execution modes compared to the wild type, which is
thoroughly explained in the next section.

Signal execution modes may respond differently to perturbations

We then asked whether in silico experiments could help us understand differences in signal
execution that could lead to experimentally testable hypotheses. We, therefore, carried out in
silico knockdown experiments of eC, as its activation is essential for the final steps of apoptosis
execution (45). In addition, eC inhibitors are readily available for laboratory use (46,47). We
tested the hypothesis that each execution mode would exhibit different execution mechanisms
when eC is knocked down by 50%. To explore the impact of eC knockdown for each execution
mode, we compared the concentration dynamics for MOMP and cPARP given by wild type (WT)
and eC knockdown conditions.

For each execution mode, we plotted the cPARP concentration trajectories and obtained the
time of death (ToD) for each simulated cell as described in Materials and Methods. As shown in
Figure 3A, the ToD in EM1 exhibits a modest decrease of 14.96 s, but also presents a larger
standard deviation of 702 s. For EM2, the ToD increases from 10351 + 132 s (WT) to 10809 +
226 s when eC is knocked down (At = 458 s). In contrast, EM3 eC knockdown leads to a
decreased ToD from 10261 + 83 in WT to 9507 + 516 s in the knockdown (At = -754 + 523 s).
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These results show that each execution mode can exhibit considerably different —and a time
juxtaposed — responses to the same perturbation.

We then probed the effect of the eC knockdown on the reaction rates associated with MOMP*
(a node where the signal bifurcates): MOMP* binding to MOMP, and MOMP* binding to eC.
Specifically, we focused on the reaction rate peak and the time to reach peak of the reaction
rate throughout the simulation, as shown in Figure 3B. The peaks of the MOMP*+MOMP
binding reaction (Figure 3B upper row) appear unchanged across all execution modes, yet the
time to reach the peaks varies significantly. Compared to the WT simulations, the median time
to peaks is 6.14%, 0.36%, and 11.76% faster for modes 1, 2, and 3, respectively. Concurrently,
the peaks of the MOMP*+eC binding reaction (Figure 3B lower row) reduce approximately 50%
as expected by the 50% reduction of the available eC, and the median time to peaks are 6.77%,
0.4%, and 14.48% faster for modes 1, 2, and 3, respectively. In combination, for mode 1, the
relative change of the MOMP and eC reaction peaks have large interquartile ranges IQR= -
10.37% to —1.01% and IQR=-1.13% to —11.39%, respectively, which explains the variability in the
time to cell death. For mode 2, the time to the peak of MOMP and eC reactions change
marginally and given that the eC peak is 50% of the WT condition, this leads to longer times to
accumulate the necessary number of eC molecules for cells to commit to apoptosis. Finally, for
mode 3, the median time to reach the MOMP reaction peak and the eC reaction peak are
11.76% and 14.48% faster than in the WT condition, respectively. This causes faster activation
of MOMP and eC which leads to earlier apoptosis in cells.

In addition to perturbation analysis of the execution modes, we showed how the execution
mode uncertainty can be reduced through parameter measurements using machine learning
techniques in the Supplementary Materials (Section 1). Furthermore, we studied the signal
execution modes of the extended apoptosis model (EARMv2.0) (34) to show the feasibility of
the proposed framework on a larger model with higher parameter uncertainty as well as how
the network size affects the identified execution modes, whose details are also provided in the
Supplementary Materials (Section 2).

To summarize, although the biochemical signal flows differently in each execution mode, the
protein concentration dynamics exhibit similar outcomes (Figure 3A Wild Type). However, when
a perturbation is made to the network, the outcome can vary significantly, as shown for each
execution mode. Considering that each execution mode was obtained from several parameter
vectors with equally well data fitness, such a difference is theoretically noteworthy and might
be an indicator of a more significant difference in other systems. Moreover, these observations
highlight the importance of choices of model parameter values as different parameter vectors
may result in different outcomes. Therefore, care should be taken while analyzing data-driven
network models in the presence of parameter uncertainty.

Networks may switch their execution modes depending on the input dosage: Application on
JAK2/STATS signal transduction network

To show how the proposed dynamic network analysis pipeline can provide mechanistic insights
into other biological systems, we applied it to a model of the Janus kinase 2/signal transducer
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and activator of transcription 5 (JAK2/STATS5) signal transduction pathway that captures cellular
population response (48,49). This pathway has an active role in the survival of erythroid
progenitor cells (50), which are highly sensitive to erythropoietin (Epo) at the colony forming
unit erythroid (CFU-E) stage (51). To ensure a robust physiological production of erythrocytes,
these cells demonstrate a gradual input-output relationship when exposed to Epo (52). The
details of the JAK2/STATS signaling network population-average model and its calibration, the
data used in the model calibration, and the uncertain parameter vectors providing equally well
data fitness were obtained from Adlung et al. (49).

