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Summary 
Cell-cell interactions shape cellular function and ultimately organismal phenotype. However, the 
spatial code embedded in the molecular interactions driving and sustaining spatial organization 
remains to be elucidated. Here we present a computational framework to infer the spatial code 
underlying cell-cell interactions in a whole animal. Using the transcriptomes of the cell types 
composing Caenorhabditis elegans’ body, we compute the potential for intercellular interactions 
from the coexpression of ligand-receptor pairs. Leveraging a 3D atlas of C. elegans’ cells and a 
genetic algorithm we identify the ligand-receptor pairs most informative of the spatial 
organization of cells. The resulting intercellular distances are negatively correlated with the 
potential for cell-cell interaction, validating this strategy. Further, for selected ligand-receptor 
pairs, we experimentally confirm the algorithm-generated cell-cell interactions. Thus, our 
computational framework helps identify a code associated with spatial organization and cellular 
functions across a whole-animal body, showing that single-cell molecular measurements 
provide spatial information that may help elucidate organismal phenotypes and disease. 

 

Highlights 
 

- A cell-cell interaction network in the whole body of C. elegans is presented. 
- Intercellular distance and interactions are negatively correlated. 
- A combination of ligand-receptor pairs carries a spatial code of cell-cell 

interactions. 
- Spatial expression of specific ligand-receptor pairs is validated in vivo. 
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Introduction 

Cell-cell interactions (CCIs) are fundamental to all facets of multicellular life. They shape cellular 
differentiation and the functions of tissues and organs, which ultimately influence organismal 
physiology and behavior. In physiological, stress, and pathological conditions, CCIs relay 
signals between cells and trigger downstream signaling events that culminate in altered gene 
expression. Through these and other functional interactions, CCIs form spatial patterns of 
interaction (Dang et al., 2020) and mediate collective cellular behaviors (Sgro et al., 2015; Sun 
et al., 2012). 

CCIs often take the form of secreted or surface proteins produced by a sender cell (ligands) 
interacting with their cognate surface proteins in a receiver cell (receptors). Ligands can mediate 
CCIs across a range of distances and can encode positional information for cells within tissues, 
which is critical for cellular function and decision-making, and therefore organismal phenotypes 
(Lander, 2013). For instance, some ligands form gradients that serve as a cue for cell migration 
(Pani and Goldstein, 2018; Wu and Lin, 2011). Thus, studying CCIs can help elucidate how 
multicellular functions are coordinated by both the molecules mediating CCIs and their spatial 
context. 

CCIs can be inferred from transcriptomic data (Armingol et al., 2020). Computational analysis of 
CCIs usually involves examining the co-expression ligands and their cognate receptors. RNA-
based analyses have informed CCIs and their mediators in small communities of cells, such as 
embryos (Cang and Nie, 2020; Xue et al., 2019) and tissues (Camp et al., 2017; Joost et al., 
2016, 2018; Pavličev et al., 2017; Popescu et al., 2019; Sheikh et al., 2019; Vento-Tormo et al., 
2018; Wang et al., 2019a, 2019b; Yuzwa et al., 2016). Moreover, CCI analyses have enabled 
the study of all cell types in the whole body of a multicellular organism in post-embryonic stages 
(Hou et al., 2020), yet without considering spatial properties held by the cell locations. 

CCIs can define cell location and community spatial structure, enabling coordination of functions 
between interacting cells (Lander, 2013; Purvis and Lahav, 2013). As such, molecules 
mediating CCIs encode and pass a spatial code between cells. Thus, the study of CCIs can 
help decode spatial organization and the functions embedded in this code. Although spatial 
information is lost during tissue dissociation in conventional single-cell RNA-sequencing 
technologies (scRNA-seq) (Ren et al., 2020), previous studies have proven that gene 
expression levels still encode spatial information that can be recovered by adding extra 
information such as protein-protein interactions and/or microscopy data (Baccin et al., 2020; 
Boisset et al., 2018; Cang and Nie, 2020; Ren et al., 2020). For example, RNA-Magnet inferred 
cellular contacts in the bone marrow by considering the coexpression of adhesion molecules 
present on cell surfaces (Baccin et al., 2020), while ProximID used gene expression coupled 
with microscopy of cells to construct a spatial map of cell-cell contacts in bone marrow (Boisset 
et al., 2018). However, it remains unclear if one can find, in RNA, a spatial code of messages 
transmitted between cells that defines spatial organization and cellular functions across a whole 
animal body. 

Caenorhabditis elegans is an excellent model for studying CCIs in a spatial context across a 
whole body (Kaletta and Hengartner, 2006). This animal has fewer than 1,000 somatic cells 
stereotypically arranged across the body. Despite the small number of cells, the intercellular 
organization shows complexity comparable to higher-order organisms. Here we use C. elegans’ 
scRNA-seq data to compute CCIs and assess, across the C. elegans body, which ligand-
receptor pairs govern a spatial code passed between cell types in different locations and ranges 
of distance. For this purpose, a previously published single-cell transcriptome (Cao et al., 2017) 
was integrated with a 3D-atlas of cells of C. elegans (Long et al., 2009), while a list of ligand-
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receptor interactions was built, which to date is the most comprehensive one for CCI analyses 
of C. elegans. Next, we compared our predictions to literature and found them to be consistent 
with several publications independently reporting relevant roles of the identified LR interactions 
as encoders of spatial information. Additionally, we experimentally tested a few uncharacterized 
CCIs, and validated that adjacent cells co-express the LR pairs computationally inferred to 
contribute to the spatial code. Thus, together, we demonstrate that as long as single-cell 
RNAseq data is available and there is a sufficient number of characterized ligand-receptor pairs, 
a genotype-spatial phenotype link can be found at the whole body level in a multicellular 
organism. 

