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Abstract 

 

Background: Many human diseases are known to have a genetic contribution. While genome-wide 
studies have identified many disease-associated loci, it remains challenging to elucidate causal genes. 
In contrast, exome sequencing provides an opportunity to identify new disease genes and large-effect 
variants of clinical relevance. We therefore sought to determine the contribution of rare genetic variation 
in a curated set of human diseases and traits using a unique resource of 200,000 individuals with 
exome sequencing data from the UK Biobank.   
  
Methods and Results: We included 199,832 participants with a mean age of 68 at follow-up. Exome-
wide gene-based tests were performed for 64 diseases and 23 quantitative traits using a mixed-effects 
model, testing rare loss-of-function and damaging missense variants. We identified 51 known and 23 
novel associations with 26 diseases and traits at a false-discovery-rate of 1%. There was a striking risk 
associated with many Mendelian disease genes including: MYPBC3 with over a 100-fold increased odds 
of hypertrophic cardiomyopathy, PKD1 with a greater than 25-fold increased odds of chronic kidney 
disease, and BRCA2, BRCA1, ATM and PALB2 with 3 to 10-fold increased odds of breast cancer. 
Notable novel findings included an association between GIGYF1 and type 2 diabetes (OR 5.6, 
P=5.35x10-8), elevated blood glucose, and lower insulin-like-growth-factor-1 levels. Rare variants in 
CCAR2 were also associated with diabetes risk (OR 13, P=8.5x10-8), while COL9A3 was associated with 
cataract (OR 3.4, P=6.7x10-8). Notable associations for blood lipids and hypercholesterolemia included 
NR1H3, RRBP1, GIGYF1, SCGN, APH1A, PDE3B and ANGPTL8. A number of novel genes were 
associated with height, including DTL, PIEZO1, SCUBE3, PAPPA and ADAMTS6, while BSN was 
associated with body-mass-index. We further assessed putatively pathogenic variants in known 
Mendelian cardiovascular disease genes and found that between 1.3 and 2.3% of the population carried 
likely pathogenic variants in known cardiomyopathy, arrhythmia or hypercholesterolemia genes. 
  
Conclusions: Large-scale population sequencing identifies known and novel genes harboring high-
impact variation for human traits and diseases. A number of novel findings, including GIGYF1, 

represent interesting potential therapeutic targets. Exome sequencing at scale can identify a 
meaningful proportion of the population that carries a pathogenic variant underlying cardiovascular 
disease.   
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Nonstandard Abbreviations and Acronyms 

GWAS Genome-wide association studies  
MAF Minor allele frequency 
WES Whole-exome sequencing  
LOF High-confidence loss-of-function  
OR Odds ratio  
SD Standard deviation
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Introduction 
 

Over the past decade, genome-wide association studies (GWAS) have provided critical insights into the 
genetic architecture of human traits and diseases, through the identification of thousands of associated 
genomic loci.1-7 These findings have not only facilitated the discovery of novel disease genes, but also 
the derivation of polygenic risk scores that can stratify disease risk in the general population.8 Typically, 
these studies focused on common variants, which individually often confer small effect sizes and do not 
always directly implicate causal genes. Familial linkage and targeted sequencing studies have identified 
numerous Mendelian causes of disease,9-12 although such studies have typically been limited by small 
sample size. A handful of larger case-control studies have had some success in discovery of genes 
harboring large-effect variants, for example, for myocardial infarction13 and diabetes.14 Analysis of 
large-scale population-based sequencing data offers the opportunity to identify genes with large-effect 
coding variants underlying human traits and conditions. In addition, population penetrance, risk and 
carrier frequencies for deleterious genetic variation can be assessed.15-17  
 
Here, we present an analysis of the second release of whole-exome sequencing (WES) data from the 
UK Biobank, a population-based study, consisting of sequencing data on approximately 200,000 
individuals. Through exome-wide gene-based analyses, we evaluate the contributions of rare 
deleterious variants to 87 traits, including anthropometric traits, cardiometabolic diseases, 
malignancies, metabolic blood biomarkers and cardiac magnetic resonance imaging traits. Finally, we 
describe the population frequency of mutations in genes underlying known cardiovascular diseases. 
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Methods 

 

Study population and phenotypes 

The UK Biobank is a large population-based prospective cohort study from the United Kingdom with 
deep phenotypic and genetic data on approximately 500,000 individuals aged 40-69 at enrollment.18 
Curated disease phenotypes were defined using reports from medical history interviews, in- and 
outpatient ICD-9 and -10 codes, operation codes, and death registry records (Online Table I). For 
these diseases, case status was determined at last follow-up. The UK Biobank further provides access 
to a wide range of other phenotypic data, including anthropometric measurements, electrocardiographic 
intervals, metabolic blood markers, and cardiac magnetic resonance imaging data. The UK Biobank 
resource was approved by the UK Biobank Research Ethics Committee and all participants provided 
written informed consent to participate. Use of UK Biobank data was performed under application 
number 17488 and was approved by the local Massachusetts General Hospital Institutional Review 
Board. 
 