The JAK2/STATS signaling network is presented in Figure 4A. In summary, the signal
transduction, which eventually induces gene expression (53) and CFU-E survival (48), is initiated
by the binding of Epo to its receptor EpoR. This is followed by the activation of receptor-
associated JAK2 by the formed Epo-EpoR complex. Active JAK2 phosphorylates both the
cytoplasmic tail of EpoR on multiple tyrosine residues (54) and STATS that is recruited into the
receptor complex (55). Then, phosphorylated STAT5 (pSTATS5) translocates to the nucleus and
induces the anti-apoptotic genes for the control of cell survival (56). STATS also targets other
genes including cytokine-inducible SH2-domain-containing protein (Cish) (57) and suppressor of
cytokine signaling 3 (SOCSC3) (58), which attenuates signal transduction. Finally, signal
transduction is terminated by dephosphorylated JAK2 (54) caused by the recruitment of SH2-
domain-containing protein tyrosine phosphatase 1 (SHP1) to the activated receptor via its SH2
domain (59).

Although the fraction of surviving cells increases at a graded level, the population mean
fluorescence intensity of the total STATS — the key integrator of Epo-induced survival signal
transduction in CFU-E cells — does not change with respect to increasing Epo doses (48,49).
Upon exposing the cells to Epo = 5 U/ml, the total STAT5 remains nearly constant (Figure 4B).
On the other hand, the mean fluorescence intensity of the pSTATS5 in the population gradually
increases in cytoplasm and nucleus over time which correlates with survival responses after Epo
stimulation (Figure 4B). Similarly, CFU-E cells demonstrate a rapid increase in the level of
PSTATS in cytoplasm relative to total STATS (Figure 4C). Furthermore, the overall pSTATS levels
increase as the Epo level increases (Figure 4D), which is correlated with the increasing cell
survival (49).

Despite the model reproducing the experimental data and identifying the abovementioned key
regulators of CFU-E cell survival responses with respect to Epo doses (49), a mechanistic
understanding of these networked processes that give rise to this behavior was lacking.
Revealing the underlying mechanism of this behavior and understanding of signal processing
mechanism of CFU-E cells in the presence of parameter uncertainty would enable us to control
their population-level responses through their signal execution modes. This could pave the way
for model-driven hypothesis generation to control cellular states and state transitions.
Therefore, here, we employ this system with the provided parameter distributions (Figure 4E)
and apply our proposed dynamic network analysis framework to unveil the underlying
mechanism of this behavior by identifying the JAK2/STATS5 network execution modes.
Moreover, we analyze how the number of modes varies with respect to the increasing Epo
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levels and demonstrate the time-dependent dominant pathways that play a role in the increase
of pSTATS levels (Figure 5B) and hence the cell survival responses.

The JAK2/STATS5 signaling network execution modes and the dominant pathways over time
vary after stimulating with different Epo doses, which correlate with the cell survival rates
To apply the proposed dynamic network analysis framework to the JAK2/STATS5 signaling
network, we first implemented the model in Python using the PySB modeling tool (34), which
was further used to reproduce the network responses (Figure 4B-D). The model consists of 21
dynamic parameters as well as several offset and scaling parameters, in which the parameters
have uncertainty with wide likelihood-based confidence intervals (Figure 4E) and equally good
fitness to experimental data (49) (Figure 4C-D). Among the provided parameter distributions,
we picked the best-fitting 1907 parameter vectors and used them to identify the execution
modes.

First, we identified pSTATS5 as the target node because we are interested in the mechanism that
causes the increase of pSTATS in both cytoplasm and nucleus which is correlated with the cell
survival responses. For illustration purposes, we pruned the JAK2/STATS5 signaling network by
removing inhibitory interactions and created the production network highlighting only positive
reactions (Figure 5A). Next, we computed the reaction rates that produce pSTATS5 and tracked
the signal flux to create the dominant subnetwork at each time point. Then, we labeled the
identified unique dominant subnetworks by a unique integer and obtained the dynamic
fingerprint of the network. Lastly, we repeated these steps for each parameter vector. After
computing similarities between each obtained sequence using the LCS metric and clustering
them, we observed the different signal execution modes of the network for each Epo dose (see
Materials and Methods section for more details on each step).

