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Abstract (145 words) 

The benefits and mechanistic effects of working memory training in children are the subject of 

much research and debate. The cumulative evidence indicates that training can alter brain 

structure and function in the short term and have lasting effects on behaviour. We show that 

five weeks of working memory training led to greater activity in prefrontal and striatal brain 

regions, better accuracy, and reduced intra-individual variability in response times. The 

reduction in intra-individual variability can be explained by changes to the evidence 

accumulation rates and thresholds in a sequential sampling decision model. Critically, intra-

individual variability was more closely associated with academic skills and mental health 6-12 

months after the end of training than task accuracy. These results indicate that intra-individual 

variability may be a useful way to quantify the immediate impact of cognitive training 

interventions and predict the future emergence of academic and socioemotional skills.  
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Introduction 

Cognitive training programs have received considerable attention over the years given their 

potential to improve cognitive abilities in healthy and clinical populations. However, the 

effectiveness and persistence of benefits from cognitive training programs are still being 

closely examined and vigorously debated1-9. Although cognitive training programs have been 

shown to improve performance on similar untrained tasks (near transfer), the evidence for 

transfer to cognitive skills in other domains (far transfer) remains more sparse and 

controversial1-5,8,9. We still lack sufficient understanding of the types of cognitive skills and 

abilities that are most beneficial to train, types of training methods and dosages that work best 

for particular skills, and the types of individuals that can reap sufficient benefits to justify the 

time and monetary costs of cognitive training interventions. 

 

A recent study of over 500 first-grade children has generated important new findings indicating 

that the effects of training can emerge and increase over time10. This study found that the far-

transfer benefits from adaptive working memory training to academic skills (e.g. Reading and 

Geometry) were only evident 6-12 months after the end of training. Moreover, this work 

showed that five weeks of adaptive working memory training during the first-grade year led to 

an increased probability of entering the highest academic track of the German secondary school 

system 3-4 years later. Given these results, longitudinal study designs that include follow-up 

measures over multiple years will be important for determining the potential effectiveness of 

different types and/or doses of cognitive training, especially for children.  

 

It is important to understand the cognitive and neurobiological changes that take place during 

or just after training. Presumably, these proximal effects allow for the eventual emergence of 
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wider-ranging benefits in the future. Cognitive training that resulted in near- or far-transfer 

effects has been reported to alter brain structure and function11-16. Training induced changes 

are often observed in prefrontal, parietal, and striatal regions that support executive functions 

such as working memory and attention control17-21. Here, we will define attention control as 

the cognitive processes required to coordinate and allocate attention to the relevant stimuli in 

the environment22. Cross sectional and longitudinal studies suggest that the maturation of these 

brain regions supports improvements in task performance over the course of development from 

childhood into adulthood23-28, and deterioration in these regions and their connectivity is 

associated with cognitive decline during aging29-31. Brain imaging studies have also indicated 

that successful transfer from trained to untrained skills requires that both cognitive processes 

engage at least partially overlapping structural and functional brain systems32,33. Thus, ideally, 

cognitive training programs should facilitate neural developments, potentially including 

maturation processes in children, that allow for more effective and efficient engagement of 

both specialized and domain general brain functions. This is because, by definition, domain 

general brain functions will overlap with the processes that support and facilitate a broader 

range of untrained skills.  

 

Sensitive and reliable measures of changes in mental functions are necessary to detect the 

immediate effects of training interventions and forecast their long-term benefits. Here, we test 

the hypothesis that intra-individual variability in task performance – quantified via response 

times – can be used to assess training efficacy in the short term and is correlated with future 

far-transfer effects. Intra-individual variability measures derived from response times are well 

suited to this purpose because they have good test-retest reliability when computed across a 

sufficient number of trials, and are as, or even more, sensitive and robust indicators of cognitive 

function than the mean or variance in accuracy34,35.  
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Intra-individual variability in performance is associated with the cognitive abilities and brain 

functions targeted by cognitive training interventions in healthy individuals as well as 

individuals with various psychiatric and neurological conditions36-38. Developmentally, intra-

individual variability shows an inverted-U shaped association with age, decreasing (i.e. 

improving) from childhood through late adolescence until young adulthood, and then 

increasing (i.e. worsening) again in old age28,39,40. Thus, intra-individual variability tracks the 

well-established pattern of brain and cognitive development across the lifespan. Therefore, 

intra-individual variability could plausibly detect changes in these systems caused by training 

interventions. Intra-individual variability is associated with the integrity of brain structure and 

function, most strongly in frontal brain regions, as well as with dopaminergic neuromodulation 

see 34 for a review,38,40-44. Furthermore, intra-individual variability measures are closely associated 

with the inhibitory and cognitive control abilities mediated by frontal and subcortical 

dopaminergic brain systems in healthy children and adults28,42,45-47. In summary, there is 

sufficient reason to hypothesize that intra-individual response time variability metrics can 

detect short-term training effects and may be useful in predicting the degree of long-term 

benefits. 

 

We use a combination of cognitive tasks (N-Back and Flanker), functional magnetic resonance 

imaging (fMRI), and computational modelling of individual performance to examine the 

effects of five weeks of adaptive working memory training on brain and cognitive function in 

first-grade children. Working memory training improved response accuracy and decreased 

intra-individual variability on both tasks. Moreover, we show that the improvements in intra-

individual variability detected during N-Back and Flanker task performance right after training 
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are associated with the children’s academic skills and level of behavioural and psychological 

adjustment 6-12 months after training was completed.  

 

Methods 

Participants 

Twenty-eight typically developing 7 to 9 year-old primary school children (mean age 7y9m, 

SD 5m, 14 females, working memory training = 16, comparison group = 12) participated in 

the study. These children were recruited out of an ongoing intervention study of over 500 

children and 29 different classrooms. All participants had normal or corrected-to-normal vision 

and all but 2 were right-handed. No present or past psychiatric diagnosis were reported. Three 

of the participants attended schools where, unbeknown to the experimenters at the time of data 

collection, the randomization process was compromised. Specifically, the school authorities 

agreed to take part in the study only if their classrooms were included in the “instruction as 

usual” control group. The children and their families were still blind to the treatment condition 

that their classroom had been allocated to. We ran robustness checks for all analyses that 

excluded those 3 children and found similar results in all cases. The local ethics committee 

(Kantonale Ethikkommission Zürich) approved all procedures and methods used during this 

study. Participants received compensation for the participation in the study as described below.  

 

Recruitment and general procedure 

Parents were informed of the upcoming study either during a regularly scheduled Parents’ 

Evening event taking place at school or in a specific meeting about the study. They were given 

a leaflet with the contact details for the team and those who would be willing to know more 

about the study or having interest in their children taking part in the study. Once they contacted 

the team, they were given an appointment with one of the research assistants at a local school, 
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so that they could ask any questions and the children would have information about what the 

fMRI session would look like and what type of tasks they would have to perform while inside 

the scanner. To help them get familiar with how enclosed they would be and the scanner noise 

they were asked to lie flat in a play tunnel for approximately 6 minutes. During this time, they 

would see a movie of the different tasks and heard the scanner noise. If they agreed to take 

part, they would receive an appointment for the scanner session. On the day of the session, they 

were reminded again of the different tasks that they would perform while inside the scanner, 

and had the chance to practice them on a laptop until it was clear they understood and were 

able to perform those tasks correctly.  

Next, a big teddy bear was used to show them the positioning procedures in the scanner, in 

order to reduce their potential anxiety and to have the chance to ask any questions they might 

have. Finally, once they had been positioned, they could ask for the accompanying parent to 

stay in the scanner room with them until they felt safe.  

For participating in the fMRI portion of the study, the parents were compensated for the travel 

expenses and time. Children received family day passes for the Zurich Zoo and depending on 

their performance in one of the tasks, tokens that could be exchanged for prizes (see 

Intertemporal Choice Task description in section Post-training cognitive and decision tasks 

below). 

