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Abstract

The fields of viral ecology and evolution have rapidly expanded in the last two decades,
driven by technological improvements, and motivated by efforts to discover potentially
zoonotic wildlife viruses under the rubric of pandemic prevention. One consequence has
been a massive proliferation of host-virus association data, which comprise the backbone
of research in viral macroecology and zoonotic risk prediction. These data remain
fragmented across numerous data portals and projects, each with their own scope,
structure, and reporting standards. Here, we propose that synthesis of host-virus
association data is a central challenge to improve our understanding of the global virome
and develop foundational theory in viral ecology. To illustrate this, we build an open
reconciled mammal-virus database from four key published datasets, applying a
standardized taxonomy and metadata. We show that reconciling these datasets provides
a substantially richer view of the mammal virome than that offered by any one individual
database. We argue for a shift in best practice towards the incremental development and
use of synthetic datasets in viral ecology research, both to improve comparability and
replicability across studies, and to facilitate future efforts to use machine learning to
predict the structure and dynamics of the global virome.
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Introduction

The emergence of SARS-CoV-2 was a harsh reminder that uncharacterized wildlife
viruses can suddenly become globally relevant. Efforts to identify wildlife viruses with the
potential to infect humans, and to predict spillover and emergence trajectories, are
becoming more popular than ever (including with major scientific funders). However, the
value of these efforts is limited by an incomplete understanding of the global virome (Wille
et al. 2020). Significant knowledge gaps exist regarding the mechanisms of viral
transmission and replication, host-pathogen associations and interactions, spillover
pathways, and several other dimensions of viral emergence. Further, although billions of
dollars have been invested in these scientific challenges over the last decade alone, much
of the data relevant to these problems remains unsynthesized. Fragmented data access
and a lack of standardization preclude an easy reconciliation process across data
sources, making the whole less than the sum of its parts, and hindering synthetic research
(Wyborn et al. 2018).

Here, we propose that data synthesis is a seminal challenge for translational work in viral
ecology. This requires researchers to go beyond the usual steps of data collection and
publication, to develop a community of practice that prioritizes data synthesis and
reconciles semi-reproduced work across different teams and disciplines. As an illustrative
example, we describe the analytical hurdles of working with host-virus association data,
a format that characterizes the global virome as a bipartite network of hosts and viruses,
with pairs connected by observed potential for infection. Recent studies highlight the
central role for these data in efforts to understand viral macroecology and evolution
(Carlson et al. 2019, Dallas et al. 2019, Albery et al. 2020), to predict zoonotic emergence
risk (Han et al. 2015, 2016, Olival et al. 2017, Wardeh et al. 2020), and to anticipate the
impacts of global environmental change on infectious disease (Carlson et al. 2020, Gibb
et al. 2020, Johnson et al. 2020). Several bespoke datasets have been compiled to
address these questions, and as interest in these topics has grown, so has the
fragmentation of total knowledge across those datasets. To illustrate this problem (and a

simple solution), we compare and reconcile four major host-virus association datasets,
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97 each of which is different enough that we anticipate the results of individual studies could
98  be strongly shaped by choice of dataset.

99

100  Four parts of one whole

101

102 Though host-pathogen association data exist in dozens of sources and repositories, there
103 are at least four published datasets that each capture between 0.3% and 1.5% of the
104  estimated 50,000 species of mammal viruses (Carlson et al. 2019). Differences among
105 these datasets, especially with regards to available metadata and frequency of data
106  updates, make them preferable for different purposes (Table 1), but may also complicate
107 intercomparison and synthetic inference.

