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Abstract (145 words)

The benefits and mechanistic effects of working memory training in children are the subject of
much research and debate. The cumulative evidence indicates that training can alter brain
structure and function in the short term and have lasting effects on behaviour. We show that
five weeks of working memory training led to greater activity in prefrontal and striatal brain
regions, better accuracy, and reduced intra-individual variability in response times. The
reduction in intra-individual variability can be explained by changes to the evidence
accumulation rates and thresholds in a sequential sampling decision model. Critically, intra-
individual variability was more closely associated with academic skills and mental health 6-12
months after the end of training than task accuracy. These results indicate that intra-individual
variability may be a useful way to quantify the immediate impact of cognitive training

interventions and predict the future emergence of academic and socioemotional skills.
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Introduction

Cognitive training programs have received considerable attention over the years given their
potential to improve cognitive abilities in healthy and clinical populations. However, the
effectiveness and persistence of benefits from cognitive training programs are still being
closely examined and vigorously debated!”. Although cognitive training programs have been
shown to improve performance on similar untrained tasks (near transfer), the evidence for
transfer to cognitive skills in other domains (far transfer) remains more sparse and
controversial'=>%?. We still lack sufficient understanding of the types of cognitive skills and
abilities that are most beneficial to train, types of training methods and dosages that work best
for particular skills, and the types of individuals that can reap sufficient benefits to justify the

time and monetary costs of cognitive training interventions.

A recent study of over 500 first-grade children has generated important new findings indicating
that the effects of training can emerge and increase over time!?. This study found that the far-
transfer benefits from adaptive working memory training to academic skills (e.g. Reading and
Geometry) were only evident 6-12 months after the end of training. Moreover, this work
showed that five weeks of adaptive working memory training during the first-grade year led to
an increased probability of entering the highest academic track of the German secondary school
system 3-4 years later. Given these results, longitudinal study designs that include follow-up
measures over multiple years will be important for determining the potential effectiveness of

different types and/or doses of cognitive training, especially for children.

It is important to understand the cognitive and neurobiological changes that take place during

or just after training. Presumably, these proximal effects allow for the eventual emergence of
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wider-ranging benefits in the future. Cognitive training that resulted in near- or far-transfer
effects has been reported to alter brain structure and function!!!, Training induced changes
are often observed in prefrontal, parietal, and striatal regions that support executive functions
such as working memory and attention control'’-2!, Here, we will define attention control as
the cognitive processes required to coordinate and allocate attention to the relevant stimuli in
the environment??. Cross sectional and longitudinal studies suggest that the maturation of these
brain regions supports improvements in task performance over the course of development from
childhood into adulthood*-?, and deterioration in these regions and their connectivity is
associated with cognitive decline during aging®-3!. Brain imaging studies have also indicated
that successful transfer from trained to untrained skills requires that both cognitive processes
engage at least partially overlapping structural and functional brain systems*233. Thus, ideally,
cognitive training programs should facilitate neural developments, potentially including
maturation processes in children, that allow for more effective and efficient engagement of
both specialized and domain general brain functions. This is because, by definition, domain
general brain functions will overlap with the processes that support and facilitate a broader

range of untrained skills.

Sensitive and reliable measures of changes in mental functions are necessary to detect the
immediate effects of training interventions and forecast their long-term benefits. Here, we test
the hypothesis that intra-individual variability in task performance — quantified via response
times — can be used to assess training efficacy in the short term and is correlated with future
far-transfer effects. Intra-individual variability measures derived from response times are well
suited to this purpose because they have good test-retest reliability when computed across a
sufficient number of trials, and are as, or even more, sensitive and robust indicators of cognitive

function than the mean or variance in accuracy>*%.
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Intra-individual variability in performance is associated with the cognitive abilities and brain
functions targeted by cognitive training interventions in healthy individuals as well as
individuals with various psychiatric and neurological conditions®¢-3*. Developmentally, intra-
individual variability shows an inverted-U shaped association with age, decreasing (i.e.
improving) from childhood through late adolescence until young adulthood, and then
increasing (i.e. worsening) again in old age?®3%#°, Thus, intra-individual variability tracks the
well-established pattern of brain and cognitive development across the lifespan. Therefore,
intra-individual variability could plausibly detect changes in these systems caused by training
interventions. Intra-individual variability is associated with the integrity of brain structure and
function, most strongly in frontal brain regions, as well as with dopaminergic neuromodulation