 

Cognitive training program description 

The training procedures consisted of a five-week intervention and four assessment waves, one 

pre-intervention (baseline – w1), one immediately after the end of the five-week intervention 

(w2), and two follow-up waves at 6 and 12-13 months respectively (w3 and w4). The 

assessment sessions were run by a professional data collection service. These sessions were 

conducted by interviewers specifically trained and recruited for the study who were 
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experienced with standard procedures in this population and age group. The assessment battery 

included tests of working memory and IQ (digit span, location span, object span, Raven’s test), 

educational outcomes (math numeracy and math geometry, reading abilities) and concentration 

tests (Go/NoGo and bp task).  

The study was conducted using a between-class design, that is, classes were randomly assigned 

to the different treatment options. Randomization was stratified based on SES variables 

including the proportion of low household incomes, social benefit recipients, and non-Swiss 

residents.  

The working training program implemented was Cogmed’s RoboMemo1. It is a computerized 

program, highly adaptive to individual performance, implemented via notebook computers 

including headphones for the spoken instructions and an external mouse. These specially 

dedicated notebooks were distributed to the participating schools. The intervention consisted 

of a daily working memory training session per day (duration ~ 30 min), over a period of 5 

weeks (25 sessions in total). While the standard intervention consists of 13 different tasks, 3 of 

them include either letters or syllables that are not suitable for first graders and were therefore 

excluded. Most of the remaining tasks focus heavily on visuo-spatial working memory, and 

only two of them on verbal working memory (digit span tasks). While 5 of the tasks are simple 

span tasks, the remaining 5 can be considered complex working memory tasks, which involve 

some processing of the information. Each training session included 6 adaptive modules 

(working memory tasks), including each 12 trials (75 trials in total). During the intervention, 

there was one specifically trained student coach in each class.  

We compare the working memory training group to children that either received standard 

classroom instruction or a five-week self-regulation training. The self-regulation training took 

 
1 Cogmed and Cogmed Working Memory Training are trademarks, in the U.S. and/or other countries, of 
Cogmed Inc. (www.cogmed.com). 
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place during school lessons once a week. In these lessons, the teacher taught a version of 

the  mental contrasting with implementation intentions (MCII) technique48 that was adapted to 

the relevant age group and the classroom context. 

 

Post-training cognitive and decision tasks  

Subjects practiced each task right before the scanning session. There were 20, 44, and 8 practice 

trials for the Flanker, N-Back, and intertemporal choice tasks, respectively.  

Working memory (N-Back) task: The 11-min block design working memory task consists of 

four conditions (Figure S1a). Participants are presented with series of pictures (1s duration, 

followed by 1s fixation cross). In the ‘0-Back’ condition, they have to respond whenever they 

see the picture of a sun on the screen. In the ‘1-Back’, ‘2-Back’, and ‘3-Back’ conditions, they 

have to respond whenever the picture on the screen is the same as 1, 2, or 3 before it, 

respectively. They perform the task in 2 runs (~5 min each). Each run consists of 8 pseudo-

randomised blocks, with 12 stimuli (3 targets and 9 non-targets). Each condition is presented 

twice per run. Before each block they saw a green fixation cross (12s) followed by a black 

fixation cross (1s) to indicate they should be alert as instructions were coming. They were then 

shown instructions (5s) on which condition was coming next. Performance data were recorded 

during scanning. The main performance variables are percentage of correct responses 

(correctly identified targets/total number of targets), percentage of commission errors (number 

incorrect responses/total number of non-target stimuli), mean reaction times to correctly 

identified targets, and variability in response times for correct responses.  

 

Flanker task: The 11-min event-related task was designed based on49. Participants were 

presented with 240 trials shown in 2 separate runs (~5 min duration each, Figure S1b). Each 

trial consisted in a central row of 5 yellow fishes over a blue background. They were instructed 
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to “feed” the fish that was located in the centre of the screen. To do so, the child had to press 

the right/left button on the button box, depending on the direction of the central fish and 

ignoring the direction of the flankers, which on congruent/incongruent trials point towards the 

same/opposite direction, respectively. Each trial consisted of a 1s fixation cross, followed by 

the stimulus (1s), and finishing with a blank screen (random duration 0.1-1.5 s). The main 

performance variables are the % of correct responses, % of incorrect responses, reaction times, 

and variability of response times for each trial type (congruent and incongruent).  

 

Intertemporal Choice Task (ICT): We used an intertemporal choice task similar to one in 50. 

The task consisted of 48 trials, presented in 2 separate rounds, lasting a total of 12 minutes 

(Figure S1c). Each trial consisted of a fixation cross (duration random 3-6s) followed by the 

stimulus (10s). Each trial consisted of two options shown on the screen. The participants had 

to choose between the two options, which would give different numbers of tokens. The tokens 

could be exchanged for prizes at the end of the session. Thus, they choose between receiving a 

small number of tokens now (either 2, 4, or 6 tokens, received at the end of the scanning 

session) or a larger amount of tokens to be delivered in a varying delay in time (either 4, 7, 14, 

or 28 days). Each immediate option is paired to each delayed option 4 times. The 48 trials are 

presented in two rounds of 24 trials each, in a pseudo-randomised order. Each participant was 

shown the immediate option randomly on the right/left side of the screen (but consistently 

within one run) and on the opposite side on the subsequent run. Participants were instructed 

that immediately after the session, one trial would be chosen at random and implemented. The 

child received the number of tokens of the chosen option for that trial, and the subsequently 

chosen prize would be either taken home immediately or delivered by the post after the 

specified delay.  
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 Behaviour Data Analyses 

Two of the 28 children withdrew from the study after the first task (in both cases, the 

intertemporal choice task). For three participants there were technical failures collecting the 

performance data during the Flanker task, which resulted in one participant being excluded due 

to the complete loss of performance data, and for 2 participants only 1 run of the task could be 

used in the analysis.  

 

Regressions on behavioural performance  

Statistical analyses were conducted using RStudio (Version 1.1.442)51.  

The main performance measures for the tasks are as follows: 1) N-Back: percent of correct 

responses and false alarms, mean reaction times (RT) and standard deviation of RT (SDRT). 

These are combined to calculate a d-prime index and an intra-individual coefficient of variation 

for each working memory condition. 2) Flanker: percent correct responses in each condition, 

mean RT, and SDRT. 3) Intertemporal choice task: percent of trials in which the delayed option 

was chosen, mean RT and SDRT. In the Flanker and intertemporal choice tasks, the RT 

variables were used to calculate an intra-individual coefficient of variation for each task just as 

in the N-Back task. 

 

We investigated the effects of the working memory training (WMT) on the main performance 

variables of the different tasks. To do so, we conducted a general linear model for the N-Back 

and Flanker tasks with training group (WMT vs. Non-WMT Comparison) as fixed-effects 

factor and task condition (N-Back: high working memory vs. low working memory; Flanker: 

congruent vs. incongruent) as random-effects factors. For the ICT we conducted an univariate 

ANOVA with percent delayed option chosen as the main performance variable and training 

group (as above) as between-subjects factor.  
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Decision diffusion modelling 

We used a Bayesian hierarchical approach to fit the parameters of the decision diffusion model 

(DDM) to the Flanker task using JAGS52 and the JAGS Wiener module53 together with the 

rjags package54 in R. The fitting was run with 3 chains, 100,000 burn-in samples and 10,000 

posterior samples with a thinning rate of 10 samples. Drift rates were calculated as a weighted 

linear combination of the target and non-target stimuli in order to distinguish the relative 

contribution of each to the evidence accumulation rate. 

