
1 
 

 1 

Data proliferation, reconciliation, and synthesis in viral ecology 2 

 3 

 4 

Authors: Rory Gibb1,2*, Gregory F. Albery3, Daniel J. Becker4, Liam Brierley5, Ryan 5 

Connor6, Tad A. Dallas7, Evan A. Eskew8, Maxwell J. Farrell9, Angela L. 6 

Rasmussen10,15, Sadie J. Ryan11,12,13, Amy Sweeny14, Colin J. Carlson15*, and Timothée 7 

Poisot16,17 8 

 9 

1. Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical 10 

Medicine, London, UK 11 

2. Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, 12 

London, UK 13 

3. Department of Biology, Georgetown University, Washington DC, USA 14 

4. Department of Biology, University of Oklahoma, Norman OK, USA 15 

5. Department of Health Data Science, University of Liverpool, Liverpool, UK 16 

6. National Center for Biotechnology Information, National Library of Medicine, National Institutes of 17 

Health, Bethesda, MD 20894, USA. 18 

7. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70806 USA 19 

8. Department of Biology, Pacific Lutheran University, Tacoma WA, USA 20 

9. Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada 21 

10. Vaccine Infectious Disease Organization and International Vaccine Centre, University of 22 

Saskatchewan, Saskatoon, Canada 23 

11. Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University 24 

of Florida, Gainesville, FL 32601 25 

12. Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 26 

13. College of Life Sciences, University of KwaZulu Natal, Durban, 4041, South Africa 27 

14. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK  28 

15. Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown 29 

University, Washington, D.C., U.S.A. 30 

16. Université de Montréal, Département de Sciences Biologiques, Montréal QC, Canada 31 

17. Québec Centre for Biodiversity Sciences, Montréal QC, Canada 32 

 33 

*Correspondence to: Rory Gibb (rory.j.gibb@gmail.com) and Colin J. Carlson 34 

(colin.carlson@georgetown.edu)  35 

 36 

Acknowledgements: This work was supported by funding to the Viral Emergence Research 37 

Initiative (VERENA) consortium, including NSF BII 2021909 and a grant from Institut de 38 

Valorisation des Données (IVADO). The authors thank Noam Ross, Maya Wardeh, and many 39 

others for formative conversations about these datasets and for their tireless work making those 40 

data available to the research community. 41 

 42 

Author biography: All the authors are members of the Viral Emergence Research Initiative 43 

(VERENA) consortium, a global scientific collaboration to predict which viruses could infect 44 

humans, which animals host them, and where they could emerge. 45 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426572doi: bioRxiv preprint 

mailto:rory.j.gibb@gmail.com
mailto:colin.carlson@georgetown.edu
https://doi.org/10.1101/2021.01.14.426572
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 46 

 47 

The fields of viral ecology and evolution have rapidly expanded in the last two decades, 48 

driven by technological improvements, and motivated by efforts to discover potentially 49 

zoonotic wildlife viruses under the rubric of pandemic prevention. One consequence has 50 

been a massive proliferation of host-virus association data, which comprise the backbone 51 

of research in viral macroecology and zoonotic risk prediction. These data remain 52 

fragmented across numerous data portals and projects, each with their own scope, 53 

structure, and reporting standards. Here, we propose that synthesis of host-virus 54 

association data is a central challenge to improve our understanding of the global virome 55 

and develop foundational theory in viral ecology. To illustrate this, we build an open 56 

reconciled mammal-virus database from four key published datasets, applying a 57 

standardized taxonomy and metadata. We show that reconciling these datasets provides 58 

a substantially richer view of the mammal virome than that offered by any one individual 59 

database. We argue for a shift in best practice towards the incremental development and 60 

use of synthetic datasets in viral ecology research, both to improve comparability and 61 

replicability across studies, and to facilitate future efforts to use machine learning to 62 

predict the structure and dynamics of the global virome. 63 

 64 

  65 
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Introduction 66 

 67 

The emergence of SARS-CoV-2 was a harsh reminder that uncharacterized wildlife 68 

viruses can suddenly become globally relevant. Efforts to identify wildlife viruses with the 69 

potential to infect humans, and to predict spillover and emergence trajectories, are 70 

becoming more popular than ever (including with major scientific funders). However, the 71 

value of these efforts is limited by an incomplete understanding of the global virome (Wille 72 

et al. 2020). Significant knowledge gaps exist regarding the mechanisms of viral 73 

transmission and replication, host-pathogen associations and interactions, spillover 74 

pathways, and several other dimensions of viral emergence. Further, although billions of 75 

dollars have been invested in these scientific challenges over the last decade alone, much 76 

of the data relevant to these problems remains unsynthesized. Fragmented data access 77 

and a lack of standardization preclude an easy reconciliation process across data 78 

sources, making the whole less than the sum of its parts, and hindering synthetic research 79 

