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Abstract

Existing methods for learning latent representa-

tions for single-cell RNA-seq data are based on

autoencoders and factor models. However, repre-

sentations learned by autoencoders are hard to

interpret and representations learned by factor

models have limited flexibility. Here, we intro-

duce a framework for learning interpretable au-

toencoders based on regularized linear decoders.

It decomposes variation into interpretable compo-

nents using prior knowledge in the form of anno-

tated feature sets obtained from public databases.

Through this, it provides an alternative to enrich-

ment techniques and factor models for the task

of explaining observed variation with biological

knowledge. Benchmarking our model on two

single-cell RNA-seq datasets, we demonstrate

how our model outperforms an existing factor

model regarding scalability while maintaining in-

terpretability.

1. Introduction

Advances in single-cell technologies enabled constructing

large cell atlases cells across different tissues and species

(Regev et al., 2017; The Tabula Muris Consortium et al.,

2019). In recent years, machine learning methods have been

proposed to learn a compact latent representation to address

gene expression denoising and data integration (Lopez et al.,

2018; Eraslan et al., 2019), and perturbation modeling (Lot-

follahi et al., 2019b;a). However, current methods are not

able to incorporate prior-knowledge into their learning al-

gorithms. This work focuses on representation learning by

1Institute of Computational Biology, Helmholtz Center Mu-
nich, Neuherberg, Germany 2Department of Mathematics, Tech-
nical University of Munich, Munich, Germany 3School of Life
Sciences Weihenstephan, Technical University of Munich, Munich,
Germany 4Cellarity Inc., Cambridge, MA, USA. Correspondence
to: Sergei Rybakov <sergei.rybakov@helmholtz-muenchen.de>,
Fabian J. Theis <fabian.theis@helmholtz-muenchen.de>, F.
Alexander Wolf <alex.wolf@helmholtz-muenchen.de>.

Presented at the 15th Machine Learning in Computational Biology
(MLCB) meeting. Copyright 2020 by the author(s).

exploiting prior-knowledge for single-cell data. Differences

in gene expression between cells can be decomposed into

observed and unobserved factors. These factors can include

non-biological factors such as batch effect, or biological

factors, which can often be related to existing knowledge

about biological processes and pathways. Recently, (Svens-

son et al., 2020) introduced an interpretable factor model

in the form of a linear autoencoder, however, these authors

do neither include prior knowledge, nor aim at explaining

variation using prior knowledge.

Among existing models, only the factorial single-cell la-

tent variable model (Buettner et al., 2017) can jointly infer

factors that capture different sources of single-cell tran-

scriptome variations, including i) variation in expression

attributable to pre-annotated sparse gene sets representing

biological knowledge, ii) effects due to additional sparse

factors that are meant to explain biological effects, and

iii) dense factors that are expected to affect the expression

profile of the majority of genes, and often represent tech-

nical confounders. This model also allows the assignment

of genes to each annotated factor to be refined in a data-

driven manner. By that, it offers a powerful alternative to

traditional enrichment techniques, which are used to con-

textualize differential expression signatures with biological

knowledge.

In f-scLVM, deterministic approximate Bayesian inference

based on variational methods is used to approximate the

posterior over all random variables of the model. The f-

scLVM python package (slalom) is a custom implementation

of the variational Bayesian scheme developed for the model,

and we use it as main reference for our benchmarks. It is

important to note that the variational Bayesian formulation

of the method affects its scalability, and complicates the

inference of values of the latent factors for new and out-of-

sample data points after the model was already trained.

Here, we present a scalable alternative to f-scLVM to learn

latent representations of single-cell RNA-seq data that ex-

ploit prior knowledge such as Gene Ontology, resulting in

interpretable factors. Our frequentist alternative also allows

easier inference of the latent factors for out-of-sample data.
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2. Model

Our autoencoder can be formulated as:

Y ≈ fθ(Y )WT (1)

Where fθ(Y ) is a neural network with learnable parameters

θ. This network takes Y , the gene expression matrix of

size N × G, as an input and produces a matrix of factor

loadings with size N × K. W in the formula above is a

learnable parameter matrix of size G × K. A column of

W corresponds to weights for all genes for a given factor.

Analogously, a row of fθ(Y ) corresponds to loadings of all

factors for a given cell. Also, note that the model has the

nonlinear encoder fθ(Y ) and the linear decoder zWT .

After the training phase, the encoder fθ(Y ) can also be used

to project out-of-sample data to the learned latent space.

If there are observed covariates X , i.e. features that are

known prior to training, such as batch or cell type. They can

be incorporated additively into the model 1 as

Y ≈ fθ(Y )WT + dφ1
(eφ2

(X)) (2)

Where eφ2
(X) is an encoder network taking covariates ma-

trix X and dφ1
(·) is a decoder network. In particular the

linear model can be used in place of the decoder and encoder

for the covariates X , that is dφ1
(eφ2

(X)) = XΦT
1 .