see 34 for a review,38,40-44

. Furthermore, intra-individual variability measures are closely associated
with the inhibitory and cognitive control abilities mediated by frontal and subcortical
dopaminergic brain systems in healthy children and adults?®#>4>47_ In summary, there is
sufficient reason to hypothesize that intra-individual response time variability metrics can

detect short-term training effects and may be useful in predicting the degree of long-term

benefits.

We use a combination of cognitive tasks (N-Back and Flanker), functional magnetic resonance
imaging (fMRI), and computational modelling of individual performance to examine the
effects of five weeks of adaptive working memory training on brain and cognitive function in
first-grade children. Working memory training improved response accuracy and decreased
intra-individual variability on both tasks. Moreover, we show that the improvements in intra-

individual variability detected during N-Back and Flanker task performance right after training
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are associated with the children’s academic skills and level of behavioural and psychological

adjustment 6-12 months after training was completed.

Methods

Participants

Twenty-eight typically developing 7 to 9 year-old primary school children (mean age 7y9m,
SD 5m, 14 females, working memory training = 16, comparison group = 12) participated in
the study. These children were recruited out of an ongoing intervention study of over 500
children and 29 different classrooms. All participants had normal or corrected-to-normal vision
and all but 2 were right-handed. No present or past psychiatric diagnosis were reported. Three
of the participants attended schools where, unbeknown to the experimenters at the time of data
collection, the randomization process was compromised. Specifically, the school authorities
agreed to take part in the study only if their classrooms were included in the “instruction as
usual” control group. The children and their families were still blind to the treatment condition
that their classroom had been allocated to. We ran robustness checks for all analyses that
excluded those 3 children and found similar results in all cases. The local ethics committee
(Kantonale Ethikkommission Ziirich) approved all procedures and methods used during this

study. Participants received compensation for the participation in the study as described below.

Recruitment and general procedure

Parents were informed of the upcoming study either during a regularly scheduled Parents’
Evening event taking place at school or in a specific meeting about the study. They were given
a leaflet with the contact details for the team and those who would be willing to know more
about the study or having interest in their children taking part in the study. Once they contacted

the team, they were given an appointment with one of the research assistants at a local school,
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so that they could ask any questions and the children would have information about what the
fMRI session would look like and what type of tasks they would have to perform while inside
the scanner. To help them get familiar with how enclosed they would be and the scanner noise
they were asked to lie flat in a play tunnel for approximately 6 minutes. During this time, they
would see a movie of the different tasks and heard the scanner noise. If they agreed to take
part, they would receive an appointment for the scanner session. On the day of the session, they
were reminded again of the different tasks that they would perform while inside the scanner,
and had the chance to practice them on a laptop until it was clear they understood and were
able to perform those tasks correctly.

Next, a big teddy bear was used to show them the positioning procedures in the scanner, in
order to reduce their potential anxiety and to have the chance to ask any questions they might
have. Finally, once they had been positioned, they could ask for the accompanying parent to
stay in the scanner room with them until they felt safe.

For participating in the fMRI portion of the study, the parents were compensated for the travel
expenses and time. Children received family day passes for the Zurich Zoo and depending on
their performance in one of the tasks, tokens that could be exchanged for prizes (see
Intertemporal Choice Task description in section Post-training cognitive and decision tasks

below).

Cognitive training program description

The training procedures consisted of a five-week intervention and four assessment waves, one
pre-intervention (baseline — w1), one immediately after the end of the five-week intervention
(w2), and two follow-up waves at 6 and 12-13 months respectively (w3 and w4). The
assessment sessions were run by a professional data collection service. These sessions were

conducted by interviewers specifically trained and recruited for the study who were
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experienced with standard procedures in this population and age group. The assessment battery
included tests of working memory and 1Q (digit span, location span, object span, Raven’s test),
educational outcomes (math numeracy and math geometry, reading abilities) and concentration
tests (Go/NoGo and bp task).