Results 

Computing cell-cell interactions 

To study cell-cell interactions, a first step can be revealing active communication pathways from 
the coexpression of the corresponding LR pairs. Communication scores can be assigned to 
these interactions based on the RNA expression levels of the genes encoding the secreted and 
receiver proteins in a pair of cells (Choi et al., 2015; Graeber and Eisenberg, 2001; Kumar et al., 
2018; Ramilowski et al., 2015; Vento-Tormo et al., 2018). Communication scores are then 
aggregated into an overall CCI score, which estimates the overall interaction state between two 
cells. Although focusing on overall CCIs is useful for quantifying the extent of interaction 
between pairs of cells, the interpretation of overall CCI scores depends on the assumptions 
made (Armingol et al., 2020). While previous studies have assumed that CCI scores such as the 
number of active LR pairs represents the strength of cell-cell interactions (Ramilowski et al., 
2015), and the odds ratios of LR pairs in differentially expressed genes can reveal cell-type 
specific priming of cells prior to interacting (Krausgruber et al., 2020), here we propose a novel 
CCI score that informs interaction properties associated with spatial information. Briefly, our 
score is based on the idea that proximal cells coordinate their gene expressions such that their 
total production of ligands and receptors is more complementary than with distant cells (more 
details below). 

Intercellular communication allows cells to coordinate their gene expression (Sgro et al., 2015) 
and to form spatial patterns of molecule exchange (Dang et al., 2020). These events also allow 
cells to sense their spatial proximity, which is essential for both the formation and the 
homeostasis of tissues and organs (Lander, 2013). For example, one mechanism includes 
sensing the occupancy of receptors by signals from surrounding cells (Lander, 2013; Nickerson, 
1956); higher occupancy can indicate greater proximity of communicating cells (Zhong et al., 
1993). Thus, to represent a cell-cell potential of interaction that may respond to or drive 
intercellular proximity, we propose a Bray-Curtis-like score (Figure 1). This CCI score is 
computed from the mRNA expression of ligands and receptors to represent the molecular 
complementarity of a pair of interacting cells. In contrast to previous CCI scores, we weigh the 
number of LR pairs that a pair of cells use to communicate by the aggregate total of ligands and 
receptors that each cell in the pair produces (see Methods and Figure 1B). The main 
assumption of our CCI score is that the smaller the intercellular distance, the more 
complementary is the production of the ligands and receptors in a pair of cells. In other words, 
for any given pair of cells, cells are defined as closer when a greater fraction of the ligands 
produced by one cell interacts with cognate receptors on the other cell and vice versa, as this 
increases their potential of interaction.  

To facilitate the application of the CCI analyses, we developed cell2cell, an open source tool to 
infer intercellular interactions and communication with any gene expression matrix and list of LR 
pairs as inputs (https://github.com/earmingol/cell2cell). Although we chose our Bray-Curtis-like 
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score for representing a spatial-dependent complementarity of interaction, cell2cell is flexible in 
terms of the scoring strategies applied to decipher CCIs, so depending on the purpose of study 
other CCI scores can be used (e.g. the number of active LR pairs to represent the strength of 
the interaction). 

 
Figure 1. Calculation of the modified Bray-Curtis CCI score. 
(A) To represent the overall interaction potential between cell A and cell B, our CCI score is computed from two 
vectors representing the ligands and receptors independently expressed in each cell. If only the ligands from one cell 
and the cognate receptors on the other are considered (“Cell A to Cell B” half or “Cell B to Cell A” half, 
independently), the score would be a directed score for representing the interaction (one cell is the sender and the 
other is the receiver). However, our score is undirected by considering both ligands and receptors of each cell to build 
the vector (both halves simultaneously, indicated with the yellow rectangle on the left). Thus, the vector of each cell is 
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built with both directed halves of molecule production (e.g. top half possess ligands of cell A while the bottom half 
considers its receptors, generating a unique vector with both the ligands and the receptors of cell A). (B) Toy 
examples for computing our score for the interaction of Cell A and Cell B. Here, both possible directions of interaction 
are represented to show that they result in the same (undirected) score. 
Cell-type specific properties are captured by computed cell-cell interactions 

To compute CCIs in C. elegans, a list containing the interactions between its ligands and 
receptors is needed. Although much is known about this organism, knowledge of its LR 
interactions remains dispersed across literature or contained in protein-protein interaction (PPI) 
networks that include other categories of proteins. Thus, we generated a list that consists of 245 
ligand-receptor interactions in C. elegans (Supplemental Table 1). Next, we used this list to 
determine the presence or absence of ligands and receptors in each cell identified in the single-
cell transcriptome of C. elegans (Cao et al., 2017), and ultimately inferred the active LR pairs in 
all pairs of cells through a binary communication score (Supplemental Table 2). Thus, we 
aggregated the respective communication scores for each cell pair with our Bray-Curtis-like 
metric, generating the first predicted network of CCIs in C. elegans that measures the 
complementarity of interacting cells given their active LR pairs (Figure 2A). 

After determining the potential for interaction between every pair of cell types from the single-
cell transcriptome of C. elegans, we grouped the different cell types based on their interactions 
with other cells through an agglomerative hierarchical clustering (Figure 2A). This analysis 
generated clusters that seem to represent known roles of the defined cell types in their tissues. 
For instance, neurons have the largest potential for interactions with other cell types, especially 
with themselves and muscle cells. This suggests that these cell types use a higher fraction of all 
possible communication pathways, which is consistent with the high molecule interchange that 
occurs at the neuronal synapses and the neuromuscular junctions (Daniels, 1997). Similarly, 
germline cells have the lowest CCI potential with other cell types. In this regard, the limited 
intercellular communication of germline cells with other cell types has been previously reported 
(Hubbard, 2007; Pazdernik and Schedl, 2013), as the basement membranes surrounding them 
impose a physical constraint that may affect the expression coordination of LR pairs. Thus, 
these results suggest that our method is exposing interactions between cell pairs based on 
signals transmitted between them. 