 

fMRI data collection and analysis 

MRI scanning parameters 

Images were acquired using a Philips Achieva 3T whole-body scanner with an eight-channel 

sensitivity-encoding head coil (Philips Medical Systems) at the Laboratory for Social and 

Neural Systems Research, University Hospital Zurich. The paradigms were written using 

Matlab, and presented using the Psychophysics Toolbox extension (Psychtoolbox v3.0, 

Brainard 1997) via a back-projection system mounted on the head-coil. We acquired gradient 

echo T2*-weighted echo-planar images (EPIs) with blood-oxygen-level-dependent (BOLD) 

contrast (37 slices per volume, Field of View 200 x 200 x 133 mm, slice thickness 3 mm, .6 

mm gap, in-plane resolution 2.5*2.5 mm, matrix 80*78, repetition time 2344 ms, echo time 30 

ms, flip angle 77°) and a SENSE reduction (i.e. acceleration) factor of 1.5. Volumes were 

acquired in axial orientation at a -20° tilt to the anterior commissure-posterior commissure line. 

The functional runs comprised a number of volumes in ascending order (volumes N-Back: 144, 

volumes FT: 145, volumes ITC:154) in addition to five “dummy” volumes at the start of each 

run. To measure and later correct for the homogeneity of the magnetic field B0/B1 maps were 

collected (short echo time = 4.29 ms, long echo time = 7.4 ms). Breathing frequency and heart 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.11.19.390427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.390427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

rate were measured with the in-built system of the scanner in order to correct for physiological 

noise. A T1-weighted turbo field echo structural image was acquired for each participant (181 

slices, Field of View 250 x 250 x 181 mm, slice thickness 1 mm, no gap, in-plane resolution 

1*1 mm, matrix 256*256, repetition time 8.2 ms, echo time 3.8 ms, flip angle 8°).  

 

fMRI preprocessing 

Image analysis was performed using SPM12 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London, UK). Functional images were realigned and unwarped, 

segmented according to the standard T1-weighted structural images, normalized to the mean 

subject’s EPI template and smoothed using a 5 mm full width at half maximum isometric 

kernel. To account for physiological noise we used the PhysIO toolbox implementation of 

RETROICOR (http://www.translationalneuromodeling.org/tapas/).  

 

fMRI General linear models (GLM) 

We computed two GLMs at the first level (single subject) with SPM12 and results were 

examined at the second (group) level using the Randomise function from the FMRIB Software 

Library (http://fsl.fmrib.ox.ac.uk/fsl/) to implement non-parametric permutation tests (n=5000 

permutations, with threshold-free cluster enhancement - TFCE). All the reported results are 

Family Wise Error (FWE) corrected at the voxel level and coordinates are given in Montreal 

Neurological Institute (MNI) space. Furthermore, for all the analyses, regressors were 

convolved with the canonical hemodynamic response function implemented in SPM12, high 

passed filtered (128s) and modelled using AR(1) autoregression.  

 Working memory task: In order to identify the potential effects of the working memory 

training on working memory capacities, we used a boxcar function to model BOLD activity 

during the low working memory (LWM) blocks (including both 0 and 1-back blocks) and 
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separately during the high working memory (HWM) blocks (including 2 and 3-back blocks). 

Each block was modelled with a start with the beginning of the first stimuli of the block (that 

is, after the instructions screen for each block) until the end of the last stimuli of the block. 

Motion parameters and the physiological regressors output from RETROICOR were also 

included as variables of no interest. The contrasts of interests were the activation during each 

condition (HWM and LWM). These contrasts of interest were calculated at the individual level 

and the outcomes were entered into non-parametric permutation tests conducted using the 

randomise command in FSL at the group level for statistical inference. 

Flanker task: Correct congruent and correct incongruent trials were modelled separately as 

events of duration equal to their reaction times. Furthermore, missed and incorrect trials were 

also included as variables of no interest as well as motion parameters and the physiological 

regressors output from RETROICOR. Following the GLM estimation, we computed the 

contrasts of interest: 1) activation during congruent, and 2) activation during incongruent trials, 

separately. These contrasts of interest were calculated at the individual level and the outcomes 

were entered into non-parametric permutation tests conducted using the randomise command 

in FSL at the group level for statistical inference.  

 

Regressions on long-term follow-up measures 

In order to investigate whether intra-individual variability measures could be indicative of 

future outcomes at the subsequent follow-up assessments across all intervention groups, we 

conducted Bayesian linear regression analyses. We focused on the academic skills of 

arithmetic, geometry, and reading abilities, following Berger et al10. We also analysed the total 

score from the Strength and Difficulties Questionnaire (SDQ)55, a general mental health 

screening tool for indexing the level of behavioural and psychological adjustment in healthy 

and clinical populations. Specific follow-up or intra-individual variability measures were 
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missing for some children (maximum missing values for any measure = 4). In order to use as 

much of the data as possible, we imputed the missing values using the ‘mice’ package56 in R. 

We generated ten different imputed datasets and fit Bayesian linear regressions to each of them 

using the R package, ‘brms’57 as an interface to STAN58. We drew our final inferences from 

the combined posterior distributions of all ten regression models in order to reduce the 

influence of any one set of imputed values on our results. The full set of regressor variables 

and results from these regressions are reported in Table 4.  

 

Conceptual replication in the ABCD study 

We used the Data Exploration and Analysis Portal (https://deap.nimhda.org), which allows the 

fitting of additive mixed models using the R package GAMM4. We fit additive mixed models 

testing the relationship between the individual coefficient of variation (ICV) in the N-Back 

task and general mental and physical health as indexed by the Child Behavioral Checklist 

(CBCL)59, and body mass index (BMI). These models controlled for random effects for sibling 

pairs, fixed effects of parental race and education level, and participants’ age and sex. We 

selected only those participants whose performance in the N-Back task was deemed as 

adequate by the ABCD study’s established QA procedure (overall response accuracy for 0-

back or 2-back > 60%).  

 

Results 

Behavioural Results 

Children in the working memory training group (WMT) did not differ from those in the 

comparison group (CMP) at baseline. Before the start of any training program, all participants 

were assessed using a number of tests that included general intelligence (a modified version of 

the Raven Matrices), working memory (visual, spatial), inhibition (Go-NoGo task), school 
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performance (including reading, arithmetic, geometry, etc) and general mental health screening 

measures (Strength and Difficulties Questionnaire). Statistical comparisons between the two 

groups show that they did not differ in any of these baseline measures (Table S1). 

 

Accuracy and response-time variability findings  

Overall, adaptive working memory training led children to perform more accurately 

and with less trial-to-trial variability in response times during the N-Back (working memory) 

and Flanker (selective attention / response inhibition) tasks. Figure 1 shows the differences 

between training groups in the N-Back, and Flanker tasks (see Table S2 for the full set of 

descriptive statistics and results). The WMT group responded more accurately in the Flanker 

task across both the congruent (i.e. easier) and incongruent (i.e. harder) trials. In the N-Back 

task, children in the WMT group were more accurate than those in the non-working memory 

comparison group on low working memory trials (0-1 back), but the two groups did not 

significantly differ on high working memory trials (2-3 back).  

In addition to better accuracy, children that received adaptive working memory training 

also showed less intra-individual variability in response times than children that did not receive 

working memory training (Figure 1). We computed the intra-individual coefficient of variation 

as intra-individual RT standard deviation / intra-individual RT mean. Note that the standard 

deviation of reaction times was not significantly correlated with mean response times (N-Back: 

r = -0.2816, p = 0.1727, 95% CI [-0.61, 0.13]; FT: r = -0.01, p = 0.959, 95% CI [-0.41, 0.39]). 

Furthermore, an analysis of ex-gaussian parameters fit to each child’s response time 

distribution revealed that the standard deviation (sigma) and exponential (tau) parameters 

differed between the working memory trained and comparison groups, but there was no 

significant difference in the means (mu) of the response time distributions (Table S3). In other 

words, more variable individuals were not reliably faster or slower to respond overall. Rather 
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they were more inconsistent in the way they executed their responses. Intra-individual 

variability was highly correlated across the N-Back and Flanker tasks (r = 0.65, p = 0.0008, 

95% CI [0.32, 0.84]). Together, the pattern of results across both cognitive tasks suggests that 

the adaptive working memory training intervention may have improved children’s ability to 

engage and maintain attention on task-relevant information in a domain-general manner soon 

after the five weeks of training were complete.  

