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Abstract

To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that
predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical
model and virtual patient cohort. Our results indicate that virtual patients with low production rates of
infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared
to those with early and robust IFN responses. In these in silico patients, the maximum concentration of
IL-6 was also a major predictor of CD8" T cell depletion. Our analyses predicted that individuals with
severe COVID-19 also have accelerated monocyte-to-macrophage differentiation that was mediated by
increased IL-6 and reduced type I IFN signalling. Together, these findings identify biomarkers driving
the development of severe COVID-19 and support early interventions aimed at reducing inflammation.

Author summary

Understanding of how the immune system responds to SARS-CoV-2 infections is critical for
improving diagnostic and treatment approaches. Identifying which immune mechanisms lead to
divergent outcomes can be clinically difficult, and experimental models and longitudinal data are only
beginning to emerge. In response, we developed a mechanistic, mathematical and computational model
of the immunopathology of COVID-19 calibrated to and validated against a broad set of experimental
and clinical immunological data. To study the drivers of severe COVID-19, we used our model to
expand a cohort of virtual patients, each with realistic disease dynamics. Our results identify key
processes that regulate the immune response to SARS-CoV-2 infection in virtual patients and suggest
viable therapeutic targets, underlining the importance of a rational approach to studying novel
pathogens using intra-host models.

Introduction

Clinical manifestations of SARS-CoV-2 infection are heterogeneous, with a significant
proportion of people experiencing asymptomatic or mild infections that do not require hospitalization.
In severe cases, patients develop coronavirus disease (COVID-19) that may progress to acute
respiratory distress syndrome (ARDS), which is frequently accompanied by a myriad of inflammatory
indicators [1]. Mounting evidence points to a hyper-reactive and dysregulated inflammatory response
characterized by overexpression of pro-inflammatory cytokines (cytokine storm) and severe
immunopathology as specific presentations in severe COVID-19 [2—6]. An over-exuberant innate
immune response with larger numbers of infiltrating neutrophils [7,8] arrests the adaptive immune
response through the excessive release of reactive oxygen species that leads to extensive tissue damage
and depletion of epithelial cells [9]. In addition, lymphopenia, in particular, is one of the most
prominent markers of COVID-19 and has been observed in over 80% of patients [6, 10—12]. However,
the immune mechanisms that lead to disparate outcomes during SARS-CoV-2 infection remain to be
delineated.
Cytokines are critically important for controlling virus infections [13, 14] and are central to the

pathophysiology of COVID-19, sometimes playing a detrimental role in the context of a cytokine storm
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[10]. For example, interleukin-6 (IL-6) can stimulate CD8" T cell expansion under inflammatory
conditions [15]; however, in hospitalized SARS-CoV-2 patients with lymphopenia, IL-6 has been
shown to be elevated [16] without an increase in CD8" T cell counts [17]. Type I interferons (such as
IFNs-a, B [18]) also play a major role in limiting viral replication by inducing a refractory state in
susceptible and infected cells [19-21]. Due to this, it has been suggested that a delay in mounting an
effective IFN response may be responsible for COVID-19 severity [22] as it is for other highly
pathogenic coronavirus (i.e. SARS-CoV and MERS) infections [13]. Overall, patients with severe
COVID-19 present with lymphopenia [14, 23], and are likely to have increased inflammatory cytokines
such as IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-
stimulating factor (G-CSF) [7, 17, 24].

Because identifying which immune mechanisms lead to divergent outcomes can be difficult
clinically, and experimental models and longitudinal data are only beginning to emerge, theoretical
explorations are ideal [25]. Quantitative approaches combining mechanistic disease modelling and
computational strategies are being increasingly leveraged to investigate inter- and intra-patient
variability by, for example, developing virtual clinical trials [26—28]. More recently, viral dynamics
models [29, 30] have been applied to understand SARS-CoV-2 within-host dynamics and their
implications for therapy [31-36]. However, there are few comprehensive models that integrate detailed
immune mechanisms and allow interrogation of the dynamics controlling divergent outcomes, and
none have attempted to quantify the high degree of variability in patient responses to SARS-CoV-2
through modelling.

In this study, we developed a mechanistic mathematical model to describe the within host
immune response to SARS-CoV-2. We explicitly modelled the interactions between epithelial cells,
innate and adaptive immune cells and cytokines. The model was fit to various in vitro, in vivo, and
clinical data, analyzed to predict how early infection kinetics facilitate downstream disease dynamics,
and used to create a virtual patient cohort with realistic disease courses. Our results suggest that mild
and severe disease are distinguished by the rates of monocyte differentiation into macrophages and of
IFN production by infected cells. In our virtual cohort, we found that severe COVID-19 responses were
tightly correlated with a delay in the peak IFN concentration and that a large increase in IL-6 was the
dominate predicator of CD8" T cell depletion in our virtual cohort. Importantly, these results provide
insight into differential presentations of COVID-19 by identifying key regulators of severe disease

manifestation particularly related to monocyte differentiation and IL-6 concentrations.

Results
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107  Modelling the immune response to SARS-CoV-2 and the impact of delayed IFN on infection
108 dynamics
109 To study the dynamics of SARS-CoV-2 infection and the development of COVID-19, we

110  constructed a computational biology model of host-pathogen interactions (Eqs. S1-S22, with variables
111 and parameters summarized in Table S1 and schematic in Figure 1). The model includes susceptible
112  lung epithelial cells (S) that encounter virus (V') and become infected (I) before turning into damaged
113 or dead cells (D) due to viral infection or immune involvement. The immune response is orchestrated
114 by a myriad of cytokines that act to stimulate the immune cell subsets present in the tissues and recruit
115  cells from the bone marrow and circulation (Figure 1A). Upon infection, cells begin secreting type |
116  IFNs (F) that cause lung epithelial cells to become resistant to infection (R) and decrease the

117  production of newly infected cells [37]. Through stimulation by infected and dead cells, alveolar (lung
118 tissue-resident) macrophages (Mg ) become inflammatory macrophages, which also arise through
119  macrophage (M) differentiation by stimulation by GM-CSF (G) or IL-6 (L) [38]. Neutrophils (N) are
120  recruited to the infection site by G-CSF and release reactive oxygen species (ROS) causing bystander
121 damage to infected and susceptible cells [39, 40]. CD8" T cells (T') are subsequently recruited to the
122  infection site following a delay to account for antigen presentation, with expansion modulated by type I

123  IFN and IL-6 concentrations. See Materials and Methods for a complete description.
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Figure 1. Immune response to SARS-CoV-2 infection model schematic. The model in Eqs. S1-S22 reduced
to A) cell dynamics B) cytokine production dynamics and C) cytokine binding kinetics. Unique lines represent
induced cell death (double line), recruitment (dashed line), cell type change or production (solid line), and
cytokine production (square arrow). Cell and/or cytokines along joining lines denote a causal interaction. A)
Virus (V) infects susceptible lung epithelial cells and creates either infected (1) or resistant (R) cells depending
on the concentration of type I IFN. Infected cells then either die and produce new virus or are removed via
inflammatory macrophages (Mg;) or CD8" T cells (T) that induce apoptosis to create dead cells (D). Neutrophils
(N) cause bystander damage (death) in all epithelial cells and are recruited by individually G-CSF and IL-6
concentrations. CD8" T cells are recruited by infected cells and their population expands from IFN signalling. T
cell recruitment is inhibited by IL-6 concentrations. Monocytes (M) are recruited by infected cells and GM-CSF
and differentiate into inflammatory macrophages based on the individual concentrations of GM-CSF and IL-6.
Tissue-resident macrophages (Mgg) also become inflammatory macrophages through interaction with dead and
infected cells. Dead cells are cleared up by inflammatory macrophages and also cause their death. B) Type [ IFN
is produced by infected cells, inflammatory macrophages and monocytes. G-CSF is produced solely by
monocytes and GM-CSF is produced by monocytes and macrophages. IL-6 is produced by monocytes,
inflammatory macrophages and infected cells. C) Cytokine receptor binding, internalization and unbinding
kinetics considered for each cell-cytokine interaction.