Interestingly, JAK2/STATS network switches its execution mode based on the Epo dosage
(Figure 5C-G), in which various pathways become dominant over time (Figure 5B). When Epo
doses are low (e.g., Epo =0, 0.032, and 0.8 U/ml), the signal is executed in a single mode, but
the modes are slightly different (Figure 5C-E). More precisely, when Epo = 0 U/ml (Figure 5C),
the only dominant pathway that can induce pSTATS5 production over time is the feedback loop
between pSTATS5, npSTATS, and STATS (Figure 5B-1), which depends on the initial STAT5
abundance only. When Epo = 0.032 U/ml (Figure 5D), three different pathways that become
dominant at different time intervals emerge. To elaborate, at t = 1 min after Epo was applied,
JAK2 is activated by the Epo-EpoR complex, and eventually phosphorylated receptor complexes
(i.e., EpoRpJAK2 and pEpoRpJAK2) are formed. Then, upon the involvement of STATS with
pPEpoRpJAK?2, initial levels of pSTATS are observed (Figure 5B-2). Between t =2 — 15 min, a
cytosolic protein, SHP1, is recruited into the active receptor complexes and dephosphorylates
JAK2 to terminate signal transduction (Figure 5B-3). Between t = 16 and 250 mins, the signal
from medium to cytoplasm and nucleus attenuates and the only pSTAT5 production source
becomes the STATS feedback pathway (Figure 5B-1). Similarly, when the Epo dose is increased
to 0.8 U/ml from 0.032 U/ml, the network executes the signal in a single mode with slightly
different dominant pathways (Figure 5E). This increase in Epo level reduces the duration of the
activity of signal transduction terminator pathway from 14 to 9 mins and additionally activates
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one of the direct pSTATS producer pathways (Epo—EpoRpJAK2—pSTATS; Figure 5B-4) which
contributes to the production of more pSTATS5 for 7 mins. However, this activation does not last
long due to weak Epo dose and again the STAT5 feedback loop becomes the only dominant
pathway producing pSTAT5 between t = 18 and 250 min.

Increasing the Epo level not only substantially changes the network’s execution mode but also
further increases the number of modes and changes both order and duration of the dominant
pathways (Figure 5F-G). When Epo = 5 U/ml, the dominant signal flux begins with the activation
of the direct pSTAT5-producing pathway (Figure 5B-4) at t = 1 min and switches to the other
pSTAT5-producing path through the phosphorylated receptor complex pEpoRpJAK2 (Figure 5B-
2) between t = 2 and t = 34 min in the first mode. In the meantime, although the signal
transduction terminator pathway through SHP1 becomes dominant for 4 mins, it is not enough
to prevent pSTAT5-producing pathways from becoming dominant again because of the strong
Epo signaling. First, the STAT5 feedback pathway becomes dominant between t =35 and t = 39
min and then it is followed by the major dominance of the direct pSTAT5-producing pathway
(Figure 5B-4) from t = 40 mins until the end of the simulation, maintaining high levels of
PSTAT5. The same scenario occurs in the second execution mode as well. The only difference
between the two modes is the duration of the dominance of the STATS5 feedback pathway
(Figure 5F, Mode 2). When Epo is applied at the level of 20 U/ml (Figure 5G), both execution
modes have the same dominant pathways that directly produce cytoplasmic pSTATS5 (Figure 5B-
2 and 4). Only the duration of the dominance of the pathway through the pEPoRpJAK2 receptor
complex lasts longer in the second mode, which results in barely observable, long-lasting
pSTATS peak levels.

The change in the signal execution modes and the temporal dominant pathways with respect to
increasing Epo doses is consistent with the increase in the cell survival percentages. When the
Epo level ranges from 0 to 20 U/ml, the percentage of surviving cells gradually increases from
6.9% to 82%, inferring a correlation with the high responses of pSTATS5 (Figure 4D) (49). As
elaborated above, increasing the Epo level results in quantitatively and qualitatively different
signal execution modes. Comparing all signal execution modes in Figure 5C-G indicates that
when Epo levels are low, the main dominant pathway contributing to the pSTAT5 production is
the STATS feedback pathway in which the production rate mostly depends on the initial
abundance of STAT5 and is weakly affected by the Epo-induced signaling, resulting in lower cell
survival rates (Figure 5C-E). On the other hand, when the applied Epo dose becomes higher, the
cells mechanistically switch to another state. More precisely, the main dominant pathways over
time become the direct pSTAT5-producing pathways through Epo receptor complexes and
phosphorylated JAK2 (Figure 5F-G), which results in a more robust pSTAT5 production and
hence higher cell survival rates. The relationship between varying Epo doses, the signal
execution modes, and the resulting pSTATS5 trajectories are further demonstrated in Figure S5.

As a result, despite the parameter uncertainty, by applying the proposed framework to the
JAK2/STATS signal transduction pathway model and identifying its switch-like signal execution
modes, we not only reveal novel, detailed explanations of how different levels of Epo signaling
are mechanistically processed by the CFU-E cells but also show how the parameter changes,
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i.e., the change in applied ligand dosage, etc., may affect the flux and signal execution in
networks. We hypothesize that these Epo-dependent execution modes might be further used
to precisely control CFU-E cell population level decisions by specifically targeting the associated
dominant pathways through experiments. Furthermore, this analysis shows that the proposed
approach might be used to reveal broad information about signal flow in the other complex
systems and perhaps to elicit ways of reprogramming the cells and controlling their fates
through their unique signal execution modes.