The study was conducted using a between-class design, that is, classes were randomly assigned
to the different treatment options. Randomization was stratified based on SES variables
including the proportion of low household incomes, social benefit recipients, and non-Swiss
residents.

The working training program implemented was Cogmed’s RoboMemo!. It is a computerized
program, highly adaptive to individual performance, implemented via notebook computers
including headphones for the spoken instructions and an external mouse. These specially
dedicated notebooks were distributed to the participating schools. The intervention consisted
of a daily working memory training session per day (duration ~ 30 min), over a period of 5
weeks (25 sessions in total). While the standard intervention consists of 13 different tasks, 3 of
them include either letters or syllables that are not suitable for first graders and were therefore
excluded. Most of the remaining tasks focus heavily on visuo-spatial working memory, and
only two of them on verbal working memory (digit span tasks). While 5 of the tasks are simple
span tasks, the remaining 5 can be considered complex working memory tasks, which involve
some processing of the information. Each training session included 6 adaptive modules
(working memory tasks), including each 12 trials (75 trials in total). During the intervention,
there was one specifically trained student coach in each class.

We compare the working memory training group to children that either received standard

classroom instruction or a five-week self-regulation training. The self-regulation training took

! Cogmed and Cogmed Working Memory Training are trademarks, in the U.S. and/or other countries, of
Cogmed Inc. (www.cogmed.com).
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place during school lessons once a week. In these lessons, the teacher taught a version of
the mental contrasting with implementation intentions (MCII) technique*® that was adapted to

the relevant age group and the classroom context.

Post-training cognitive and decision tasks

Subjects practiced each task right before the scanning session. There were 20, 44, and 8 practice
trials for the Flanker, N-Back, and intertemporal choice tasks, respectively.

Working memory (N-Back) task: The 11-min block design working memory task consists of
four conditions (Figure Sla). Participants are presented with series of pictures (1s duration,
followed by 1s fixation cross). In the ‘0-Back’ condition, they have to respond whenever they
see the picture of a sun on the screen. In the ‘1-Back’, ‘2-Back’, and ‘3-Back’ conditions, they
have to respond whenever the picture on the screen is the same as 1, 2, or 3 before it,
respectively. They perform the task in 2 runs (~5 min each). Each run consists of 8 pseudo-
randomised blocks, with 12 stimuli (3 targets and 9 non-targets). Each condition is presented
twice per run. Before each block they saw a green fixation cross (12s) followed by a black
fixation cross (1s) to indicate they should be alert as instructions were coming. They were then
shown instructions (5s) on which condition was coming next. Performance data were recorded
during scanning. The main performance variables are percentage of correct responses
(correctly identified targets/total number of targets), percentage of commission errors (number
incorrect responses/total number of non-target stimuli), mean reaction times to correctly

identified targets, and variability in response times for correct responses.

Flanker task: The 11-min event-related task was designed based on*’. Participants were
presented with 240 trials shown in 2 separate runs (~5 min duration each, Figure S1b). Each

trial consisted in a central row of 5 yellow fishes over a blue background. They were instructed
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to “feed” the fish that was located in the centre of the screen. To do so, the child had to press
the right/left button on the button box, depending on the direction of the central fish and
ignoring the direction of the flankers, which on congruent/incongruent trials point towards the
same/opposite direction, respectively. Each trial consisted of a 1s fixation cross, followed by
the stimulus (1s), and finishing with a blank screen (random duration 0.1-1.5 s). The main
performance variables are the % of correct responses, % of incorrect responses, reaction times,

and variability of response times for each trial type (congruent and incongruent).