Because the model has several parameters that are undetermined biologically and insufficient
data exists to confidently estimate their values, we used a stepwise approach to parameter estimation
(see Materials and Methods and Figures S1-S5). We first confirmed that we could recapitulate early

infection viral kinetics with a reduced version of the full model (‘viral model’). For this, we excluded


https://doi.org/10.1101/2021.01.05.425420
http://creativecommons.org/licenses/by-nd/4.0/

146
147
148
149

150

151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425420; this version posted January 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

immunological variables (i.e. only including Eqs. 6-9) and estimated parameters relating to viral
kinetics by fitting to viral load data from macaques (see Materials and Methods). The resulting model
dynamics were in good agreement to these early infection data (Figure 2) and demonstrate a rebound

in epithelial lung tissue as the viral load and infected cells decrease.
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Figure 2. Viral dynamics model fit to macaque viral data from Munster et al. [41] A reduced version of the
full model (all cytokine and immune cells set to 0, Eqs. 6-9) was fit to data from macaques [41] to estimate
preliminary viral kinetic parameters. A) Virus (V) infects susceptible cells (S) making infected epithelial cells (/)
which then die to produce dead cells (D) and new virus. B) Comparison of predicted viral dynamics compared to
observations from 6 animals, with susceptible cell kinetics (left) with predictions of infected and dead cells over
time (right). We estimated 3, p, d;, V, and dy, from the reduced model in A) fit to data from Munster et al. [41]
measuring the viral load in macaques after challenge with SARS-CoV-2 (Table S1).

We then isolated the IFN dynamics to assess clinical and experimental findings suggesting that
delaying IFN results in more severe presentations in highly pathogenic coronavirus infections including
SARS-CoV-2 [13, 14, 22]. Using the parameters obtained from the ‘viral model’ (Eqs. 6-9; Table S1),
we then simulated the impact of IFN with the ‘IFN model’ (Eqs. 10-16 and Figure 3A). We examined
the predicted dynamics in response to delayed IFN by simulating with and without a fixed delay for
IFN production from infected cells. Our results suggest that delaying type I IFN production by 5 days
yields a 10-fold increase in tissue damage with only 20% of the lung tissue remaining on day 2 (Figure
3B), caused by the increase in infected cells and subsequent lack of resistant cells. [IFN dynamics were
matched to systemic IFN-a concentrations from clinical cohorts by visual predictive check to confirm

that predictions fell within the observed ranges [42] (Figure S6A).
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Figure 3. Delayed type I IFN response impacts heavily on tissue survival in reduced model. A) Submodel
(Egs. 10-16) with all non-IFN cytokines and immune cell interactions set to zero and only considering
interactions between virus (V) and susceptible (S), infected (1), resistant (R), and dead (D) epithelial cells. B)
Predictions from the simplified model without delayed IFN production (solid lines) versus with a constant delay
(tr = 5 days) (dotted lines). Solid black (left panel): viral loads from SARS-CoV-2 infection in macaques by
Munster et al. [41] is overlayed with predicted viral dynamics.

Immunologic determinants of mild and severe disease

Next, to establish the mechanisms that differentiate mild versus severe disease, we simulated
the full model (Eqs. S1-S22) using two different parameter sets. Mild disease dynamics were recreated
using the estimated parameter values (Table S1) with the virus decay rate (dy ) and the infected cell
death rate (d;) recalculated to ensure that the maximum death rate of the virus and infected cells did not
exceed the value obtained from the reduced viral dynamics model fit (Figure 2). Simulating mild
disease, we predicted that all cell populations and cytokines rapidly return to homeostasis, with the
immune response effectively clearing virus within 10 days (Figure 4 and Figure S7).
Because severe SARS-Cov-2 infection results in lower levels of IFN [42] and increased monocytes
[43], we recapitulated severe disease by modulating model parameters relating to these processes, i.e.,
the rates of IFN production from infected cells and macrophages were decreased, and the rate of
monocyte recruitment from the bone marrow by infected cells was increased. With these changes, the
model predicted a dramatic shift in disease response that was characterized by a cytokine storm
(elevated IL-6, GM-CSF and G-CSF), high ratios of innate to adaptive immune cells, and a marked
reduction in healthy viable lung tissue (Figure 4A), whereas changes in viral load remained relatively

consistent with mild disease.
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Figure 4. Predicting mild and severe COVID-19 dynamics. Mild disease (solid lines) dynamics obtained by
using baseline parameter estimates (Tables S1) while severe disease dynamics (dashed lines) were obtained by
decreasing the production rate of type I IFN (pr ;) and increasing the production of monocytes (py ;) and their
differentiation to macrophages (7r y4). A) Viral load and lung cells concentrations (susceptible, resistant,
infected, and dead cells). Solid black line with error bars indicates macaque data [41] (see Figure 2). B) Immune
cell concentrations (inflammatory macrophages, monocytes, neutrophils, and CD8" T cells. C) Unbound
cytokine concentrations (free IL-6, GM-CSF, G-CSF, and type I IFN). Time evolution of all model variables is
shown in Figure S7 (including bound cytokine and alveolar macrophages).

In addition, there was a significant increase in the number of inflammatory macrophages
(Figure 4B), IL-6, GM-CSF and, importantly, a delayed and reduced IFN peak (Figure 4C). In
comparison to the mild disease, inflammatory macrophages and neutrophils (Figure 4B) remained
elevated for at least 30 days after initial infection. Comparing mild and severe disease highlighted
significant differences in the area under the curve (AUC) of macrophages (6 X 10* cells/ml versus
3 x 10! cells/ml) and neutrophils (2 X 108 cells/ml versus 3 x 1013 cells/ml) over 30 days.

Interestingly, inflammation remained high in the severe disease scenario despite the virus being
cleared slightly faster (~1 day) than in the case of mild disease (Figure 4A). Further, the peak of
inflammatory macrophages increased from ~10* cells/ml to ~10° cells/ml in severe scenarios
compared to mild scenarios (Figure 4B). The model also accurately predicted that CD8* T cell

dynamics were lower in severe cases, which is indicative of lymphopenia and similar to clinical
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observations from patients with severe COVID-19 [14, 23]. Despite varying only three parameters to
generate disparate dynamics, the immune cell and cytokine dynamics were qualitatively in line with
clinical observations for IFN-a [42], IL-6 [42, 44], and G-CSF [24] (Figure S6B-F).