DISCUSSION

It has been long recognized that model parameter optimization to experimental data is key to
investigating the dynamical properties that control cell behavior (60). Unfortunately, parameter
optimization usually yields large parameter uncertainties due to a general lack of quantitative
data, model complexity as well as model identifiability (61). Even a complete set of time course
data might be insufficient to constrain parameter spaces, yielding unidentified parameters (62).
The unidentifiability of model parameters refers to a situation where it is not possible to
uniquely estimate the values of individual parameters based on the available data. This can
occur when different combinations of parameter values produce similar model predictions or
when certain parameters have no direct influence on the model output. However, while
individual parameters may be unidentifiable, combinations of model parameters can often
exhibit identifiability in which identifiability means the ability to estimate the values of specific
combinations of parameters with a high degree of confidence. By examining the relationships
between parameters and their influence on the model output, it is possible to identify specific
combinations that have a discernible impact on the system behavior. These combinations may
represent key regulatory mechanisms, interaction networks, or functional modules within the
model.

Given the set of parameter vectors yielding equally well data prediction accuracy, analysis of
non-equilibrium network dynamics is of importance because it allows us to capture and study
the behavior of complex systems in real-world conditions, where equilibrium assumptions may
not hold. By considering the dynamic interactions and flows of molecules, energy, and
information within a network, one can understand emergent properties, system resilience, and
the impact of perturbations. This knowledge is not only essential for biological questions, but
also essential in various fields such as physics, ecology, and social sciences, as it provides
insights into complex processes, enabling us to make informed decisions and develop effective
strategies in complex, non-equilibrium systems. Here, we examined the effects of parameter
uncertainty on signal execution through a biochemical network with an approach inspired by
Tropical Geometry and Ultradiscretization Theory, called PyDyNo. Despite the many parameter
vectors which reproduce the experimental protein dynamics, we found that the signal flow in a
network was constrained to only a few modes of execution. Our analysis further shows that
within a Bayesian calibration scheme, it is possible to assign probabilities to each execution
mode, thus greatly improving our understanding of signal dynamics. Therefore, the probabilistic
approach introduced in this work could open a novel perspective to understand network-driven
processes from a statistical point of view.
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To introduce the proposed framework, we first studied a simplified extrinsic apoptosis reaction
model (aEARM) that comprises key biological properties of apoptosis and allows us to analyze
all aspects of our method thanks to the convergence of all model parameters after parameter
calibration. Despite the found 27,242 unique parameter vectors with equally good data fitness,
only three distinct execution modes emerged as signal processing mechanisms, which exhibited
considerably different responses to in silico perturbations, indicating that using a single best-fit
parameter vector could be insufficient and misleading for understanding signal dynamics in
complex models. In addition to the aEARM, we studied the signal execution modes of the
extended apoptosis model (EARMv2.0 in Supplementary Materials) that provides a more
detailed resolution to the apoptosis mechanism, to see how the network size affects the
execution modes and overall prediction. Despite the difference in the underlying system of
differential equations due to the resolution of the models, the identified highly probable
execution modes share a functional overlap between the underlying dominant pathways, which
may imply that the execution modes are intrinsic features of the underlying system and
independent of the specific way in which the model is implemented. In addition, we applied the
framework to JAK2/STATS signal transduction network in erythroid progenitor cells to reveal a
mechanistic explanation for their survival responses with respect to increasing erythropoietin
(Epo). Upon applying different Epo doses, we observed that the network switches from one
execution mode to another execution mode resulting in weak to robust cell survival rates.

Although our approach provided novel insights about signal execution in important biological
networks, it has certain limitations. Our analysis assumes that reactions with high flux are the
most important for signal processing in a network. However, this may not always be the case
for other networks or for networks with temporal changes in model topologies (63). Moreover,
our method could be computationally expensive, particularly as models increase in size,
requiring hundreds of thousands of parameter samples to reach a convergence criterion.
Nevertheless, we believe this is a relatively small price to pay in contrast to the number of
experiments that would be necessary to attain the same level of mechanistic knowledge about
a network-driven process.