The Jaccard similarity between pairs of interacting cells was also analyzed given the LR pairs 
used. By using UMAP (Becht et al., 2018; McInnes et al., 2018) to visualize the similarity that 
cell types have (Figure 2B), we observe that pairs of interacting cells tend to be grouped by the 
sender cells (i.e. those expressing the ligands), but not by the receiver cells (i.e. those 
expressing the receptors). This result is consistent with previous findings that ligands are 
produced in a cell type-specific manner by human cells, but receptors are promiscuously 
produced (Qiao et al., 2014), which suggests that this phenomenon may be conserved across 
multicellular organisms. 
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Figure 2. Cell-cell interactions and communication in C. elegans. 
(A) Heatmap of CCI scores obtained for each pair of cell types using the curated list of LR pairs. An agglomerative 
hierarchical clustering was performed on a dissimilarity-like metric by taking the complement (1-score) of CCI scores, 
disregarding autocrine interactions. Cell types are colored by their lineages as indicated in the legend. Lineages and 
colors were assigned previously (Cao et al., 2017). (B) UMAP visualization of CCIs. Dots represent pairs of 
interacting cells and they were projected based on their Jaccard distances, which were computed from the LR pairs 
expressed in the directed interactions between cells (one cell is producing the ligands and the other the receptors). 
Dots are colored by either the sender cell (left) or the receiver cell (right), depending on their lineages as indicated in 
the legend of (A). A readable version of the data used for this projection is available in Supplemental Table 2, where 
names of LR pairs and their communication scores are specified for each cell pair. 
 
Signaling pathways involved in spatial patterning underlie the anticorrelation between 
cell distance and interaction potential 

Under the assumption that larger physical distances should decrease the potential of cells to 
interact, we evaluated the relationship of our undirected CCI score with the Euclidean distance 
between cell pairs (Supplemental Notes). As expected, the correlation coefficient was negative 
(Spearman = -0.21; P-value = 0.0016). However, due to its low value, we also hypothesized that 
there is a subset of key LR pairs encoding spatial organization. To identify the LR subset 
maximizing this correlation, we used a genetic algorithm (Supplemental Notes). Using this 
approach, we found 100 candidate subsets from independent runs that led to an average 
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Spearman coefficient of -0.67 ± 0.01.  The genetic algorithm-optimized subsets of LR pairs 
(hereinafter referred to as ‘initial GA-LR pairs’) may therefore constitute good predictors of 
biological functions driving or sustaining intercellular proximity. 

Using our literature-based functional annotations (see column “LR Function” in Supplemental 
Table 1), we next investigated the specific biological roles of the initial GA-LR pairs. Specifically, 
for each initial GA-LR pair list, we computed the relative abundance of each signaling pathway 
(Figure 3A). Considering the relative abundance of these pathways in our complete list 
containing the 245 LR pairs, we used the distribution of abundances from the GA runs and 
performed a one-sided Wilcoxon signed-rank test to evaluate whether the fractions of each 
function either increased or decreased with respect to the fraction in all LR pairs (Figure 3B). 
Remarkably, LR pairs involved in cell migration, Hedgehog signaling, mechanosensory 
mechanisms, and canonical RTK-Ras-ERK signaling increased their relative abundance in the 
resulting subsets from the GA runs. Thus, the GA seems to prioritize LR pairs associated with 
processes such as cell patterning, morphogenesis, and tissue maintenance (Ingham et al., 
2011). 

We next looked for a consensus core set of LR pairs representing the optimal solutions 
generated by the GA (Supplemental Notes). We found a list containing 37 LR pairs 
(Supplemental Table 3), hereinafter referred to as GA-LR pairs, yielding a Spearman coefficient 
of -0.63 (P-value = 2.629 x 10-27) between the CCI scores and Euclidean distances; correlation 
that is not a result of randomly selecting LR pairs (P-value < 0.0001, Supplemental Notes). 
While the CCI scores computed from the complete list of LR pairs led to functional interactions 
of cell types (Figure 2A), the GA-LR pairs seem to group cell types by more specific 
associations that may be attributable to their spatial localization (Figure 4A). For example, the 
complete list grouped neurons and muscles together, while the GA-LR pairs increased the 
specificity of this association by grouping both excitatory and inhibitory neurons (cholinergic and 
GABAergic neurons, respectively) directly with all muscles; furthermore, this list grouped all 
cells composing the pharynx (pharyngeal gland, epithelia, muscle and neurons) together. 
Another interesting observation was the high CCI score between oxygen sensing neurons and 
intestinal cells, consistent with the extensive communication between these cells to link oxygen 
availability with nutrient status (Hussey et al., 2018; Noble et al., 2013; Witham et al., 2016). 
Thus, the PPIs prioritized by the GA capture cellular properties that define intercellular 
proximity, especially defining functional roles of tissues and organs. 
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Figure 3. Relative abundances of signaling functions across initial GA-LR pairs.  
(A) Composition plot given the signaling functions that LR pairs are associated with. Relative abundances are shown 
for the complete list of LR pairs (containing 245 interactions) and the subsets obtained in each of the 100 runs of the 
genetic algorithm (GA). Here, relative abundance is the number of LR pairs involved in a given pathway with respect 
to the total number of LR pairs in the list. Signaling functions are colored according to the legend. (B) Summary of 
changes for each of the signaling functions given their relative abundance across the runs of the GA with respect to 
the relative abundances in the complete list of LR pairs. A one-tailed Wilcoxon’s test was performed to evaluate their 
increase or decrease, as indicated with the arrows. An adjusted P-value is reported (FDR < 1%). For those cases 
without a significant change (gray rectangles), the smallest adjusted P-value is reported among the increase or 
decrease. 
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Figure 4. CCI analyses based on LR pairs associated with intercellular distances.  
(A) Heatmap of CCI scores obtained for each pair of cells using the consensus GA-LR pairs. An agglomerative 
hierarchical clustering was performed on a dissimilarity-like metric by taking the complement of CCI scores (1-score), 
excluding autocrine interactions. Cell types are colored by their lineage groups as indicated. (B) Heatmaps 
representing the presence or absence of ligands (left) and receptors (right) after expression thresholding (>10 TPM) 
in sender and receiver cells, respectively. Lines at the center connect ligands with their cognate receptors according 
to the GA-selected interactions. Cell types are colored as in (A).  
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The GA-LR pairs define a spatial code of intercellular interactions along the body 