Sequencing and quality control 

WES was performed on over 200,000 participants from the UK Biobank, for which the methods have 
been previously described for the earlier release of data from approximately 50,000 individuals.17 The 
revised version of the IDT xGen Exome Research Panel v1.0 was used to capture exomes with over 
20X coverage at 95% of sites.17 Importantly, an alignment issue present in the previous release,19 has 
been corrected in the current dataset. Details on sequencing, variant calling and genotype quality 
control are described in the Online Data Supplement. In the present study, samples were restricted to 
those who also had high-quality genotyping array data available20, 21 (Online Data Supplement). 
Additional filters were applied to study samples and autosomal exome sequence variants: sample call 
rate (<90%), genotype call rate (<90%), Hardy-Weinberg equilibrium test (P < 1x10-14 among unrelated 
individuals) and minor allele count (g1). Of the 200,632 individuals in the UK Biobank with WES who 
passed the internal quality-control, we excluded 800 samples who either did not have genotyping array 
data or did not pass our additional quality-control, leaving 199,832 individuals. We also defined an 
unrelated subset of this cohort (Online Data Supplement), which left 185,132 individuals. 
 
Variant annotation 

The protein consequences of variants were annotated using dbNSFP22 and the Loss-of-Function 
Transcript Effect Estimator (LOFTEE) plug-in implemented in the Variant Effect Predictor (VEP)23 
(https://github.com/konradjk/loftee). VEP was used to ascertain the most severe consequence of a 
given variant for each gene transcript. LOFTEE was implemented to identify high-confidence loss-of-
function variants (LOF), which include frameshift indels, stopgain variants and splice site disrupting 
variants. We also removed any LOFs flagged by LOFTEE as dubious, such as LOFs affecting poorly 
conserved exons and splice variants affecting NAGNAG sites or non-canonical splice regions. 
Missense variants were annotated using 30 in silico prediction tools included in the dbNSFP database. 
We collapsed information from these 30 tools into a single value, representing the percentage of tools 
which predicted a given missense variant was deleterious (Online Data Supplement). 
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Rare variant burden analyses 

To identify genes and rare genetic variations relevant to human disease, we performed association 
tests between a curated binary or quantitative phenotype and rare variants (minor allele frequency 
[MAF] f 0.1%) using gene-based collapsing tests. In our primary analysis, we collapsed carriers of LOF 
variants and predicted-damaging missense variants into a single variable by sample, for each gene. A 
missense variant was considered damaging if at least 90% of in silico prediction tools predicted it to be 
deleterious. We also performed a secondary, sensitivity analysis using LOF variants only (Online Data 

Supplement). For a given binary phenotype, genes with g20 rare variant carriers were analyzed using 
a logistic mixed-effects model implemented in GENESIS,24 adjusting for age, sex and significantly 
associated ancestral principal components. We accounted for relatedness by including a sparse kinship 
matrix as a random effect (Online Data Supplement), and case-control imbalance using the saddle 
point approximation.25 Odds ratios (OR) and confidence intervals for binary traits were estimated using 
Firth’s bias-reduced logistic regression26 in the unrelated subset of the cohort. Quantitative traits were 
inverse-rank normalized and analyzed using a linear mixed-effects model, implementing the same fixed 
and random effects. For one trait, standing height, the mixed-effects model did not converge. We 
therefore ran this trait using standard linear regression in the unrelated subset of the cohort.  
 
We conducted exome-wide association tests for a curated set of 64 binary disease phenotypes and 23 
quantitative traits. The binary disease phenotypes have an emphasis on cardiac diseases, vascular 
disease, metabolic disorders and malignancy, and also include a range of additional conditions (Online 

Table II). Analyses of breast cancer and cervical cancer were restricted to female participants only, 
while analysis of prostate cancer was restricted to males. We further analyzed 23 quantitative traits, 
including anthropometric data, metabolic blood markers, electrocardiographic intervals and magnetic 
resonance imaging traits (Online Table III). Anthropometric (including height, weight, body mass index, 
systolic blood pressure and diastolic blood pressure) and blood marker data (high-density lipoprotein, 
low-density lipoprotein, triglycerides, glucose, insulin-like growth factor 1) were available in a range of 
152,000 and 190,000 individuals. Approximately 22,700 individuals had 12-lead resting 
electrocardiographic data available, including the RR interval, P-wave duration, QRS complex duration 
and Bazett-corrected QT interval. Previously derived magnetic resonance imaging measurements for 
left ventricle5 and thoracic aorta27 were available for approximately 21,000 and 20,000 individuals, 
respectively. We applied a Benjamini-Hochberg false discovery rate (FDR) to compute Q-values from 
P-values across all performed tests (all genes for all traits combined). Tests with Q<0.01 were 
considered significant.  
 
Pathogenic variation for cardiovascular genes in the population 
Given the high prevalence of cardiovascular disease, we then sought to quantify carrier frequencies for 
putatively pathogenic variation in cardiovascular genes in the population. We analyzed genes included 
on typical sequencing panels for Mendelian cardiovascular disease, namely the InVitae Arrhythmia and 