Overall, the proposed framework is advantageous in the non-equilibrium analysis of data-
driven complex network models by providing broad information about signal flow and how the
system of interest mechanistically executes the signals in the presence of parameter
uncertainty. In addition, the knowledge of the dominant pathways contributing to the
production (or consumption) of a target protein over time could guide the researchers through
experiments and allow easy identification of the other experimental targets to test hypotheses
about the target protein and the pathway itself. Also, the identification of signal execution
modes might guide how to precisely control the cell behaviors, cellular states, state transitions,
and perhaps their fates when they are exposed to an input signal. Furthermore, the information
about signal flow could be used to study drug-induced network rewiring processes (64), provide
mechanistic explanations for drug responses, and predict sequential combinations of drugs that
could better modulate a response signal in biochemical networks.
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MATERIALS AND METHODS

PyDyNo (Python Dynamic analysis of biochemical NetwOrks) is a dynamic network analysis tool,
inspired by Tropical Geometry and Ultradiscretization Theory methodologies to map
continuous functions into discrete spaces. In short, the algorithm works as follows: given a
mechanistic model of a network-driven process with associated parameter sets that yield
equally well data prediction, for each parameter set, we first discretize the simulated
trajectories at each time point and identify the dominant signal fluxes through the whole
network and observe a subnetwork. Upon labeling each subnetwork at all the time points, we
abstract the dynamic nature of signal execution to a sequence of labels, which is called as
dynamic fingerprint. Clustering of the dynamic fingerprints obtained from each parameter set
results in the execution modes. Each of these steps is elaborated in the following subsections
and the overall workflow of the algorithm is presented in Figure S4.

1. Development of the abridged extrinsic apoptosis reactions model (aEARM)

A coarse-grained ODE model of TRAIL-dependent apoptotic signaling was encoded with PySB
(34). This model grouped reactions into simple dynamic motifs representing key mechanistic
blocks in the TRAIL-dependent apoptosis pathway: TRAIL mediated DISC formation, initiator
caspase-8 activation via the DISC, and feedback activation via effector caspases (-3, -6, and -9),
effector caspase activation, and apoptotic marker (PARP) cleavage were all encoded as simple
catalysis reactions. MOMP formation (via initiator caspase-activated Bid) and accumulation of
MOMP-dependent pro-apoptotic signals were modeled as a Bid-dependent activation and
subsequent feedback self-activation step. This activation-amplification motif reproduces the
observed sigmoidal “snap-action” dynamics of MOMP-dependent pro-apoptotic effectors (e.g.,
Smac, CytoC). Initial values of the model components were drawn from values present in earlier
apoptosis models (e.g., EARM). Initial values of the MOMP-dependent signaling component
took the same value as Bax and Bak in the EARM model. The ODE model was integrated using
the Python LSODA ODE solver with relative and absolute tolerances set to 1e-2 and le-1
respectively (the model is encoded in copies per cell which takes values of 10,000 to 1M).

2. Bayesian inference and parameter calibration

The model’s reaction rate parameters were calibrated to normalized iC-RP and eC-RP
fluorescence time-course data, using the Differential Evolutions Adaptive Metropolis MCMC
sampling algorithm (DREAM(ZS)) encoded in Python as PyDREAM. This Bayesian calibration uses
log-normal distributions as priors, centered at biologically plausible rate values of forward
binding, reverse binding, and catalysis (1e-6 s molecule®, 1e-3 s, 1 s). The likelihood
function assumes the iC-RP and eC-RP data are normally distributed with a mean and standard
deviation calculated from multiple measurements. The sampling process employed a burn-in of
80,000 steps followed by a 220,000-step sampling of the target distribution. Additional settings
were applied to the gamma term in the DREAM algorithm: number of crossovers (nCR) = 25,
adapt gamma = True, probability of gamma-unity (p_gamma_unity) = 0.1, resolution of gamma
term (gamma_levels) = 8. Convergence was diagnosed by the Gelman-Rubin convergence
diagnostic (i.e., GR < 1.2) for each calibrated parameter. This calibration provided a wide range
of kinetic parameter values, and we note that even if there was experimental data for all
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species in a model, due to model sloppiness the parameter distributions would not be
sufficiently constrained (62,65).

a. Calculating time of death from simulations
To calculate the time of death from a simulation, we used the same method used by Lopez et
al. (34). This calculation consists in obtaining the times taken by the simulated trajectory of
cPARP to reach 10% and 90% of the maximum concentration. Then the time to death is
calculated as follows:

Tgim _ Too + Ty
2

3. Constructing the digital signature for a subnetwork
The digital signature of a model simulation is a temporally ordered sequence of labels denoting
the dominant sub-network at each time point of the simulation. The dominant sub-network for
a given time point is a subset of the signaling pathway over which the most signal is flowing to
the production of a pre-determined target species (i.e., signaling protein or protein complex);
each unique dominant sub-network is assigned a unique integer label for the digital signature.

