

1 2 Data proliferation, reconciliation, and synthesis in viral ecology

3
4
5 **Authors:** Rory Gibb^{1,2*}, Gregory F. Albery³, Daniel J. Becker⁴, Liam Brierley⁵, Ryan
6 Connor⁶, Tad A. Dallas⁷, Evan A. Eskew⁸, Maxwell J. Farrell⁹, Angela L.
7 Rasmussen^{10,15}, Sadie J. Ryan^{11,12,13}, Amy Sweeny¹⁴, Colin J. Carlson^{15*}, and Timothée
8 Poisot^{16,17}

9
10 1. Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical
11 Medicine, London, UK
12 2. Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine,
13 London, UK
14 3. Department of Biology, Georgetown University, Washington DC, USA
15 4. Department of Biology, University of Oklahoma, Norman OK, USA
16 5. Department of Health Data Science, University of Liverpool, Liverpool, UK
17 6. National Center for Biotechnology Information, National Library of Medicine, National Institutes of
18 Health, Bethesda, MD 20894, USA.
19 7. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70806 USA
20 8. Department of Biology, Pacific Lutheran University, Tacoma WA, USA
21 9. Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
22 10. Vaccine Infectious Disease Organization and International Vaccine Centre, University of
23 Saskatchewan, Saskatoon, Canada
24 11. Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University
25 of Florida, Gainesville, FL 32601
26 12. Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
27 13. College of Life Sciences, University of KwaZulu Natal, Durban, 4041, South Africa
28 14. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
29 15. Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown
30 University, Washington, D.C., U.S.A.
31 16. Université de Montréal, Département de Sciences Biologiques, Montréal QC, Canada
32 17. Québec Centre for Biodiversity Sciences, Montréal QC, Canada

33
34 *Correspondence to: Rory Gibb (rory.j.gibb@gmail.com) and Colin J. Carlson
35 (colin.carlson@georgetown.edu)

36
37 **Acknowledgements:** This work was supported by funding to the Viral Emergence Research
38 Initiative (VERENA) consortium, including NSF BII 2021909 and a grant from Institut de
39 Valorisation des Données (IVADO). The authors thank Noam Ross, Maya Wardeh, and many
40 others for formative conversations about these datasets and for their tireless work making those
41 data available to the research community.

42
43 **Author biography:** All the authors are members of the Viral Emergence Research Initiative
44 (VERENA) consortium, a global scientific collaboration to predict which viruses could infect
45 humans, which animals host them, and where they could emerge.

46 **Abstract**

47

48 The fields of viral ecology and evolution have rapidly expanded in the last two decades,
49 driven by technological improvements, and motivated by efforts to discover potentially
50 zoonotic wildlife viruses under the rubric of pandemic prevention. One consequence has
51 been a massive proliferation of host-virus association data, which comprise the backbone
52 of research in viral macroecology and zoonotic risk prediction. These data remain
53 fragmented across numerous data portals and projects, each with their own scope,
54 structure, and reporting standards. Here, we propose that synthesis of host-virus
55 association data is a central challenge to improve our understanding of the global virome
56 and develop foundational theory in viral ecology. To illustrate this, we build an open
57 reconciled mammal-virus database from four key published datasets, applying a
58 standardized taxonomy and metadata. We show that reconciling these datasets provides
59 a substantially richer view of the mammal virome than that offered by any one individual
60 database. We argue for a shift in best practice towards the incremental development and
61 use of synthetic datasets in viral ecology research, both to improve comparability and
62 replicability across studies, and to facilitate future efforts to use machine learning to
63 predict the structure and dynamics of the global virome.

64

65

66 **Introduction**

67

68 The emergence of SARS-CoV-2 was a harsh reminder that uncharacterized wildlife
69 viruses can suddenly become globally relevant. Efforts to identify wildlife viruses with the
70 potential to infect humans, and to predict spillover and emergence trajectories, are
71 becoming more popular than ever (including with major scientific funders). However, the
72 value of these efforts is limited by an incomplete understanding of the global virome (Wille
73 et al. 2020). Significant knowledge gaps exist regarding the mechanisms of viral
74 transmission and replication, host-pathogen associations and interactions, spillover
75 pathways, and several other dimensions of viral emergence. Further, although billions of
76 dollars have been invested in these scientific challenges over the last decade alone, much
77 of the data relevant to these problems remains unsynthesized. Fragmented data access
78 and a lack of standardization preclude an easy reconciliation process across data
79 sources, making the whole less than the sum of its parts, and hindering synthetic research
80 (Wyborn et al. 2018).

81

82 Here, we propose that data synthesis is a seminal challenge for translational work in viral
83 ecology. This requires researchers to go beyond the usual steps of data collection and
84 publication, to develop a community of practice that prioritizes data synthesis and
85 reconciles semi-reproduced work across different teams and disciplines. As an illustrative
86 example, we describe the analytical hurdles of working with **host-virus association data**,
87 a format that characterizes the global virome as a bipartite network of hosts and viruses,
88 with pairs connected by observed potential for infection. Recent studies highlight the
89 central role for these data in efforts to understand viral macroecology and evolution
90 (Carlson et al. 2019, Dallas et al. 2019, Albery et al. 2020), to predict zoonotic emergence
91 risk (Han et al. 2015, 2016, Olival et al. 2017, Wardeh et al. 2020), and to anticipate the
92 impacts of global environmental change on infectious disease (Carlson et al. 2020, Gibb
93 et al. 2020, Johnson et al. 2020). Several bespoke datasets have been compiled to
94 address these questions, and as interest in these topics has grown, so has the
95 fragmentation of total knowledge across those datasets. To illustrate this problem (and a
96 simple solution), we compare and reconcile four major host-virus association datasets,

97 each of which is different enough that we anticipate the results of individual studies could
98 be strongly shaped by choice of dataset.