(Wyborn et al. 2018). 80 

 81 

Here, we propose that data synthesis is a seminal challenge for translational work in viral 82 

ecology. This requires researchers to go beyond the usual steps of data collection and 83 

publication, to develop a community of practice that prioritizes data synthesis and 84 

reconciles semi-reproduced work across different teams and disciplines. As an illustrative 85 

example, we describe the analytical hurdles of working with host-virus association data, 86 

a format that characterizes the global virome as a bipartite network of hosts and viruses, 87 

with pairs connected by observed potential for infection. Recent studies highlight the 88 

central role for these data in efforts to understand viral macroecology and evolution 89 

(Carlson et al. 2019, Dallas et al. 2019, Albery et al. 2020), to predict zoonotic emergence 90 

risk (Han et al. 2015, 2016, Olival et al. 2017, Wardeh et al. 2020), and to anticipate the 91 

impacts of global environmental change on infectious disease (Carlson et al. 2020, Gibb 92 

et al. 2020, Johnson et al. 2020). Several bespoke datasets have been compiled to 93 

address these questions, and as interest in these topics has grown, so has the 94 

fragmentation of total knowledge across those datasets. To illustrate this problem (and a 95 

simple solution), we compare and reconcile four major host-virus association datasets, 96 
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each of which is different enough that we anticipate the results of individual studies could 97 

be strongly shaped by choice of dataset.  98 

 99 

Four parts of one whole 100 

 101 

Though host-pathogen association data exist in dozens of sources and repositories, there 102 

are at least four published datasets that each capture between 0.3% and 1.5% of the 103 

estimated 50,000 species of mammal viruses (Carlson et al. 2019). Differences among 104 

these datasets, especially with regards to available metadata and frequency of data 105 

updates, make them preferable for different purposes (Table 1), but may also complicate 106 

intercomparison and synthetic inference.  107 

 108 

GMPD 2.0: The Global Mammal Parasite Database (Nunn and Altizer 2005), started in 109 

1999 and now in its second public version (Stephens et al. 2017), emerged from 110 

continued efforts to compile mammal-parasite association data from published literature 111 

sources. Construction of the GMPD used a variety of similar strategies that combined 112 

host Latin names with a string of parasite-related terms to search online literature 113 

databases. Pertinent literature was then manually identified and relevant association and 114 

metadata compiled. The initial database was focused on primate hosts (Nunn and Altizer 115 

2005), and expanded to include separate sections for ungulates (Ezenwa et al. 2006) and 116 

carnivores (Lindenfors et al. 2007). In 2017, GMPD 2.0 was released, which merged 117 

these three previously independent databases that were being independently maintained 118 

and updated (Stephens et al. 2017). The updated dataset encompasses 190 primate, 116 119 

ungulate, and 158 carnivore species, and record their interactions with 2,412 unique 120 

<parasite= species, including 189 viruses, as well as bacteria, protozoa, helminths, 121 

arthropods, and fungi. Notable improvements in version 2 of the GMPD are the 122 

construction of a unified parasite taxonomy that bridges occurrence records across host 123 

taxa, the expansion of host-parasite association data along with georeferencing, and 124 

enhanced parasite trait data (e.g., transmission mode). The original data are available as 125 

a web resource (www.mammalparasites.org), and the data from GMPD version 2 can 126 

also be downloaded as static files from a data paper (Stephens et al. 2017). In addition, 127 
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one subsection of the GMPD, named the <Global Primate Parasite Database,= has been 128 

independently maintained and regularly updated by Charles Nunn (data available at 129 

https://parasites.nunn-lab.org/). Consequently, the primate subsection of GMPD 2.0 130 

includes papers published up to 2015, while the ungulate and carnivore subsections stop 131 

after 2010 (Stephens et al. 2017). 132 

 133 

EID2: The ENHanCEd Infectious Diseases Database (EID2), curated by the University of 134 