Construction of the dominant sub-networks uses the instantaneous reaction rates at each
simulation time point, which change over time as molecular species are consumed and
produced. Hence, the dominant sub-networks can change at each time of the model
simulations, resulting in a dynamic sequence of dominant sub-networks, i.e., the digital
signature of the model simulation. The procedures for constructing the dominant sub-networks
and for selecting the dominant reaction are detailed in the proceeding paragraphs. Figure S4
shows an algorithm diagram for the construction of digital signatures.

a. Constructing a dominant sub-network
The generation of the dominant sub-network at a given time point starts with creating a
bipartite-directed graph (digraph) representation of the model which consists of molecular
species and reaction nodes. All molecular species and reactions within the model are encoded
as nodes with unidirectional edges connecting molecular species with their respective reaction
nodes. The directionality of each edge is determined by the sign of the reaction rate of the
given species-reaction pair at the current time point; for reversible reactions, the reaction rate
is the sum of forward and reverse rate terms. The bipartite digraph provides an instantaneous
snapshot of the direction of fluxes through the signaling network.

We then hierarchically construct a dominant pathway starting from the user-defined target
species. For the first step, we identify the set of dominant reactions, i.e., those reactions which
contribute most to the production of the target species. Dominant reactions are classified
based on the instantaneous reaction rates; the conditions determining the dominant reactions
are detailed in the following paragraph. We then trace back through the bipartite graph along
those dominant reactions to the corresponding reactant species, which are added to the
dominant sub-network. For each reactant species that was added to the sub-network, we
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determine their dominant reactions and trace back through the bipartite graph to the next set
of reactant species. This procedure is continued for a pre-determined number of iterations
defined by the user parameter depth. Obviously, the length of the identified dominant pathway
at each time point depends on the user-defined depth value. Using higher depth values would
result in longer dominant pathways with more species while making the algorithm
computationally more complex. Once the procedure is complete, the result is a species-to-
species sub-network representing the dominant pathway over which most of the signal is
flowing to produce the target at the current time point.

Note that we have defined the dominant sub-networks and their construction based on
production of the target species. Alternatively, the procedure can be formulated to define the
dominant sub-networks and their construction based on the consumption of the target species.

b. Selecting dominant reactions
One aspect of network complexity is that signaling proteins can participate in multiple
interactions; in a bipartite-directed graph, this is represented by a molecular species having
edges connecting it to multiple reactions. The goal, therefore, is to simplify the system and
focus on only those reactions which are most important to the production of a species; we term
this sub-set of reactions the dominant reactions. To determine the set of dominant reactions
we build on some of the concepts from Noel et al. (31), who applied a tropical geometry
framework to smooth ODE systems.

When the signaling network is modeled with a system of ODEs the rate of change of a
molecular species, x;, is:

r
dx; a:
j=1
where k; > 0 are kinetic constants, x; are variable concentrations, S;; = ﬁij — aij are the
j j

. . L. . . j j .. . . a a
entries of the stoichiometric matrix, @; = (a{, ...,a,]l) are multi-indices, and x% = X, b,

We treat the ODE of molecular species x; as a polynomial function of the uni-directional rate
terms,

dx; <
vi(t) = d); :ZM]' (2)
=1

where the M; = kjSl-jx“i are the monomials representing the uni-directional rate terms. Since
reversible reactions are bi-directional, they contribute two uni-directional rate monomials to
the total rate of change of a species: one each for the forward (consumes x;) and reverse
(produces x;) directions of the reaction. We account for this bi-directionality by combining the
two uni-directional rate monomials into a single net reaction rate monomial term,

AIvlj = Mj,for + Mj,rev (3)

15


https://doi.org/10.1101/2021.01.26.428266
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428266; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

where M; ¢,,- and M; ,.,, are the monomials corresponding to the forward and reverse reaction
rate monomials of reaction j with respect to species x;. (2) is then updated to,

Trev Tirrev

dx;
j=1

k=1

where the first sum is over reversible reactions (7;..,,) and the second sum is over irreversible
reactions (7irep)-
We now define the set of reaction rate terms from (4) as:

R = {AM,, ..,AM, YU {My,..,M, } (5)

? " Tirrev

Since we only want to trace back the production of species x;, we can reduce R to its subset
containing only the positive terms R,

R,={meR]|m>0}. (6)
The most dominant monomial contributing to the production of x; is then given by,
M, = max(R,) (7)

where M, identifies the most dominant reaction in the production of x;. Next, we want to
identify any additional reactions which contribute to the production of x; with a similar
magnitude as M;. We, therefore, apply the concept of dominancy as defined by Noel et al. (31),
where monomials M; and M;are said to be on par with each other within a level p > 0 if

'par(Mi,Mj) = _Idom(Mi,Mj) = sep(Mi,Mj) <p (8)

where dom(Mi, Mj) is a binary function of monomials for which monomial M; is said to
dominate monomial M, at alevel p > 0if,

dom(Mj,Mk) = sep(Mj,Mk) > p (9)

and sep(Mj,Mk) is the separation (i.e., Euclidean distance) in logarithmic space between the
monomials,

sep(Mj,Mk) = |log(|Mj|) — log(IMk|)|. (10)
Using this application of dominancy (8), the set of dominant reactions terms, D, is given by,
Dy, ={m € R, | par(My, m)}. (11)

Thus, we construct a set of reaction terms containing the most dominant reaction term M, and
all terms that are on par with M. The level of separation p used to determine whether terms
are on par is a user-defined quantity.