Cardiomyopathy panel and the InVitae Hypercholesterolemia panel (accessed on 10th of November 
2020). We then used the Online Mendelian Inheritance in Man (MIM) database (accessed on 10th of 
November 2020) to subset this list of genes to those reported for autosomal dominant modes of 
inheritance. Using ClinVar, we identified carriers of rare (MAF<0.1%) pathogenic or likely pathogenic 
variants in these genes in the UK Biobank (Online Data Supplement). We collapsed carrier status for 
LOFs (affecting canonical gene transcripts), pathogenic and likely pathogenic variants for each gene, 
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with a few exceptions: For TTN, we restricted to LOF variants located in exons highly expressed in 
cardiac tissue28 (Online Data Supplement); for RYR2, PCSK9 and APOB, analyses were restricted to 
pathogenic and likely pathogenic variants only given these genes have well-characterized gain-of-
function mechanisms causing cardiovascular disease, while for MYH7 we restricted to pathogenic and 
likely pathogenic variants as truncations in this gene are generally not considered disease-causing. 
After collapsing these variants, individuals harboring such variants were considered carriers of 
putatively pathogenic rare variants. Next, we calculated the percentage of the population that carries 
such variation in each gene. We further employed the same logistic mixed-model approach described 
above to identify associations between putatively pathogenic variants in these genes and a range of 
cardiovascular diseases. Firth’s regression was again used to estimate ORs and CIs in the unrelated 
subset of the population. A separate FDR correction was applied for this analysis and associations at 
Q<0.01 were considered significant. Associations at P<0.005 with a positive effect estimate (OR>1) 
were considered suggestive evidence of association with a cardiovascular disease. 
 

 

Results 

After sample level quality control procedures, we identified 199,832 UK Biobank participants with a 
mean age of 57 at enrollment and 68 years at last follow-up and, of which 55% were female and 87% 
were of white-European ancestry. Table I provides the baseline characteristics and case number for 
each representative disease phenotype. A total of 17,130,596 distinct genetic variants were available 
from the exome sequencing data after quality-control, of which 16,836,881 had MAF<0.1%.  
 
We sought to determine if there were any genes with a burden of rare deleterious LOF and missense 
variants that were associated with medical conditions and quantitative cardiometabolic traits in the 
general population. We identified a total of 74 significant associations across 87 traits at an overall FDR 
Q<0.01, which was equivalent to P<7.6x10-7. Of these, 25 were for binary disease phenotypes (Figure I 

and Table II) and 49 for quantitative traits (Figure II and Table III). Exome-wide gene-based analyses 
showed no systemic inflation of P-values across all performed tests (Online Figure I and Online Data 

Supplement). All gene-based results reaching Q<0.05 are displayed in Online Table IV and Online 

Table V. A sensitivity analyses using only LOF variants yielded consistent effect estimates across the 
significant associations (Online Figure II and Online Figure III). 
 

From the exome-wide analyses of 64 curated medical conditions, we observed a number of well-
described gene-disease associations (Figure I and Table II). These include the association between 
dilated and hypertrophic cardiomyopathy with the genes TTN and MYBPC3, respectively. For solid 
tumor cancers, significant associations were observed with DNA repair and tumor suppressor genes 
such as BRCA1, BRCA2, PALB2, ATM and APC. For metabolic disorders involving cholesterol 
transport-, glucose regulation-, and thyroid disorders, associations were noted with LDLR, GCK, TSHR 
and TG. Of note, while biallelic mutations in TSHR and TG are known to cause penetrant congenital 
thyroid disease (MIM 275200 and 274700), our findings indicate that heterozygote carriers may also be 
at 2 to 3-fold increased odds of hypothyroidism.  
 
In many cases, the phenotypic penetrance of deleterious variants and the increased risk of disease was 
striking. For example, 70% of LDLR mutation carriers had hypercholesterolemia (OR 11.7, 95% CI 7.5-
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18.6), 43% of PKD1 carriers had chronic kidney disease (OR 27.7, 95%CI 15.0-51.0) and 45% of MIP 

carriers had cataracts (OR 8.0 95%, CI 3.7-17.2), (Online Figure IV). Of note, 42% and 33% of female 
BRCA2 and BRCA1 variant carriers had breast cancer respectively, while PALB2 and ATM variants 
had penetrance estimates of 22% and 17% respectively. These results suggest that mutations in the 
latter two genes might be less deleterious than BRCA mutations, consistent with previous reports.29 
Pleiotropy for cancer genes was also noted, as mutations in these genes showed trends towards 
increased risk across multiple solid tumors (Figure III). We also replicate the large impact of TTN 

variants on cardiovascular health. Rare variants in TTN were associated with an 11-fold increased odds 
of dilated cardiomyopathy (MIM 604145), and a more than doubling in the risk of heart failure, atrial 
fibrillation,15 and ventricular arrhythmia30 in the population.   
 
We further identified a number of gene-disease associations that have not been previously reported. 
Rare mutations in GIGYF1 were associated with strongly increased risk of type 2 diabetes (61 carriers, 
OR 5.6, P=5.4x10-8). GIGYF1 mutations also associated significantly with lower low-density lipoprotein 
(P=5.3x10-9), higher glucose (P=1.3x10-9), and lower insulin-like growth factor 1 (P=7.5x10-7) (Table II, 

Table III and Figure III). The protein product of this gene is known to regulate insulin-like-growth factor 
signaling31 and common variants near GIGYF1 were identified in a recent diabetes GWAS.7 Mutations 
in CCAR2, also known as KIAA1967, were also found to be associated with diabetes risk (27 carriers, 
OR 12.7, P=8.5x10-8). The protein encoded by this gene has been implicated in stress responses and 
chromatin modification,32 and nearby common variants were associated with diabetes through GWAS.7  
 
Rare variants in COL9A3, encoding an alpha-chain of type IX collagen, were significantly associated 
with increased risk of cataracts (136 carriers, OR 3.4, P=6.7x10-8). COL9A3 mutations have previously 
been identified in individuals affected by multiple epiphyseal dysplasia (MIM 600969). In canines, 
homozygous mutations have been associated with oculoskeletal defects, including cataract.33 TTN 

variants were associated with increased risk of supraventricular tachycardia (2,117 carriers, OR 2.5, 
P=2.9x10-9) and mitral valve disease (OR 2.3, P=2.6x10-11), phenotypes possibly related to diagnoses 
of atrial fibrillation or dilated cardiomyopathy. Of note, all TTN associations became stronger after 
restricting to exons highly expressed in cardiac tissue (Online Data Supplement).  
 