99

100 **Four parts of one whole**

101

102 Though host-pathogen association data exist in dozens of sources and repositories, there
103 are at least four published datasets that each capture between 0.3% and 1.5% of the
104 estimated 50,000 species of mammal viruses (Carlson et al. 2019). Differences among
105 these datasets, especially with regards to available metadata and frequency of data
106 updates, make them preferable for different purposes (Table 1), but may also complicate
107 intercomparison and synthetic inference.

108

109 **GMPD 2.0:** The Global Mammal Parasite Database (Nunn and Altizer 2005), started in
110 1999 and now in its second public version (Stephens et al. 2017), emerged from
111 continued efforts to compile mammal-parasite association data from published literature
112 sources. Construction of the GMPD used a variety of similar strategies that combined
113 host Latin names with a string of parasite-related terms to search online literature
114 databases. Pertinent literature was then manually identified and relevant association and
115 metadata compiled. The initial database was focused on primate hosts (Nunn and Altizer
116 2005), and expanded to include separate sections for ungulates (Ezenwa et al. 2006) and
117 carnivores (Lindenfors et al. 2007). In 2017, GMPD 2.0 was released, which merged
118 these three previously independent databases that were being independently maintained
119 and updated (Stephens et al. 2017). The updated dataset encompasses 190 primate, 116
120 ungulate, and 158 carnivore species, and record their interactions with 2,412 unique
121 “parasite” species, including 189 viruses, as well as bacteria, protozoa, helminths,
122 arthropods, and fungi. Notable improvements in version 2 of the GMPD are the
123 construction of a unified parasite taxonomy that bridges occurrence records across host
124 taxa, the expansion of host-parasite association data along with georeferencing, and
125 enhanced parasite trait data (e.g., transmission mode). The original data are available as
126 a web resource (www.mammalparasites.org), and the data from GMPD version 2 can
127 also be downloaded as static files from a data paper (Stephens et al. 2017). In addition,

128 one subsection of the GMPD, named the “Global Primate Parasite Database,” has been
129 independently maintained and regularly updated by Charles Nunn (data available at
130 <https://parasites.nunn-lab.org/>). Consequently, the primate subsection of GMPD 2.0
131 includes papers published up to 2015, while the ungulate and carnivore subsections stop
132 after 2010 (Stephens et al. 2017).

133

134 *EID2*: The ENHanCEd Infectious Diseases Database (EID2), curated by the University of
135 Liverpool, may be the largest dynamic dataset of any symbiotic interactions (Wardeh et
136 al. 2015). EID2 is compiled from automated, dynamic scrapes of two web sources:
137 publication titles and abstracts indexed in the PubMed database and the NCBI Nucleotide
138 Sequence database (along with its associated taxonomic metadata). The EID2 data is
139 structured using the concepts of “carrier” and “cargo” rather than host and pathogen, as
140 it includes a number of ecological interactions beyond the scope of normal host-pathogen
141 interactions, including potentially unresolved mutualist or commensal associations.
142 Interactions are stored as a geographic edgelist, where each carrier and cargo can also
143 have locality information; additional metadata include the number of sequences in
144 GenBank and related publications. EID2’s dynamic web interface (currently available
145 through download on a limited query-by-query basis which researchers often manually
146 bind or by personal correspondence with data curators) contains information
147 encompassing 4,799 mammal “carrier” species and 70,614 microparasite or
148 macroparasite “cargo” species, of which 9,605 are viruses (Wardeh et al. 2020). However,
149 many researchers continue to use the static, open release of EID2 from a 2015 data paper
150 (Wardeh et al. 2015), which we focus on here for comparative purposes as a stable
151 version of the database available to the community of practice. The EID2 data were
152 originally validated for completeness against GMPD 1.0.

153

154 *HP3*: The Host-Parasite Phylogeny Project dataset (HP3) was developed by EcoHealth
155 Alliance over the better part of a decade. Published along with a landmark analysis of
156 zoonotic spillover (Olival et al. 2017), the HP3 dataset consists of 2,805 associations
157 between 754 mammal hosts and 586 virus species. These were compiled from literature
158 published between 1940 and 2015, based on targeted searches of online reference

159 databases. Complementary with the search strategy used for the GMPD, rather than
160 starting with a list of host names, HP3 started with names of known mammal viruses listed
161 in the International Committee on Taxonomy of Viruses (ICTV) database. These virus
162 names along with their synonyms were then used as search terms to identify literature
163 containing host-virus association data. To narrow search results for well-studied viruses,
164 they included additional host range-related terms to identify relevant publications. Data
165 collection and cleaning for HP3 began in 2010 and the database has been static since
166 2017; it can be obtained as a flat file in the published study's data repository (Olival et al.
167 2017). HP3 includes a host-virus edgelist (see Glossary), separate files for host and virus
168 taxonomy, and separate files for host and virus traits. Host-virus association records are
169 provided with a note about method of identification (PCR, serology including specific
170 methods, etc.), which may be useful for researchers interested in the different levels of
171 confidence ascribed to particular associations (Becker et al. 2020). HP3's internal
172 taxonomy is also harmonized with two mammal trees (Bininda-Emonds et al. 2007, Fritz
173 et al. 2009), facilitating analyses that seek to account for host phylogenetic structure while
174 testing hypotheses about viral ecology and evolution (e.g. Becker et al., Farrell et al.,
175 Olival et al. 2017, Washburne et al. 2018, Guth et al. 2019, Park 2019, Albery et al. 2020,
176 Mollentze and Streicker 2020). HP3 was also validated against GMPD 1.0.