Macrophages, CD8* T cells, IFN and IL-6 regulates response to SARS-CoV-2 infection

To further understand how the host immune system regulates the response to SARS-CoV-2
infection, we conducted a local sensitivity analysis by varying each parameter individually by +20%
and comparing a set of metrics (see Materials and Methods) chosen to provide a comprehensive
understanding of each parameter’s impact on the host-pathogen dynamics. This analysis identified 17
sensitive parameters (Figure 5) relating to virus productivity (p, 8y v, B, €r,;), CD8" T cell induced
epithelial cell apoptosis (d; ), macrophages, monocyte and CD8" T cell production (Py e, 1, Pm,i» P.1)>
IL-6 (prma kBL' kintL)a G-CSF (kBC)a and IFN (pr 1, DF mao) klinFJ kBF' kintF)'

The rate of viral infectivity () had a particularly significant impact on all metrics where
increases resulted in higher viral loads and longer periods of tissue damage > 80%. The duration of
extensive tissue damage (>80% damaged) also increased with IFN potency (€r ;). Decreasing the rate
of IL-6-induced monocyte differentiation into inflammatory macrophages (py¢ ;) increased the peak of
both IL-6 and IFN. Notably, changes to parameters that increased the bound IFN concentration, i.e.
increasing the binding and production rates (kg and pg ;) and decreasing the internalization and
clearance rates (k;;p, and K;,,) induced significant changes in most metrics (Figure 5). See Figure S8

for complete sensitivity analysis results.
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Figure 5. Parameters driving COVID-19 severity. A local sensitivity analysis was performed by varying each
parameter £20% from its originally estimated value and simulating the model. Predictions were then compared
to baseline considering: Maximum viral load (max(V)), maximum concentration of dead cells (max(D)),
minimum uninfected live cells (min(S$+R)), maximum concentration of inflammatory macrophages (max(Mg,)),
maximum number of CD8" T cells (max(T)), maximum concentration of IL-6 (max(Ly )), maximum
concentration of type I IFN (max(Fy)), the total exposure to type I IFN (Fy; exposure), the number of days
damaged tissue was >80% (time (S + R )/S;nax), and the day type I IFN reached its maximum (day max(Fy)).
The heatmaps show the magnitude change of each metric, where blue signifies the minimum value observed and
red signifies the maximum value observed, or by the number of days, where light to dark pink signifying
increasing number of days from zero. The most sensitive parameters are shown here (for complete parameter
sensitivity results, see Figure S8).

Virtual patient cohort identifies heterogeneity in immune dynamics and severity

To better understand the clinical variability in SARS-CoV-2 infection severity [1], we next
generated a cohort of 200 virtual patients (see Materials and Methods and Figure 7). To create each
in silico patient, seven patient-specific parameters were sampled from normal distributions with means
corresponding to their respective fixed values and standard deviations inferred from clinical

observations (Table 1). In doing this, we assumed intrinsic interindividual heterogeneity in monocyte

10
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247  to macrophage differentiation, production of IL-6 by macrophages, recruitment of macrophages by the
248  presence of infected cells, and production of IFN by infected cells, macrophages and monocytes,

249  respectively.

250 Parameters were chosen based on their impact on maximum IL-6 and IFN levels as well as

251  tissue damage observed in the sensitivity analysis (Pyo, ., PLma Pri Pu,i> and €g 5 Figure 5). In

252  addition, we designated patient-specific parameters accounting for alternate pathways through which
253  IFN is affected by innate immune cells (1z ¢ and pg ). For the production of IL-6 by macrophages
254  and monocyte to macrophage differentiation via IL-6 stimulation, standard deviations were inferred
255  from IL-6 levels in non-mechanically ventilated patients (mild) and from mechanically ventilated

256  patients (severe) [44] (Figure S7D). Standard deviations for the production of IFN by infected cells
257  were determined from the 95% confidence interval for IFN-a from Trouillet-Assant et al. [42] (Figure
258  S7A-B), and, lastly, the standard deviation for the production of IFN by macrophages was obtained
259  from the 95% confidence interval in Sheahan et al. [45]. The variation in virtual patient responses was
260 then constrained by experimental and clinical viral loads, IFN, neutrophil, IL-6, and G-CSF (Figure 7).
261  The resulting cohort dynamics were within ranges for IFN and IL-6 measurements in asymptomatic to

262  severe COVID-19 patients in the literature [11, 17] (Figure S9).

Para | Units Description Mean | Ref Std Ref | Range

m Dev

Pma, L 1/day Monocyte to 1.7 [46] 2.2 [7] [0, 9.9]
macrophage

differentiation by IL-6
PLme | pg/ml/day IL-6 production by 1872 [47] 22 [7]1 | [1863, 1880]
activated macrophages

Pr1 pg/ml/day IFN production by 2.82 [48] 1.9 [44] [0, 12.2]
infected cells
Pum1 1/day Monocyte recruitment 0.22 [49] 0.08 [50] [0, 0.63]

rate by infected cells
Nrme | 10%cells/ml | IFN by infected cells | 0.001 [48] 107> | [51] [0, 107%]

2
€ry pg/ml IFN production of 0.004 | [52] 1075 [45] [0, 1074]
CD8" T cells
prw | pg/mlday | IFN productionby | 3.56 |[53,54]| 0.013 | [53] | [3.4,3.6]
monocytes

263  Table 1 Virtual patient-specific parameter values. Seven parameters in the model were deemed patient-
264  specific and were drawn from a normal distribution with mean the parameter value obtained either through
265  fitting or from the literature (Table S1). The standard deviation (Std Dev) for each normal distribution was
266  informed by values in the literature (see Materials and Methods and Supplementary Information Sections
267  S6.1). Initial parameter sampling and new parameters generated through the simulated annealing optimization,
268  were bounded within the interval range noted. All other parameters in the model were fixed to their original
269  value (Table S1).
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To quantify disease severity, we introduced an inflammation variable, W, that measured
maximum IL-6, neutrophils and tissue damage (Eq. 18) and then compared it to individual
characteristics of each virtual patient’s disease. We evaluated each virtual patient’s maximum IL-6,
CDS8* T cells, and neutrophils; minimum percentage of healthy lung tissue; the time to peak IFN; and
total IFN exposure (area under the curve or AUC) within 21 days of infection. Ordering patients by
their value of W and plotting the corresponding values for different characteristics evaluated showed a
clear separation between those with mild disease and those with severe disease (Figure 6A).

Patients with higher inflammation had higher IL-6, neutrophil, and inflammatory macrophage
concentrations (Figure 6A). While the IFN exposure was not significantly stratified by ¥, the peak of
IFN and CD8" T cell levels were strongly negatively correlated with the inflammation marker (R =
—0.85, p < 1 X 1072, see Materials and Methods). IL-6 was most noticeably correlated with ¥ (R =
0.91, p< 1 x 107?), with a distinct upper bound in the concentration (~100 pg/ml) achieved in 50% of
the virtual cohort. There appeared to be a transition phase in inflammation driven by neutrophil levels
where patients with moderate inflammation (3 < ¥ < 3.5) had low counts (less than 7 X 10° cells/ml)
compared to patients with more severe inflammation (¥ > 3.5) who had higher levels (p =
1.46 x 107°). Despite this, patients with moderate inflammation exhibited increased disease markers
including delayed IFN peaks and lower CD8" T cells, compared to patients with mild inflammation
(¥ < 3).