To explore the spatial distribution of the GA-LR pairs along the body of C. elegans (Figure 5), 
we performed an enrichment analysis of CCI mediators along its body. We first divided the C. 
elegans body in 3 sections, encompassing different cell types (Figure 5A). Then, we computed 
all pairwise CCIs within each section and counted the number of times that each LR pair was 
used. With this number, we performed a Fisher’s exact test on each bin for a given LR 
interaction. We observed enrichment or depletion of specific LR pairs in different parts of the 
body (Figure 5B). Interestingly, we observed LR pairs enriched only in one section and depleted 
in the others and vice versa (Table 1), following a pattern mostly congruent with existing 
experimental data. For instance, col-99 shows prominent expression in the head, especially 
during L1-L2 larvae stages of development (Tu et al., 2015), while LIN-44 is secreted by 
hypodermal cells exclusively in the tail during larval development (Gleason et al., 2006; Klassen 
and Shen, 2007), both cases coinciding with the results in Table 1. Although a few spurious 
results emerged, they are mainly associated with the limitations of the current scRNAseq 
methods and their analysis tools (see Discussion section). Therefore, the col-99 and lin-44 
examples demonstrate our strategy captures true biological spatial behaviors of gene 
expression and therefore of CCIs. 

To better understand the importance of the GA-LR pairs in defining spatially-constrained CCIs, 
we searched for LR pairs enriched or depleted across all cell pair interactions in any of the 
different distance-ranges of communication (Figure 5C). We found five LR pairs that were either 
enriched or depleted in at least one of the three distance ranges given the corresponding pairs 
of cell types (FDR < 1%). Three of these LR pairs are associated with Wnt signaling (lin-44/cfz-
2, cwn-1/lin-17 and cwn-1/mig-1) and the other two with cell migration (smp-2/plx-1 and smp-
2/plx-2). Members of the Wnt signaling act as a source of positional information for cells 
(Lander, 2013). For example, in C. elegans, cwn-1 and lin-44 follow a gradient along its body, 
enabling cell migration (Harterink et al., 2011; Herman et al., 1995; Pan et al., 2006; Whangbo 
and Kenyon, 1999). While semaphorins (encoded by smp-1, smp-2 and mab-20) and their 
receptors (plexins, encoded by plx-1 and plx-2) can control cell-cell contact formation (Miller and 
Chin-Sang, 2012), their mutants show cell positioning defects, especially along the 
anterior/posterior axis of C. elegans (Ginzburg et al., 2002; Nakao et al., 2007), affecting axon 
guidance, cell migration (Ikegami et al., 2004), epidermal and vulval morphogenesis (Liu et al., 
2005; Wang et al., 2008). Thus, the GA-LR pairs may influence local or longer-range 
interactions and help encode intercellular proximity. 

Our hypothesis that key LR pairs encode spatial CCI information also relies on the assumption 
that cell-type localization in tissues may have evolved towards optimizing CCIs and functions. 
Therefore, we postulate that these LR pairs may be associated with crucial traits or phenotypes 
that can be attributed to such facilitation. To test this, we performed a phenotype enrichment 
analysis for C. elegans (Angeles-Albores et al., 2018) using the GA-LR genes (sampled genes) 
and the complete LR pair list (background genes). The ‘organ system phenotype’ was the only 
enriched term, with odds ratio of 3.84 (Fisher’s exact test; adj. P-value = 0.0074). According to 
WormBase (Harris et al., 2010), this term represents a generalization for phenotypes affecting 
the morphology of organs, consistent with the clustering of cell types by their tissue lineage 
groups when considering genes associated with this phenotype (Figure S1). Thus, we show a 
relationship between CCIs and tissue organization. Moreover, this evidence may be 
extrapolated to the orthologs of these genes, wherein perturbation of their expression might 
affect organismal functions and result in disease in higher organisms.  
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Figure 5. Spatial enrichment and depletion of communication pathways. 
(A) To study the anteroposterior use of communication pathways, the body of C. elegans was divided into three
sections along the anteroposterior axis (top) and cell-type composition of each section (bottom) given a previously
published 3D atlas. The mid-body section is defined by the presence of the intestine cells, and the head and tail are
the anterior and posterior sections to it, respectively. Cells in the 3D atlas (top) are colored according to the cell types
as delineated in barplots (y-axis, bottom). (B) Enrichment/depletion (FDR < 1%) of ligand-receptor pairs (y-axis) in
each of the three sections (x-axis), calculated from their usage across all pairs of cells of each section.
Communication pathways are also colored by their annotated functions (left column) according to the legend in
Figure 3A. (C) Circos plots for representing the importance of cell-cell communication occurring at different ranges of
distance. A Fisher exact test was performed to find enriched/depleted LR pairs among all pairs of cells for a given
proximity. The ranges of distances were defined as explained in Figure S1C. Nodes represent ligands or receptors
and edges connect those ligands and receptors that interact in the GA-LR pairs (Supplemental Table 3). The color of
the nodes represents whether they are ligands or receptors and the color of the edges indicate the negative value of
the logarithmic transformation on the Benjamini-Hochberg adjusted P-values, according to the colored bar at the
bottom. Interactions that resulted significantly enriched or depleted (FDR < 1%) are equivalent to the color assigned
to a value of 2.0 or bigger. 
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Table 1. Ligand-receptor interactions enriched or depleted in one body section and 
depleted or enriched in the rest.  