We did not detect any effects of adaptive working memory training on intertemporal 

monetary choice outcomes or on intra-individual variability in that decision task. Thus, 

children in the WMT group did not differ from those in the comparison group in their 

willingness to wait for larger, delayed monetary rewards within the range of amounts and 

delays included in this study. That being the case, we focus on the N-Back and Flanker tasks 

in the remaining sections of this paper.  
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fMRI results  

Along with better accuracy, the WMT group showed increased activation compared to the 

comparison group in brain regions that are part of attention and control networks during the 

low working memory trials. This included portions of fronto-striatal-thalamic systems such as 

the right caudate, putamen, pallidum, thalamus, inferior middle and superior frontal gyri, the 
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dorsal anterior cingulate and the supplementary motor cortex (Table 1, Figure 2). Consistent 

with the behavioural findings of similar accuracy in the high working memory condition, there 

were no significant differences in the BOLD signal across groups during the high working 

memory trials. We did not detect any significant differences in activity as a function of working 

memory training during the Flanker task.  

  In addition, we found that task-related BOLD signal levels in regions that showed 

greater activity in the WMT group (see Figure S2) also correlated with the intra-individual 

coefficients of variation and/or accuracy on the N-back task across all participants (Figure 2, 

bottom row). Some relation to accuracy and the intra-individual coefficient of variation in these 

regions is to be expected given that there are group differences in intra-individual variability 

(see Figure 1). However, activity in the dorsal striatal functional ROI, encompassing dorsal 

caudate and putamen, was significantly associated with intra-individual variability even after 

accounting for the effects of working memory training condition (coef = -0.25, p = 0.004; Table 

2). There were similar, though not significant, trends in the dorsolateral prefrontal cortex 

(dlPFC) for intra-individual variability, and in the anterior cingulate cortex/supplementary 

motor area for accuracy (Table 2).  
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Diffusion Decision Model analyses 

Diffusion decision models are a form of computational modelling that can quantify and 

distinguish between different cognitive processes that may give rise to intra-individual 

variability60,61. Previous work has shown that the effects of attention on task performance and 

decision making can be formalized and quantified by diffusion decision models62-64 (DDM). 
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Here, we fit the DDM to children’s behaviour in the Flanker task. We did not fit data from the 

N-Back task because it required responses only on target trials, which were a small minority 

(25%) of all trials.  

 

The idea behind sequential sampling models is that participants repeatedly extract noisy signals 

from the stimuli and/or their own minds until they are sufficiently sure of the best response. 

Previous work has shown that visual attention changes the way in which the evidence for each 

alternative is accumulated62-64. From moment to moment, items that are fixated influence the 

accumulation rate more strongly than items that are not currently fixated. We hypothesized 

that, if working memory training influenced the ability or motivation to selectively attend to 

task relevant information, then we should see differences in the estimated drift rates for the 

DDM between the WMT and CMP groups. Past work examining the role of attention on DDM 

parameters has used visual fixation (measured with eye tracking) as a proxy for attention62,64, 

and estimated how drift rates change within a choice as a function of the stimulus the 

participants fixate at a given point in time. In contrast, we don’t need to subdivide the trial 

durations based on fixation locations in order to test our hypothesis about drift rates in the 

Flanker task. The design of the Flanker task is such that only one of the stimuli on the screen 

contains the trial-specific information that is relevant for behaviour, the target. Therefore, we 

can estimate how much target versus distractor stimuli contribute to the drift rate across the 

entire duration of the trial in each training group.  

 In our specification of the DDM, the magnitude of the drift rate coefficients informs 

us about how strongly each stimulus influences the evidence accumulation processes. In the 

flanker task, children should be focused on the target fish because it alone provides evidence 

for the correct response in each trial. The direction the flanking distractor fish are facing is 

irrelevant and should be ignored. Thus, we specified the drift rate according to equation (1) 
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below. We hypothesized that b1 – b2 (i.e. the weight on relevant minus irrelevant information) 

should be greater in the WMT than the CMP group.  

 

(1) Drift = b1*Target_Direction + b2*Distractor_Direction 
 

The DDM results are consistent with an improved ability to focus attention on task 

relevant features following working memory training. The results from the Flanker task 

showed that children in the WMT group were more sensitive to the information carried by the 

target fish (i.e. its direction) relative to distractor fish (p = 0.008, Table 3) and utilized a higher 

response threshold (p = 0.048, Table 3) than children in the comparison group.  

Furthermore, simulated responses from the fitted diffusion decision model reproduce 

the patterns of response time variability observed in the Flanker task. To generate simulated 

responses in the Flanker task, we used each participant’s best-fitting DDM parameters. We 

then compared the simulated response times across groups and found that the RTs were less 

variable for simulated agents using parameters from the WMT participants than for simulated 

agents based on CMP children’s parameters (Table S4).  

 

Associations between post-training cognitive task performance and follow-up measures  

The recent work of Berger and colleagues10 showed that some effects of working memory 

training in children are only evident in follow-up assessments 6 or 12-13 months after training 

was completed. Therefore, we investigated if the intra-individual variability measures that we 

computed immediately after the training could serve as indicators of relevant future outcomes 

at the subsequent follow-up assessments.  

The ultimate goal of any training is to have a meaningful impact in the life of the 

participants. Therefore, we focused on outcome measures of academic performance and 

behavioural and psychological adjustment that could represent an impact in “real-life”. 
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Specifically, we examined the total score in the Strength and Difficulties Questionnaire 

(SDQ)55, a behaviour and mental health screening measure typically administered in clinical 

settings to identify potential problematic areas in a child that merit further assessment by a 

specialist. The SDQ was filled out by parents 6 months after training. We also examined tests 

of academic performance in reading and two mathematics subscales (geometry and arithmetic) 

conducted 1 year after training. We focused on these specific academic skills because of the 

results from the independent sample in Berger et al10, which show that working memory 

training improved geometry and reading scores, but not arithmetic.  

We conducted linear regression analyses that tested if these measures of future general 

mental health and academic skill could be explained by children’s accuracy (d-prime) or 

response time variability in cognitive tasks performed at the end of the training period. 

Specifically, we used the coefficient of variation in response times and d-prime scores from 

the N-Back task and the estimates of DDM drift rates from the flanker task to explain future 

outcomes. Response time variability explained significant additional variance in future SDQ 

scores (standardized coef. = 0.32 ± 0.14), geometry (standardized coef. = -0.66 ± 0.23), and 

reading (standardized coef. = -0.32 ± 0.14), even after accounting for baseline scores in those 

measures and IQ (Table 4). In contrast, no post-training cognitive task performance or baseline 

measures were significantly associated with future arithmetic scores. Thus, in our sample, the 

intra-individual variability in response times measured right after the intervention correlated 

with future performance in the same academic domains that Berger and colleagues previously 

found to be improved one year after working memory training in an independent sample.  

 

Testing the association between intra-individual variability and general mental health in an 

independent sample. 