A distinct jump in the timing of the IFN peak in the virtual cohort (p < 1 X 107°) was
correlated with inflammation, as patients with low inflammation (¥ < 3) had peaks at day 2 compared
to day 6 in patients with higher inflammation (W>3). Grouping virtual individuals by their time to IFN
peak suggests that those with IFN peaks after day 3 of infection also had fewer macrophages (p<
1 X 107°) and larger numbers of CD8" T cells (p < 1 X 107°). Overall, delays in IFN peak did not
cause significant changes to viral load but were sufficient to cause major tissue damage (100x
reduction in viable tissue remaining) and over-heightened immune responses (4x increase in maximum
IL-6 and GM-CSF concentrations).

We found a positive correlation (R= 0.67, p= 1.58 X 1078) between the time to peak IFN
concentration for each patient against their IFN production rate from infected cells (Figure 6B).
Interestingly, the time to peak IFN for each patient was also strongly related to their rate of IL-6-
stimulated monocyte differentiation into macrophages. Low IFN production rates were predominately
responsible for significantly delayed IFN peaks over 6 days after infection, whereas IFN peaks within 3

days of infection were largely caused by lower rates of monocyte to macrophage differentiation.
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302  Further, examining the relationship between each virtual patient’s maximum IL-6, IFN, and CD8" T
303  cell concentrations (Figure 6C) identified a weaker correlation between the maximum concentration of
304 CDS8"T cells and IFN (R= 0.24, p = 0.0008) as opposed to with IL-6 (R= —0.86,p < 1 x 107?).
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306  Figure 6. Virtual Cohort of SARS-CoV-2 infected patients. 200 virtual patients were generated by sampling
307  parameters related to macrophage, IL-6, and IFN production (pye,,1, Drma» PF,1 Py, NF Ma» €F,1, and Pp ) from
308  normal distributions with mean equal to their original values and standard deviation inferred from clinical
q g
309  observations (Figure 7). Each virtual patient had a distinct parameter set that was optimized to that patient’s
310  dynamics in response to SARS-CoV-2 infection corresponded to physiological intervals reported in the literature
see Materials an ethods). nfection and immune response metrics (blue) in individual patients were
311 Materials and Methods). A) Infect d D t bl dividual patient:
312 compared to inflammatory variable W (green). Each point represents an individual patient, ordered according to
. The correlation coefficien and p-value are indicated for each, with a<0. enoting significan
313 W¥.Th lat fficient (R) and p-val dicated fi h, with a<0.05 denoting significant
314  correlations. B) Parameters most correlated to the IFN peak time were the rates of macrophage production via
p phage p
315 IL-6 (pmo,.) and the IFN production by infected cells (pg ;). Individual patient values for these parameters are
316  plotted as circles coloured by the patient’s corresponding day of IFN peak (see color bar). Patients are ordered
eir inflammation marker W. orrelations between maxima , IL-6, and T cell concentrations for eac
317  Dbyth fl t ker W. C) Correlat bet 1TFN, IL-6, and T cell trat f h
318 atient (circles). Circle colour corresponds to the maximal T cell concentration of each patient.
p P p
319 Discussion
320 Serial immunological measurements from COVID-19 patients are only beginning to be
321  collected, and the ability to assess initial infection kinetics and the drivers of the ensuing disease
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remains limited. The data-driven mechanistic mathematical model and virtual patient cohort developed
here identified important immunological drivers of COVID-19. In particular, to recreate severe
dynamics, it was sufficient to vary only two processes in the model: the rates of type I IFN production
from infected cells and macrophages, and the rate of monocyte recruitment by infected cells. This
suggests that the distinction between severe and mild disease may be driven by a limited set of causal
regulators. The effect on IFN production may be further exacerbated by autoimmunity against type I
IFNs, which has been shown to correlate to life-threatening COVID-19 pneumonia in 2.6% of women
and 12.5% of men [18].

Our results show that delaying type I IFN production is sufficient to cause major tissue damage
and heightened immune responses yet have little impact on peak viral loads. In the severe disease
simulation, viral load was cleared marginally faster (~1 day) in comparison to the mild disease
simulation. This finding is supported by recent clinical evidence showing that an increased rate of viral
decline rather than peak viral load may be more predictive of disease severity [6]. This therefore
suggests that viral load may not be a necessary attribute to obtain severe tissue damage. Instead, our
model predicts that increases in tissue damage occur through heightened innate immune responses.
Evaluating SARS-CoV-2 infection in a cohort of 200 virtual patients revealed several immunological
responses responsible for differential disease presentation. Notably, a distinct, emergent switch in the
type I IFN response corresponded with late IFN peaks and more severe disease (i.e., higher
inflammation V). This supports previous findings that connect a delay in type I IFN with more severe
presentations of highly pathogenic coronaviruses infections including SARS-CoV, MERS-CoV, and
SARS-CoV-2 [13, 14, 22]. Virtual patients with rates of monocyte differentiation close to the rate at
homeostasis tended to achieve peak IFN concentrations approximately 2 days after infection compared
to those with higher inflammation and later IFN responses, who had at least a 3-fold increase in this
rate. This switch in timing was caused by increased rates of monocyte-to-macrophage differentiation
and decreased production of IFN by infected cells, with the initial delay of IFN caused by increased
monocyte differentiation and the more extreme IFN delays caused by IFN production from infected
cells, indicating that the timing of the IFN peak in a patient may allow for improved stratification into
treatment arms designed to target one or both of these responses. The finding that IFN binding was
predictive of the duration of lung tissue damage, suggests that virus-intrinsic properties and their ability
to inhibit receptor mediated binding and endocytosis could delay IFN production and cause
downstream increases in IL-6 and GM-CSF resulting in severe disease. Our results further highlight
that lymphopenia is tightly correlated with maximum IL-6 concentration and less dependent on the

timing of IFN.
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The ability of our model to recapitulate severe disease by, in part, regulating monocyte
differentiation raises the possibility that patients with low monocyte levels [7] may benefit from
treatments that better regulate monocyte differentiation. This is in line with recent studies identifying
distinct transcriptional factors as regulators of differentiated monocyte fates in inflammatory conditions
[55, 56]. It also raises the possibility that modulation by exogenous cytokines, including macrophage
colony-stimulating factor in combination with IL-4 and tumour necrosis factor-alpha (TNF-a), may be
able to direct monocyte differentiation in favour of monocyte-derived dendritic cells and reduce this
response [55]. Recently, the neutralization of both TNF-a and IFN-y has been found to benefit patients
with COVID-19 or other cytokine storm-drive syndromes by limiting inflammation and tissue damage
[57]. Given that TNF-a also has a secondary benefit on monocyte differentiation, our results support
the viability of this avenue of treatment. Caution should be noted, however, given that previous
attempts to regulate host responses by IL-6 blockade have proven unsuccessful [58].

Together, our findings support the idea that early interventions aimed at reducing inflammation
are more likely to be beneficial for patients at risk of progressing to severe COVID-19 than attempts to
inhibit cytokine storm later in the disease course, given that early IFN responses were found to provoke
better controlled immune responses and outcomes in our virtual cohort. It will be essential to
characterize both the timing and mechanisms of proposed therapeutic interventions to develop effective

treatments to mitigate severe disease.