177
178 *Shaw*: Recent work by Shaw *et al.* built a host-pathogen edgelist by combining a
179 systematic literature search with cross-validation from several of the above-mentioned
180 datasets (Shaw et al. 2020). Similar to the construction of HP3, the authors started with
181 lists of known pathogenic bacteria and viruses found in humans and animals. They then
182 conducted Google Scholar searches pairing pathogen names with disease-related
183 keywords, followed by manual review of search results. For well-studied pathogens they
184 limited their manual review to a subset of the top 200 most “relevant” publications as
185 determined by Google. From the resulting literature searches, the authors compiled
186 12,212 interactions between 2,656 vertebrate host species (including, but not limited to,
187 mammals) and 2,595 viruses and bacteria. GMPD2, EID2, and the Global Infectious
188 Diseases and Epidemiology Network (GIDEON) Guide to Medically Important Bacteria
189 (Gideon Informatics, Inc. and Berger 2020) were used to validate the host-pathogen

190 associations. The dataset is available as a static flat file through figshare and the project
191 GitHub repository (Shaw et al. 2020). Host-pathogen associations are provided alongside
192 pathogen metadata (e.g., genome size, bacterial traits, transmission mode, zoonotic
193 status) and diagnostic method (i.e., PCR, pathogen isolation, pathology). The dataset
194 also includes a comprehensive host phylogeny, developed specifically for the study using
195 nine mitochondrial genes for downstream analyses of host phylogenetic similarity and
196 host breadth.

197

198 **A reconciled mammal virome dataset**

199

200 Though some of these datasets were validated against each other during production, they
201 are sometimes used for cross-validation in analytical work (Albery et al. 2020), and some
202 studies have generated a study-specific *ad hoc* reconciled dataset (Farrell et al. 2020,
203 Gibb et al. 2020), no work has been published with the primary aim of reconciling them
204 as correctly, comprehensively, and reproducibly as possible. Dynamic datasets like EID2,
205 and recent datasets like Shaw, can inherently draw on a greater cumulative body of
206 scientific work. This could mean they include most of the data captured by previous
207 efforts, yet we found there are substantial differences among all four datasets. In isolation,
208 we expect that these differences could impact ecological and evolutionary inference in
209 ways that are difficult to quantify, with special relevance to significance thresholds in
210 hypothesis-testing research (i.e., different datasets may confer different power to
211 statistical tests). In unison, we expect that these data could be standardized into one
212 shared format, allowing them to cover a greater percentage of the global virome, a greater
213 diversity of host species, and obviating the need for researchers to either choose between
214 them or implement *ad hoc* solutions that merge them prior to analysis.

215

216 To illustrate the potential for comprehensive data reconciliation, we harmonized the four
217 major datasets described here, creating a new synthetic 'CLOVER' dataset out of the four
218 "leaves" (which we have made available with this study). To do so, we first harmonized
219 the host taxonomy of all four datasets using the R package 'taxize' (Chamberlain and
220 Szöcs 2013), then manually resolved remaining discrepancies. Finally, using the Julia

221 package 'NCBITaxonomy.jl' (Poisot 2020), we standardized host and virus taxonomy
222 against the taxonomic hierarchy (Schoch et al. 2020) used as a reference by the National
223 Center for Biotechnology Information's Taxonomy database (ncbi.nlm.nih.gov). With all
224 four datasets taxonomically consistent, we were able to show that each only covered a
225 portion of the known global mammal virome, even for the most studied hosts and viruses
226 (Figure 1). Our taxonomic harmonization helped reconcile some discrepancies,
227 increasing overlap among the datasets (Figure 2), but notable differences remained. This
228 could confound inference: for example, using a simple linear model, we found that **data**
229 **provenance** (see Glossary) explained 8.8% of variation in host species' viral diversity
230 (but only 4.7% after harmonization). When studies report different findings based on slight
231 variation around a significance threshold, readers should therefore wonder whether subtle
232 differences in the underlying datasets might account for such variation.

233

234 Integrated datasets move us a step closer to resolving this uncertainty. The CLOVER
235 dataset covers 1,081 mammal host species and 829 associated viruses. This only
236 represents 16.9% of extant mammals (Burgin et al. 2018) and at most 2.1% of their
237 viruses (Carlson et al. 2019) - perhaps a marginal improvement over the 954 mammal
238 hosts (14.9%) and 733 viruses (1.8%) in the reconciled Shaw sub-dataset, but an
239 improvement nonetheless. The biggest functional gain is not in the *breadth* of the
240 reconciled data, but in its *depth*: the Shaw database records 4,209 interactions among
241 these host and virus species, while CLOVER captures 5,494. Given that previous studies
242 have estimated that 20-40% of host-parasite links are unknown (in GMPD2 (Dallas et al.
243 2017)), this 30% improvement is notable and shows the value of data synthesis: both
244 building out *and* filling in synthetic datasets will significantly improve the performance of
245 statistical models, which are usually heavily confounded by matrix sparsity (Becker et al.,
246 Dallas et al. 2017).