108

109  GMPD 2.0: The Global Mammal Parasite Database (Nunn and Altizer 2005), started in
110 1999 and now in its second public version (Stephens et al. 2017), emerged from
111 continued efforts to compile mammal-parasite association data from published literature
112 sources. Construction of the GMPD used a variety of similar strategies that combined
113 host Latin names with a string of parasite-related terms to search online literature
114  databases. Pertinent literature was then manually identified and relevant association and
115 metadata compiled. The initial database was focused on primate hosts (Nunn and Altizer
116 2005), and expanded to include separate sections for ungulates (Ezenwa et al. 2006) and
117 carnivores (Lindenfors et al. 2007). In 2017, GMPD 2.0 was released, which merged
118 these three previously independent databases that were being independently maintained
119 and updated (Stephens et al. 2017). The updated dataset encompasses 190 primate, 116
120  ungulate, and 158 carnivore species, and record their interactions with 2,412 unique
121 “parasite” species, including 189 viruses, as well as bacteria, protozoa, helminths,
122 arthropods, and fungi. Notable improvements in version 2 of the GMPD are the
123 construction of a unified parasite taxonomy that bridges occurrence records across host
124  taxa, the expansion of host-parasite association data along with georeferencing, and
125 enhanced parasite trait data (e.g., transmission mode). The original data are available as
126 a web resource (www.mammalparasites.org), and the data from GMPD version 2 can

127 also be downloaded as static files from a data paper (Stephens et al. 2017). In addition,


https://paperpile.com/c/cFRW1r/BR6R
https://paperpile.com/c/cFRW1r/TQUW
https://paperpile.com/c/cFRW1r/4SwD
https://paperpile.com/c/cFRW1r/TQUW
https://paperpile.com/c/cFRW1r/TQUW
https://paperpile.com/c/cFRW1r/rfjf
https://paperpile.com/c/cFRW1r/wM7i
https://paperpile.com/c/cFRW1r/4SwD
https://paperpile.com/c/cFRW1r/4SwD
https://doi.org/10.1101/2021.01.14.426572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426572; this version posted January 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

128 one subsection of the GMPD, named the “Global Primate Parasite Database,” has been
129 independently maintained and regularly updated by Charles Nunn (data available at

130 https://parasites.nunn-lab.org/). Consequently, the primate subsection of GMPD 2.0

131 includes papers published up to 2015, while the ungulate and carnivore subsections stop
132 after 2010 (Stephens et al. 2017).

133

134 EID2: The ENHanCEd Infectious Diseases Database (EID2), curated by the University of
135 Liverpool, may be the largest dynamic dataset of any symbiotic interactions (Wardeh et
136 al. 2015). EID2 is compiled from automated, dynamic scrapes of two web sources:
137 publication titles and abstracts indexed in the PubMed database and the NCBI Nucleotide
138 Sequence database (along with its associated taxonomic metadata). The EID2 data is
139 structured using the concepts of “carrier” and “cargo” rather than host and pathogen, as
140  itincludes a number of ecological interactions beyond the scope of normal host-pathogen
141 interactions, including potentially unresolved mutualist or commensal associations.
142 Interactions are stored as a geographic edgelist, where each carrier and cargo can also
143 have locality information; additional metadata include the number of sequences in
144 GenBank and related publications. EID2’s dynamic web interface (currently available
145 through download on a limited query-by-query basis which researchers often manually
146 bind or by personal correspondence with data curators) contains information
147 encompassing 4,799 mammal “carrier” species and 70,614 microparasite or
148 macroparasite “cargo” species, of which 9,605 are viruses (Wardeh et al. 2020). However,
149 many researchers continue to use the static, open release of EID2 from a 2015 data paper
150  (Wardeh et al. 2015), which we focus on here for comparative purposes as a stable
151 version of the database available to the community of practice. The EID2 data were
152 originally validated for completeness against GMPD 1.0.