Liverpool, may be the largest dynamic dataset of any symbiotic interactions (Wardeh et 135 

al. 2015). EID2 is compiled from automated, dynamic scrapes of two web sources: 136 

publication titles and abstracts indexed in the PubMed database and the NCBI Nucleotide 137 

Sequence database (along with its associated taxonomic metadata). The EID2 data is 138 

structured using the concepts of <carrier= and <cargo= rather than host and pathogen, as 139 

it includes a number of ecological interactions beyond the scope of normal host-pathogen 140 

interactions, including potentially unresolved mutualist or commensal associations. 141 

Interactions are stored as a geographic edgelist, where each carrier and cargo can also 142 

have locality information; additional metadata include the number of sequences in 143 

GenBank and related publications. EID29s dynamic web interface (currently available 144 

through download on a limited query-by-query basis which researchers often manually 145 

bind or by personal correspondence with data curators) contains information 146 

encompassing 4,799 mammal <carrier= species and 70,614 microparasite or 147 

macroparasite <cargo= species, of which 9,605 are viruses (Wardeh et al. 2020). However, 148 

many researchers continue to use the static, open release of EID2 from a 2015 data paper 149 

(Wardeh et al. 2015), which we focus on here for comparative purposes as a stable 150 

version of the database available to the community of practice. The EID2 data were 151 

originally validated for completeness against GMPD 1.0. 152 

 153 

HP3: The Host-Parasite Phylogeny Project dataset (HP3) was developed by EcoHealth 154 

Alliance over the better part of a decade. Published along with a landmark analysis of 155 

zoonotic spillover (Olival et al. 2017), the HP3 dataset consists of 2,805 associations 156 

between 754 mammal hosts and 586 virus species. These were compiled from literature 157 

published between 1940 and 2015, based on targeted searches of online reference 158 
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databases. Complementary with the search strategy used for the GMPD, rather than 159 

starting with a list of host names, HP3 started with names of known mammal viruses listed 160 

in the International Committee on Taxonomy of Viruses (ICTV) database. These virus 161 

names along with their synonyms were then used as search terms to identify literature 162 

containing host-virus association data. To narrow search results for well-studied viruses, 163 

they included additional host range-related terms to identify relevant publications. Data 164 

collection and cleaning for HP3 began in 2010 and the database has been static since 165 

2017; it can be obtained as a flat file in the published study9s data repository (Olival et al. 166 

2017). HP3 includes a host-virus edgelist (see Glossary), separate files for host and virus 167 

taxonomy, and separate files for host and virus traits. Host-virus association records are 168 

provided with a note about method of identification (PCR, serology including specific 169 

methods, etc.), which may be useful for researchers interested in the different levels of 170 

confidence ascribed to particular associations (Becker et al. 2020). HP39s internal 171 

taxonomy is also harmonized with two mammal trees (Bininda-Emonds et al. 2007, Fritz 172 

et al. 2009), facilitating analyses that seek to account for host phylogenetic structure while 173 

testing hypotheses about viral ecology and evolution (e.g. Becker et al., Farrell et al., 174 

Olival et al. 2017, Washburne et al. 2018, Guth et al. 2019, Park 2019, Albery et al. 2020, 175 

Mollentze and Streicker 2020). HP3 was also validated against GMPD 1.0. 176 

 177 

Shaw: Recent work by Shaw et al. built a host-pathogen edgelist by combining a 178 

systematic literature search with cross-validation from several of the above-mentioned 179 

datasets (Shaw et al. 2020). Similar to the construction of HP3, the authors started with 180 

lists of known pathogenic bacteria and viruses found in humans and animals. They then 181 

conducted Google Scholar searches pairing pathogen names with disease-related 182 

keywords, followed by manual review of search results. For well-studied pathogens they 183 

limited their manual review to a subset of the top 200 most <relevant= publications as 184 

determined by Google. From the resulting literature searches, the authors compiled 185 

12,212 interactions between 2,656 vertebrate host species (including, but not limited to, 186 

mammals) and 2,595 viruses and bacteria. GMPD2, EID2, and the Global Infectious 187 