247

248 In addition, harmonization of metadata on virus detection methods across datasets
249 enables a greater scrutiny of the strength of evidence in support of each host-virus
250 association. We applied a simplified detection method classification scheme (either
251 serology, PCR/sequencing, isolation/observation, or method unknown) based on

descriptions in the source databases or, where these are not provided, adopting the most conservative definition given data source (i.e., EID2 entries derived from NCBI Nucleotide are classified under PCR/sequencing, though they might also qualify for the next strongest level of isolation/observation; whereas entries derived from PubMed are classified under method unknown). Of the 5,494 unique host-virus pairs in CLOVER, a total of 2,156 (39%) have been demonstrated using either viral isolation or direct observation and 1,895 (34%) via PCR or sequencing-based methods (with some overlap, as some associations have been reported with both of the above methods). Notably, a substantial proportion (2,257; 41%) are based solely on serological evidence which, although an indicator of past exposure, does not necessarily reflect host competence (i.e. effectiveness at transmitting a pathogen; Gilbert et al. 2013, Lachish and Murray 2018, Becker et al. 2020). These harmonized definitions facilitate investigation of inferential stability using various types of evidence, as well as enabling a best practice of subsetting data for a particular research purpose. For example, serological assays are a much weaker form of evidence if the aim of a study is zoonotic reservoir host prediction, whereas isolation data open new avenues for testing hypotheses about reservoir competence (Becker et al. 2020).

269
270 Data synthesis inherently relies on a scientific community that generates new, often
271 conflicting, data. The generation of truly novel data or finding ways to resolve existing
272 observations that are in conflict are two equally viable paths to scientific progress.
273 However, in the current funding landscape, researchers may have a significant incentive
274 to position themselves as creating an entirely “novel” dataset from scratch, even if it
275 partially replicates available data sources, or to focus their limited resources on datasets
276 that improve the depth of knowledge within a narrow scope (e.g., a focus on specific
277 taxonomic groups). But when testing microbiological or eco-evolutionary hypotheses,
278 rather than simply using each newly-published dataset as a benchmark for which one is
279 “most up-to-date,” we suggest a necessary shift in scientific cultural norms towards using
280 synthetic, reconciled data like CLOVER as an analytical best practice. To make this
281 possible, at least a handful of researchers will need to continue the task of stepwise
282 integration, using datasets that synthesize existing knowledge across teams, institutions,

283 and funding programs to fill in critical data with even more detail. The required tasks (e.g.,
284 identifying relevant source data, cleaning taxonomic information, harmonizing metadata
285 on diagnostic information or spatiotemporal structure) can be time-consuming but are
286 relatively straightforward to conduct, and can increasingly be automated thanks to the
287 rapid growth of new data and tools for reproducible research (Boettiger et al. 2015,
288 Lowndes et al. 2017, Colella et al. 2020). There is a clear need, and no obvious technical
289 barrier, to invest more effort in data harmonization: engaging in this process as a form of
290 open science will accelerate progress for the entire research community.

291

292 **Relevance to future efforts**

293

294 Here, we showed that a simple data synthesis effort can create a dramatically more
295 comprehensive dataset of mammal-virus associations. However, this is a temporary
296 solution and one that will become less sustainable if similar datasets continue to
297 proliferate or if newer iterations of existing datasets are released, each absorbing different
298 parts of existing efforts. Over the longer term, given global investments in viral discovery
299 from wildlife, static datasets will quickly become out-of-date, and their relation to the most
300 recent empirical knowledge will be left unclear. For example, the CLOVER dataset
301 becomes significantly sparser after 2010, both in terms of the overall number of reported
302 host-virus associations, and the reporting of novel (i.e. previously undetected)
303 associations (Figure 3). This sparseness is most likely due to time lags between host-
304 virus sampling in the field, the reporting or publication of associations, and their eventual
305 inclusion in one of the component datasets, and suggests that CLOVER may now be
306 missing up to a decade's worth of known host-virus data. In the near term, microbiologists
307 and data scientists may want to approach the task of data reconciliation with a much
308 broader scope, and develop a more sustainable data platform.

309

310 Scaling up the aggregation of host-virus association data will not be easy, but is not an
311 insurmountable endeavour. We suggest working backwards from the intended end
312 product: the goals outlined here are best served by a central system (with an online
313 access point to the consumable data), spanning the information available from multiple

314 data sources (which demands backend engines drawing from existing databases, while
315 tracking data provenance and ensuring proper attribution). Further, the most valuable
316 data resource would be easily updatable by practitioners (which demands a portal for
317 manual user input or an Integrated Publishing Toolkit to work from flat files). For users,
318 these data should be accessible in a programmatic way (i.e., through a web API allowing
319 for bulk download and/or other interfaces like an R package), help analysts build
320 reproducibility (through versioning of the entire database, or of a specific user query), and
321 offer predictable formats (through a data specification standard devised by a
322 multidisciplinary group).