Interactions enriched in a body section and 
depleted in the rest 

Interactions depleted in a body section and 
enriched in the rest 

Ligand Receptor Section Ligand Receptor Section 

col-99 ddr-1 Head K05F1.5 dma-1 Head 

mab-20 plx-2 Head mnr-1 dma-1 Head 

dbl-1 sma-10 Head qua-1 ptc-3 Head 

cle-1 gpn-1 Mid-Body ins-25 daf-2 Head 

nid-1 ptp-3 Mid-Body mec-5 mec-4 Head 

rig-6 wrk-1 Mid-Body mec-5 mec-10 Head 

smp-2 plx-2 Mid-Body sup-17 glp-1 Head 

smp-1 plx-1 Mid-Body arg-1 lin-12 Head 

unc-129 unc-5 Mid-Body cwn-1 mig-1 Head 

unc-10 unc-29 Mid-Body lin-44 lin-17 Head 

mom-2 lin-18 Mid-Body hsp-1 F14B4.1 Mid-Body 

daf-7 sma-6 Tail* srp-7 F14B4.1 Mid-Body 

lin-44 cam-1 Tail let-2 pat-3 Tail 

   epi-1 pat-3 Tail 

   let-2 ina-1 Tail 

   wrt-5 ptc-1 Tail 

* See the discussion section for details about this prediction. 
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GA-LR pairs are proximally expressed in C. elegans 

As demonstrated here, our computational framework is expected to identify key LR interactions 
driving the spatial organization of cell-cell interactions. To test whether the LR pairs selected by 
our algorithm are actually co-expressed in the cell pairs participating in the predicted CCIs, we 
searched the literature for established interactions in addition to experimentally testing new 
CCIs. We found several LR pairs with known expression patterns in C. elegans that coincide 
with the predictions of our algorithm (reported elsewhere; Supplemental Table 4). We further 
used single-molecule Fluorescent In Situ Hybridization (smFISH) and tested if the encoding 
genes of the LR pairs are co-expressed in adjacent cells as predicted by our model. Specifically, 
we focused on the uncharacterized interactions between arg-1/lin-12, let-756/ver-1 and lin-
44/lin-17 (see Methods for selection criteria). 

Confirming the predictions of our algorithm, we found the ligand and receptor genes expressed 
in spatially proximal cells, suggesting that the signaling through these pathways is occurring as 
expected in the specific cell types. In particular, our in situ results confirmed our computational 
prediction that arg-1 in the intestinal/rectal muscle interacts with lin-12 in non-seam hypodermal 
cells (Figure 6A). They also confirmed that let-756 in the non-seam hypodermal cells of the 
head interacts with ver-1 in the amphid sheath cells (Figure 6B), and that lin-44 in the non-seam 
hypodermal cells of the tail interacts with lin-17 in the seam cells of the tail (Figure 6C). 
Consistently, the pairs of cells wherein these LR pairs were analyzed presented CCI scores of 
0.61, 0.58 and 0.64, respectively. Remarkably, these values are among the highest CCI scores 
(Figure 4A), which further supports the notion that higher values of our Bray-Curtis-like score 
represent a higher potential of cells to be spatially proximal. Additionally, we performed 3D 
projections of the smFISH images (Supplemental Videos 1-3), which more clearly show the 
extent of the spatial adjacency of the cells expressing the cognate LR pairs. We also noticed 
that while arg-1/lin-12 and let-756/ver-1 were expressed in cells that were juxtaposed, lin-44/lin-
17 were expressed in proximal but not necessarily juxtaposed cells. Interestingly, the ligands of 
the pairs expressed in juxtaposed cells are known to encode membrane bound proteins, while 
LIN-44 is a secreted ligand (UniProt Consortium, 2021). 
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Figure 6. Validation of the spatial expression of specific GA-LR pairs. 
Single-molecule Fluorescent In Situ Hybridization of genes encoding three GA-LR pairs in C. elegans L2 larvae. (A)
Intestinal/rectal cells expressing arg-1 (magenta) and non-seam hypodermal cells (arrow) expressing lin-12 (green)
are adjacent (see rectangle in the merge channel and Supplemental Video 1). (B) Non-seam hypodermal cells
expressing let-756 (magenta) and amphid sheath cells (arrows) expressing  ver-1 (green). Amphid sheath cells are
surrounded by hypodermal cells (see rectangle in the merge channel and Supplemental Video 2). (C) Seam cells in
the tail (arrows) expressing lin-17 (magenta) and non-seam hypodermal cells in the tail (arrowheads) expressing lin-
44 (green). The two genes are expressed in proximal cells (see ends of rectangle in the merge channel and
Supplemental Video 3). In all cases a DAPI staining was performed to distinguish cell nuclei. Scale bar = 10µm.  
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Discussion 

Here we present a computational strategy for quantifying the potential of cells to interact and 
communicate. This approach quantifies ligand and receptor co-expression between cells by 
integrating scRNA-seq data and extra information such as intercellular distances. We applied 
this approach in C. elegans to find the molecular interactions associated with spatial 
organization of CCIs. In particular, we found a negative Spearman coefficient between 
intercellular distance and CCIs computed with our Bray-Curtis-like score. By optimizing this 
correlation with a genetic algorithm, we found ligand-receptor pairs that are key for encoding 
properties associated with impact on organismal-level phenotypes. Thus, we propose that the 
optimized LR pairs transmit phenotypically critical information from cell to cell in a space-
dependent fashion. 

In this study, we collected ligand-receptor interactions of C. elegans from literature and PPI 
databases and built an essential resource for CCI analyses of C. elegans (Supplemental Table 
1). Using this list, our CCI analysis identified a core set of LR pairs associated with spatial 
patterning. For example, we found that interacting cells were grouped based on cell type-
specific production of ligands (Figure 2B), which is consistent with the principles underlying a 
communication network reported for human haematopoietic cells (Qiao et al., 2014). Our results 
are also consistent with experimental studies of C. elegans (Supplemental Table 4). For 
instance, the GA-driven selection of LR pairs prioritized mediators with a role in cell migration, 
Hedgehog signaling, mechanosensory mechanisms and canonical RTK-Ras-ERK signaling 
(Figure 3B), and mediators that are crucial for the larval development of C. elegans, especially 
in processes associated with Notch and TGF-β signaling, cellular positioning, and organ 
morphogenesis, which are particularly active at the cognate stages of the datasets we used 
(Keil et al., 2017; Lažetić and Fay, 2017; Ou and Vale, 2009; Tuck, 2014). Remarkably, these 
main roles of the GA-LR pairs contribute to defining the spatial properties of tissues and organs. 
Thus, this evidence may explain why the genetic algorithm prioritized a core list of LR pairs 
whose active/inactive combination seems to define a spatial code across the C. elegans body. 