We also identified a number of novel associations for hypercholesterolemia and blood lipids (Tables II-

III and Figures I-II). Two novel genes for hypercholesterolemia were APH1A (342 carriers, OR 2.6, 
P=5.3x10-12) and SCGN (369 carriers, OR 2.1, P=4.0x10-7). Common variants near SCGN have 
previously been found to be associated with lipids,4 while in mice the protein product, secretogogin, is 
known to bind insulin and to affect cholesterol levels under diabetogenic circumstances.34 However, we 
did not identify notable associations for this gene with individual lipid fractions (Figure III and Online 

Table VI). Among the many associations between rare variants and lipids (Table III and Figure II), lipid 
associations for GIGYF1 (low-density lipoprotein; β=-0.8SD, P=5.3x10-9), RRBP1 (low-density 
lipoprotein; β=-0.5SD, P=3.5x10-7) and NR1H3 (high-density lipoprotein; β=0.4SD, P=1.0x10-16) were 
novel. NR1H3 has previously been identified for high-density lipoprotein through common variant 
GWAS35 and encodes the liver X receptor alpha, a regulator of cholesterol homeostasis in the liver.36 
Common variants near RRBP1 have also previously been described for blood lipids.37 For GIGYF1, our 
findings indicate that deleterious variants may be beneficial for blood lipid levels (e.g. lower low-density 
lipoprotein), yet harmful for glucose homeostasis (e.g. higher glucose and increased risk of diabetes).  
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We further recapitulate findings for two genes which have recently been mentioned as potential 
therapeutic targets. Rare deleterious variants in ANGPTL8 were associated with lower triglycerides (β=-
0.5SD, P=1.3x10-15), consistent with a recent preprint.38 ANGPTL8 has previously been investigated 
intensively for its role in glucose and cholesterol homeostasis.39 We also confirm a recently reported 
association4 between deleterious PDE3B variants and lower triglycerides (β=-0.4SD, P=1.1x10-20). 
Deleterious PDE3B variants have also been found to be associated with improved body fat 
distribution.40 We further find a novel beneficial role for damaging variation in this gene and diastolic 
filling of the left ventricle (β=0.5SD, P=2.1x10-7). Lipid- and glucose-associated genes showed marked 
pleiotropy, as many genes showed evidence of association with multiple traits and relevant diseases 
(Figure III). 
 
Given the relationship between body mass index and other anthropometric traits with cardiometabolic 
disease risk,41, 42 we analyzed a number of anthropometric traits. We identified associations between 
standing height and a number of genes in which mutations are known to cause short stature, skeletal 
dysplasia or connective tissue disorders (Table III and Figure II). We further found 7 novel rare variant 
associations for height (Table III and Figure II). While DTL, PIEZO1, SCUBE3, PAPPA and ADAMTS6 
have previously been implicated in standing height by common variant analysis,43, 44 our results indicate 
that rare variation in these genes may confer substantial effects. We identified an association between 
rare variants in BSN with both body mass index and weight. BSN variants also showed nominal 
associations (P<0.05) with higher high-density lipoprotein, higher glucose and increased risk of 
diabetes (Online Table VI). BSN encodes a gene expressed in neurons and GWAS have found 
associations between common variants near BSN and traits related to cognitive ability.45   
 
Given the high prevalence and morbidity of cardiovascular disease in the general population, we then 
sought to quantify carrier frequencies and disease associations for putatively pathogenic variation for 
these genes in the population. Among 71 cardiovascular disease associated genes included on typical 
sequencing panels for arrhythmia, cardiomyopathy and hypercholesterolemia, we identified 55 genes 
that were reported for autosomal dominant Mendelian inheritance (Online Table VII). For these genes, 
we collapsed carrier status for LOF, pathogenic and likely pathogenic variants. Overall, 2.3% of the 
population carried a putatively pathogenic variant in any of these genes (Figure IV and Online Table 