Materials and Methods
Mathematical model of the immune response to SARS-CoV-2
Our model was developed to examine SARS-CoV-2 infection dynamics and identify
immunological drivers of disease severity (Eqs. S1-S22). Throughout, cytokine and immune cell
interactions and effects were described by Hill functions as
B" 1
BM + y’
where B is the interacting compound, y its half-effect value, and h the Hill coefficient [59, 60]. Further,
for a given cytokine X and cell population Y, the production (recruitment/differentiation) rate of X by Y
was denoted by pyx y and the rate of production of Y by X by py x. The half-effect concentration (i.e. y
in Eq. 1) of cytokine X on cell population Y was represented by €y y and the half-effect concentration
of cell Y affecting cytokine X was given by ny y. The natural death rate of cell Y was denoted by dy,
and the rate of induced death of cell Y by cell Z by 6y ;. Lastly, the carrying capacity concentration of

cell Y was denoted by Y,,,,, and regeneration or proliferation rates by Ay.
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We modelled virus (V) being produced by infected cells at rate p and cleared via exponential
clearance at rate dy,, which accounts for all contributions to viral degradation except macrophage- and
neutrophil-mediated clearance. Immune-mediated viral clearance via phagocytosis by inflammatory
macrophages [61] and neutrophil extracellular traps (NETs—extracellular chromatin fibres produced
by neutrophils to control infections) [39, 40] was considered to occur at rates 8y u,,, and &y y,
respectively. Susceptible epithelial cells (S) grow logistically with per capita proliferation rate Ag and
carrying capacity S;,.x, and become infected (I) at rate 5. The damage inflicted on epithelial cells by
neutrophils was modelled using a Hill function (Eq. 1) [60], where neutrophils kill/damage epithelial
cells at rate 8, through the release of NETs and other antimicrobials proteins [39, 40]. The constant p
(0 < p < 1) was included to modulate bystander damage of uninfected cells (S and R).

For the purposes of our investigation, we only considered type I IFN dynamics (primarily IFN-
a, B). Type I IFN (Fy and Fp) reduces the infectivity and replication capability of viruses by stimulating
cells to become resistant to infection. These resistant cells (R) proliferate at a rate equivalent to
susceptible cells (4g). The concentration of bound IFN (Fp) modulates the creation of infected and
resistant cells [19, 21, 62, 63], where increasing the concentration of IFN causes more cells to become
resistant to infection and less to become productively infected (I). The potency of this effect is
controlled by the half-effect parameter € ;. Following the eclipse phase (which lasts 7; hours),
productively infected cells (I) produce virus before undergoing virus-mediated lysis at rate d;.
Although various immune cell subsets contribute to infected cell clearance, we limited our
investigation to macrophages and effector CD8" T cells which induce apoptosis at rates &; ¢ and 6; 7,
respectively.

The accumulation of dead cells (D) was assumed to occur through infected cell lysis d;,
neutrophil damage/killing of epithelial cells 8, macrophage phagocytosis of infected cells &; yq,
macrophage exhaustion dy¢ p, and CD8" T cell killing of infected cells &; 7. These dead cells
disintegrate relatively quickly [64] at rate d, and are cleared through phagocytosis by macrophages
[65] at rate 6p -

Resident alveolar macrophages (M4 ) are replenished at a logistic rate inversely proportion to
viral load with maximal rate of A, and half-effect €y ¢ (i.€. as the virus is cleared, the inflammatory
macrophage pool replenishes the alveolar macrophage population in the lung). We modelled the
transition of alveolar macrophages to inflammatory macrophages (Mg;) as dependent on infected and

dead cells, with a maximal rate of a; 4. Resident macrophages die naturally at a rate dyq, or due to

the clearing of dead cells (exhaustion) [65] at rate &p;q p-
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Inflammatory macrophages are produced by three distinct pathways (acting individually or in
concert): 1) stimulated tissue-resident macrophages a; ¢, (2) GM-CSF-dependent monocyte
differentiation, with maximal production py ; and half effect € 5/, and (3) IL-6-dependent monocyte
differentiation, with maximal production rate py,,,, and half-effect €, »,,,. We assumed that
inflammatory macrophages die naturally at rate dy,,, or from clearing dead cells at a rate 8y p-

We have previously shown that endogenous cytokine concentrations are far from quasi-
equilibrium at homeostasis [66]. Therefore, to describe the pharmacokinetics and pharmacodynamics
of cytokine binding and unbinding, we leveraged the framework established in Craig et al. [66] (Figure
1C) for IFN (Fg and Fy), IL-6 (Lg and Ly), GM-CSF (Gg and Gy), and G-CSF (Cy and Cy). In its

general form, this pharmacokinetic relationship is expressed as

dY,

d_tU = Yprod - klinYU - kB(XA - YB)(YU)POW + kUYB’ 2
dYg Pow

dar kineYp + kg(XA —Yp)(Yy) — kyYp 3

where Y, and Yy are free and bound cytokines, ;.4 is the rate of endogenous cytokine production, kg
and ky; are the respective binding and unbinding rates, k;,; is the internalization rate of bound cytokine,
and k;;,, is the elimination rate. Here, POW is a stoichiometric constant, A is a scaling factor and X is
the sum of all cells modulated by the cytokine with

XA = pYywK10™X. 4
where P is a constant relating the stoichiometry between cytokine molecules and their receptors, K is
the number of receptors specific to each cytokine on a cell’s surface and 10™ is a factor correcting for
cellular units (see Eqs. S19-S22). The molecular weight was calculated in the standard way by dividing
the cytokine’s molar mass (MM) by Avogadro’s number (Y, = MM/6.02214 x 1023).

We considered unbound IL-6 (L) to be produced from productively infected cells,
inflammatory macrophages, and monocytes, with bound IL-6 (L) resulting from binding to receptors
on the surface of neutrophils, CD8" T cells and monocytes. Unbound GM-CSF (G;;) was assumed to be
produced from inflammatory macrophages and monocytes and bind to receptors on monocytes to
create bound GM-CSF (Gg). GM-CSF can be produced by CD8" T cells [67], but this was excluded
because it was insignificant to the full system’s dynamics. Unbound G-CSF (Cy) is secreted by
monocytes, with bound G-CSF (Cy) produced via binding to neutrophil receptors. Lastly, because
unbound type I IFNs (Fy,) are known to be produced by multiple cell types in response to viral

infection, including lymphocytes, macrophages, endothelial cells and fibroblasts [62], we modelled its
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unbound production from infected cells, infiltrating/inflammatory macrophages, and monocytes, and its
binding to receptors on both CD8' T cells and infected cells (Figure 1B).
The pharmacokinetics and pharmacodynamics of G-CSF on neutrophils (N) were taken directly
from Craig et al. [66]:
dN

max CBF CEF 5
— =N, + l[) ax — N Np.
dt ( prod ( N prod) C Ct. 4 €C, R

Neutrophil recruitment of bone marrow reservoir neutrophils (Ng) was modelled to occur via the bound
fraction of G-CSF [68] (Cgr = Cg(t)/(AcN(t))) at rate Np,.,q Which increases towards its maximal
value Y% as a function of increasing G-CSF. During the acute phase of inflammation, endothelial
cells produce IL-6 leading to the attraction of neutrophils [69]. This was modelled as recruitment with
maximal rate py ; and half-effect parameter €p, ;. Neutrophils die at rate d .