4. Obtaining modes of signal execution

Simulating biochemical models with different initial protein levels and/or kinetic parameters
may result in different digital signatures. It is important to quantify the level of discrepancy
between different sequences. Grouping sequences that have similar dominant pathways leads
to the definition of modes of signal execution. First, it is necessary to find a suitable distance
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metric that accounts for the differences of interest when comparing sequences. Once we have
a metric, we can obtain a distance matrix that can be used with clustering algorithms to identify
the modes of signal execution.

a. Defining a suitable distance measure for clustering
Multiple distance measures exist that can be used the calculate the dissimilarity between two
sequences. Each of the distances has different sensitivities to sequencing, timing, and duration
of a dominant subnetwork. Since our goal is to identify groups of simulations that have the
same dominant subnetwork, we chose the Longest Common Subsequence (LCS) distance (42).
This metric is more sensitive to sequencing, i.e., the order of appearance of dominant pathsin a
signature. By focusing on the differences in the state distribution, it allows us to identify
different modes of signal execution and novel protein targets that modulate biochemical signals
within a network depending on the parameters of the model.

The LCS distance is defined as:
dics = Alx, x) + A(y,y) — 2A(x, y),

where A¢(x, y) corresponds to the number of elements in one sequence that can be uniquely
matched with elements occurring in the same order (not necessarily contiguous) in the other
sequence.

We apply this metric to all pairs of digital signatures to obtain a dissimilarity matrix. Then, we
use this matrix as an input of a clustering technique to obtain groups of digital signatures that
have similar patterns in the sequence of dominant pathways. There are three clustering
techniques implemented: Agglomerative (44), spectral (66), and HDBSCAN clustering (67). The
choice of clustering technique is defined by the user.

5. Reduction of execution mode uncertainty

a. XGBOOST model of execution mode estimation
We used XGBOOST (68) to classify parameter vectors into different execution methods. We
used 75%, and 25% of the parameter vectors as training and test sets, respectively. We used
the following parameters to run the XGBOOST model: booster="gbtree’, alpha=1, lambda=1,
tree_method="gpu_hist’, tree_method="gpu_hist’, max_bin=16, objective="multi:softmax’,
num_class=12, eval_metric="merror’, learning_rate=0.1, n_estimators=100.

To obtain the importance of individual parameters for the classification we used the
‘total_gain’ variable from the XGBOOST model.

b. Bayesian update of mode probabilities
After measurement of a kinetic parameter, mode probabilities may be updated using the
following equation:
p:iXi(s)
piXi(s) + p;X;(s) + prXi(s)

P(Xils) =
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where s is the measured value, X; is the probability density function of the execution mode i,
Xj and X are the probability density functions of the remaining two execution modes, and
pi, pj and py are their corresponding prior probabilities.
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Figure 1. Abridged Extrinsic Apoptosis Reaction (aEARM) network and parameter calibration results. A) Reaction network
using the Kitano convention. Yellow nodes are protein receptors, green nodes are generic proteins, and red nodes are
truncated/cleaved proteins. B) Marginal probability distributions of the first 12 individual kinetic parameters that were
recovered from the PyDREAM run by integrating all other dimensions. Forward rates, reverse rate, and catalytic values were all
found to be within biologically relevant ranges (39). C) Simulated trajectories of truncated Bid and Cleaved PARP calibrated to
reproduce the experimental data. Red dots and bars indicate the mean and standard deviation of the experimental data and
blue lines correspond to the simulated trajectories.
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Figure 2. Discretization analysis workflow and modes of signal execution in aEARM. A) First, the network of interaction is
obtained from a model and a target node (labeled T) from where the signal is going to be tracked is defined. Red nodes are
molecular species in a model, edges represent interactions between nodes, and bolded edges are the dominant interactions.
Next, at each time point of a simulation, our analysis obtains a dominant subnetwork, bolded edges in the network, through
which most of the signal is flowing and this subnetwork is assigned a label. Sim 0 and Sim 1, simulations ran with different
parameter sets, exhibit different dominant subnetworks. B) As each subnetwork is assigned a label, we can get a sequence of
labels per simulation that can be compared to other simulations with the Longest Common Subsequence metric and obtain a
distance matrix. This distance matrix can be used with clustering algorithms to obtain groups with similar modes of signal
execution. C) Dynamic fingerprints organized by the clusters they belong to. Each cluster plot is composed of horizontal lines
that correspond to dynamic fingerprints, i.e., sequences of dominant subnetworks, and each subnetwork is assigned a different
color. D) Signal execution modes as defined by the most common subnetwork in each cluster. The complete aEARM network is
shown in black, and the dominant subnetworks for Mode 1, 2, and 3 are highlighted in yellow, blue, and red, respectively.
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Figure 3. Time of death responses are markedly different for the same perturbation. A) Cleaved PARP (cPARP) protein
concentration trajectories for the “wild type” case (top row) grouped by Execution Modes. Mode 1, 2, and 3 have 11270,
10727, and 5245 trajectories, respectively. Inset includes the average time to death and the standard deviation calculated from
all trajectories in each execution mode. PARP cleavage exhibits a markedly different trajectory pattern (bottom row) after
eCaspase is knocked down by 50%. B) MOMP* + MOMP and MOMP* + eC reaction rate trajectories. Dashed lines correspond to
the mean of all reaction rates trajectories in an execution mode and the shadows represent the standard deviations.
Trajectories from the “wild type” condition are colored in red and trajectories from the 50% effector caspase KD are colored in
blue, and show key differences in their dynamics. Insets include the median percentage change in the reaction rate peak (AF)
and the time to reach that peak (AT) in the eC KD condition relative to the wild-type condition. The interquartile range is
included as a measure of the variation in the AF and AT changes.