Our analysis successfully recapitulated the spatial organization of the cells in C. elegans and 
associated ligand-receptor interactions. The roles of the LR pairs selected by the genetic 
algorithm include determination and maintenance of cell-to-cell distances. For instance, the GA-
LR pairs enriched in short distance interactions (Figure 5C) include: 1) The LR pair composed of 
smp-2/plx-1, which mediates epidermal morphogenesis, as demonstrated by the defects in 
epidermal functions exhibited by C. elegans lacking smp-2 (Ginzburg et al., 2002); and 2) cwn-
1/mig-1, which mediates cell positioning, as demonstrated by the abnormal migration of 
hermaphrodite specific motor neurons in the mutants (Pan et al., 2006; Zinovyeva et al., 2008). 
Additionally, by using smFISH we experimentally showed that mediators used by cell pairs with 
high CCI scores (Figure 4A), such as arg-1/lin-12, let-756/ver-1 and lin-44/lin-12, are expressed 
in spatially adjacent or proximal cells (Figure 6). While previous studies reported that 
hypodermal cells form a gradient of LIN-44 in the tail (Lu and Mizumoto, 2019), and that LIN-44 
can affect seam cell polarity through LIN-17 (Yamamoto et al., 2011), a CCI between 
hypodermal and seam cells mediated by this LR pair had not been shown before. Although 
smFISH is not a direct proof of protein interaction, it is a good proxy for experimentally 
supporting CCIs (Armingol et al., 2020; Shao et al., 2020), which in our case helped to support 
that lin-44/lin-17 participates in the proximal interaction between hypodermal and seam cells in 
the tail (Figure 6C and Supplemental Video 3). Thus, the previous reports and the smFISH 
results presented here demonstrate congruence between the predictions of our algorithm and 
the actual distance between the GA selected LR pairs in whole C. elegans. This not only 
increases the confidence in our approach and results, but also supports potential roles of LR 
interactions that were not previously studied in specific cell types. 
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Overall, our strategy captures mechanisms underlying the spatial and functional organization of 
cells in a manner that is consistent with experimental evidence. Nevertheless, our approach has 
some limitations. Conventional scRNA-seq does not preserve spatial information, so labelling 
cells in a 3D atlas by using cell types as annotated in a transcriptomic dataset might be a 
confounder. For example, C. elegans possesses sub-types of non-seam hypodermal cells, and 
their gene expression varies depending on their antero/posterior location. However, the scRNA-
seq data set employed here pooled all non-seam hypodermal cell subtypes as one, artificially 
generating a generic hypodermal seam cell with a uniform gene expression profile across the 
body. An illustrative case where this impacted our predictions is the expression of lin-44, which 
is exclusively expressed in hypodermal cells of the tail (Figure 6C) (Harterink et al., 2011; 
Herman et al., 1995), but our method  inferred that lin-44 is also important in the mid-body 
(Figure 5B, pair lin-44/lin-17). Similarly, daf-7 is expressed only in sensory neurons in the head 
(Gumienny and Savage-Dunn, 2013); however, our results show an enrichment in the tail (Table 
1). This discrepancy is likely due to pooling the transcriptome of the two types of sensory 
neurons that express daf-7, which leads to spurious results wherein all sensory neurons have a 
similar transcriptome across the body. Similarly, ver-1 is expressed by amphid and phasmid 
sheath cells, which are located in the head and tail, respectively; however, these cells are 
annotated as the same cell type in the transcriptome: amphid/phasmid (Am/PH) sheath. Thus, 
the labeling of both groups of cells as Am/PH sheath cells could explain an enrichment of the 
let-756/ver-1 interaction only in the tail (Figure 5B) even though it is an important 
communication also happening in the head (Figure 6). Finally, physical constraints, such as 
physical barriers between cells, are not considered in our analyses, which could lead to false 
positives. Examples include the Notch pathway interactions between germline cells and cells 
that are not the distal tip cell or sheath cells since a basal lamina physically blocks interactions 
with other cell types (Pazdernik and Schedl, 2013). Therefore, relying only on conventional 
scRNA-seq enables us to infer the LR interactions that a pair of cells can theoretically use but 
may not actually use, and may also explain the strong but imperfect correlation obtained 
between CCI scores and intercellular distances. Thus, spatial transcriptomics will be important 
in further study of CCIs (Larsson et al., 2021; Liao et al., 2020), since they can distinguish 
specific cell subtypes given their locations and physical constraints. 

In summary, the strategy presented here provides a framework to associate CCIs with 
phenotypes and detect ligand-receptor interactions associated with cell patterning. In contrast to 
most previously proposed overall CCI scores (Armingol et al., 2020), ours is undirected. Thus, it 
can be successfully integrated with any undirected information between two cells, such as 
intercellular distance. When considering, for example, spatial information, our approach is 
capable of recovering spatial properties lost in the traditional transcriptomics methods, either 
bulk or single cell, which is important since these technologies are easier to access than 
technologies preserving spatial properties (e.g. spatial transcriptomics). In this regard, another 
approach that computed an undirected affinity matrix for representing CCIs successfully inferred 
the spatial assembly of tissues (Ren et al., 2020), supporting the value of undirected scores for 
recapitulating spatial properties of CCIs from traditional transcriptomes. Nevertheless, potential 
pitfalls could emerge given the nature of CCI analyses (Supplemental Notes). Finally, defining a 
pertinent objective function for the genetic algorithm can enable the use of our method for 
diverse studies identifying LR pairs associated with a phenotype of interest. Thus, our strategy 
provides a framework for unraveling the molecular and spatial features of cell-cell interactions 
and communication across a whole animal body, which could be extended to study normal and 
diseased states in higher organisms. 
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Methods 

Single-cell RNA-seq data 

A previously published single-cell RNA-seq dataset containing 27 cell types of C. elegans in the 
larval L2 stage was used as a transcriptome (Cao et al., 2017). The cell types in this dataset 
belong to different kinds of neurons, sexual cells, muscles and organs such as the pharynx and 
intestine. We used the published preprocessed gene expression matrix for cell-types provided 
previously (Cao et al., 2017), wherein the values are transcripts per million (TPM). 