Diseases and Epidemiology Network (GIDEON) Guide to Medically Important Bacteria 188 

(Gideon Informatics, Inc. and Berger 2020) were used to validate the host-pathogen 189 
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associations. The dataset is available as a static flat file through figshare and the project 190 

GitHub repository (Shaw et al. 2020). Host-pathogen associations are provided alongside 191 

pathogen metadata (e.g., genome size, bacterial traits, transmission mode, zoonotic 192 

status) and diagnostic method (i.e., PCR, pathogen isolation, pathology). The dataset 193 

also includes a comprehensive host phylogeny, developed specifically for the study using 194 

nine mitochondrial genes for downstream analyses of host phylogenetic similarity and 195 

host breadth. 196 

 197 

A reconciled mammal virome dataset 198 

 199 

Though some of these datasets were validated against each other during production, they 200 

are sometimes used for cross-validation in analytical work (Albery et al. 2020), and some 201 

studies have generated a study-specific ad hoc reconciled dataset (Farrell et al. 2020, 202 

Gibb et al. 2020), no work has been published with the primary aim of reconciling them 203 

as correctly, comprehensively, and reproducibly as possible. Dynamic datasets like EID2, 204 

and recent datasets like Shaw, can inherently draw on a greater cumulative body of 205 

scientific work. This could mean they include most of the data captured by previous 206 

efforts, yet we found there are substantial differences among all four datasets. In isolation, 207 

we expect that these differences could impact ecological and evolutionary inference in 208 

ways that are difficult to quantify, with special relevance to significance thresholds in 209 

hypothesis-testing research (i.e., different datasets may confer different power to 210 

statistical tests). In unison, we expect that these data could be standardized into one 211 

shared format, allowing them to cover a greater percentage of the global virome, a greater 212 

diversity of host species, and obviating the need for researchers to either choose between 213 

them or implement ad hoc solutions that merge them prior to analysis. 214 

 215 

To illustrate the potential for comprehensive data reconciliation, we harmonized the four 216 

major datasets described here, creating a new synthetic 8CLOVER9 dataset out of the four 217 

<leaves= (which we have made available with this study). To do so, we first harmonized 218 

the host taxonomy of all four datasets using the R package 8taxize9 (Chamberlain and 219 

Szöcs 2013), then manually resolved remaining discrepancies. Finally, using the Julia 220 
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package 8NCBITaxonomy.jl9 (Poisot 2020), we standardized host and virus taxonomy 221 

against the taxonomic hierarchy (Schoch et al. 2020) used as a reference by the National 222 

Center for Biotechnology Information9s Taxonomy database (ncbi.nlm.nih.gov). With all 223 

four datasets taxonomically consistent, we were able to show that each only covered a 224 

portion of the known global mammal virome, even for the most studied hosts and viruses 225 

(Figure 1). Our taxonomic harmonization helped reconcile some discrepancies, 226 

increasing overlap among the datasets (Figure 2), but notable differences remained. This 227 

could confound inference: for example, using a simple linear model, we found that data 228 

provenance (see Glossary) explained 8.8% of variation in host species9 viral diversity 229 

(but only 4.7% after harmonization). When studies report different findings based on slight 230 

variation around a significance threshold, readers should therefore wonder whether subtle 231 

differences in the underlying datasets might account for such variation.  232 

 233 

Integrated datasets move us a step closer to resolving this uncertainty. The CLOVER 234 

dataset covers 1,081 mammal host species and  829 associated viruses. This only 235 

represents 16.9% of extant mammals (Burgin et al. 2018) and at most 2.1% of their 236 

viruses (Carlson et al. 2019) - perhaps a marginal improvement over the 954 mammal 237 

hosts (14.9%) and 733 viruses (1.8%) in the reconciled Shaw sub-dataset, but an 238 

improvement nonetheless. The biggest functional gain is not in the breadth of the 239 

reconciled data, but in its depth: the Shaw database records 4,209 interactions among 240 

these host and virus species, while CLOVER captures 5,494. Given that previous studies 241 

have estimated that 20-40% of host-parasite links are unknown (in GMPD2 (Dallas et al. 242 

2017)), this 30% improvement is notable and shows the value of data synthesis: both 243 

building out and filling in synthetic datasets will significantly improve the performance of 244 

statistical models, which are usually heavily confounded by matrix sparsity (Becker et al., 245 