25


https://doi.org/10.1101/2021.01.26.428266
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428266; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[ Likelihood Profiles Confidence Intervals |
init_EpoRJAK2 init_SHP1 init_STATS
95% 95% 95% ‘
0.2 06 08 13 14 15 1.7 1.9 2.1
CISEqe Clisinh CISRNADelay
o [
95% 95%
socs3 04 0 06 0 0 20 11 -09 -0€
CISRNATum CISTum DeaEpoRJAKACtSHP1
95%‘/\ ss%l/\lss% /_\‘
eSS 12 -08  -02 24 -18 -14 34 3 26
— Transport
EpoRActJAK2 JAK2ACtEpo SHP1Dea
.+ Trnscrptonirunslation
Caalysis
- Tohibiton 95% 95% 95%
B Dudnioonbli 07 -05  -02 14 13 12 26 -23 2
SHP1ProOE SOCS3Eqe SOCS3EqCOE
B C D 95% ‘ 95% 95%

) 01 0 o1 4 08 -08 27 29 34
tytpS‘TATSvsnucpSTATSvslotaISTATSAEpa75U/ml . Cyt pSTATS relative to total STATS ‘ Cyt + nuc pSTATS SOGS3Inh SOESSTum STATSACEPOR
i N\ = - r ‘

3 e -
gl g : | 95%95% /\‘90% _/\}
2. 3 ol 23 2 A7 13 11 -08 -4 05 1
o —— CytpSTATS 5 g
g s £w o STATSACHJAK2 STATSExp STATSImp
57 [\l 3
ES ‘\ / gu . ] 95% 95% 95%
a ||/ > ER
8/ ~ i — Simulation - Epo = 5 U/ml £ -7 13 -09 2 -19 -5 14 13
£ gy g-° +  Experimental Data - Epo = 5 U/ml Log, ,(Parameter)

3 0 £ o S W

time(min) time(min) time(min)

Figure 4. JAK2/STATS population-average model, model parameters, and STATS responses reproduced using the calibrated
model provided by Adlung et al. (49). A) Graphical representation of the JAK2/STATS5 signaling network model. B) Comparison
of average total STAT5, pSTATS in the cytoplasm (cyt), and pSTATS in the nucleus (nuc) responses of CFU-E cell population over
time when exposed to Epo = 5 U/ml. C) Simulated pSTATS (cyt) relative to total STATS versus the experimental measurements.
D) Overall pSTATS5 responses over time with respect to increasing Epo doses versus corresponding experimental data. Note: The
experimental data and the model parameters were provided by Adlung et al. (49). 1907 parameter sets were simulated in total
and plotted all together. As seen in B) and C), all parameter sets are fitting the data equally well and their trajectories are
mostly overlapping. E) Likelihood profiles of the 21 dynamic model parameters (49).
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Figure 5. Execution modes of JAK2/STATS signaling network for each Epo dose when pSTATS is the target node. A) The
pruned JAK2/STATS signaling network. The inhibitory interactions were removed for demonstration purposes to show the
positive reactions only. B) Dominant pathways over time framed with the corresponding colors in the identified execution
modes in C-G. C-G) Dynamic fingerprints of the network for each parameter set (each row corresponds to a fingerprint

sequence for a unique parameter set) when Epo = 0 U/ml, 0.032 U/ml, 0.8 U/ml, 5 U/ml, and 20 U/ml with their most common

dominant pathways, respectively.
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