Intercellular distances of cell types 

A 3D digital atlas of cells in C. elegans in the larval L1 stage, encompassing the location of 357 
nuclei, was used for spatial analyses of the respective cell types (Long et al., 2009). Each of the 
nuclei in this atlas was assigned a label according to the cell types present in the 
transcriptomics dataset, which resulted in a total of 322 nuclei with a label and therefore a 
transcriptome. To compute the Euclidean distance between a pair of cell types, all nuclei of 
each cell type were used to compute the distance between all element pairs (one in each cell 
type). Then, the minimal distance among all pairs is used as the distance between the two cell 
types (Figure N1A in Supplemental Notes). In this step, it is important to consider that this map 
is for the L1 stage, while the transcriptome is for the L2 stage. However, we should not expect 
major differences in the reference location of cells between both stages. 

Generating a list of ligand-receptor interaction pairs 

To build the list of ligand-receptor pairs of C. elegans, a previously published database of 2,422 
human pairs (Ramilowski et al., 2015) was used as reference for looking for respective 
orthologs in C. elegans. The search for orthologs was done using OrthoDB (Waterhouse et al., 
2013), OrthoList (Kim et al., 2018) and gProfiler (Reimand et al., 2007). Then, a network of 
protein-protein interactions for C. elegans was obtained from RSPGM (Huang et al., 2016) and 
high-confidence interactions in STRING-db (confidence score > 700 and supported at least by 
one experimental evidence) (Szklarczyk et al., 2019). Ligand-receptor pairs were selected if a 
protein of each interaction was in the list of ortholog ligands and the other was in the list of 
ortholog receptors. Additionally, ligands and receptors mentioned in the literature were also 
considered (Supplemental Table 5). Finally, a manual curation as well as a functional annotation 
according to previous studies were performed, leading to our final list of 245 annotated ligand-
receptor interactions, encompassing 127 ligands and 66 receptors (Supplemental Table 1). 

Communication and CCI scores 

To detect active communication pathways and to compute CCI scores between cell pairs, first it 
was necessary to infer the presence or absence of each ligand and receptor. To do so, we used 
an expression threshold over 10 TPM as previously described (Ramilowski et al., 2015). Thus, 
those ligands and receptors that passed this filter were considered as expressed (a binary value 
of one was assigned). Then, a communication score of one was assigned to each ligand-
receptor pair with both partners expressed; otherwise a communication score of 0 was 
assigned. To compute the CCI scores, a vector for each cell in a pair of cells was generated 
using their communication scores as indicated in Figure 1. These vectors containing the scores 
were aggregated into a Bray-Curtis-like score to represent the potential of interaction. This 
potential aims to measure how complementary are the signals that interacting cells produce. To 
do so, our Bray-Curtis-like score considers the number of active LR pairs that a pair of cells has 
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while also incorporating  the potential that each cell has to communicate independently (Figure 
1). In other words, this score normalizes the number of active LR pairs used by a pair of cells by 
the total number of ligands and receptors that each cell expresses independently. Unlike other 
CCI scores that represent a directed relationship of cells by considering, for instance, only the 
number of ligands produced by one cell and the receptors of another, our CCI score is also 
undirected. To make our score undirected, it includes all ligands and receptors in cell A, and all 
cognate receptors and ligands, respectively, in cell B (Figure 1). Thus, pairs of cells interacting 
through all their ligands and receptors are represented by a value of 1 while those using none of 
them are assigned a value of 0. 

Genetic algorithm for selecting ligand-receptor pairs that maximize correlation between 
physical distances and CCI scores 

An optimal correlation between intercellular distances and CCI scores was sought through a 
genetic algorithm (GA). This algorithm used as an objective function the absolute value of the 
Spearman correlation, computed after passing a list of ligand-receptor pairs to compute the CCI 
scores. In this case, only non-autocrine interactions were used (elements of the diagonal of the 
matrix with CCI scores were set to 0). The absolute value was considered because it could 
result either in a positive or negative correlation. A positive correlation would indicate that the 
ligand-receptor pairs used as inputs are preferably used by cells that are not close, while a 
negative value would indicate the opposite. The GA generated random subsets of the curated 
list of ligand-receptor pairs and used them as inputs to evaluate the objective function (as 
indicated in Figure N2A in Supplemental Notes). The maximization process was run 100 times, 
generating 100 different lists that resulted in an optimal correlation. As shown in Supplemental 
Notes (Figures N2C-D), a selection of the consensus ligand-receptor pairs was done according 
to their co-occurrence across the 100 runs of the GA and presence in most of the runs. 

Defining short-, mid- and long-range communication 

The physical distances between all pairs of cell types in C. elegans’ body were classified into 
different ranges of distances used for CCIs (short-, mid- or long-range distance) by using a 
Gaussian mixed model. This model was implemented using the scikit-learn library for Python 
(Pedregosa et al., 2011) and a number of components equal to 3. 

Statistical analyses 

For each function annotated in the list of ligand-receptor pairs (Supplemental Table 1), a one-
sample Wilcoxon signed rank test was used to evaluate whether the relative abundance 
increased or decreased with respect to the distribution generated with the GA runs. In this case, 
two one-tail analyses were performed for each function, one to evaluate an increase of the 
relative abundance and the other to assess a decrease. Finally, the smallest P-value was 
considered and the respective change was assigned if the adjusted P-value passed the 
threshold. 