We examined whether there were similar associations between intra-individual variability in 
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response time during the N-Back task and mental and physical health in the children in the 

ongoing longitudinal ABCD study (https://abcdstudy.org, data release version 2.0.1; N = 7894 

children). In this case, we had to limit our analysis to concurrent baseline measures because 

follow-up measures were not yet available. The ABCD study is a longitudinal, multicentre 

study of children’s cognitive and neurobiological development starting from age 10. This study 

includes a wide range of standardized questionnaires and interviews covering both general 

well-being and clinical measures. In addition, participants perform several cognitive tasks, 

including an N-back task65. We tested if intra-individual variability, once again quantified as 

the coefficient of variation in response times, during the N-Back task was associated with 

scores on the Child Behavioural Checklist (CBCL)59. The CBCL is a measure of current 

behavioural and psychopathological symptoms with high correspondence to the SDQ when 

both scales are applied to the same individuals. The ABCD study includes the CBCL, but not 

SDQ. We also tested for potential relationships between intra-individual variability and body 

mass index (BMI) scores. We chose BMI as an additional translational measure robustly 

associated with physical, cognitive, and socioeconomic well-being. Decreased intra-individual 

variability in response times during the N-Back task was associated with decreased concurrent 

total CBCL scores (i.e. lower variability was associated fewer potential problems, standardized 

coef. = 0.27 ± 0.13). Less intra-individual variability during the N-Back was also associated 

with lower BMI scores (standardized coef. = 0.15 ± 0.04; Table 5). Thus, the results from this 

large independent sample are consistent with our original findings showing that less intra-

individual variability in response time is associated with increased general mental health and 

academic skills.  
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Discussion 

The present study examined how the neurocognitive mechanisms underlying the short-term 

impact of adaptive working memory training in primary school children relate to training 

benefits that emerge months or years after training. Overall, our results suggest that in addition 

to working memory itself, there may be concurrent improvements in selective and sustained 

attention during or directly after five weeks of training. We show that intra-individual 

variability in response times during working memory and selective attention tasks can be used 

to detect short-term training effects in children, and that such measures may be indicative of 

the persistence and/or emergence of far-transfer benefits months to years after training is 

completed.  

 

Our findings indicate that improvements in attention are among the immediate results of 

adaptive working memory training. Working memory and attention processes are thought to 

be closely linked and interdependent6,17,66-71. Although they have different primary targets, both 

the Flanker and N-Back tasks require the ability to maintain attentional focus throughout the 

duration of the task (sustained attention), and to identify the target stimuli and filter out or 

inhibit responses to non-target stimuli (selective attention). At the neural level, differences 

between the WMT and CMP groups were found in striatum as well as the lateral and medial 

prefrontal cortices, which are brain regions that, among other things, support selective and 

sustained attention functions18,19,72. These neural differences were accompanied by better 

signal detection performance (i.e. higher d-prime), reduced intra-individual variability in 

response times, and more efficient accumulation of relevant information (i.e. higher DDM drift 

rates) in children that received adaptive working memory training. All of these behavioural 

measures are related to and dependent on attention. Therefore, taken together, our neural and 

behavioural results suggest that the benefits of the working memory training program used in 
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this study are at least partially mediated by improvements in attention processes leading to 

consistent and effective responses to task relevant information and reduced processing of 

irrelevant, distracting stimuli.  

 

These results lend further support to theories of the mechanisms underlying training benefits. 

A meta-analysis of previous training studies concluded that the Cogmed-RM adaptive working 

memory training program has effects on attention in daily life73. The improvements in attention 

processes we detected at the end of the training are consistent with previous results and theories 

about the basis of far transfer effects following cognitive training as well32,33,74. Specifically, 

these far-transfer benefits occur when the trained and transfer skills share common fundamental 

cognitive processes. Given the important role of attention as a prerequisite to many cognitive 

processes, it could serve as a basis for far-transfer effects following working memory training. 

 

Recently, the effects of the adaptive working memory training in school-age children have been 

shown to emerge over 6 to 12 months10. Initial improvements in attention may serve as a 

scaffold for later changes in higher cognitive processes that facilitate better school 

performance. Our current results suggest that attention functions might be among the first to 

improve from this type of training, and that later emerging benefits to academic skills and 

general mental health are associated with immediate improvements in attention processes. It is 

not surprising that working memory training would also influence attention control (e.g. 

selective attention, sustained attention, or goal-directed attention reallocation) given that these 

processes are postulated to be pre-requisites for the successful implementation of working 

memory6,17,66-68,71. There is also evidence that the associations between working memory 

capacity and various cognitive and academic skills are partially mediated by a common reliance 

on attention control66,70,75. Given the apparent role of attention processes in mediating the far 
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transfer of training effects, it is important to measure these processes when assessing the 

efficacy of working memory training and other forms of cognitive training.  

 

The ability of intra-individual variability metrics to detect individual differences in attention 

control could explain the association we find between them and the future emergence of 

benefits to academic skills and general mental health after working memory training. Intra-

individual response time variability metrics are sensitive and reliable measures of individual 

differences in attention control processes34,35. They are often used as an index of an individual’s 

attention allocation efficiency or degree of fluctuation in attention control during task 

performance45,46,76-78. Intra-individual variability has been linked with cognitive control 

measures in healthy children and adults, and the variability in response times measured in one 

task is correlated with working and long-term memory or intelligence measured in separate 

tasks28,42,45,46,79-81. It also differs between healthy individuals and those with attention deficit 

hyperactivity disorder (ADHD)36,37,42,82,83. However, increased response time variability is not 

unique to ADHD and is seen in various psychiatric and neurological disorders (e.g. traumatic 

brain injury, dementia, and schizophrenia), in which attention deficits may play an important, 

though less prominent, role36,38,44,83,84. Increased intra-individual variability is commonly 

observed in non-affected relatives as well as patients, indicating that it may capture shared 

genetic or environmental risk factors for current and future psychopathologies44,76,82,85,86. In 

fact, a recent review by Haynes et al. highlights several longitudinal studies in older adults that 

have shown that the intra-individual variability in response times is associated with future 

levels of cognitive impairment and mortality84. Thus, intra-individual variability measures are 

sensitive to not only to current cognitive and neurological function, but also associated with 

the future stability or decline in those functions.  
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Here, we have shown that intra-individual variability metrics can detect the short-term efficacy 

and are indicative of the emergence of longer-term benefits of working memory interventions 

aimed at improving cognitive skills and academic performance in children. Five weeks of 

working memory training led to significant decreases in intra-individual response time 

variability on two separate cognitive tasks (N-Back and Flanker), completed soon after the 

training period ended. Consistent with their ability to forecast cognitive decline in the elderly, 

we found that measures of the intra-individual variability computed at the end of training were 

associated with improvements in academic skills and general mental health in children up to 

one year after training. Lower post-training variability was related to better future scores on 

tests of academic skills and strengths/weaknesses in classroom and social behaviour for the full 

sample.  

 

Our results suggest that measures of intra-individual variability are useful in evaluating 

intervention efficacy. However, there are several important questions that still need to be 

addressed. For example, can we use intra-individual variability metrics to determine when an 

individual has received a sufficient dose of the training intervention? If so, then we could tailor 

the amount of training to each person in order to improve the cost benefit trade-offs inherent 

in any training program. Another key question our findings raise is what types of tasks (e.g. 

those targeting working memory, attention, task-switching, etc) and measures of intra-

individual variability are best suited to assessing the short and long-term outcomes of cognitive 

training. Previous work has quantified intra-individual variability in response times in several 

different ways82,83,87. We found significant differences in response time variability between 

training groups in both selective attention (Flanker) and working memory (N-Back) tasks, that 

were robust across common measures of variability (coefficient of variation, ex-gaussian 

decomposition, and diffusion decision modelling). However, there may be differences in how 
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well the different measures of variability and/or task designs predict the emergence of benefits 

to specific areas of academic performance or general mental health in the longer term. This 

question will be important to address in future studies that collect and compute multiple 

longitudinal measures in large samples of participants.  

 

Although a relative strength of our study is the amount of longitudinal data we have on each 

participant, one of the limitations is the small sample size. The concerns that small sample sizes 

might raise are mitigated, in this case, by the fact that key results replicate in much larger 

samples. Specifically, the working memory training effects we find replicate those found in 

Berger et al10 using the same form and duration of training in a separate sample of over 500 

children. We also conceptually replicate the associations between the coefficient of variation 

in response times during an N-Back task and measures of mental and physical health in over 

7800 children from the ABCD study65. Another limitation of this study is that, although it 

contains a number of pre-training baseline measures, it lacks data from the Flanker and N-Back 

tasks before training. The lack of baseline data on these tasks prohibits us from testing if the 

level intra-individual variability before the intervention is related to either short or long-term 

training outcomes. It will be important to determine if baseline measures of intra-individual 

variability can be used to help assign individuals to the appropriate level of initial training 

duration or potentially even training types. Moreover, changes in variability (i.e. post minus 

pre-training) may be even better predictors of the emergence of future benefits than post 

training measures alone10,88.  