VIII). As expected, variants in TTN were most common, as 0.43% of the population (857 carriers) 
carried a truncating variant located in one of the cardiac exons, and these variants markedly increased 
the risk for multiple cardiovascular diseases (Figure IV and Online Table IX). Pathogenic variants in 
LDLR were observed in 0.15% of the population (290 carriers) and showed associations with coronary 
artery disease (OR 3.4, P=4.8x10-8), and cardiac surgery (OR 3.4, P= 8.8x10-5), as well as suggestive 
associations with myocardial infarction (OR 2.8), aortic valve disease (OR 3.3) and peripheral vascular 
disease (OR 3.0, P<0.005). PKP2 variants, carrier by 0.13% of individuals (260 carriers), showed an 
association with atrial fibrillation (OR 2.3, P=1.1x10-4) and ventricular arrhythmia (OR 4.4, P=2.21x10-4). 
MYBPC3 (0.12%) variants were associated with a striking risk for developing hypertrophic 
cardiomyopathy (OR 72, P=2.21x10-22) and showed suggestive signals (P<0.005) for implantable 
cardioverter defibrillator (OR 14.9), ventricular arrhythmia (OR 4.3) and atrial fibrillation (OR 2.3). Other 
genes showing significant associations (Q<0.01; P<2.2x10-4) with cardiovascular diseases included 
MYH7, SCN5A, DSP and RBM20 (Figure IV and Online Table IX). Pathogenic variation exhibited 
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substantial incomplete penetrance, while the yield for pathogenic variants among disease cases varied 
from ~0.5% to 10% (Online Data Supplement, Online Figure VII and Online Table X). When 
restricting only to genes showing a positive association with any cardiac disease at P<0.005, we 
identify 2774 rare variant carriers, or 1.3% of the population as carriers of variation associated with a 
cardiovascular disease. 
 

 

Discussion 
The availability of exome sequencing data in nearly 200,000 individuals from the UK Biobank provides 
an unparalleled opportunity to explore the contributions of rare genetic variation underlying human traits 
and disease risk. Through exome-wide gene-based analysis of very rare genetic variants, we replicate 
many known Mendelian gene-trait associations in the general UK population. We also identify a number 
of novel genes in which rare variants confer large effects and which may be interesting targets for 
further study, such as GIGYF1. We further quantify the frequency of rare pathogenic variation in the 
general population, and show that between 1.3% and 2.3% of the general population carry potentially 
high-impact pathogenic rare variants for cardiovascular diseases. 
 
Our findings permit a number of conclusions. First, our findings show the value of large-scale 
population sequencing for identifying key contributors to human disease, as well as the population risk 
associated with Mendelian mutations in the general population. For example, we present large effect 
associations for rare MYBPC3 variants with hypertrophic cardiomyopathy (OR 118, MIM 115197), 
LDLR mutations with hypercholesterolemia (OR 11, MIM 143890), PKD1 mutations with chronic kidney 
disease (OR 28, MIM 173900) and APC for colorectal cancer (OR 28, MIM 175100). We further show 
greater breast cancer risk and penetrance associated with BRCA2 and BRCA1 variants as compared to 
ATM and PALB2 mutations. For cardiovascular disease, we find marked increased risk among 
community-dwelling individuals associated with putatively pathogenic variants in a number of genes, 
such as TTN, PKP2, MYH7 and RBM20. These results highlight the potential of population sequencing 
for assessment of risk and pathogenicity associated with genes and variants. 
 
Second, we identified novel associations between rare large-effect coding variants and disease. Rare 
variants in GIGYF1 and CCAR2 were associated with marked increased risk of type 2 diabetes. While 
these genes are near two of the 318 loci identified for diabetes in a recent GWAS,7 our findings suggest 
these genes may play an important role in disease pathogenesis. COL9A3 variants were associated 
with risk of cataract, implicating type 9 collagen in disease pathogenesis, consistent with known type 4 
collagen mutations underlying congenital cataracts.46, 47 Notable rare variant associations for blood 
lipids and hypercholesterolemia included novel genes SCGN, NR1H3 and RRBP1, as well as two 
genes, PDE3B and ANGPTL8, which have recently been put forward as interesting therapeutic 
targets.4, 38 Taken together, these results show the added value of exome sequencing for identifying 
novel genes with important roles both in disease pathogenesis and as potential therapeutic targets.   
 
Third, we quantify carrier frequencies of rare pathogenic variants for cardiovascular diseases in the 
population and show that a meaningful proportion of the population carries genetic variants underlying 
cardiovascular disease. LOF, pathogenic or likely pathogenic variants in cardiomyopathy, arrhythmia, 
or hypercholesterolemia genes were carried by 2.3% of individuals. Even when restricting to genes that 
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show evidence of association with cardiovascular outcomes, we identify 1.3% of the UK population as 
carriers of disease-causing variation. Consistent with previous reports, TTN LOF variants were 
common in the population accounting for nearly one-third of this group or 0.43% of the population. 15, 48, 

49  However, another ~1-2% of individuals may carry deleterious variation in other cardiovascular 
disease genes. A previous analysis in a smaller subset of the UK Biobank already showed that ~2% of 
individuals carry clinically-actionable variants in 59 important Mendelian disease genes.17 Our results 
extend these analyses to a large list of cardiovascular disease genes, while incorporating population-
based association results. These studies show the potential for large-scale population sequencing to 
identify a meaningful proportion of individuals at high risk of disease morbidity and mortality.  
 
Our study has several potential limitations. First, we focused on middle aged individuals from the UK 
population, consisting mainly of white-European individuals. As such, our findings may not be broadly 
applicable to all age strata and ancestries. Second, disease status in the UK Biobank relies on self-
reports, ICD codes, operation codes, and death registry codes. As a consequence, some 
misclassification for disease phenotypes is possible. However, previous efforts using the same 
phenotypic definitions in GWAS for a number of these diseases replicated well-described genetic loci 
for common variants2, 50, 51. Furthermore, many of the exome-wide significant rare variant associations 
presented here all well-described Mendelian gene-trait associations. Third, there is the potential for 
ascertainment bias among participants in the UK Biobank, making it unlikely that the study perfectly 
reflects the overall UK population. It is highly unlikely, however, that this would bias effect sizes or 
carrier frequencies upwards. Fourth, we acknowledge that alternate methods for defining diseases or 
traits are feasible such as analyzing all ICD or Phecodes. However, we used a set of curated disease 
definitions that builds from prior work and has in many cases been validated and replicated.5, 15, 52 
Finally, it will be important to externally replicate the novel findings that we have observed. While it is 
reassuring that many associated genes represent well-known causes of disease, replication in other 
racially and ethnically diverse biobanks such as the All of Us project will be helpful as this data 
becomes available in the future.  
 