Intertemporal Choice Task (ICT): We used an intertemporal choice task similar to one in .
The task consisted of 48 trials, presented in 2 separate rounds, lasting a total of 12 minutes
(Figure S1c). Each trial consisted of a fixation cross (duration random 3-6s) followed by the
stimulus (10s). Each trial consisted of two options shown on the screen. The participants had
to choose between the two options, which would give different numbers of tokens. The tokens
could be exchanged for prizes at the end of the session. Thus, they choose between receiving a
small number of tokens now (either 2, 4, or 6 tokens, received at the end of the scanning
session) or a larger amount of tokens to be delivered in a varying delay in time (either 4, 7, 14,
or 28 days). Each immediate option is paired to each delayed option 4 times. The 48 trials are
presented in two rounds of 24 trials each, in a pseudo-randomised order. Each participant was
shown the immediate option randomly on the right/left side of the screen (but consistently
within one run) and on the opposite side on the subsequent run. Participants were instructed
that immediately after the session, one trial would be chosen at random and implemented. The
child received the number of tokens of the chosen option for that trial, and the subsequently
chosen prize would be either taken home immediately or delivered by the post after the

specified delay.

10


https://doi.org/10.1101/2020.11.19.390427
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390427; this version posted January 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Behaviour Data Analyses

Two of the 28 children withdrew from the study after the first task (in both cases, the
intertemporal choice task). For three participants there were technical failures collecting the
performance data during the Flanker task, which resulted in one participant being excluded due
to the complete loss of performance data, and for 2 participants only 1 run of the task could be

used in the analysis.

Regressions on behavioural performance

Statistical analyses were conducted using RStudio (Version 1.1.442)°!.

The main performance measures for the tasks are as follows: 1) N-Back: percent of correct
responses and false alarms, mean reaction times (RT) and standard deviation of RT (SDRT).
These are combined to calculate a d-prime index and an intra-individual coefficient of variation
for each working memory condition. 2) Flanker: percent correct responses in each condition,
mean RT, and SDRT. 3) Intertemporal choice task: percent of trials in which the delayed option
was chosen, mean RT and SDRT. In the Flanker and intertemporal choice tasks, the RT
variables were used to calculate an intra-individual coefficient of variation for each task just as

in the N-Back task.

We investigated the effects of the working memory training (WMT) on the main performance
variables of the different tasks. To do so, we conducted a general linear model for the N-Back
and Flanker tasks with training group (WMT vs. Non-WMT Comparison) as fixed-effects
factor and task condition (N-Back: high working memory vs. low working memory; Flanker:
congruent vs. incongruent) as random-effects factors. For the ICT we conducted an univariate
ANOVA with percent delayed option chosen as the main performance variable and training

group (as above) as between-subjects factor.

11
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Decision diffusion modelling

We used a Bayesian hierarchical approach to fit the parameters of the decision diffusion model
(DDM) to the Flanker task using JAGS®? and the JAGS Wiener module together with the
rjags package®* in R. The fitting was run with 3 chains, 100,000 burn-in samples and 10,000
posterior samples with a thinning rate of 10 samples. Drift rates were calculated as a weighted
linear combination of the target and non-target stimuli in order to distinguish the relative

contribution of each to the evidence accumulation rate.

fMRI data collection and analysis

MRI scanning parameters

Images were acquired using a Philips Achieva 3T whole-body scanner with an eight-channel
sensitivity-encoding head coil (Philips Medical Systems) at the Laboratory for Social and
Neural Systems Research, University Hospital Zurich. The paradigms were written using
Matlab, and presented using the Psychophysics Toolbox extension (Psychtoolbox v3.0,
Brainard 1997) via a back-projection system mounted on the head-coil. We acquired gradient
echo T2*-weighted echo-planar images (EPIs) with blood-oxygen-level-dependent (BOLD)
contrast (37 slices per volume, Field of View 200 x 200 x 133 mm, slice thickness 3 mm, .6
mm gap, in-plane resolution 2.5*2.5 mm, matrix 80*78, repetition time 2344 ms, echo time 30
ms, flip angle 77°) and a SENSE reduction (i.e. acceleration) factor of 1.5. Volumes were
acquired in axial orientation at a -20° tilt to the anterior commissure-posterior commissure line.
The functional runs comprised a number of volumes in ascending order (volumes N-Back: 144,
volumes FT: 145, volumes ITC:154) in addition to five “dummy” volumes at the start of each
run. To measure and later correct for the homogeneity of the magnetic field BO/B1 maps were

collected (short echo time = 4.29 ms, long echo time = 7.4 ms). Breathing frequency and heart
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rate were measured with the in-built system of the scanner in order to correct for physiological
noise. A T1-weighted turbo field echo structural image was acquired for each participant (181
slices, Field of View 250 x 250 x 181 mm, slice thickness 1 mm, no gap, in-plane resolution

1*1 mm, matrix 256*256, repetition time 8.2 ms, echo time 3.8 ms, flip angle §°).