153

154  HP3: The Host-Parasite Phylogeny Project dataset (HP3) was developed by EcoHealth
155 Alliance over the better part of a decade. Published along with a landmark analysis of
156 zoonotic spillover (Olival et al. 2017), the HP3 dataset consists of 2,805 associations
157 between 754 mammal hosts and 586 virus species. These were compiled from literature
158 published between 1940 and 2015, based on targeted searches of online reference
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159 databases. Complementary with the search strategy used for the GMPD, rather than
160  starting with a list of host names, HP3 started with names of known mammal viruses listed
161 in the International Committee on Taxonomy of Viruses (ICTV) database. These virus
162 names along with their synonyms were then used as search terms to identify literature
163  containing host-virus association data. To narrow search results for well-studied viruses,
164  they included additional host range-related terms to identify relevant publications. Data
165 collection and cleaning for HP3 began in 2010 and the database has been static since
166 2017; it can be obtained as a flat file in the published study’s data repository (Olival et al.
167 2017). HP3 includes a host-virus edgelist (see Glossary), separate files for host and virus
168  taxonomy, and separate files for host and virus traits. Host-virus association records are
169  provided with a note about method of identification (PCR, serology including specific
170 methods, etc.), which may be useful for researchers interested in the different levels of
171 confidence ascribed to particular associations (Becker et al. 2020). HP3’s internal
172 taxonomy is also harmonized with two mammal trees (Bininda-Emonds et al. 2007, Fritz
173 et al. 2009), facilitating analyses that seek to account for host phylogenetic structure while
174 testing hypotheses about viral ecology and evolution (e.g. Becker et al., Farrell et al.,
175 Olival et al. 2017, Washburne et al. 2018, Guth et al. 2019, Park 2019, Albery et al. 2020,
176 Mollentze and Streicker 2020). HP3 was also validated against GMPD 1.0.

177

178 Shaw: Recent work by Shaw et al. built a host-pathogen edgelist by combining a
179 systematic literature search with cross-validation from several of the above-mentioned
180  datasets (Shaw et al. 2020). Similar to the construction of HP3, the authors started with
181 lists of known pathogenic bacteria and viruses found in humans and animals. They then
182 conducted Google Scholar searches pairing pathogen names with disease-related
183 keywords, followed by manual review of search results. For well-studied pathogens they
184 limited their manual review to a subset of the top 200 most “relevant” publications as
185 determined by Google. From the resulting literature searches, the authors compiled
186 12,212 interactions between 2,656 vertebrate host species (including, but not limited to,
187 mammals) and 2,595 viruses and bacteria. GMPD2, EID2, and the Global Infectious
188 Diseases and Epidemiology Network (GIDEON) Guide to Medically Important Bacteria
189 (Gideon Informatics, Inc. and Berger 2020) were used to validate the host-pathogen


https://paperpile.com/c/cFRW1r/rrTo
https://paperpile.com/c/cFRW1r/fgZx+eLor
https://paperpile.com/c/cFRW1r/fgZx+eLor
https://paperpile.com/c/cFRW1r/Lq5O+HQcT+QJud+8eFn+CgIl+C0D8+R19a+JhLf
https://paperpile.com/c/cFRW1r/Lq5O+HQcT+QJud+8eFn+CgIl+C0D8+R19a+JhLf
https://paperpile.com/c/cFRW1r/Lq5O+HQcT+QJud+8eFn+CgIl+C0D8+R19a+JhLf
https://paperpile.com/c/cFRW1r/0jwN
https://paperpile.com/c/cFRW1r/b2sP
https://doi.org/10.1101/2021.01.14.426572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426572; this version posted January 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

190  associations. The dataset is available as a static flat file through figshare and the project
191 GitHub repository (Shaw et al. 2020). Host-pathogen associations are provided alongside
192 pathogen metadata (e.g., genome size, bacterial traits, transmission mode, zoonotic
193 status) and diagnostic method (i.e., PCR, pathogen isolation, pathology). The dataset
194  also includes a comprehensive host phylogeny, developed specifically for the study using
195 nine mitochondrial genes for downstream analyses of host phylogenetic similarity and
196  host breadth.