323

324 Fortunately, the field of ecoinformatics has the capacity to help inform this design and
325 development process. Massive bioinformatic data portals like the Global Biodiversity
326 Informatics Facility (gbif.org), the Encyclopedia of Life (eol.org), and the Ocean
327 Biodiversity Information System (obis.org) all offer most of the functionalities we outline
328 here, though they are aimed at slightly different forms of biodiversity data. More recent
329 contributions dedicated to ecological network data include Global Biotic Interactions
330 (Poelen et al. 2014) (GLOBI, which consumes flat files and formats them), helminthR
331 (Dallas 2016), and mangal (Poisot et al. 2016) (which stores a metadata-rich
332 representation of species interaction networks), all of which reconcile their taxonomy with
333 other databases through the use of unique taxon keys. In short, researchers interested in
334 the global virome need not divert their attention, resources, and effort away from the
335 pressing tasks related to monitoring viral pathogens, but they can leverage existing
336 products, expertise, and capacity in neighbouring fields to bolster their ability to do so.
337 Given the eagerness ecologists have shown to participate in SARS-CoV-2 research, we
338 anticipate that our field may be especially well-poised to jump into this task post-
339 pandemic. We aim, in our current efforts, to lay that groundwork.

340

341 An integrated platform for the deposition, curation, archival, and sharing of host-virus
342 associations in a *prêt-à-manger*, metadata-rich format has inherent value for the entire
343 scientific community. When the format of a dataset is well established, it allows for the
344 development of tools that mine the data in real-time. For example, the field of biodiversity

345 studies has adopted the concept of Essential Biodiversity Variables, which can be
346 updated when the underlying data change (Pereira et al. 2013, Fernández et al. 2019,
347 Jetz et al. 2019). Having the ability to revisit predictions about the host-virus network could
348 improve models that assess zoonotic potential of wildlife viruses (Farrell et al. 2020,
349 Mollentze et al. 2020), generate priority targets for wildlife reservoir sampling (Becker et
350 al., Babayan et al. 2018, Plowright et al. 2019), and help benchmark model performance
351 related to these tasks. Beyond training and validation, link prediction models built on these
352 reconciled databases may be used to target future literature searches, shifting from
353 systematic literature searches to a model based approach to database updating.
354 Increased collaboration between data collectors, data managers, and data scientists that
355 leads to better data standardization and reconciliation is the only way to productively
356 synthesize our knowledge of the global virome.

357

358 **Data and code availability**

359

360 The four raw datasets and harmonized CLOVER dataset can be obtained from the
361 archived project repository: <https://dx.doi.org/10.5281/zenodo.4435128>. Code used to
362 generate the analyses and figures in this study can be found at
363 <https://github.com/viralemergence/reconciliation>.

364

365 **References.**

366 Albery GF, Eskew EA, Ross N, Olival KJ. 2020. Predicting the global mammalian viral sharing
367 network using phylogeography. *Nature communications* 11: 2260.

368 Babayan SA, Orton RJ, Streicker DG. 2018. Predicting reservoir hosts and arthropod vectors
369 from evolutionary signatures in RNA virus genomes. *Science* 362: 577–580.

370 Becker DJ, Albery GF, Sjodin AR, Poisot T, Dallas TA, Eskew EA, Farrell MJ, Guth S, Han BA,
371 Simmons NB, Stock M, Teeling EC, Carlson CJ. Predicting wildlife hosts of
372 betacoronaviruses for SARS-CoV-2 sampling prioritization: a modeling study.

373 Becker DJ, Seifert SN, Carlson CJ. 2020. Beyond Infection: Integrating Competence into
374 Reservoir Host Prediction. *Trends in Ecology & Evolution* 35: 1062–1065.

375 Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA,
376 Vos RA, Gittleman JL, Purvis A. 2007. The delayed rise of present-day mammals. *Nature*
377 446: 507–512.

378 Boettiger C, Chamberlain S, Hart E, Ram K. 2015. Building Software, Building Community:
379 Lessons from the rOpenSci Project. *Journal of Open Research Software* 3.

380 Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there?
381 *Journal of Mammalogy* 99: 1–14.

382 Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM. 2020. Climate change will drive novel
383 cross-species viral transmission. *bioRxiv*.

384 Carlson CJ, Zipfel CM, Garnier R, Bansal S. 2019. Global estimates of mammalian viral
385 diversity accounting for host sharing. *Nature ecology & evolution* 3: 1070–1075.

386 Chamberlain SA, Szöcs E. 2013. taxize: taxonomic search and retrieval in R. *F1000Research* 2:
387 191.

388 Colella JP, Stephens RB, Campbell ML, Kohli BA, Parsons DJ, Mclean BS. 2020. The Open-
389 Specimen Movement. *BioScience*.

390 Dallas T. 2016. helminthR: an R interface to the London Natural History Museum's Host-
391 Parasite Database. *Ecography* 39: 391–393.

392 Dallas TA, Han BA, Nunn CL, Park AW, Stephens PR, Drake JM. 2019. Host traits associated
393 with species roles in parasite sharing networks. *Oikos* 128: 23–32.

394 Dallas T, Park AW, Drake JM. 2017. Predicting cryptic links in host-parasite networks. *PLOS
395 Computational Biology* 13: e1005557.