JSMRI preprocessing

Image analysis was performed using SPM 12 (Wellcome Department of Imaging Neuroscience,
Institute of Neurology, London, UK). Functional images were realigned and unwarped,
segmented according to the standard T1-weighted structural images, normalized to the mean
subject’s EPI template and smoothed using a 5 mm full width at half maximum isometric

kernel. To account for physiological noise we used the PhysIO toolbox implementation of

RETROICOR (http://www.translationalneuromodeling.org/tapas/).

SMRI General linear models (GLM)

We computed two GLMs at the first level (single subject) with SPM12 and results were
examined at the second (group) level using the Randomise function from the FMRIB Software
Library (http://fsl.fmrib.ox.ac.uk/fsl/) to implement non-parametric permutation tests (n=5000
permutations, with threshold-free cluster enhancement - TFCE). All the reported results are
Family Wise Error (FWE) corrected at the voxel level and coordinates are given in Montreal
Neurological Institute (MNI) space. Furthermore, for all the analyses, regressors were
convolved with the canonical hemodynamic response function implemented in SPM12, high
passed filtered (128s) and modelled using AR(1) autoregression.

Working memory task: In order to identify the potential effects of the working memory
training on working memory capacities, we used a boxcar function to model BOLD activity

during the low working memory (LWM) blocks (including both 0 and 1-back blocks) and
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separately during the high working memory (HWM) blocks (including 2 and 3-back blocks).
Each block was modelled with a start with the beginning of the first stimuli of the block (that
is, after the instructions screen for each block) until the end of the last stimuli of the block.
Motion parameters and the physiological regressors output from RETROICOR were also
included as variables of no interest. The contrasts of interests were the activation during each
condition (HWM and LWM). These contrasts of interest were calculated at the individual level
and the outcomes were entered into non-parametric permutation tests conducted using the
randomise command in FSL at the group level for statistical inference.

Flanker task: Correct congruent and correct incongruent trials were modelled separately as
events of duration equal to their reaction times. Furthermore, missed and incorrect trials were
also included as variables of no interest as well as motion parameters and the physiological
regressors output from RETROICOR. Following the GLM estimation, we computed the
contrasts of interest: 1) activation during congruent, and 2) activation during incongruent trials,
separately. These contrasts of interest were calculated at the individual level and the outcomes
were entered into non-parametric permutation tests conducted using the randomise command

in FSL at the group level for statistical inference.

Regressions on long-term follow-up measures

In order to investigate whether intra-individual variability measures could be indicative of
future outcomes at the subsequent follow-up assessments across all intervention groups, we
conducted Bayesian linear regression analyses. We focused on the academic skills of
arithmetic, geometry, and reading abilities, following Berger et al'°. We also analysed the total
score from the Strength and Difficulties Questionnaire (SDQ), a general mental health
screening tool for indexing the level of behavioural and psychological adjustment in healthy

and clinical populations. Specific follow-up or intra-individual variability measures were

14
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missing for some children (maximum missing values for any measure = 4). In order to use as
much of the data as possible, we imputed the missing values using the ‘mice’ package® in R.
We generated ten different imputed datasets and fit Bayesian linear regressions to each of them
using the R package, ‘brms’>7 as an interface to STAN>®, We drew our final inferences from
the combined posterior distributions of all ten regression models in order to reduce the
influence of any one set of imputed values on our results. The full set of regressor variables

and results from these regressions are reported in Table 4.