In conclusion, large-scale population sequencing has enabled the dissection of the rare genetic 
contributors to human traits and diseases. We replicated many Mendelian gene-disease associations 
and identified novel large-effect associations for a number of traits, including diabetes, cataract, blood 
lipids and standing height. Furthermore, we found that a considerable portion of the population carries 
likely pathogenic variants in cardiomyopathy, arrhythmia or hypercholesterolemia genes. In future, our 
findings may facilitate studies aimed at therapeutics and screening of cardiovascular and metabolic 
disorders.   
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Table 1. Baseline characteristics of participants in the UK Biobank with exome sequencing data.  
 

UK Biobank participants with exome sequencing data  

Participants, N 198,132 

Female, N (%) 110,094 (55.1) 

European ancestry, N (%) 174,452 (87.2) 

Age at baseline, Mean (SD) 57.0 (8.1) 

Age at last follow-up, Mean (SD) 67.8 (8.1) 

Height in cm, Mean (SD) 168.5 (9.0) 

Body mass index, Median (IQR) 26.7 (5.7) 

Cardiovascular and metabolic diseases 

Atrial fibrillation, N (%) 11,267 (5.6) 

Supraventricular arrhythmia, N (%) 1,915 (1.0) 

Ventricular arrhythmia, N (%) 1,927 (1.0) 

Mitral valve disease, N (%) 3,581 (1.8) 

Hypertension, N (%) 74,146 (37.1) 

Heart Failure, N (%) 4,928 (2.4) 

Dilated cardiomyopathy, N (%) 349 (0.2) 

Hypertrophic cardiomyopathy, N (%) 211 (0.1) 

Myocardial Infarction, N (%) 6,226 (3.1) 

Hypercholesterolemia, N (%) 39,429 (19.7) 

Diabetes type 2, N (%) 13,462 (6.7) 

Hypothyroidism, N (%) 12,960 (6.5) 

Malignancy 

Breast cancer, N (%) 7,451 (6.8) 

Colorectal cancer, N (%) 2,508 (1.3) 

Other medical conditions 

Chronic kidney disease, N (%) 5,835 (2.9) 

Cataracts, N (%) 20,115 (10.1) 

 
Values are presented as number (percentage) unless otherwise specified. Abbreviation: SD, 
standard deviation. 
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Table 2. Known and novel gene associations with cardiometabolic and other diseases.  

 

Trait Gene Carriers 
Cases among 
Carriers (%) 

Cases among 
Noncarriers (%) 

OR[95% CI] P-value Ref 

Known associations 

Hypertrophic 
cardiomyopathy 

MYBPC3 93 9 (9.68) 209 (0.1) 118.0 [55.0-226.5] 2.48x10-16 53, 54 

Heart Failure TTN 2,117 135 (6.38) 5190 (2.63) 2.6 [2.2-3.1] 7.67 x10-20 55, 56 

Dilated cardiomyopathy TTN 2,117 40 (1.95) 337 (0.17) 11.3 [7.9-15.7] 7.72X10-27 56 

Atrial fibrillation TTN 2,117 236 (11.15) 12002 (6.07) 2.1 [1.8-2.4] 1.2X10-19 15, 49, 57 

Ventricular arrhythmia TTN 2,117 48 (2.27) 2018 (1.02) 2.3 [1.7-3.0] 6.24 x10-7 30 

Hypercholesterolemia 

LDLR 105 73 (69.52) 42606 (21.33) 11.7 [7.5-18.6] 1.29 x10-29 58-60 

APOB 254 6 (2.36) 42673 (21.38) 0.1 [0.0-0.2] 1.92 x10-13 61 

PCSK9 285 25 (8.77) 42654 (21.38) 0.3 [0.2-0.5] 4.15 x10-7 62 

Diabetes type 2 GCK 64 31 (48.44) 14539 (7.28) 13.9 [8.2-23.4] 1.46 x10-19 63 

Hypothyroidism 
TSHR 306 48 (15.69) 14029 (7.03) 2.6 [1.9-3.6] 3.04 x10-8 64, 65 

TG 789 99 (12.55) 13978 (7.02) 1.9 [1.5-2.4] 9.20 x10-8 66, 67 

Chronic kidney disease PKD1 56 24 (42.86) 6368 (3.19) 27.7 [15.0-51.0] 1.02 x10-22 68-70 

Breast cancer 

BRCA2 67 28 (41.79) 8065 (7.33) 10.2 [6.1-16.6] 2.62x10-16 71 

BRCA1 57 19 (33.33) 8074 (7.34) 6.6 [3.5-11.7] 1.84x10-9 72 

ATM 326 54 (16.56) 8039 (7.32) 2.7 [2.0-3.6] 1.30x10-8 73 

PALB2 137 30 (21.9) 8063 (7.33) 3.4 [2.1-5.1] 2.95x10-8 74 
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Colorectal cancer APC 35 7 (20) 2719 (1.36) 28.4 [11.5-62.6] 1.20x10-8 75, 76 