Effective means of enhancing cognitive abilities have been a long-standing goal in many 

disciplines. Our current work adds to the existing evidence that adaptive working memory 

training can significantly benefit school-aged children6,10,89,90. Moreover, it provides additional 

insights into the mechanisms underlying these benefits. Together with the recent findings of 
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Berger et al10, it also highlights the importance of including long-term follow-ups in any 

evaluation of training efficacy. In addition to long-term follow-up data, we demonstrate the 

utility of using response time variability metrics as an immediate indicator of intervention 

success. The practical relevance of such an immediate assessment tool should not be 

overlooked, as it could potentially allow for tailoring training interventions in terms of duration 

or content without needing to wait for years for follow-up data to determine whether or not 

long-term benefits will emerge. 
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Table 1. Regions showing increased BOLD signal response in the WMT versus CMP groups during the 
low working memory condition of the N-Back task. 
 

Region Cluster 
Size 

x; y; z T-stat (1) T-stat (2) 

Juxtapositional Lobule Cortex (formerly 
Supplementary Motor Cortex); Precentral 
Gyrus; Superior Frontal Gyrus; Cingulate 
Gyrus, anterior division 

189 - 10; -8; 58 7.1 6.01 

Frontal Pole; Middle Frontal Gyrus; Superior 
Frontal Gyrus 146 37; 36; 43 4.66 4.57 

Right Putamen; Right Caudate 133 15; 9; 18 4.79 4.18 

Right Pallidum; Right Accumbens; Right 
Putamen; Right Hippocampus; Right 
Amygdala 

125 10; -13; -12 5.91 5.42 

Superior Frontal Gyrus; Paracingulate Gyrus; 
Frontal Pole 77 -2; 41; 45 4.8 4.06 

Precentral Gyrus; Inferior Frontal Gyrus, pars 
opercularis; Postcentral Gyrus; Central 
Opercular Cortex 

46 47; 4; 18 4.78 3.72 

Right Putamen 24 25; -8; 23 5.02 5.01 
Cingulate Gyrus, anterior division; 
Paracingulate Gyrus; Juxtapositional Lobule 
Cortex (formerly Supplementary Motor 
Cortex) 

23 12; 11; 35 4.64 4.34 

Inferior Frontal Gyrus, pars opercularis; 
Inferior Frontal Gyrus, pars triangularis; 
Precentral Gyrus 

16 52; 19; 10 4.29 3.11 

Precentral Gyrus; Postcentral Gyrus 12 -25; -26; 50 5.15 4.04 
Middle Frontal Gyrus; Inferior Frontal Gyrus, 
pars triangularis; Inferior Frontal Gyrus, pars 
opercularis 

7 42; 29; 23 4.42 3.56 

Precentral Gyrus 6 22; -11; 45 5.26 4.11 
All reported regions are significant at p <0.05 after whole brain FWE correction at the voxel level. Here we report 
only regions with a cluster extent greater than 5 voxels. The full sets of unthresholded t-statistics can be found on 
Neurovault.org (https://identifiers.org/neurovault.collection:9005). The FWE correction was based on 5000 
permutations of the threshold free cluster enhancement (TFCE) values. The TFCE values and permutation-derived 
test statistics were calculated using the Randomise function implemented in FSL. All coordinates are listed in MNI 
space and represent the peaks of all clusters formed by contiguous voxels Anatomical labels were derived from the 
Harvard–Oxford cortical and subcortical atlases. The two T-stat columns show the T value for the comparisons (1) 
in the whole sample (working memory training group = 14, comparison group = 11, total N= 25); (2) in the sample 
after excluding the three children with non-random assignment to the pure control condition (working memory 
training group = 14, comparison group = 8, total N= 22) 
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Table 2. Associations between BOLD signal in ROIs where group differences were identified in the LWM 
contrasts and intra-individual coefficient of variation and d-prime across all trials 
 

Dorsal striatum 
 Estimate (se) T value P value 
Group 0.17 (0.15) 1.16 - 
ICV -0.25 (0.08) -3.26 0.004* 
d-prime 0.12 (0.06) 2.10 0.049* 

dlPFC  
 Estimate (se) T value P value 
Group 0.56 (0.31) 1.782 -  
ICV -0.32 (0.16) -1.978 0.0619  
d-prime 0.09 (0.13) 0.689 0.4989 

dACC-SMA  
 Estimate (se) T value P value 
Group 0.50 (0.20) 2.497 - 
ICV -0.13 (0.10) -1.249 0.2260 
d-prime 0.14 (0.08) 1.794 0.0879 

 
The table reports the results from three linear regression models testing the association between the intra-
individual coefficient of variation and d-prime during the N-Back task and BOLD signal after accounting for the 
effects of training condition (Group). The linear model in each region was computed as BOLD signal ~ Group + 
ICV + d-prime + Delay, where Delay is a control variable that accounts for the delay between the end of the 
intervention and the scanning session (omitted from the table for conciseness). We list the T-values for the binary 
regressor indicating training group for comparison with the linear regressor for ICV. However, we do not report 
p-values for the Group regressor because the functional ROIs were originally identified with this contrast, making 
the analysis circular. The point of these regressions is to test if differences in ICV provide additional explanatory 
power in the region where activity differed between training groups. se = standard error; ICV = Individual 
Coefficient of Variation; dlPFC = dorsolateral prefrontal cortex; dACC= dorsal anterior cingulate; SMA = 
supplementary motor area. * denotes significance at 0.05 p-value threshold. 
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Table 3. Diffusion Decision Model parameters for the Flanker task 
 

 WMT CMP WMT - CMP 
DDM Parameter m HDI m HDI m HDI 
Target drift coef. 2.84 2.30 3.38 1.99 1.65 2.37 0.84* 0.20 1.49 
Distractor drift coef. 0.20 0.03 0.38 0.25 0.00 0.51 -0.05 -0.36 0.25 
Target - Distractor 2.64 2.06 3.20 1.75 1.31 2.19 0.89* 0.14 1.57 
Boundary 2.53 2.13 2.96 2.09 1.75 2.42 0.45* - 0.08 0.98 
Non-Decision Time 0.30 0.22 0.37 0.24 0.14 0.35 0.05 - 0.07 0.18 
 

This table lists the mean (m) as well as the lower and upper bounds of the 95% highest density interval (HDI) of 
the posterior distributions for parameters or parameter differences from the decision diffusion model (DDM) fit 
to the Flanker task. The DDM was fit to the Flanker task data separately for the children in the group that received 
working memory training (WMT) and those in the comparison group (CMP). The asterisks next to the mean 
differences between WMT and CMP denote those means that are significantly different based on a one-sided test 
of posterior probability of the mean for WMT being greater than the CMP group.  
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Table 4. Results of the regression analyses showing the association between task performance and follow-
up measures in our sample.   