197

198 A reconciled mammal virome dataset

199

200 Though some of these datasets were validated against each other during production, they
201 are sometimes used for cross-validation in analytical work (Albery et al. 2020), and some
202 studies have generated a study-specific ad hoc reconciled dataset (Farrell et al. 2020,
203 Gibb et al. 2020), no work has been published with the primary aim of reconciling them
204  as correctly, comprehensively, and reproducibly as possible. Dynamic datasets like EID2,
205  and recent datasets like Shaw, can inherently draw on a greater cumulative body of
206  scientific work. This could mean they include most of the data captured by previous
207 efforts, yet we found there are substantial differences among all four datasets. In isolation,
208 we expect that these differences could impact ecological and evolutionary inference in
209  ways that are difficult to quantify, with special relevance to significance thresholds in
210 hypothesis-testing research (i.e., different datasets may confer different power to
211 statistical tests). In unison, we expect that these data could be standardized into one
212 shared format, allowing them to cover a greater percentage of the global virome, a greater
213 diversity of host species, and obviating the need for researchers to either choose between
214 them or implement ad hoc solutions that merge them prior to analysis.

215

216 To illustrate the potential for comprehensive data reconciliation, we harmonized the four
217 major datasets described here, creating a new synthetic ‘CLOVER'’ dataset out of the four
218 “leaves” (which we have made available with this study). To do so, we first harmonized
219 the host taxonomy of all four datasets using the R package ‘taxize’ (Chamberlain and

220 Szbcs 2013), then manually resolved remaining discrepancies. Finally, using the Julia
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221 package ‘NCBITaxonomy.jI' (Poisot 2020), we standardized host and virus taxonomy
222 against the taxonomic hierarchy (Schoch et al. 2020) used as a reference by the National
223 Center for Biotechnology Information’s Taxonomy database (ncbi.nlm.nih.gov). With all
224  four datasets taxonomically consistent, we were able to show that each only covered a
225  portion of the known global mammal virome, even for the most studied hosts and viruses
226  (Figure 1). Our taxonomic harmonization helped reconcile some discrepancies,
227 increasing overlap among the datasets (Figure 2), but notable differences remained. This
228 could confound inference: for example, using a simple linear model, we found that data
229  provenance (see Glossary) explained 8.8% of variation in host species’ viral diversity
230  (but only 4.7% after harmonization). When studies report different findings based on slight
231 variation around a significance threshold, readers should therefore wonder whether subtle
232 differences in the underlying datasets might account for such variation.

233

234 Integrated datasets move us a step closer to resolving this uncertainty. The CLOVER
235 dataset covers 1,081 mammal host species and 829 associated viruses. This only
236 represents 16.9% of extant mammals (Burgin et al. 2018) and at most 2.1% of their
237 viruses (Carlson et al. 2019) - perhaps a marginal improvement over the 954 mammal
238 hosts (14.9%) and 733 viruses (1.8%) in the reconciled Shaw sub-dataset, but an
239 improvement nonetheless. The biggest functional gain is not in the breadth of the
240  reconciled data, but in its depth: the Shaw database records 4,209 interactions among
241 these host and virus species, while CLOVER captures 5,494. Given that previous studies
242 have estimated that 20-40% of host-parasite links are unknown (in GMPD2 (Dallas et al.
243 2017)), this 30% improvement is notable and shows the value of data synthesis: both
244 building out and filling in synthetic datasets will significantly improve the performance of
245  statistical models, which are usually heavily confounded by matrix sparsity (Becker et al.,
246 Dallas et al. 2017).