A permutation analysis was done on the list of consensus ligand-receptor pairs obtained from 
the GA. To do so, three scenarios were considered: (1) a column-wise permutation (one column 
is for the ligands and the other for the receptors); (2) a label permutation (run independently on 
the ligands and the receptors); and (3) a random subsampling from the original list, generating 
multiple subsets with similar size to the consensus list. In each of these scenarios, the list of 
ligand-receptor interactions was permuted 10,000 times. 
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All enrichment analyses in this work corresponded to a Fisher exact test. In all cases a P-value 
was obtained for assessing the enrichment and another for the depletion. The analysis of 
enriched ligand-receptor pairs along the body of C. elegans (head, mid-body and tail) was 
performed by considering all pairs of cells in each section and evaluating the number of those 
interactions that use each of the ligand-receptor pairs. The total number of pairs corresponded 
to the sum of cell pairs in all sections of the body. Similarly, the enrichment analysis performed 
for the different ranges of distance (short-, mid- and long-ranges) was done by considering all 
cell pairs in each range and the total number of pairs was the sum of the pairs in each range. To 
evaluate the enrichment of phenotypes (obtained through the tissue enrichment tool for C. 
elegans (Angeles-Albores et al., 2018)), all genes in the GA-selected list were used as 
background. Then, the genes associated with the respective phenotype tested were used to 
assess the enrichment. 

When necessary, P-values were adjusted using Benjamini-Hochberg's procedure. In those 
cases, a significance threshold was set as FDR < 1% (or adj. P-value < 0.01). 

Selection of ligand-receptor pairs to analyze in animal 

The ligand-receptor pairs selected for experimental validation of their gene expression had to 
met the following criteria: 1) the gene pairs have not been shown to interact in the cell types of 
interest, 2) they are expressed in only a few specific cell types (non-ubiquitous gene expression, 
based on Figure 4B), 3) just one of the gene pairs is highly expressed in one interacting cell and 
the other gene does so in the other interacting cell (to discard autocrine communication and 
evaluate interactions between LR pairs in different cell types) and 4) they are not highly 
expressed in cell types that are hard to differentiate under the microscope (e.g. GABAergic 
neurons are hard to distinguish from cholinergic neurons). 

C. elegans strains and husbandry 

C. elegans PD4443 (ccIs4443[arg-1::GFP + dpy-20(+)]), KS411 (lin-17(n671) I; unc-119(e2498) 
III; him-5(e1490) V; mhIs9[lin-17::GFP]), BC12925 (dpy-5(e907) I; 
sIs10312[rCesC05D11.4::GFP + pCeh361]), LX929 (vsIs48 [unc-17::GFP]), BC12890 (dpy-
5(e907) I; sIs11337[rCesY37A1B.5::GFP + pCeh361]) and PS3729 (unc-119(ed4) III; 
syIs78[ajm-1::GFP + unc-119(+)]) strains were obtained from the Caenorhabditis Genome 
Center (CGC). For maintenance, the worms were typically grown at 20°C on NGM plates 
seeded with E. coli strain OP50.  

Single molecule fluorescent in-situ hybridization 

Single molecule fluorescent in-situ hybridization (smFISH) of L2 stage C. elegans was 
performed as previously described with some modifications (Ji and van Oudenaarden, 2012). 
Briefly, gravid worms of the strains of interest were bleached and the eggs rocked at 20� for 18 
hours to synchronize the population. The L1 worms were then counted and around 5000 worms 
were seeded on NGM plates containing OP50 E. coli strain. Once the worms reached the L2 
stage, they were harvested and then incubated in a fixation solution (3.7% formaldehyde in 1x 
PBS) for 45 minutes. The worms were then washed in 1x PBS and left in 70% ethanol 
overnight. The next day, the worms were incubated in wash buffer (10% formamide in 2x SSC) 
for 5 minutes before being incubated overnight at 30� in the hybridization solution containing 
the appropriate custom-made Stellaris FISH probes (Biosearch Technologies, United Kingdom). 
The samples were then washed twice in wash buffer for 30 minutes at 30� before being 
incubated in DAPI solution for nuclear counterstaining (10ng/mL in water) for 30 minutes at 
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30�. Finally, the stained worms were resuspended in 100µL 2x SSC and  mounted on agar 
pads for fluorescent imaging on a Leica confocal microscope (Leica, Germany). 

PD4443 worms expressing arg-1::GFP were incubated in probes targeting lin-12 (CAL Fluor 
Red 590 dye) and GFP (Quasar 670 Dye), KS411 worms expressing lin-17::GFP were 
incubated in probes targeting lin-44 (CAL Fluor Red 590 dye) and GFP (Quasar 670 Dye), and 
BC12925 worms expressing let-756::GFP were incubated in probes targeting ver-1 (CAL Fluor 
Red 590 dye) and GFP (Quasar 670 Dye). Fluorescent imaging of GFP in PD4443 (arg-1), 
KS411 (lin-17) and BC12925 (let-756) was performed to ensure the expression patterns 
observed with smFISH were comparable (Figure S2). Additionally, imaging of semo-1::GFP 
(BC12890) and ajm-1::GFP (PS3729) (Figure S3), which have previously been used to define 
the location of the hypodermal cells (Altun and Hall, 2002), was performed to ensure correct 
annotation of the probe signal observed in smFISH. All images obtained from these conditions 
were analyzed and processed on Fiji (Schindelin et al., 2012).  

Data and code availability 

The single-cell RNA-seq dataset was obtained from the Supplemental Table S4 in (Cao et al., 
2017). The 3D digital atlas of C. elegans was obtained from the Supplemental Data 1 in (Long 
et al., 2009). An annotated version of this atlas with the cell types in the scRNAseq dataset is 
available in the Supplemental Table 6 of this work. The manual curated list containing 245 
ligand-receptor interactions is present in the Supplemental Table 1 of this work, while the 
consensus list from the GA-selection, which contains 37 interactions, is available in the 
Supplemental Table 3.  

All analyses performed in this work, their respective codes (implemented in Python and Jupyter 
Notebooks) and instructions to use them are available in a public repository 
(https://github.com/LewisLabUCSD/Celegans-cell2cell). This repository also includes all the 
input datasets employed in the analyses. While cell2cell is an open source suite for inferring 
cell-cell interactions from bulk or single-cell RNA-seq data, using or not spatial information, and 
is available in a GitHub repository (https://github.com/earmingol/cell2cell). 
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