396 Ezenwa VO, Price SA, Altizer S, Vitone ND, Cook KC. 2006. Host traits and parasite species
397 richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. *Oikos*
398 115: 526–536.

399 Farrell MJ, Elmasri M, Stephens D, Jonathan Davies T. 2020. Predicting missing links in global
400 host-parasite networks. *bioRxiv* preprint <https://doi.org/10.1101/2020.02.25.965046>

401 Fernández N, Guralnick R, Daniel Kissling W. 2019. A minimum set of Information Standards for
402 Essential Biodiversity Variables. *Biodiversity Information Science and Standards* 3.

403 Fritz SA, Bininda-Emonds ORP, Purvis A. 2009. Geographical variation in predictors of
404 mammalian extinction risk: big is bad, but only in the tropics. *Ecology letters* 12: 538–549.

405 Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, Jones KE. 2020.
406 Zoonotic host diversity increases in human-dominated ecosystems. *Nature* 584: 398–402.

407 Gideon Informatics, Inc., Berger S. 2020. GIDEON Guide to Medically Important Bacteria.
408 GIDEON Informatics Inc.

409 Gilbert AT, Fooks AR, Hayman DTS, Horton DL, Müller T, Plowright R, Peel AJ, Bowen R,
410 Wood JLN, Mills J, Cunningham AA, Rupprecht CE. 2013. Deciphering serology to
411 understand the ecology of infectious diseases in wildlife. *EcoHealth* 10: 298–313.

412 Guth S, Visher E, Boots M, Brook CE. 2019. Host phylogenetic distance drives trends in virus
413 virulence and transmissibility across the animal-human interface. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* 374: 20190296.

415 Han BA, Kramer AM, Drake JM. 2016. Global Patterns of Zoonotic Disease in Mammals.
416 Trends in parasitology 32: 565–577.

417 Han BA, Schmidt JP, Bowden SE, Drake JM. 2015. Rodent reservoirs of future zoonotic
418 diseases. *Proceedings of the National Academy of Sciences of the United States of
419 America* 112: 7039–7044.

420 Jetz W, McGeoch MA, Guralnick R, Ferrier S, Beck J, Costello MJ, Fernandez M, Geller GN,
421 Keil P, Merow C, Meyer C, Muller-Karger FE, Pereira HM, Regan EC, Schmeller DS, Turak
422 E. 2019. Essential biodiversity variables for mapping and monitoring species populations.
423 *Nature ecology & evolution* 3: 539–551.

424 Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, Doyle MM. 2020.
425 Global shifts in mammalian population trends reveal key predictors of virus spillover risk.
426 *Proceedings. Biological sciences / The Royal Society* 287: 20192736.

427 Lachish S, Murray KA. 2018. The Certainty of Uncertainty: Potential Sources of Bias and
428 Imprecision in Disease Ecology Studies. *Frontiers in veterinary science* 5: 90.

429 Lindenfors P, Nunn CL, Jones KE, Cunningham AA, Sechrest W, Gittleman JL. 2007. Parasite
430 species richness in carnivores: effects of host body mass, latitude, geographical range and
431 population density. *Global Ecology and Biogeography* 16: 496–509.

432 Lowndes JSS, Best BD, Scarborough C, Afflerbach JC, Frazier MR, O'Hara CC, Jiang N,
433 Halpern BS. 2017. Our path to better science in less time using open data science tools.
434 *Nature ecology & evolution* 1: 160.

435 Mollentze N, Babayan SA, Streicker DG. 2020. Identifying and prioritizing potential human-
436 infecting viruses from their genome sequences. *bioRxiv* preprint
437 <https://www.biorxiv.org/content/10.1101/2020.11.12.379917v1.full>

438 Mollentze N, Streicker DG. 2020. Viral zoonotic risk is homogenous among taxonomic orders of
439 mammalian and avian reservoir hosts. *Proceedings of the National Academy of Sciences of*

440 the United States of America 117: 9423–9430.

441 Nunn CL, Altizer SM. 2005. The global mammal parasite database: An online resource for
442 infectious disease records in wild primates. *Evolutionary Anthropology: Issues, News, and*
443 *Reviews* 14: 1–2.

444 Olival KJ, Hosseini PR, Zambrana-Torrelío C, Ross N, Bogich TL, Daszak P. 2017. Host and
445 viral traits predict zoonotic spillover from mammals. *Nature* 546: 646–650.

446 Olival KJ, Hosseini PR, Zambrana-Torrelío C, Ross N, Bogich TL, Daszak P. 2017. Data from:
447 Host and viral traits predict zoonotic spillover from mammals.
448 <https://zenodo.org/record/807517#.YABU4RanxPZ>

449 Park AW. 2019. Phylogenetic aggregation increases zoonotic potential of mammalian viruses.
450 *Biology letters* 15: 20190668.

451 Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW,
452 Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J,
453 Gregory RD, Heip C, Höft R, Hurt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y,
454 Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M,
455 Wegmann M. 2013. Ecology. Essential biodiversity variables. *Science* 339: 277–278.

456 Plowright RK, Becker DJ, Crowley DE, Washburne AD, Huang T, Nameer PO, Gurley ES, Han
457 BA. 2019. Prioritizing surveillance of Nipah virus in India. *PLoS neglected tropical diseases*
458 13: e0007393.