247

248 In addition, harmonization of metadata on virus detection methods across datasets
249  enables a greater scrutiny of the strength of evidence in support of each host-virus
250  association. We applied a simplified detection method classification scheme (either
251 serology, PCR/sequencing, isolation/observation, or method unknown) based on
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252 descriptions in the source databases or, where these are not provided, adopting the most
253 conservative definition given data source (i.e., EID2 entries derived from NCBI Nucleotide
254  are classified under PCR/sequencing, though they might also qualify for the next
255  strongest level of isolation/observation; whereas entries derived from PubMed are
256 classified under method unknown). Of the 5,494 unique host-virus pairs in CLOVER, a
257 total of 2,156 (39%) have been demonstrated using either viral isolation or direct
258 observation and 1,895 (34%) via PCR or sequencing-based methods (with some overlap,
259  as some associations have been reported with both of the above methods). Notably, a
260  substantial proportion (2,257; 41%) are based solely on serological evidence which,
261 although an indicator of past exposure, does not necessarily reflect host competence (i.e.
262  effectiveness at transmitting a pathogen; Gilbert et al. 2013, Lachish and Murray 2018,
263  Becker et al. 2020). These harmonized definitions facilitate investigation of inferential
264  stability using various types of evidence, as well as enabling a best practice of subsetting
265 data for a particular research purpose. For example, serological assays are a much
266 weaker form of evidence if the aim of a study is zoonotic reservoir host prediction,
267 Whereas isolation data open new avenues for testing hypotheses about reservoir
268 competence (Becker et al. 2020).

269

270  Data synthesis inherently relies on a scientific community that generates new, often
271 conflicting, data. The generation of truly novel data or finding ways to resolve existing
272 observations that are in conflict are two equally viable paths to scientific progress.
273 However, in the current funding landscape, researchers may have a significant incentive
274 to position themselves as creating an entirely “novel” dataset from scratch, even if it
275 partially replicates available data sources, or to focus their limited resources on datasets
276 that improve the depth of knowledge within a narrow scope (e.g., a focus on specific
277 taxonomic groups). But when testing microbiological or eco-evolutionary hypotheses,
278 rather than simply using each newly-published dataset as a benchmark for which one is
279 “most up-to-date,” we suggest a necessary shift in scientific cultural norms towards using
280  synthetic, reconciled data like CLOVER as an analytical best practice. To make this
281 possible, at least a handful of researchers will need to continue the task of stepwise
282 integration, using datasets that synthesize existing knowledge across teams, institutions,
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283 and funding programs to fill in critical data with even more detail. The required tasks (e.g.,
284  identifying relevant source data, cleaning taxonomic information, harmonizing metadata
285  on diagnostic information or spatiotemporal structure) can be time-consuming but are
286 relatively straightforward to conduct, and can increasingly be automated thanks to the
287 rapid growth of new data and tools for reproducible research (Boettiger et al. 2015,
288 Lowndes et al. 2017, Colella et al. 2020). There is a clear need, and no obvious technical
289  barrier, to invest more effort in data harmonization: engaging in this process as a form of
290  open science will accelerate progress for the entire research community.

291

292 Relevance to future efforts

293

294  Here, we showed that a simple data synthesis effort can create a dramatically more
295 ~comprehensive dataset of mammal-virus associations. However, this is a temporary
296  solution and one that will become less sustainable if similar datasets continue to
297 proliferate or if newer iterations of existing datasets are released, each absorbing different
298  parts of existing efforts. Over the longer term, given global investments in viral discovery
209  from wildlife, static datasets will quickly become out-of-date, and their relation to the most
300 recent empirical knowledge will be left unclear. For example, the CLOVER dataset
301 becomes significantly sparser after 2010, both in terms of the overall number of reported
302 host-virus associations, and the reporting of novel (i.e. previously undetected)
303  associations (Figure 3). This sparseness is most likely due to time lags between host-
304  virus sampling in the field, the reporting or publication of associations, and their eventual
305 inclusion in one of the component datasets, and suggests that CLOVER may now be
306 Missing up to a decade’s worth of known host-virus data. In the near term, microbiologists
307 and data scientists may want to approach the task of data reconciliation with a much
308 broader scope, and develop a more sustainable data platform.