Dallas et al. 2017).  246 

 247 

In addition, harmonization of metadata on virus detection methods across datasets 248 

enables a greater scrutiny of the strength of evidence in support of each host-virus 249 

association. We applied a simplified detection method classification scheme (either 250 

serology, PCR/sequencing, isolation/observation, or method unknown) based on 251 
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descriptions in the source databases or,  where these are not provided, adopting the most 252 

conservative definition given data source (i.e., EID2 entries derived from NCBI Nucleotide 253 

are classified under PCR/sequencing, though they might also qualify for the next 254 

strongest level of isolation/observation; whereas entries derived from PubMed are 255 

classified under method unknown). Of the 5,494 unique host-virus pairs in CLOVER, a 256 

total of 2,156 (39%) have been demonstrated using either viral isolation or direct 257 

observation and 1,895 (34%) via PCR or sequencing-based methods (with some overlap, 258 

as some associations have been reported with both of the above methods). Notably, a 259 

substantial proportion (2,257; 41%) are based solely on serological evidence which, 260 

although an indicator of past exposure, does not necessarily reflect host competence (i.e. 261 

effectiveness at transmitting a pathogen; Gilbert et al. 2013, Lachish and Murray 2018, 262 

Becker et al. 2020). These harmonized definitions facilitate investigation of inferential 263 

stability using various types of evidence, as well as enabling a best practice of subsetting 264 

data for a particular research purpose. For example, serological assays are a much 265 

weaker form of evidence if the aim of a study is zoonotic reservoir host prediction, 266 

whereas isolation data open new avenues for testing hypotheses about reservoir 267 

competence (Becker et al. 2020).  268 

 269 

Data synthesis inherently relies on a scientific community that generates new, often 270 

conflicting, data. The generation of truly novel data or finding ways to resolve existing 271 

observations that are in conflict are two equally viable paths to scientific progress. 272 

However, in the current funding landscape, researchers may have a significant incentive 273 

to position themselves as creating an entirely <novel= dataset from scratch, even if it 274 

partially replicates available data sources, or to focus their limited resources on datasets 275 

that improve the depth of knowledge within a narrow scope (e.g., a focus on specific 276 

taxonomic groups). But when testing microbiological or eco-evolutionary hypotheses, 277 

rather than simply using each newly-published dataset as a benchmark for which one is 278 

<most up-to-date,= we suggest a necessary shift in scientific cultural norms towards using 279 

synthetic, reconciled data like CLOVER as an analytical best practice. To make this 280 

possible, at least a handful of researchers will need to continue the task of stepwise 281 

integration, using datasets that synthesize existing knowledge across teams, institutions, 282 
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and funding programs to fill in critical data with even more detail. The required tasks (e.g., 283 

identifying relevant source data, cleaning taxonomic information, harmonizing metadata 284 

on diagnostic information or spatiotemporal structure) can be time-consuming but are 285 

relatively straightforward to conduct, and can increasingly be automated thanks to the 286 

rapid growth of new data and tools for reproducible research (Boettiger et al. 2015, 287 

Lowndes et al. 2017, Colella et al. 2020). There is a clear need, and no obvious technical 288 

barrier, to invest more effort in data harmonization: engaging in this process as a form of 289 

open science will accelerate progress for the entire research community. 290 

 291 

Relevance to future efforts  292 

 293 

Here, we showed that a simple data synthesis effort can create a dramatically more 294 

comprehensive dataset of mammal-virus associations. However, this is a temporary 295 

solution and one that will become less sustainable if similar datasets continue to 296 

proliferate or if newer iterations of existing datasets are released, each absorbing different 297 

parts of existing efforts. Over the longer term, given global investments in viral discovery 298 

from wildlife, static datasets will quickly become out-of-date, and their relation to the most 299 

recent empirical knowledge will be left unclear. For example, the CLOVER dataset 300 

becomes significantly sparser after 2010, both in terms of the overall number of reported 301 

host-virus associations, and the reporting of novel (i.e. previously undetected) 302 

associations (Figure 3). This sparseness is most likely due to time lags between host-303 

virus sampling in the field, the reporting or publication of associations, and their eventual 304 

inclusion in one of the component datasets, and suggests that CLOVER may now be 305 