459 Poelen JH, Simons JD, Mungall CJ. 2014. Global biotic interactions: An open infrastructure to
460 share and analyze species-interaction datasets. *Ecological Informatics* 24: 148–159.

461 Poisot T, Baiser B, Dunne JA, Kéfi S, Massol F, Mouquet N, Romanuk TN, Stouffer DB, Wood
462 SA, Gravel D. 2016. mangal - making ecological network analysis simple. *Ecography* 39:
463 384–390.

464 Poisot T. 2020. NCBI taxonomy.jl: Interact with the NCBI Taxonomy backbone from Julia.
465 <https://doi.org/10.5281/zenodo.4282820>

466 Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh
467 R, O'Neill K, Robbertse B, Sharma S, Soussov V, Sullivan JP, Sun L, Turner S, Karsch-
468 Mizrachi I. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and
469 tools. *Database: the journal of biological databases and curation* 2020.

470 Shaw LP, Wang AD, Dylus D, Meier M, Pogacnik G, Dessimoz C, Balloux F. 2020. The
471 phylogenetic range of bacterial and viral pathogens of vertebrates. *Molecular ecology* 29:
472 3361–3379.

473 Shaw LP, Wang AD, Dylus D, Meier M, Pogacnik G, Dessimoz C, Balloux F. 2020. Data from:
474 The phylogenetic range of bacterial and viral pathogens of vertebrates.
475 https://figshare.com/articles/dataset/The_phylogenetic_range_of_bacterial_and_viral_patho
476 [gens_of_vertebrates_dataset_and_supplementary_material/8262779](https://figshare.com/articles/dataset/The_phylogenetic_range_of_bacterial_and_viral_patho)

477 Stephens PR, Pappalardo P, Huang S, Byers JE, Farrell MJ, Gehman A, Ghai RR, Haas SE,
478 Han B, Park AW, Schmidt JP, Altizer S, Ezenwa VO, Nunn CL. 2017. Global Mammal

479 Parasite Database version 2.0. *Ecology* 98: 1476.

480 Wardeh M, Risley C, McIntyre MK, Setzkorn C, Baylis M. 2015. Database of host-pathogen and
481 related species interactions, and their global distribution. *Scientific data* 2: 150049.

482 Wardeh M, Sharkey KJ, Baylis M. 2020. Integration of shared-pathogen networks and machine
483 learning reveals the key aspects of zoonoses and predicts mammalian reservoirs.
484 *Proceedings. Biological sciences / The Royal Society* 287: 20192882.

485 Washburne AD, Crowley DE, Becker DJ, Olival KJ, Taylor M, Munster VJ, Plowright RK. 2018.
486 Taxonomic patterns in the zoonotic potential of mammalian viruses. *PeerJ* 6: e5979.

487 Wille M, Geoghegan JL, Holmes EC. 2020. How accurately can we assess zoonotic risk?
488 bioRxiv preprint <https://doi.org/10.1101/2020.08.17.254961>

489 Wyborn C, Louder E, Harrison J, Montambault J, Montana J, Ryan M, Bednarek A, Nesshöver
490 C, Pullin A, Reed M, Dellecker E, Kramer J, Boyd J, Dellecker A, Hutton J. 2018.
491 Understanding the Impacts of Research Synthesis. *Environmental Science & Policy* 86: 72–
492 84.

493

494

495

496

497

498 **Table 1.** Available “big data” on host-virus associations, and major features of each
499 dataset. Numbers of unique association records and host, virus, and pathogen species
500 are all derived from the reconciled version presented in the CLOVER database, and
501 therefore these numbers may differ from those presented in the main text (which are
502 taken from the source data, or from self-reporting by the data curators). *Number of
503 associations and taxa accurate as of 2015 static release in *Scientific Data* paper.

504

505

Dataset	GMPD2	EID2*	HP3	Shaw
Source	U. Georgia	U. Liverpool	EcoHealth Alliance	Shaw LP, <i>et al.</i> <i>Molecular Ecology</i> (2020).
Nature of dataset	Static	Dynamic	Static	Static
Association records	893	1,360	2,783	4,207
Host species	225	415	750	954
Virus species	154	395	561	733
Original taxonomic scope of pathogens	All parasites and pathogens (incl. viruses, bacteria, macroparasites, protozoans, prions)	All symbionts (incl. viruses, bacteria, macroparasites, protozoans, prions, green algae, molluscs, and cnidarians)	Viruses	Viruses and bacteria
Original taxonomic scope of hosts	Mammals (subset: only ungulates, carnivores, and primates)	Vertebrates and invertebrates	Mammals	Vertebrates
Diagnostic method identified (PCR, serology, etc.)?	Yes	No	Yes	Yes
URL of current version	http://onlinelibrary.wiley.com/doi/10.1002/ecy.1799/supplinfo	https://eid2.liverpool.ac.uk/	https://github.com/ecohealth-alliance/HP3	https://doi.org/10.6084/m9.figshare.8262779

506

507

508 **Box 1. Glossary.**

509
510 **Association data:** a format that records ecological interactions between a host and
511 symbiont (an *association*) in the form of an edgelist.

512
513 **Data provenance:** The primary literature origin of a particular record or set of records in
514 a synthetic dataset.