309

310 Scaling up the aggregation of host-virus association data will not be easy, but is not an
311 insurmountable endeavour. We suggest working backwards from the intended end
312 product: the goals outlined here are best served by a central system (with an online
313 access point to the consumable data), spanning the information available from multiple
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314  data sources (which demands backend engines drawing from existing databases, while
315 tracking data provenance and ensuring proper attribution). Further, the most valuable
316 data resource would be easily updatable by practitioners (which demands a portal for
317 manual user input or an Integrated Publishing Toolkit to work from flat files). For users,
318 these data should be accessible in a programmatic way (i.e., through a web API allowing
319 for bulk download and/or other interfaces like an R package), help analysts build
320 reproducibility (through versioning of the entire database, or of a specific user query), and
321 offer predictable formats (through a data specification standard devised by a
322 multidisciplinary group).

323

324  Fortunately, the field of ecoinformatics has the capacity to help inform this design and
325 development process. Massive bioinformatic data portals like the Global Biodiversity
326 Informatics Facility (gbif.org), the Encyclopedia of Life (eol.org), and the Ocean
327 Biodiversity Information System (obis.org) all offer most of the functionalities we outline
328 here, though they are aimed at slightly different forms of biodiversity data. More recent
329  contributions dedicated to ecological network data include Global Biotic Interactions
330 (Poelen et al. 2014) (GLOBI, which consumes flat files and formats them), helminthR
331 (Dallas 2016), and mangal (Poisot et al. 2016) (which stores a metadata-rich
332  representation of species interaction networks), all of which reconcile their taxonomy with
333  other databases through the use of unique taxon keys. In short, researchers interested in
334 the global virome need not divert their attention, resources, and effort away from the
335  pressing tasks related to monitoring viral pathogens, but they can leverage existing
336  products, expertise, and capacity in neighbouring fields to bolster their ability to do so.
337 Given the eagerness ecologists have shown to participate in SARS-CoV-2 research, we
338 anticipate that our field may be especially well-poised to jump into this task post-
339  pandemic. We aim, in our current efforts, to lay that groundwork.

340

341 An integrated platform for the deposition, curation, archival, and sharing of host-virus
342 associations in a prét-a-manger, metadata-rich format has inherent value for the entire
343 scientific community. When the format of a dataset is well established, it allows for the
344 development of tools that mine the data in real-time. For example, the field of biodiversity
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345  studies has adopted the concept of Essential Biodiversity Variables, which can be
346 updated when the underlying data change (Pereira et al. 2013, Fernandez et al. 2019,
347 Jetz etal. 2019). Having the ability to revisit predictions about the host-virus network could
348 improve models that assess zoonotic potential of wildlife viruses (Farrell et al. 2020,
349 Mollentze et al. 2020), generate priority targets for wildlife reservoir sampling (Becker et
350  al., Babayan et al. 2018, Plowright et al. 2019), and help benchmark model performance
351 related to these tasks. Beyond training and validation, link prediction models built on these
352 reconciled databases may be used to target future literature searches, shifting from
353  systematic literature searches to a model based approach to database updating.
354 Increased collaboration between data collectors, data managers, and data scientists that
355 leads to better data standardization and reconciliation is the only way to productively
356 synthesize our knowledge of the global virome.

357

358 Data and code availability

359

360  The four raw datasets and harmonized CLOVER dataset can be obtained from the
361 archived project repository: https://dx.doi.org/10.5281/zen0d0.4435128. Code used to

362 generate the analyses and figures in this study can be found at

363  https://qithub.com/viralemergence/reconciliation.

364
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495 Figures and Tables

496

497

498 Table 1. Available “big data” on host-virus associations, and major features of each

499  dataset. Numbers of unique association records and host, virus, and pathogen species
soo0  are all derived from the reconciled version presented in the CLOVER database, and
so1  therefore these numbers may differ from those presented in the main text (which are
s02  taken from the source data, or from self-reporting by the data curators). *Number of

503  associations and taxa accurate as of 2015 static release in Scientific Data paper.