Only the form 1 (the model without observed covariates)

will be discussed further.

There are three kinds of factors in the model.

1. Annotated factors correspond to gene sets from path-

way databases, such as MSigDB (Subramanian, 2005)

or Reactome (Jassal et al., 2019). For these factors we

enforce structured sparsity informed by the gene sets.

2. Sparse unannotated factors represent biologically

meaningful factors that don’t have annotations. These

factors are assumed to be generically sparse.

3. Dense factors correspond to effects on the expression

of large numbers of genes, no sparsity is enforced for

this type.

To model annotated and unannotated factors in W , we need

to introduce the right kind of structured sparsity regulariza-

tion for the columns of W .

The decomposition 1 is fitted to Y using regularized L2 loss

L(θ,W ) =
1

N

N
∑

n=1

||yn − fθ(yn)W
T ||22+

+
λ0

N

N
∑

n=1

||fθ(yn)||
2
2 +Rλ1,λ2,λ3

(W ) (3)

Where λ0−3 are regularization hyperparameters, the term

Rλ1,λ2,λ3
(W ) is a sparsity inducing regularization function,

and yn denotes the n-th row of the data matrix Y (n-th cell).

L(θ,W ) can be optimized using the mini-batch stochastic

gradient descent algorithm.

Rλ1,λ2,λ3
(W ) in 3 consists of two additive terms

Rλ1,λ2,λ3
(W ) = R1

λ1,λ2
(W ) + λ3R

2(W ) (4)

The first term R1
λ1,λ2

(W ) induces structured sparsity on the

level of individual genes in each factor (individual elements

in each column of W ).

R1
λ1,λ2

(W ) = λ1

∑

k1

||W:, k � (1− I:, k)||1+

+ λ2

∑

k2

||W:, k||1 (5)

Where k1, k2 correspond to annotated factors and sparse

unannotated factors respectively. W:, k � (1− I:, k) means

Hadamard (element-wise) product between the k-th column

of the factor weights matrix W and the k-th column of

the binary annotation matrix I . The matrix I , which is

used for the annotated factors, can be formed from pathway

databases, such as Reactome or MSigDB, with Ig,k = 1
if the gene g is present in the pathway k and Ig,k = 0
otherwise. This means that ||W:, k � (1− I:, k)||1 equals to

the sum of the absolute values of weights for genes in the

factor k that are inactive in the annotation of the factor k

(genes that have Ig,k = 0).

The second regularization term R2(W ) in 4 is responsible

for deactivating unneeded factors. We use group lasso for

this.

R2(W ) =
∑

k

||W:, k||2 (6)

The group lasso ensures that all genes in a factor (a col-

umn of the matrix W ) are either included or excluded

from the model together. This penalty exploits the non-

differentiability of ||W:, k||2 at W:, k = 0; setting whole

columns of W to exactly 0.

To minimize 3, the stochastic proximal gradient algorithm is

used. This algorithm is employed here because the ordinary

stochastic gradient descent algorithm doesn’t account for

the points of non-differentiability in Rλ1,λ2,λ3
(W ); thus, it

can’t enforce the required structured sparsity.

Lets denote the part of the objective function L(θ,W )
(3) without the regularization Rλ1,λ2,λ3

(W ) by F (θ,W ).
Then, to minimize the objective function 3, we use the up-

date scheme

θ(t+1) = θ(t) − η∇θF̂ (θ,W )

W (t+1) = Prox
ηRλ1,λ2,λ3

(W (t) − η∇W F̂ (θ,W )) (7)
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Where F̂ (θ,W ) denote the function F (θ,W ) calculated for

a mini-batch of samples, η is a learning rate. Prox
ηRλ1,λ2,λ3

(·)
denotes the proximal operator of Rλ1,λ2,λ3

(W )

Prox
ηRλ1,λ2,λ3

(V ) = argmin
L

[1

2
||L− V ||2F+

+ ηRλ1,λ2,λ3
(L)

]

(8)

Using the result from (Yu, 2013), it can be shown that the

proximal operator 8 has a closed-form expression, which is a

composition of the closed-form expressions for the proximal

operators corresponding to R1
λ1,λ2

(W ) and λ3R
2(W ).

3. Results

To validate the model, we considered a dataset where some

sources of variation are known. In (Kang et al., 2017) 8

Lupus patients were stimulated with interferon (IFN) β.

We expect to see upregulation of the pathways related to

interferon signaling.

The autoencoder with only annotated factors was trained

on the dataset from the paper with 1k highly variable genes

selected, using the Reactome database for the annotated

factors. The scatter plots of factor loadings of the an-

notated factors corresponding to the gene sets from Re-

actome “INTERFERON SIGNALLING” and “SIGNAL-

ING BY THE B CELL RECEPTOR BCR” (Figure 1a)

show clear separation of stimulated cells from control cells.