missing up to a decade9s worth of known host-virus data. In the near term, microbiologists 306 

and data scientists may want to approach the task of data reconciliation with a much 307 

broader scope, and develop a more sustainable data platform. 308 

 309 

Scaling up the aggregation of host-virus association data will not be easy, but is not an 310 

insurmountable endeavour. We suggest working backwards from the intended end 311 

product: the goals outlined here are best served by a central system (with an online 312 

access point to the consumable data), spanning the information available from multiple 313 
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data sources (which demands backend engines drawing from existing databases, while 314 

tracking data provenance and ensuring proper attribution). Further, the most valuable 315 

data resource would be easily updatable by practitioners (which demands a portal for 316 

manual user input or an Integrated Publishing Toolkit to work from flat files). For users, 317 

these data should be accessible in a programmatic way (i.e., through a web API allowing 318 

for bulk download and/or other interfaces like an R package), help analysts build 319 

reproducibility (through versioning of the entire database, or of a specific user query), and 320 

offer predictable formats (through a data specification standard devised by a 321 

multidisciplinary group).  322 

 323 

Fortunately, the field of ecoinformatics has the capacity to help inform this design and 324 

development process. Massive bioinformatic data portals like the Global Biodiversity 325 

Informatics Facility  (gbif.org), the Encyclopedia of Life (eol.org), and the Ocean 326 

Biodiversity Information System (obis.org) all offer most of the functionalities we outline 327 

here, though they are aimed at slightly different forms of biodiversity data. More recent 328 

contributions dedicated to ecological network data include Global Biotic Interactions 329 

(Poelen et al. 2014) (GLOBI, which consumes flat files and formats them), helminthR 330 

(Dallas 2016), and mangal (Poisot et al. 2016) (which stores a metadata-rich 331 

representation of species interaction networks), all of which reconcile their taxonomy with 332 

other databases through the use of unique taxon keys. In short, researchers interested in 333 

the global virome need not divert their attention, resources, and effort away from the 334 

pressing tasks related to monitoring viral pathogens, but they can leverage existing 335 

products, expertise, and capacity in neighbouring fields to bolster their ability to do so. 336 

Given the eagerness ecologists have shown to participate in SARS-CoV-2 research, we 337 

anticipate that our field may be especially well-poised to jump into this task post-338 

pandemic. We aim, in our current efforts, to lay that groundwork. 339 

 340 

An integrated platform for the deposition, curation, archival, and sharing of host-virus 341 

associations in a prêt-à-manger, metadata-rich format has inherent value for the entire 342 

scientific community. When the format of a dataset is well established, it allows for the 343 

development of tools that mine the data in real-time. For example, the field of biodiversity 344 
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studies has adopted the concept of Essential Biodiversity Variables, which can be 345 

updated when the underlying data change (Pereira et al. 2013, Fernández et al. 2019, 346 

Jetz et al. 2019). Having the ability to revisit predictions about the host-virus network could 347 

improve models that assess zoonotic potential of wildlife viruses (Farrell et al. 2020, 348 

Mollentze et al. 2020), generate priority targets for wildlife reservoir sampling (Becker et 349 

al., Babayan et al. 2018, Plowright et al. 2019), and help benchmark model performance 350 

related to these tasks. Beyond training and validation, link prediction models built on these 351 

reconciled databases may be used to target future literature searches, shifting from 352 

systematic literature searches to a model based approach to database updating. 353 

Increased collaboration between data collectors, data managers, and data scientists that 354 

leads to better data standardization and reconciliation is the only way to productively 355 

synthesize our knowledge of the global virome. 356 

 357 

Data and code availability  358 

 359 

The four raw datasets and harmonized CLOVER dataset can be obtained from the 360 

archived project repository: https://dx.doi.org/10.5281/zenodo.4435128. Code used to 361 

generate the analyses and figures in this study can be found at 362 

https://github.com/viralemergence/reconciliation. 363 

  364 
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Figures and Tables 495 

 496 

 497 

Table 1. Available <big data= on host-virus associations, and major features of each 498 

dataset. Numbers of unique association records and host, virus, and pathogen species 499 

are all derived from the reconciled version presented in the CLOVER database, and 500 

therefore these numbers may differ from those presented in the main text (which are 501 

taken from the source data, or from self-reporting by the data curators). *Number of 502 

associations and taxa accurate as of 2015 static release in Scientific Data paper. 503 

 504 

 505 

Dataset GMPD2 EID2* HP3 Shaw 

Source U. Georgia U. Liverpool  EcoHealth Alliance 
Shaw LP, et al. 