Cataract MIP 31 14 (45.16) 21692 (10.86) 8.0 [3.7-17.2] 1.17x10-7 77-79 

Novel associations 

Hypercholesterolemia 
APH1A 342 89 (26.02) 42590 (21.35) 2.6 [2.0-3.4] 5.30x10-12  

SCGN 369 92 (25.14) 42587 (21.35) 2.1 [1.6-2.7] 4.01x10-7  

Diabetes type 2 
GIGYF1 61 18 (29.51) 14552 (7.28) 5.6 [3.0-10.0] 5.35x10-8  

CCAR2 27 11 (40.74) 14559 (7.29) 12.7 [6.0-28.2] 8.53x10-8  

Cataract COL9A3 136 36 (26.47) 21670 (10.85) 3.4 [2.2-5.1] 6.66x10-8  

Supraventricular 
tachycardia 

TTN 2,117 51 (2.41) 2013 (1.02) 2.5 [1.9-3.3] 2.87x10-8  

Mitral valve disease TTN 2,117 89 (4.2) 3803 (1.92) 2.3 [1.9-2.9] 2.59x10-11  

 

Abbreviations: OR, odds ratio; CI, confidence interval; Ref, references; 
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Table 3. Known and novel gene associations for quantitative traits at FDR Q-value <0.01 

 

Trait Gene Carriers Effect in SD [95% CI) P-value Ref 

Known associations 

Height, cm 

ADAMTS17 174 -0.34 [-0.44,-0.24] 9.28x10-11 80, 81 

ACAN 41 -1.15 [-1.36,-0.94] 3.08x10-26 82 

NPR2 110 -0.62 [-0.75,-0.49] 8.65x10-21 83-85 

ADAMTS10 24 -0.77 [-1.05,-0.49] 5.24x10-08 86, 87 

Glucose GCK 56 1.23 [0.97,1.48] 1.37 x10-20 88 

HDL 

ABCA1 263 -0.9 [-1.01,-0.79] 5.11x10-59 89 

APOC3 126 0.72 [0.56,0.88] 5.18x10-19 90 

PDE3B 585 0.31 [0.24,0.39] 5.77x10-17 4 

APOA5 171 -0.58 [-0.71,-0.44] 6.56x10-17 13 

ANGPTL3 352 -0.33 [-0.42,-0.23] 1.22x10-11 91 

PLIN1 364 0.37 [0.27,0.46] 1.15x10-14 92 

LCAT 29 -1.07 [-1.4,-0.74] 1.88x10-10 93 

LPL 82 -0.8 [-0.99,-0.6] 1.42x10-15 89 

LIPC 365 0.49 [0.4,0.58] 5.94x10-25 94 

APOB 230 0.33 [0.21,0.45] 3.00x10-8 95 

CETP 67 0.89 [0.67,1.1] 1.56x10-15 96 

CD36 1095 0.15 [0.1,0.2] 5.30x10-08 97 

ANGPTL8 248 0.42 [0.31,0.53] 2.36x10-13 98 

LDL 

PCSK9 270 -0.92 [-1.04,-0.8] 1.00x10-51 99 

ANGPTL3 377 -0.41 [-0.52,-0.31] 6.99x10-16 91 

APOB 245 -2.26 [-2.38,-2.13] 3.32x10-275 100 

LDLR 99 0.64 [0.45,0.84] 1.46x10-10 101 

Triglycerides 

APOA5 183 0.91 [0.77,1.05] 7.53x10-37 13, 102 

ANGPTL3 377 -0.66 [-0.76,-0.56] 1.04x10-39 91 

ANGPTL4 172 -0.45 [-0.59,-0.3] 1.10x10-9 103 

APOB 245 -1.46 [-1.59,-1.34] 5.38x10-124 61 

LPL 87 0.62 [0.42,0.82] 2.44x10-9 102 

APOC3 130 -1.25 [-1.42,-1.08] 7.98x10-49 90 
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PDE3B 628 -0.36 [-0.44,-0.28] 1.06x10-20 4 