Monocytes (M) are recruited by bound GM-CSF [70], similar to neutrophils (Eq. 5), with bone
marrow monocytes (Mg ) recruited at a homeostatic rate M,,.,4. In the presence of GM-CSF, this rate
increases towards Y r**. Monocytes are also recruited by the presence of infected cells at a maximal
rate of py, ; with half-effect €; 5, and subsequently disappear through differentiation into inflammatory
macrophages (as above) or death at rate d ;.

CDS8* T cells are recruited through antigen presentation on infected cells as a function of
infected cell numbers at rate pr; The constant delay (77) accounts for the time taken for dendritic cells
to activate, migrate to the lymph nodes, activate CD8" T cells, and the arrival of effector CD8* T cells
at the infection site. CD8" T cell expansion occurs in response to bound IFN at a maximal rate pr ¢
with half-effect € 7, and CD8" T-cell exhaustion occurs with high concentrations of IL-6 [16, 17], with
half-effect €; r, and apoptosis occurs at rate dr. All variable and parameter descriptions are provided in
Table S1.

Estimating early infection dynamics (‘viral model’)

To begin estimating parameter values from data, we set all immune populations and cytokine

concentrations in the full model (Supplementary Information Eqs. S1-S22) to zero (Mpr = Mg, =

M=N=T=LU=LB=GU=GB=CU=CB=FU=FB=0).ThngiVGS

dVv 6
E:pl—de,

ds S+I1+D 7
aﬂs( ‘W)S‘W
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ar BS(t =TIV (t —T))€R, 4l 8
dD 9
E = dII - dDD.

We also assumed there were no resistant cells (R = 0) due to the absence of an IFN equation. This
resulted in a simplified ‘viral model’ that considers only virus (V') infection of susceptible cells (S)
which creates infected cells (1) after t; days, which the die through lysis, creating dead cells (D).
Type I interferon dynamics during early infection (‘IFN model’)

To study infection dynamics driven uniquely by IFN, we extended Eqs. 6-9 by introducing the
IFN mechanisms from Eqs. S1-S22, i.e. setting other cytokine and immune cell populations to zero

(Mpr =My, =M =N=T =Ly =Lg =Gy = Gg =Cy =Cg=0), giving

dv 10
— =pl —d,V,

dt p 1

dS_/1< S+I+R+D)S oy 11
dt B s Smax ﬁ ,

dl _ BS(t—t)V(t — 1)€p, dl 12
dt €p; + Fp I'

dR S+I+R+D SVF, 1
- = ,15< — )R+ B B, i
dt Smax FB + EF,I

dD 14
E = dII - dDD,

dF Pril 15
dF, . 16
d_tB - _kinthB + kBF((T + I)AF - FB)FU - kUFFB'

where cells become resistant (R) through IFN (Fy; and Fy). The parameter 7" °? was introduced to
account for the production of IFN by macrophages and monocytes not explicitly modelled in this

reduced system but included in the full system (i.e. pr » and pr y in Eq. S17). Previously-fit

parameters were then fixed to their estimated values (Table S1) and the value of ?"°? was determined

by solving dFy; /dt = 0 at homeostasis (i.e. V = I = 0), giving zp}?md = 0.25.
Model calibration and parameter estimation

Model parameters (Table S1) were obtained either directly from the literature, through fitting
effect curves (Eqs. S24-S25) or sub-models (Eqs. S26-S56) to in vitro or in vivo data, or by calculating
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the value that ensured that homeostasis was maintained (Eqs. S57-S70) in the absence of infection. All
fitting procedures were performed using MATLAB 2019b functions fmincon or Isqnonlin [71].

Initial concentrations of all unbound cytokines (Ly o, Gy 0, Cy o and Fy o), susceptible cells,
resident macrophages, monocytes, neutrophils, and CD8" T cells (So, Mg o, Mg, No and Ty) were
estimated from plasma and lung tissue concentrations in humans. Parameters for cytokine binding and
unbinding kinetics (Eqs. 2-4), such as the molecular weight (M M), binding sites per cell (K),
binding/unbinding rates (kg and k;;), internalization rates for GM-CSF, G-CSF and IFN (k;;;), and
cytokine clearance rates (k;;;,), were estimated both from experimental measurements and previous
modelling work. The stoichiometric constants POW and p were both equal to 1 for all cytokines,
except for G-CSF for which POW = 1.4608 and p = 2 as previously estimated by Craig et al. [66].
Neutrophil and monocyte reservoir dynamics, monocyte differentiation, macrophage activation, and
CD8" T cell recruitment and expansion parameters were primarily estimated from previous
mathematical modelling studies. Immune cell death rates were taken directly from the literature or
estimated from recorded half-lives using Eq. S23.

The rates of virus production, decay, infectivity, and infected cell lysis (p, dy, f and d;
respectively) were then estimated by fitting Eqs. 6-9 to viral load measurements from SARS-CoV-2
infection in macaques [41] where eight adult rhesus macaques inoculated with 4 x 10°> TCIDso/ml
(3 X 108 genome copies/ml) SARS-CoV-2 [41] (Table S1). Viral loads below 1 copy/ml were
assumed to be negligible. Estimated parameters for viral decay and cell lysis (d, and d;) were used as
an upper bound for parameter values in the full model.

A subset of parameters was obtained through fitting sigmoidal effect curves (Eqs. S24-S25)
curves to in vitro and in vivo experiments. These include the half-effect neutrophil concentration for
epithelial cell damage, the half-effect concentrations for monocyte production and differentiation
through GM-CSF signalling (€5 and € yo,; Figure S1). Other parameters obtained through effect
curves were the half-effects for IL-6 production by monocytes (1, »), the effect of IL-6 on monocyte
differentiation (€, ;) and the half-effect of IFN on CD8" T cell (€x ) and IL-6 on CD8" T cell
expansion (€, 1) (Figure S2).

These parameters were then fixed, and remaining parameters were estimated by fitting time-
dependent sub-models of Eqs. S1-S22 to relevant data. The proliferation rate of epithelial cells (Ag), the
internalization rate of IL-6 (k;;., ), and the rate of neutrophil induced damage were fit to corresponding
time-series measurements using exponential rate terms (Figure S2). Clearance and phagocytosis of

infected cells and extracellular virus by inflammatory macrophages (6; o and 8y yq) were fit to in
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vitro experiments (Figure S2). Production of IFN by macrophages (pr y) Was obtained by fitting to
data measuring IFN-a production (Figure S3). The parameters regulating the rate of the resident
macrophage pool replenishment (Ay,¢ and €y y¢) Were estimated from in vivo observations of resident
macrophages during influenza virus infection (Figure S3). GM-CSF production by monocytes

(pg m; Figure S3), IFN production by infected cells (pr;), and IL-6 production by infected cells and
macrophages (p,; and p; ¢ ) Were all obtained from fitting reduced versions of Eqs. S1-S22 to in vitro
experiments [47, 48, 72, 73] (Figure S4).

Lastly, any remaining parameters values were obtained by ensuring that homeostasis was
maintained in absence of infection (Figure S5). Parameters calculated from homeostasis include the
half-effect monocyte concentration for G-CSF production (7 » ), the production rate of IL-6 and GM-
CSF by inflammatory macrophages (p;, e and pg me ), the production rate of monocytes by GM-CSF
(Pm ), and the half-effect inflammatory macrophage concentration for IFN production (g ¢ ). For
some parameters it was not possible to obtain an estimation from the literature, and for these we either
set their value equal to an already estimated parameter (€, v, D¢ m» PFm;» N M), OF qualitatively
estimated it (€] y, p).