Molecular Ecology 
(2020). 

Nature of dataset Static Dynamic Static Static 

Association records 893 1,360 2,783 4,207 

Host species 225 415 750 954 

Virus species 154 395 561 733 

Original taxonomic 
scope of pathogens 

All parasites and 
pathogens (incl. 
viruses, bacteria, 
macroparasites, 

protozoans, 
prions) 

All symbionts (incl. 
viruses, bacteria, 
macroparasites, 

protozoans, prions, 
green algae, 

molluscs, and 
cnidarians) 

Viruses Viruses and bacteria 

Original taxonomic 
scope of hosts 

Mammals (subset: 
only ungulates, 
carnivores, and 

primates) 

Vertebrates and 
invertebrates 

Mammals Vertebrates 

Diagnostic method 
identified (PCR, 
serology, etc.)? 

Yes No Yes Yes 

URL of current 
version 

http://onlinelibrary.wiley.co
m/doi/10.1002/ecy.1799/s

uppinfo 
https://eid2.liverpool.ac.uk/ 

https://github.com/ecohealth
alliance/HP3 

https://doi.org/10.6084/m9.fi
gshare.8262779 

 506 
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Box 1. Glossary. 508 

 509 

Association data: a format that records ecological interactions between a host and 510 

symbiont (an association) in the form of an edgelist. 511 

 512 

Data provenance: The primary literature origin of a particular record or set of records in 513 

a synthetic dataset. 514 

 515 

Data reconciliation: the task of harmonizing the language of a given dataset9s fields and 516 

metadata to allow a researcher to merge data of different provenance, and generate a 517 

new synthetic product. 518 

 519 

Edgelist: a table, spreadsheet, or matrix of <links= in a host-symbiont network, where 520 

each row records the known association of a different host-symbiont pair. 521 

 522 

Flat file: a static document in Excel or similar spreadsheet or data format, with no 523 

dynamic component (no updating) and all data available from a single file rather than a 524 

queryable interface. 525 

 526 

Metadata: additional data describing focal data of interest and that is relevant to 527 

interpretation and analysis. Important examples for host-virus associations include 528 

sampling method (for example, serological assay, PCR or pathology), date and 529 

geographical location of sampling, and standardized information on host and virus 530 

taxonomy. 531 

 532 

Open data: data that is directly and freely accessible for reuse and exploration without 533 

impediment, gatekeeping, or cost restriction. 534 

 535 

 536 

 537 

 538 

 539 

  540 
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Figure 1. Network representation of the CLOVER dataset. The nodes of the entire 543 

CLOVER network have been projected to a two-dimensional space using t-SNE; in 544 

each panel, only the nodes found in the dataset are shown in colour. In each dataset, a 545 

non-trivial proportion of associations are completely unique and unrecorded elsewhere, 546 

even after taxonomic reconciliation. This was the case for 203 of 1360 associations in 547 

EID2 (14.9%); 614/2783 in HP3 (22.1%); 269/893 in GMPD2 (30.1%);  and 1705/4207 548 

in Shaw (40.5%).  549 

 550 

 551 
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Figure 2. Proportional overlap before and after host taxonomic updating. The 553 

percentages and fill colours in these tiles can be interpreted as <% y axis was contained 554 

in x axis=; for example, 32% of uncleaned EID2 hosts were also represented in GMPD2, 555 

while 47% of cleaned Shaw associations were also contained in HP3. Darker colours 556 

represent greater overlap. 557 

 558 

 559 

 560 

 561 

 562 
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Figure 3. Temporal trends in reporting of host-virus associations in the CLOVER 566 

dataset. Bar graphs show, for each year, the total number of reported associations 567 

coloured by source database (which can include duplicates of the same association 568 

reported over multiple years; top graph) and the number of novel unique associations 569 

(i.e. previously unreported; bottom graph). Years reflect the date when an association 570 

was reported, either in a published paper or report (for literature-based records) or to 571 

the NCBI Nucleotide database (EID2 only).  572 

 573 
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