 
Dependent variable: Strength and Difficulties Questionnaire Total Scores 6 months after end of training 

 
 Mean SD HDI Post. Prob. 
N-Back ICV 0.318 0.143 0.034 0.604 0.983* 
N-Back dprime -0.253 0.125 -0.489 0.006 0.973 
Flanker drift rate 0.208 0.207 -0.236 0.583 0.847 
Time after training 0.014 0.174 -0.33 0.34 0.539 
IQ baseline -0.113 0.143 -0.386 0.176 0.794 
SDQ baseline 0.543 0.189 0.167 0.906 0.996* 
Omission errors GNG Baseline -0.218 0.184 -0.593 0.126 0.883 
Reading baseline 0.234 0.202 -0.181 0.628 0.882 
Arithmetic baseline -0.064 0.201 -0.447 0.348 0.643 
Geometry Baseline -0.178 0.15 -0.491 0.111 0.893 

 
Dependent variable: Reading Scores 12 months after end of training 

 
 Mean SD HDI Post. Prob. 
N-Back ICV -0.321 0.144 -0.597 -0.027 0.981* 
N-Back dprime -0.022 0.126 -0.273 0.225 0.568 
Flanker drift rate -0.117 0.199 -0.508 0.278 0.729 
Time after training -0.136 0.153 -0.437 0.17 0.822 
IQ baseline -0.015 0.15 -0.32 0.285 0.541 
SDQ baseline 0.008 0.176 -0.342 0.361 0.522 
Omission errors GNG Baseline 0.119 0.166 -0.205 0.455 0.776 
Reading baseline 0.268 0.199 -0.12 0.667 0.92 
Arithmetic baseline 0.269 0.207 -0.15 0.674 0.908 
Geometry Baseline -0.243 0.15 -0.54 0.05 0.947 

 
Dependent variable: Mathematics - Arithmetic Scores 12 months after end of training 

 
 Mean SD HDI Post. Prob. 
N-Back ICV -0.443 0.278 -0.997 0.116 0.943 
N-Back dprime 0.014 0.224 -0.426 0.457 0.519 
Flanker drift rate -0.147 0.401 -0.905 0.616 0.633 
Time after training 0.006 0.238 -0.478 0.47 0.515 
IQ baseline 0.36 0.275 -0.157 0.897 0.906 
SDQ baseline 0.066 0.285 -0.483 0.636 0.591 
Omission errors GNG Baseline 0.197 0.251 -0.296 0.695 0.79 
Reading baseline 0.107 0.329 -0.535 0.758 0.618 
Arithmetic baseline 0.473 0.343 -0.227 1.13 0.916 
Geometry Baseline -0.154 0.234 -0.601 0.322 0.757 

 
Dependent variable: Mathematics - Geometry Scores 12 months after end of training 

 
 Mean SD HDI Post. Prob. 
N-Back ICV -0.666 0.225 -1.09 -0.215 0.996* 
N-Back dprime -0.074 0.194 -0.453 0.304 0.648 
Flanker drift rate -0.232 0.29 -0.787 0.347 0.802 
Time after training 0.043 0.231 -0.401 0.494 0.575 
IQ baseline 0.42 0.237 -0.049 0.904 0.962 
SDQ baseline 0.069 0.273 -0.455 0.624 0.598 
Omission errors GNG Baseline -0.096 0.251 -0.587 0.408 0.654 
Reading baseline -0.223 0.298 -0.807 0.37 0.775 
Arithmetic baseline 0.476 0.309 -0.159 1.063 0.932 
Geometry Baseline 0.075 0.227 -0.372 0.53 0.632 

Bayesian linear regressions testing for relationships between N-Back ICV and Flanker task DDM drift rates and 
follow-up measures 6 or 12 months after the end of training. The columns labeled mean and SD list the mean and 
standard deviation of the posterior distribution for each coefficient. All independent variables in these models 
were standardized using the z-score transformation. The two columns labeled HDI give the lower and upper 
bounds of the 95% highest density interval for the posterior distributions of each coefficient. The regressions 
included the child’s standardized score at baseline for IQ, go-nogo task performance, SDQ, and all three academic 
skills to account for any potential baseline differences. They also included an additional control covariate for the 
number of months between the training and the performance of the N-Back and Flanker tasks (Time after training). 
Abbreviations: ICV = intra-individual coefficient of variation in response times, IQ = intelligence quotient, SDQ 
= strengths and difficulties questionnaire score, GNG= Go/NoGo task, HDI = highest density interval of the 
posterior distribution, Post. Prob. = posterior probability that the estimated regression coefficient is greater or less 
than zero.  
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.11.19.390427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.390427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 
 
Table 5. Results of the regression analyses showing the association between Intra-individual variability 
and general mental and physical health in the ABCD Study  
 A Dependent variable: CBCL total score  
   

Estimate Std Error T value p-value 
N-Back ICV  0.27035 0.12445 2.17 0.02985 
N-Back correct rate  -1.07062 0.12994 -8.24 <1e-6 
Controlling for:  
Race    
Sex  
Parental education  
Age  
 

 
This table shows the relationship between the intra-individual coefficient of variation in response times (ICV), as 
well as the correct response rate in the N-Back task and measures of mental and physical health. A ) The mental 
health measure was the total score from the Child Behavioral Checklist (CBCL total score). Lower scores on the 
CBCL are better. B) Shows the results for  physical health as indexed by body mass index (BMI). The N-Back 
ICV and accuracy measures were scaled using a z-score transformation before fitting the model. The CBCL and 
BMI scores are in their native units. The mixed effects regressions also included fixed effect control covariates 
for child’s age, sex, race (Asian, Black, Other/mixed, White; from parental report), and highest parental education 
level (< Highschool diploma, Highschool diploma/GED, Some College, Bachelor degree, Post Graduate degree; 
from parental report). In addition to these fixed effects the regression model included random effects covariates 
for sibling pairs.  
 
 
  

 B Dependent variable: Body Mass Index (BMI)  
   

Estimate Std Error T value p-value 
N-Back ICV  0.1463 0.04249 3.44 0.000578 
N-Back correct rate  -0.0487 0.04434 -1.10 0.27215 
Controlling for:  
Race    
Sex  
Parental education  
Age  
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Supplementary Material  
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Supplemental Tables 
 
Table S1. Scores and group differences on school-based performance and mental health measures at 
baseline 
 

Task Group Mean (std) F value (df) P value 
Ravens CMP 

WMT 
-0.11 (1.10) 
0.22 (0.96) 

0.603 (2,25) 0.5549 

Odd-one-out CMP 
WMT 

0.39 (0.78) 
-0.04 (0.99) 

0.777 (2,25) 0.4707 

Digit Span CMP 
WMT 

0.43 (1.15) 
0.39 (1.01) 

0.0536 (2,25) 0.9479 

Lottery game CMP 
WMT 

0.13 (0.99) 
0.12 (1.17) 

0.2229 (2,25) 0.8018 

Saving box game CMP 
WMT 

0.19 (1.05) 
0.11 (1.12) 

0.0234 (2,25) 0.9769 

Commission errors GNG CMP 
WMT 

-0.06 (1.30) 
0.02 (0.98) 

0.4481 (2,25) 0.6439 

Omission errors GNG CMP 
WMT 

-0.09 (1.10) 
-0.12(0.76) 

1.801 (2,25) 0.186 

SDQ total score CMP (N=12) 
WMT (N=12) 

0.07 (0.89) 
-0.34 (0.68) 

0.7868 (2,21) 0.4682 

SDQ internalizing score CMP (N=12) 
WMT (N=13) 

-0.30 (0.71) 
-0.59 (0.45) 

2.246 (2,22) 0.1296 

SDQ externalizing score CMP (N=12) 
WMT (N=12) 

0.35 (1.08) 
-0.12 (0.94) 

1.202 (2, 21) 0.3204 

Reading CMP 
WMT 

0.24 (1.09) 
0.46 (0.95) 

0.186 (2,25) 0.8313 

Math Arithmetic CMP 
WMT 

0.46 (0.85) 
0.49 (0.95) 

0.0029 (2,25) 0.9971 

Math Geometry CMP 
WMT 

0.12 (0.93) 
0.33 (0.96) 

1.542 (2,25) 0.2337 

 
This table lists the results from comparisons between the two groups in relevant school-based and mental health 
measures assessed during the pre-training assessment. The table shows the group means and standard deviations 
in each of the measures and the results from the statistical comparisons. Linear regression analyses showed no 
differences between the two groups were observed in any of the variables. For all the comparisons CMP N = 12 
and WMT N = 16, except for the SDQ total score where both groups have N=12. GNG= Go/NoGo task, SDQ = 
Strengths and Difficulties Questionnaire; CMP = comparison group of children who did not receive the Working 
Memory Training; WMT= Group of children who received the WMT; std = standard deviations; df= degrees of 
freedom. 
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Table S2. Results from group comparison in cognitive task performance measures 

 

Task Mean (sd) Main Effects 
Estimate (se) T value P value 

N-Back task 

d-prime LWMa CMP: 2.67 (0.96) 
WMT: 3.25 (0.60) Group: 0.56 (0.32) 