For the ‘IFN model’ (Eqs. 10-16), parameters related to virus (p, dy, f and d;), epithelial cell
proliferation (As and Sy,qx), and IFN (Pg 1, MF 1, Kiing K Ar, Ky, and €g ;) were fixed to those in Table
S1.

Numerical simulations

All ODE models were solved using ode45 in MATLAB, and delay differentiation equations
(i.e. Eqs. S1-S22) were solved using ddesd in MATLAB.

Sensitivity analysis

We performed a local sensitivity analysis for the full model (Eqs. S1-S22) by individually
varying each parameter by £20% from its estimated value and quantifying the effect on the model’s
output. This change was recorded and used to evaluate different metrics representing the inflammatory
response to SARS-CoV-2, namely maximum viral load, maximum number of dead cells, minimum
uninfected tissue, maximum number of inflammatory macrophages, maximum number of CD8" T cells,
maximum unbound IL-6, maximum unbound IFN, the total exposure (AUC) to type I IFN, number of
days the percent of damaged tissue was >80%, and time of unbound type I IFN peak. We quantified the
fraction of undamaged tissue by (S + R)/Sinax-

Virtual patient generation
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547 To generate a cohort of 200 virtual patients, we followed techniques similar to those of Allen et
548  al. [26] and our previous studies [74, 75] wherein individual virtual patients were created by sampling a
549  parameter set p from parameter distributions then simulating the model to verify that each individual’s
550  trajectory was realistic. A subset of parameters (Py o, 1, Prmds PF,1» Pmi NFmbs €F1> and pp ) was

551  designated as patient-specific after considering the results of the sensitivity analysis and standard

552  deviations inferred from clinical observations (Supplementary Information). To avoid the inclusion of
553  unrealistic dynamics, patient parameter sets were then optimized using simulated annealing to ensure
554  predictions fell within physiological ranges for viral load [41], IL-6 [6, 44], IFN-a [42], and G-CSF
555  [24] (Figure 7).

556 The upper u; and lower [; bounds for V, Ly, F;; and C; were based off these physiological

557  ranges from Munster et al. [41] (viral loads), Herold et al. [44] (IL-6 concentrations), Trouillet-Assant
558 etal. [42] (IFN dynamics), and Liu et al. [7] (G-CSF concentrations) as described in Supplementary
559  Information Section S.6.1. Intervals for each patient-specific parameter set were restricted to four

560 standard deviations from the mean or zero if the lower bound was negative. Given an initial patient

561  specific parameter set p, we used simulated annealing to minimize J(p), i.e.

minJ(p) = min [Z max ((Mi(p) Lk ;”) (- ;”)0) ] o

562  where M;(p) is the model output i evaluated at parameter set p corresponding to the upper and lower

563  bound [; and u; (Figure 7).

564 To quantify disease severity for each patient, we introduced an inflammation variable (¥) to
565 account for the combined changes in IL-6 (L), neutrophils (N), and damaged tissue (S + R), each
566  normalized by the virtual cohort’s average. In this way, ¥ measures an individual’s relative change
567  from the cohort’s baseline, and quantifies the contributions of IL-6, neutrophils, and tissue damage on
568  comparable scales. For a given patient j, the inflammation marker is given by
max (L}, (£)) . max(N/ (1)) 18
22 (max (£ 0)) 727 (max(W )
Smax = Min (sf(t) + Rj(t))
1

32 (Smax = min(S7) + RI)))

Wy =

+

569  where n is the total number of patients in the cohort, and L{], N/, 87, and R/ are the unbound IL-6,

570  neutrophils, and susceptible and resistant epithelial cell count, respectively.
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Figure 7. Algorithm for generating virtual patients. Parameters in the model were first obtained through
fitting to data (Table S1). 1) Parameters relating to macrophage, IL-6 and IFN production

(DML PLmas PE1 Pm,i NF Mas €F,1> and Pp p) Were generated from normal distributions with mean equal to
their original fitted values and standard deviation informed by experiment observations (see Section S6.1). 2)
The model evaluated is then evaluated on this parameter set to obtain y(t, p). 3) A simulated annealing
algorithm is then used to determine a parameter set that optimises the objective function J(p) (Eq.16). 4)
Optimizing the objective function provides a parameter set for which the patient response to SARS-CoV-2 will
be within the physiological ranges. This patient is then assigned to the cohort and this process is continued until
200 patients have been generated. Physiological ranges are noted in the bottom box for viral load [41], IFN [42],
IL-6 [44] and G-CSF [7].

T

Statistical analyses
The Pearson correlation coefficient (R) was used to measure the degree of interaction between two
variables, with a significance level of @ < 0.05 indicating rejection of the hypothesis that there is no

relationship between the observed variables. In addition, we used two-sample two-sided t-tests (number
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586  of patients < 40) and z-tests (number of patients > 40) at the a < 0.05 significance level to test the

587  hypothesis that there were no differences between sample means.
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Supporting information captions

Supplementary Information file.
Figure S1. Effects of neutrophils on lung epithelial cells, GM-CSF on monocyte production and

differentiation, the relationships between monocytes and CD4+ T cells with IL-6, and the
influence of IFN on T cell expansion. A) Using the measurements by Knaapen et al.??, the
inhibitory effect curve E (Eq. S25) was fit to the cell viability of RLE cells under various
concentrations of H>O». B) The stimulatory effect curve E (Eq. S24) was fit to the dose response
measurements of blood monoculture cells (3 X 103cells/dish) with various concentrations of
murine recombinant GM-CSF (IU/ml)'8. C) The stimulatory effect curve E (Eq. S24) was fit to
measurements for the monocytic myeloid cell count as a function of GM-CSF.!” D) Eq. S27 fit
to time course data of IL-6 production from monocytes®®. E) IL-6 stimulation of monocyte
differentiation to macrophages modelled by the inhibitory effect curve E (Eq. S24) fit to the
percentage of CD14+ cells (macrophages) as a function of the number of fibroblasts measured
by Chomarat et al.'®. F) Stimulatory effect curve E (Eq. S24) for IFN-y stimulation on CD8+ T
cells fit to measurements of the signalling in CD8+T cells for varying doses of IFN-y'°, Data
(black) is plotted as either circles (D & E) or mean and standard deviation error bars (A-C&F);
solid blue line: corresponding fit.

Figure S2. Dynamics of IL-6 on T cell expansion, epithelial cell growth, IL-6 internalization,

neutrophil-induced damage, and macrophage phagocytosis. A) Effect curve (Eq. S24) for
the IL-6 effect on T cell expansion fit to measurements CD4" T cells from dilutions of TL-6 by
Holsti and Raulet?!. B) Exponential growth curve fit to the growth of A549 cells? C) The
internalization rate of IL-6 (Eq. S30) fit to the fraction of internalized IL-6*7. D) Exponential
decay fit to cell viability after HO, administration®*. E) The macrophage clearance of apoptotic
material (Eqs. S31-S33) was fit to the percentage of macrophages that had engulfed material
over 25 hours?’. F) The phagocytosis rate of extracellular virus by macrophages was obtained by
fitting Eqs. S34-S35 to the uptake of virus by macrophages measured by Rigden et al.?*. Data
(black) is plotted as either circles (A & F) or mean and standard deviation error bars (B-E); solid
blue line: corresponding fit.