ANGPTL8 271 -0.47 [-0.59,-0.36] 1.27x10-15 38 

Lipoprotein (a) LPA 440 -0.32 [-0.42,-0.23] 1.01x10-11 104 

QTc KCNQ1 28 0.95 [0.59,1.31] 1.80x10-7 105 

LVEF TTN 198 -0.41 [-0.54,-0.28] 7.14x10-10 48, 52 

Novel associations 

Height, cm 

SCUBE3 67 -0.55 [-0.72,-0.39] 6.00 x10-11  

PIEZO1 562 -0.2 [-0.26,-0.14] 1.21 x10-11  

ADAMTS6 20 -0.79 [-1.09,-0.48] 3.91 x10-07  

IRS1 45 -0.57 [-0.77,-0.37] 3.69 x10-8  

ANGPTL2 108 -0.42 [-0.55,-0.29] 3.17 x10-10  

PAPPA 31 -0.7 [-0.95,-0.46] 1.79 x10-8  

DTL 66 -0.67[-0.84,-0.51] 2.74x10-15  

Weight, kg BSN 32 0.85 [0.54,1.15] 6.22x10-8  

BMI BSN 32 0.96 [0.61,1.3] 6.77x10-8  

IGF1 
JAK2 82 -0.74 [-0.95,-0.53] 3.02x10-12  

GIGYF1 59 -0.62 [-0.86,-0.37] 7.53x10-7  

Glucose GIGYF1 57 0.79 [0.54,1.05] 1.32x10-9  

HDL NR1H3 380 0.39 [0.29,0.48] 1.04x10-16  

LDL 
GIGYF1 58 -0.76 [-1.02,-0.51] 5.30x10-9  

RRBP1 109 -0.49 [-0.67,-0.3] 3.50x10-7  

LVEDV PDE3B 70 0.5 [0.31,0.69] 2.09x10-7  

 

Abbreviations: SD, standard deviation; CI, confidence interval; Ref, reference; QTc, Bazett-corrected QT interval; LVEF, 
left ventricular ejection fraction; HDL, high-density lipoprotein; LDL, low-density lipoprotein; BMI, body mass index; 
LVEDV, left ventricular end-diastolic volume; IGF1, insulin-like growth factor 1.
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Figures and figure legends 

 

 

Figure I. Rare genetic variation for 64 human medical disorders in the general population. Multiple-trait Manhattan plot representing the 
results from exome-wide gene-based tests for each phenotype. Phenotypes are labelled on the x-axis and the -log10 of the P-value for each test on 
the y-axis. Variants included in the gene-based test are restricted to loss-of-function and predicted-deleterious missense variants. Models are 
adjusted for age, sex (if appropriate), predictive principal components, relatedness and case-control imbalance. The red line indicates the 
significance threshold at a false discovery rate (FDR) of 1%, while the blue line represents the suggestive threshold at FDR 5%. An arrow pointing 
upwards indicates that rare variants were associated with increased risk of disease, while arrows pointing downward indicate decreased risk. 
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Figure II. Rare genetic variation for 23 quantitative traits in the general population. Multiple-trait Manhattan plot representing the results from 
exome-wide gene-based tests for each phenotype. Phenotypes are labelled on the x-axis and the -log10 of the P-value for each test on the y-axis. 
Variants included in the gene-based test are restricted to loss-of-function and predicted-deleterious missense variants. Models are adjusted for age, 
sex (if appropriate), predictive principal components and relatedness. The red line indicates the significance threshold at a false discovery rate 
(FDR) of 1%, while the blue line represents the suggestive threshold at FDR 5%. An arrow pointing upwards indicates that rare variants were 
associated with higher value for a given quantitative trait, while arrows pointing downward indicate lower value. Abbreviations: BMI, body mass 
index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Igf-1, insulin-like growth factor 1; RR, RR interval; Pdur, P-wave duration; PQ, PQ 
interval; QRS, QRS-complex duration; QTc, Bazett-corrected QT interval; LVEDV, left ventricular end-diastolic volume; LVEDVi, body-surface-area 
indexed left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVESVi, body-surface-area indexed left ventricular end-
systolic volume; SV, stroke volume; SVi, body-surface-area indexed stroke volume; LVEF, left ventricular ejection fraction.
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Figure III. Pleiotropy of known and novel lipid, glucose and cancer genes. The left heatmap shows 
association results for genes identified in our primary analysis for lipids, glucose and diabetes across a 
number of relevant metabolic traits and diseases. The right heatmap shows association results for 
genes associated with solid organ cancers at FDR Q-value<0.05 with a range of malignancies. In both 
heatmaps, a small dot indicates nominal significance (P<0.05), a large dot indicates P<0.0002, while a 
black square indicates FDR Q-value <0.01 in the primary discovery phase. Red indicates β>0 
(quantitative traits) or OR>1 (binary traits), while blue indicates β<0 (quantitative traits or OR<1 (binary 
traits). Abbreviations: LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; 
Lp(a), lipoprotein (a); Igf-1, insulin-like growth factor 1; Hyperchol, hypercholesterolemia; MI, 
myocardial infarction; PVD, peripheral vascular disease; Isch. Stroke, ischemic stroke; T2D, type 2 
diabetes.   
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Figure IV. Putatively pathogenic variants in Mendelian cardiovascular disease genes in the 

population. The top of the figure is a bar chart showing carrier frequencies for rare LOF, pathogenic 
and likely pathogenic variants in genes reported for dominant inheritance of arrhythmia, 
cardiomyopathy or hypercholesterolemia. The absolute number of carriers in the UK Biobank is shown 
above each bar. The bottom of the figure is a pruned heatmap showing association results between 
these variants and cardiovascular outcomes that reach nominal significance (P < 0.05). A small dot 
represents nominal significance (P < 0.05), while a large dot represents P < 0.005. A square represents 
significant at an FDR Q-value of < 0.01. Blue indicates OR<1, while red indicates OR>1. For clarity, 
tests with P > 0.05 or an OR between 0.7 and 1.43 have been made white.  Abbreviations: HF, heart 
failure; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; AF, atrial fibrillation; SVT, 
supraventricular tachycardia; AV, atrioventricular; ICD, implantable cardioverter-defibrillator; CHD, 
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congenital heart disease; PVD, peripheral vascular disease; Isch., Ischemic; CAD, coronary artery 
disease; MI, myocardial infarction.  
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