WM Level: -0.10(0.2) 
Group x WM Level: -0.64(0.27) 

1.74 
-0.49 
-2.40 

0.09 
0.62 
0.025 d-prime HWMa CMP: 2.57 (0.69) 

WMT: 2.52 (0.84) 
% Correct LWMa CMP: 91 (7) 

WMT: 95 (4) 
Group: 1.09 (0.45) 

WM Level: -0.21 (0.20)  
Group x WM Level : -0.91 (0.29) 

2.43 
-1.05 
-3.15 

0.01 
0.29 
0.002 % Correct HWMa CMP: 90 (5) 

WMT: 89 (6) 
Intra-individual CV LWMa CMP: 0.27 (0.04) 

WMT: 0.22 (0.05) 
Group: -0.05(0.02) 

WM Level: 0.09 (0.03) 
Group x WM Level: -0.05(0.04) 

-2.84 
2.98 
-1.30 

0.009 
0.006 
0.206 

Intra-individual CV HWMa CMP: 0.36 (0.13) 
WMT: 0.26 (0.08) 

Flanker task 
 

% Correct Congruentb CMP: 95 (6) 
WMT: 97(3) 

Group: 1.10 (0.36) 
Congruency: 0.92 (0.27) 

Group x Congruency: -0.19 (0.38) 

3.07 
3.41 

-0.514 

0.002 
0.0006 
0.607 

% Correct Incongruent b CMP: 90 (5) 
WMT: 95 (4) 

Intra-individual CV congruent b  CMP: 0.21 (0.03) 
WMT: 0.18 (0.02) 

Group: -0.033 (0.01) 
Congruency: -0.01 (0.006) 

Group x Congruency:0.0007(0.008) 

-3.108 
-1.544 
0.09 

0.005 
0.14 
0.93 

Intra-individual CV incongruent b CMP: 0.20 (0.03) 
WMT: 0.17 (0.02) 

Intertemporal Choice Task 

% choices delayed option chosenc CMP: 48 (36) 
WMT: 40 (19) 

Group: -0.53 (0.70) 
Amount Today: -0.58 (0.20) 

Time Delay: -0.27 (0.13) 
Group x Amount: -0.13 (0.26)  

Group x TimeDelay: -0.06 (0.16) 
 

-0.762 
-2.86 
-2.16 
-0.41 
-0.50 

0.45 
0.004 
0.03 
0.61 
0.68 

This table lists the Results from comparisons between the two groups in the main performances measures of the fMRI-based 
N-Back, Flanker and Intertemporal Choice tasks. The first column shows the means and standard deviation of each measure 
within each group, and the last three columns report the estimates and standard errors of the main effects of task condition and 
group as well as their interaction effects for each performance measure. LWM = Low Working Memory condition; HWM= 
High Working Memory condition; CV= Coefficient of Variation; CMP = comparison group of children who did not receive 
the Working Memory Training; WMT= Group of children who received the WMT; se = standard errors; aCMP N=11, WMT 
N =14; bCMP N = 10, WMT N=14; cCMP N = 12, WMT N=16 
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Table S3. Between-groups differences in Ex-Gaussian reaction times  

Ex-Gaussian 
parameter 

Estimate of Group 
difference (SE) 

T value P value 

Mu -0.019 (0.022) -0.851 0.4047 

Sigma -0.020 (0.006) -3.450 0.0025 

Tau -0.021 (0.009) -2.427 0.0248 

This table shows the results from the analysis of ex-gaussian parameters fit to individual’s response times. Group 
differences are computed as WMT – CMP groups. The T and P-values were computed from linear regressions 
explaining the variability in one parameter as a function of training group and the other two parameters of the ex-
gaussian function (e.g. mu ~ 1 + sigma + tau + Group).  

 

 

 

 

 

 

Table S4. Group differences in ICV in DDM-simulated Flanker task response times  

Coefficients: Estimate Std.Error T-Value P Value 

Group -0.108625 0.04441 -2.446 0.0185 

Trial Type 0.014553 0.047969 0.303 0.763 

Group x Trial Type -0.005607 0.062806 -0.089 0.9293 
 

This table shows the results of a linear regression analysis testing whether or not the fitted DDM parameters can 
reproduce the patterns of response time variability seen in the two empirical groups. The dependent variable in 
this regression is the intra-individual coefficient of variation in response times (ICV) from simulated agents 
performing the Flanker task. Each simulated agent performed the task using the best-fitting parameters for the 
empirical data from one child. Analogous to the empirical data, we analyzed these simulated data as a function of 
Trial Type (Congruent, Incongruent) and Group (i.e. the training group the child whose parameters the agent used 
belonged to). The response times generated by the DDM simulations reproduce the group difference in ICV that 
we observe in the empirical data.  
 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.11.19.390427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.390427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

Supplementary text 
 
Here we give a brief description of the relevant measures used to assess the impact of the training are provided 
below. For an extensive description see Berger et al (2020).  
 
Computerized stimuli were presented via headphones (when auditive) or on a touch-screen (when visual). Their 
responses had to be provided via touch-screen. All test scores were standardized to mean = 0 and SD = 1. 
 
1. Working memory measures 
Three different measures were used to identify the potential presence of transfer effects to non-trained working 
memory tests (near transfer effects).  

- Verbal simple span. After listening to a series of one-digit numbers, the child must enter the 
sequence in the correct order on the touch-screen in front of him. Scores are calculated taking into 
account the number of correct sequences and the number of items in each sequence.  

- Verbal complex span. This is a two-step task. In the first step, the child listens to a sequence of 
words describing objects, after each of them (s)he must indicate whether the object is an animal. 
After the sequence is finished, a grid with 3x3 images is shown, and the child has to reproduce the 
sequence of words heard in the correct order. As above, scores are calculated taking into account 
the number of correct sequences and the number of items in each sequence. 

- Visuo- spatial complex span. This is also a two-step task. In the first step, the child is shown a 
series of 3 shapes in a single row and has to indicate the one that is different (left/center/right). 
After a number of screens, each with the three shapes shown in a row, the child has to indicate in 
an empty screen the position of the different stimulus on each screen, in the right sequence order. 
The difficulty increases by the increasing number of screens shown until the child gets to the 
empty response screen, thus increasing working memory demands with an increasingly longer 
sequence of positions.  
 

2. Educational achievements 
As above, three different measures were used to assess educational achievements, targeting reading, arithmetic 
and geometry skills. These assessments increased in difficulty with each follow-up assessment to incorporate 
the natural development of these skills throughout the school year. 

- Reading: the child is presented with a series of sentences including a gap in the upper part of the 
screen. The child must fill in the gap choosing from the four alternative options presented in the 
lower part of the screen. 

- Arithmetic: the final arithmetic score was the result of adding three different subscores. The first 
subscore was given by the “number sense” test, where participants are presented a varying number 
of circles/balls in a horizontal empty grid (2 rows x10 columns), and they have to compute the 
number of balls shown on each trial. While there are different mechanisms by which the child 
might get to the correct answer, the short presentation time (1.7s) prevents them from simply 
counting the balls and requires some basic arithmetic skills. The second subscore is obtained from 
the auditory arithmetic task, where the child listens to additions or subtractions of two numbers 
and has to provide the correct answer in the touch-screen. In the final written arithmetic subtest, 
the participant is presented with visual stimuli including at least three elements and they have to 
perform the calculation (addition/subtraction) sequentially to arrive to the correct solution, which 
has to be provided again with the touch screen. 

- Geometry: the child is visually presented with a large geometric object and must determine how 
many smaller, simple-shaped object (i.e. square, rectangle, triangle) would fit into that larger 
object. Both are simultaneously presented on the screen and remain on screen until response is 
provided. 

 
 
3. IQ measures 
Two different sets of 17 items from the Colored Progressive Raven’s Matrices were used in an alternate fashion 
to assess IQ on each assessment wave. 
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