Figure S3. Monocyte expansion and type I IFN production by monocytes, alveolar macrophage

replenishment after viral infection, and GM-CSF production by monocytes. A) Eq. S37fit
to time course of proliferation of monocytes in culture*’. B) Fit of Eqs. S38-S39 to the
production of IFN-a by monocytes after 24 hours with RSV as a function of the number of days
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825 of pre-culturing (1, 2, 4 or 7)*. C) Correlation between infectious virus titre and RT-PCR copy
826 number for influenza A and B measured by Laurie et al.®® The relative TCIDso compared to the
827 RNA copies is plotted for each virus strain and the mean as a black dashed line. D-E) Fit of Egs.
828 S40-S42 to viral loads®” and alveolar macrophages from experimental influenza infections. F)
829 The production of GM-CSF from stimulated monocytes was recorded by Lee et al.** Using a
830 simplified version of the full model (Eqs. S43-S46), we obtained the production rates for

831 monocytes and GM-CSF. Data (black) is plotted as either circles/stars (B&F) or mean and

832 standard deviation error bars (A,D-E); solid blue line: corresponding fit.

833  Figure S4. Production of IFN and IL-6 by infected cells and macrophages. A) Concentration of
834 IFN-p released by alveolar epithelial cells in response to stimulation with influenza virus

835 recorded at 8, 16 and 24 hours*!. B-C) IL-6 production by infected cells in response to A) HSNA
836 and B) H7N9, measured by Ye et al.*® Data (black) is plotted as mean and standard deviation
837 error bars with the corresponding fit (Eqs. S51-S54) in solid blue. D) IL-6 production by

838 macrophages (Eq. S56) in response to stimulation with LPS of varying dosage sizes. Shibata et
839 al. 3" measured the production of IL-6 for different dosages of LPS and fitting the production
840 rate to this data to obtain p;, ye, 7 me-

841  Figure S5. Homeostatic disease-free system regulation. A) To confirm that parameters in the model
842 represented realistic immunocompetent individuals in the disease-free scenario, Eqs. S1-S22
843 were simulated where V; = 0 and parameters were given by the homeostasis Eqs. S57-S70. The
844 initial concentration of G-CSF was perturbed and compared to simulations of the model at

845 homeostasis. Simulations at homeostasis are represented by solid lines (purple) and perturbed
846 simulations as dashed lines (pink). B) The maximum residual between variables and their initial
847 conditions at day 50 was measured to confirm that the system was stable for perturbations in all
848 immune cells and cytokines.

849  Figure S6. Model validation against human cytokine measurements during SARS-CoV-2

850 infection. A) IFN dynamics of the reduced model (Figure 3 Main Text) overlaid with patient
851 IFN-a2 plasma concentrations from Trouillet-Assant et al.”’ The solid line (purple) represents
852 the unbound IFN dynamics from the reduced model (Eqgs. 27-33). Individual patient IFN-a2
853 measurements are plotted as grey circles. Normal IFN-a2 concentration in healthy volunteers
854 are indicated by a grey area. B-F) Mild and severe dynamics (Eqs. S1-S22) corresponding to
855 simulations in Figure 4 Main Text and Figure S7 overlaid with measurements from the

856 literature with solid lines: mild disease dynamics; dashed lines: severe disease dynamics. B-C)
857 Plasma IFN-a and IL-6 in COVID-19 critically ill patients (n=26) obtained by Trouillet-Assant
858 et al.”® overlaid with mild and severe unbound IFN (Fy(t)) and mild and severe unbound IL-6
859 (Ly(t)). D) IL-6 levels in patients requiring and not requiring mechanical ventilation obtained
860 by Herold et al.’! overlaid with mild and severe unbound IL-6 dynamics. E-F) IL-6 and G-CSF
861 plasma concentration obtained by Long et al.”? in symptomatic “S” and asymptomatic “AS”
862 COVID-19 patients overlaid with corresponding mild and severe model dynamics.

863  Figure S7. Predicting mild and severe COVID-19 dynamics (all model variables). Extension of
864 results of mild and severe disease dynamics in Figure 4 Main Text. Mild disease (solid lines)
865 dynamics obtained by using baseline parameter estimates (Tables S1) while severe disease

866 dynamics (dashed lines) were obtained by decreasing the production rate of type I IFN, pg;, and
867 increasing the production of monocytes, py ;, and their differentiation to macrophages, Ng mo.
868 A) Lung cells concentrations (susceptible cells S(t), resistant cells R(t), infected cells I(t), dead
869 cells D(t) and virus V(t)). Solid black line with error bars indicates macaque data (see Fig. 2
870 Main Text). B) Immune cell concentrations (resident macrophages Mgg (t), inflammatory

871 macrophages Mg, (t), monocytes M(t), neutrophils N(t) and T cells T(t)). C) Bound and

872 unbound cytokine concentrations (IL-6 unbound Ly (t) and bound Lg(t), GM-CSF unbound
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873 Gy (t) and bound Gg(t), G-CSF unbound Cy(t) and bound Cg(t), type I IFN unbound Fy(t) and
874 bound Fg(t)).

875  Figure S8. Full analysis of parameters driving COVID-19 severity. A local sensitivity analysis was
876 performed by varying each parameter +20% from its originally estimated value and simulating
877 the model. Predictions were then compared to baseline considering: Maximum viral load

878 (max(V)), maximum concentration of dead cells (max(D)), minimum uninfected live cells

879 (min(S+R)), maximum concentration of inflammatory macrophages (max(Mg;)), maximum

880 number of CD8" T cells (max(7T')), maximum concentration of IL-6 (max(Ly)), maximum

881 concentration of type I IFN (max(Fy)), the total exposure to type I IFN (F;; exposure), the

882 number of days damaged tissue was >80% (time (S + R )/S;,4x)<0.2), and the day type I [FN
883 reached its maximum (day max(Fy)). The heatmaps show the fold change of each metric, where
884 blue signifies the minimum value observed and red signifies the maximum value observed, or by
885 the number of days, where light to dark pink signifying increasing number of days from zero.
886 The most sensitive parameters are shown in Figure 5 in the Main Text.

887  Figure S9. Cohort dynamics within physiological ranges. Virtual patients were generated so that
888 viral load, IFN and IL-6 concentration were within physiological ranges obtained in the

889 literature. The physiological ranges (denoted by open circles) were obtained from A) Munster et
890 al.?®, B) Trouillet-Assant et al. ’°, and C) Herold et al. °!. Patient dynamics at discrete time points
891 are plotted as joined green dots.

892  Table S1. Parameter values used in the Main Text. Parameters have been grouped into: (a-e) cell
893 related, (f-k) cytokine related parameters (1) and initial conditions. Relevant references are given
894 estimated parameters. Parameters obtained through fitting to data in the literature have the

895 appropriate figure noted in the Info column. Parameters estimated from homeostasis calculation
896 are denoted by H or qualitatively estimated by E. Parameters whose value was taken from

897 another parameters estimated has that parameter noted. Viral load is reported as virion copies
898 and cells have been noted in 10%cells. Time t is in days. The final sub-table (m) is a list of the
899 variables in the model.
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