504

505
Dataset GMPD2 EID2* HP3 Shaw
Shaw LP, et al.
Source U. Georgia U. Liverpool EcoHealth Alliance Molecular Ecology
(2020).
Nature of dataset Static Dynamic Static Static
Association records 893 1,360 2,783 4,207
Host species 225 415 750 954
Virus species 154 395 561 733
. All symbionts (incl.
All parasnes‘and viruses, bacteria,
- . pathogens (|n9l. macroparasites
Original taxonomic VIruses, bact_erla, protozoans, prions, Viruses Viruses and bacteria
scope of pathogens macroparasites, green algae
prot:i)cz)c;:;s, molluscs, and
P cnidarians)
Mammals (subset:
Original taxonomic only_ungulates, Vgrtebrates and Mammals Vertebrates
scope of hosts carnivores, and invertebrates
primates)
Diagnostic method
identified (PCR, Yes No Yes Yes
serology, etc.)?
URL of current http://onlinelibrary.wiley.co . https//github.com/ecohealth | https://doi.org/10.6084/md.fi
version m/d0|/10.l1jggi2;/§)cy.1799/s https://eid2.liverpool.ac.uk/ ps ggm‘;ngg/m:;" ea ps gscf)lla?;g.8262779 mo-
506
507

17



https://doi.org/10.1101/2021.01.14.426572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426572; this version posted January 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s08 Box 1. Glossary.

509

510  Association data: a format that records ecological interactions between a host and

511 symbiont (an association) in the form of an edgelist.

512

513  Data provenance: The primary literature origin of a particular record or set of records in
514 a synthetic dataset.

515

st6  Data reconciliation: the task of harmonizing the language of a given dataset’s fields and
517 metadata to allow a researcher to merge data of different provenance, and generate a
518 new synthetic product.

519

520  Edgelist: a table, spreadsheet, or matrix of “links” in a host-symbiont network, where
521 each row records the known association of a different host-symbiont pair.

522

523  Flat file: a static document in Excel or similar spreadsheet or data format, with no

s24  dynamic component (no updating) and all data available from a single file rather than a
525  queryable interface.

526

527  Metadata: additional data describing focal data of interest and that is relevant to

s28  interpretation and analysis. Important examples for host-virus associations include

529  sampling method (for example, serological assay, PCR or pathology), date and

530  geographical location of sampling, and standardized information on host and virus

531 taxonomy.

532

533  Open data: data that is directly and freely accessible for reuse and exploration without
534  impediment, gatekeeping, or cost restriction.

535

536

537

538

539

540

541

542
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543  Figure 1. Network representation of the CLOVER dataset. The nodes of the entire

s44  CLOVER network have been projected to a two-dimensional space using t-SNE; in

545  each panel, only the nodes found in the dataset are shown in colour. In each dataset, a
s46  non-trivial proportion of associations are completely unique and unrecorded elsewhere,
547 even after taxonomic reconciliation. This was the case for 203 of 1360 associations in
sa8  EID2 (14.9%); 614/2783 in HP3 (22.1%); 269/893 in GMPD2 (30.1%); and 1705/4207
549 in Shaw (40.5%).
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Figure 2. Proportional overlap before and after host taxonomic updating. The
percentages and fill colours in these tiles can be interpreted as “% y axis was contained
in x axis”; for example, 32% of uncleaned EID2 hosts were also represented in GMPD2,
while 47% of cleaned Shaw associations were also contained in HP3. Darker colours

represent greater overlap.
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se6  Figure 3. Temporal trends in reporting of host-virus associations in the CLOVER

s67  dataset. Bar graphs show, for each year, the total number of reported associations
s68  coloured by source database (which can include duplicates of the same association
s69  reported over multiple years; top graph) and the number of novel unique associations
570  (i.e. previously unreported; bottom graph). Years reflect the date when an association
571 was reported, either in a published paper or report (for literature-based records) or to
572 the NCBI Nucleotide database (EID2 only).
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