Conceptual replication in the ABCD study

We used the Data Exploration and Analysis Portal (https://deap.nimhda.org), which allows the

fitting of additive mixed models using the R package GAMMA4. We fit additive mixed models
testing the relationship between the individual coefficient of variation (ICV) in the N-Back
task and general mental and physical health as indexed by the Child Behavioral Checklist
(CBCL)*, and body mass index (BMI). These models controlled for random effects for sibling
pairs, fixed effects of parental race and education level, and participants’ age and sex. We
selected only those participants whose performance in the N-Back task was deemed as
adequate by the ABCD study’s established QA procedure (overall response accuracy for 0-

back or 2-back > 60%).

Results

Behavioural Results

Children in the working memory training group (WMT) did not differ from those in the
comparison group (CMP) at baseline. Before the start of any training program, all participants
were assessed using a number of tests that included general intelligence (a modified version of

the Raven Matrices), working memory (visual, spatial), inhibition (Go-NoGo task), school
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performance (including reading, arithmetic, geometry, etc) and general mental health screening
measures (Strength and Difficulties Questionnaire). Statistical comparisons between the two

groups show that they did not differ in any of these baseline measures (Table S1).

Accuracy and response-time variability findings

Overall, adaptive working memory training led children to perform more accurately
and with less trial-to-trial variability in response times during the N-Back (working memory)
and Flanker (selective attention / response inhibition) tasks. Figure 1 shows the differences
between training groups in the N-Back, and Flanker tasks (see Table S2 for the full set of
descriptive statistics and results). The WMT group responded more accurately in the Flanker
task across both the congruent (i.e. easier) and incongruent (i.e. harder) trials. In the N-Back
task, children in the WMT group were more accurate than those in the non-working memory
comparison group on low working memory trials (0-1 back), but the two groups did not
significantly differ on high working memory trials (2-3 back).

In addition to better accuracy, children that received adaptive working memory training
also showed less intra-individual variability in response times than children that did not receive
working memory training (Figure 1). We computed the intra-individual coefficient of variation
as intra-individual RT standard deviation / intra-individual RT mean. Note that the standard
deviation of reaction times was not significantly correlated with mean response times (N-Back:

=-0.2816,p=0.1727,95% CI [-0.61, 0.13]; FT: r =-0.01, p = 0.959, 95% CI [-0.41, 0.39]).
Furthermore, an analysis of ex-gaussian parameters fit to each child’s response time
distribution revealed that the standard deviation (sigma) and exponential (tau) parameters
differed between the working memory trained and comparison groups, but there was no
significant difference in the means (mu) of the response time distributions (Table S3). In other

words, more variable individuals were not reliably faster or slower to respond overall. Rather
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they were more inconsistent in the way they executed their responses. Intra-individual
variability was highly correlated across the N-Back and Flanker tasks (r = 0.65, p = 0.0008,
95% CI[0.32, 0.84]). Together, the pattern of results across both cognitive tasks suggests that
the adaptive working memory training intervention may have improved children’s ability to
engage and maintain attention on task-relevant information in a domain-general manner soon
after the five weeks of training were complete.

We did not detect any effects of adaptive working memory training on intertemporal
monetary choice outcomes or on intra-individual variability in that decision task. Thus,
children in the WMT group did not differ from those in the comparison group in their
willingness to wait for larger, delayed monetary rewards within the range of amounts and
delays included in this study. That being the case, we focus on the N-Back and Flanker tasks

in the remaining sections of this paper.
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Figure 1. Task performance in the N-Back and Flanker tasks. The figure shows the performance for
each group in the main outcome variables of the N-Back and Flanker tasks. Top left panel: The working
memory training group (red) shows higher D-prime scores in the low working memory condition than
the comparison group (blue), while both perform similarly in the high working memory condition. Top
right panel: Children in the working memory group show reduced intra-individual coefficient of variation
relative to those in the comparison group on both task conditions. Bottom left panel: children in the
working memory group show higher accuracy than those in the comparison group in the Flanker task.
Bottom right panel: children in the working memory group show reduced intra-individual coefficient of
variation than those in the comparison group across all trial types in the Flanker task.