Next, we sought to analyze celltype-specific pathways by

using the pathway related to B cells. We can also see a clear

separation of B cells from the rest (Figure 1b).

Also we compared our results with f-scLVM. The python

implementation of f-scLVM (slalom) was used for the com-

parison. In the table below the time to train both models is

given.

Kang17

13.5k cells

Macosko15

13.5k cells

f-scLVM (slalom) 2203 1629

Interpretable AE (this work) 8 7

Table 1. Runtime comparison in minutes.

The time is provided for the 13.5k cell subset of the retina

dataset from Macosko et al. (2015) and for the dataset from

Kang et al. (2017). For both datasets the genes that are not

in the annotations from Reactome were filtered out, and also

highly variable genes were selected to limit the number of

genes to about 1k. It can be seen from the table that slalom

requires 270 times as long as the interpretable AE. More

importantly, while it is still manageable for datasets of this

size, it becomes near impossible to use slalom for much

larger datasets, which are common in single cell genomics.
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Figure 1. Factor loadings in the interpretable AE.

In order to check how well both models explain variation

in the Kang et al. (2017) dataset, several terms related to

interferon beta were selected, and their loadings were used

individually to train uni-variate binary logistic regression

on the experimental condition (stimulated vs. control) as

class label (Figure 2). Two setups of f-scLVM were used for

comparison: f-scLVM without any dense and sparse unan-

notated factors and f-scLVM with 3 dense factors (default

setting). The autoencoder provides better accuracy, and thus

better separation, across all factors except for ”ANTIVI-

RAL MECHANISM BY IFN STIMULATED GENES”.

The figure 2 shows the resulting accuracies for training data

of logistic regressions trained with the loadings of the in-

dividual factors. Two setups of f-scLVM were used for

comparison - f-scLVM without any dense and sparse unan-
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Figure 2. Accuracies of logistic regressions trained on loadings of

individual factors vs condition (control, stimulated) for 3 models

- autoencoder, f-scLVM without dense and sparse unannotated

factors, f-scLVM with 3 dense factors (default setting).

notated factors and f-scLVM with 3 dense factors (standard

settings). The autoencoder provides better accuracy, and

thus better separation, across all factors except for ”ANTIVI-

RAL MECHANISM BY IFN STIMULATED GENES”.

It is interesting that for both autoencoder model and

f-scLVM with three dense factors the term which gives

the highest accuracy (the best separating term) is “IN-

TERFERON SIGNALLING” (see Figure 2 for the

accuracies of classification, Figure 1a for the visualization).

However, f-scLVM without dense factors selects “ANTIVI-

RAL MECHANISM BY IFN STIMULATED GENES”

for the separation (Figure 2). It is not clear why training

f-scLVM with dense factors, which should account for

confounding sources of variation, leads to significant

changes in the loadings of the factors which should

meaningfully explain biological variation in the data.

Next, we applied our model on a recent, comprising of

immune and epithelial cells collected via bronchoalveolar

lavage from healthy controls, and patients with moderate

and severe COVID-19 Liao et al. (2020). The 10 most

important pathways, explaining the variation in the dataset,

by L2 norm of their parameter vectors (columns of W in 1)

are

1. IMMUNE SYSTEM
2. METABOLISM OF PROTEINS
3. HEMOSTASIS
4. TCA CYCLE AND RESPIRATORY ELECTRON

TRANSPORT
5. ADAPTIVE IMMUNE SYSTEM
6. 3 UTR MEDIATED TRANSLATIONAL REGULATION
7. TRANSLATION

8. METABOLISM OF LIPIDS AND LIPOPROTEINS
9. INTERFERON SIGNALING

10. MRNA PROCESSING

In order to validate interpretability of the learned latent

space of pathways, we again investigated factor loadings of

the “INTERFERON SIGNALING” term.

The figure 3 shows the separation of control and activated

immune cells in moderate and sever COVID-19 in “INTER-

FERON SIGNALING” term.
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Figure 3. Factor loadings of 2 terms for the four cell types from

the COVID-19 dataset

4. Discussion and future work

We presented an end-to-end trained autoencoder that can

exploit biological knowledge from various databases (Sub-

ramanian, 2005; Jassal et al., 2019) to learning interpretable

representations of data.

The current model can be extended by learning a more

powerful decoder. This requires adding non-linearity to the

decoder to learn more complex representations. However,

non-linear functions can not easily be incorporated into

to model while preserving feature factorization. Gradient-

based feature importance methods have been shown to be

applicable in this context for image data (Erion et al., 2019).

We leave further extensions in this direction for future work.

The code for the model and the accompanying data can

be obtained from https://github.com/theislab/

InterpretableAutoencoders.
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