515
516 **Data reconciliation:** the task of harmonizing the language of a given dataset's fields and
517 metadata to allow a researcher to merge data of different provenance, and generate a
518 new synthetic product.

519
520 **Edgelist:** a table, spreadsheet, or matrix of “links” in a host-symbiont network, where
521 each row records the known association of a different host-symbiont pair.

522
523 **Flat file:** a static document in Excel or similar spreadsheet or data format, with no
524 dynamic component (no updating) and all data available from a single file rather than a
525 queryable interface.

526
527 **Metadata:** additional data describing focal data of interest and that is relevant to
528 interpretation and analysis. Important examples for host-virus associations include
529 sampling method (for example, serological assay, PCR or pathology), date and
530 geographical location of sampling, and standardized information on host and virus
531 taxonomy.

532
533 **Open data:** data that is directly and freely accessible for reuse and exploration without
534 impediment, gatekeeping, or cost restriction.

535
536
537
538
539
540
541
542

543 **Figure 1.** Network representation of the CLOVER dataset. The nodes of the entire
544 CLOVER network have been projected to a two-dimensional space using t-SNE; in
545 each panel, only the nodes found in the dataset are shown in colour. In each dataset, a
546 non-trivial proportion of associations are completely unique and unrecorded elsewhere,
547 even after taxonomic reconciliation. This was the case for 203 of 1360 associations in
548 EID2 (14.9%); 614/2783 in HP3 (22.1%); 269/893 in GMPD2 (30.1%); and 1705/4207
549 in Shaw (40.5%).

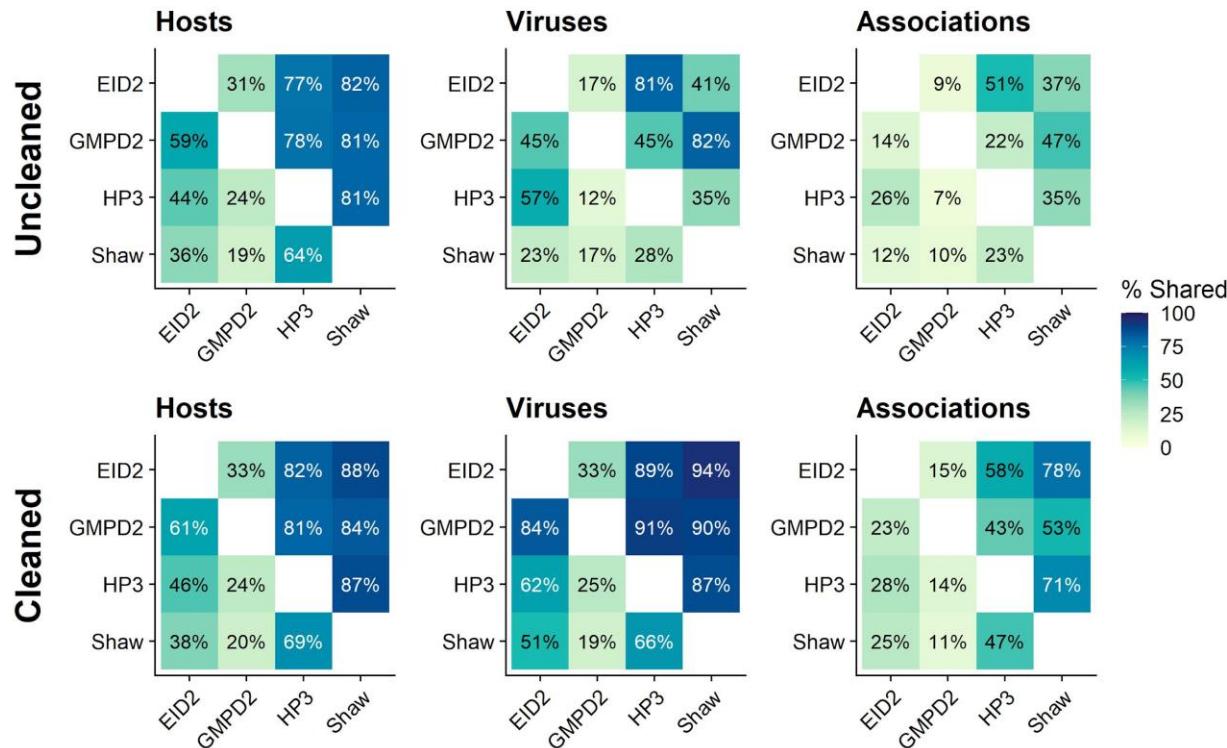
550

551



552

553 **Figure 2.** Proportional overlap before and after host taxonomic updating. The
554 percentages and fill colours in these tiles can be interpreted as “% y axis was contained
555 in x axis”; for example, 32% of uncleaned EID2 hosts were also represented in GMPD2,
556 while 47% of cleaned Shaw associations were also contained in HP3. Darker colours
557 represent greater overlap.
558
559



560
561
562
563
564
565

566 **Figure 3.** Temporal trends in reporting of host-virus associations in the CLOVER
567 dataset. Bar graphs show, for each year, the total number of reported associations
568 coloured by source database (which can include duplicates of the same association
569 reported over multiple years; top graph) and the number of novel unique associations
570 (i.e. previously unreported; bottom graph). Years reflect the date when an association
571 was reported, either in a published paper or report (for literature-based records) or to
572 the NCBI Nucleotide database (EID2 only).

573