JMRI results

Along with better accuracy, the WMT group showed increased activation compared to the
comparison group in brain regions that are part of attention and control networks during the
low working memory trials. This included portions of fronto-striatal-thalamic systems such as

the right caudate, putamen, pallidum, thalamus, inferior middle and superior frontal gyri, the
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dorsal anterior cingulate and the supplementary motor cortex (Table 1, Figure 2). Consistent
with the behavioural findings of similar accuracy in the high working memory condition, there
were no significant differences in the BOLD signal across groups during the high working
memory trials. We did not detect any significant differences in activity as a function of working
memory training during the Flanker task.

In addition, we found that task-related BOLD signal levels in regions that showed
greater activity in the WMT group (see Figure S2) also correlated with the intra-individual
coefficients of variation and/or accuracy on the N-back task across all participants (Figure 2,
bottom row). Some relation to accuracy and the intra-individual coefficient of variation in these
regions is to be expected given that there are group differences in intra-individual variability
(see Figure 1). However, activity in the dorsal striatal functional ROI, encompassing dorsal
caudate and putamen, was significantly associated with intra-individual variability even after
accounting for the effects of working memory training condition (coef =-0.25, p = 0.004; Table
2). There were similar, though not significant, trends in the dorsolateral prefrontal cortex
(dIPFC) for intra-individual variability, and in the anterior cingulate cortex/supplementary

motor area for accuracy (Table 2).
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Figure 2. Group differences on brain activation. The WMT group had greater
activity in frontostrial regions than the CMP group in N-Back tasks. Consistent with
the behavioural results, these differences were specific to the low working memory
condition. The bar graphs show the average BOLD signal in each group, in the two
clusters circled in yellow (1) right dorsolateral prefrontal cortex (left panel) and (2)
right putamen (right panel). The scatter plots in the bottom row show the
association between BOLD signal and individual differences in the coefficient of
variation across all trials. Children in the WMT group are shown in red while those
in the CMP group are shown in blue.

Diffusion Decision Model analyses

Diffusion decision models are a form of computational modelling that can quantify and
distinguish between different cognitive processes that may give rise to intra-individual
variability®*!, Previous work has shown that the effects of attention on task performance and

decision making can be formalized and quantified by diffusion decision models®>** (DDM).
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Here, we fit the DDM to children’s behaviour in the Flanker task. We did not fit data from the
N-Back task because it required responses only on target trials, which were a small minority

(25%) of all trials.

The idea behind sequential sampling models is that participants repeatedly extract noisy signals
from the stimuli and/or their own minds until they are sufficiently sure of the best response.
Previous work has shown that visual attention changes the way in which the evidence for each
alternative is accumulated®>%*. From moment to moment, items that are fixated influence the
accumulation rate more strongly than items that are not currently fixated. We hypothesized
that, if working memory training influenced the ability or motivation to selectively attend to
task relevant information, then we should see differences in the estimated drift rates for the
DDM between the WMT and CMP groups. Past work examining the role of attention on DDM
parameters has used visual fixation (measured with eye tracking) as a proxy for attention$?64,
and estimated how drift rates change within a choice as a function of the stimulus the
participants fixate at a given point in time. In contrast, we don’t need to subdivide the trial
durations based on fixation locations in order to test our hypothesis about drift rates in the
Flanker task. The design of the Flanker task is such that only one of the stimuli on the screen
contains the trial-specific information that is relevant for behaviour, the target. Therefore, we
can estimate how much target versus distractor stimuli contribute to the drift rate across the
entire duration of the trial in each training group.

In our specification of the DDM, the magnitude of the drift rate coefficients informs
us about how strongly each stimulus influences the evidence accumulation processes. In the
flanker task, children should be focused on the target fish because it alone provides evidence
for the correct response in each trial. The direction the flanking distractor fish are facing is

irrelevant and should be ignored. Thus, we specified the drift rate according to equation (1)
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below. We hypothesized that 31 — B2 (i.e. the weight on relevant minus irrelevant information)

should be greater in the WMT than the CMP group.

(1) Drift = B1*Target Direction + B2*Distractor Direction

The DDM results are consistent with an improved ability to focus attention on task
relevant features following working memory training. The results from the Flanker task
showed that children in the WMT group were more sensitive to the information carried by the
target fish (i.e. its direction) relative to distractor fish (p = 0.008, Table 3) and utilized a higher
response threshold (p = 0.048, Table 3) than children in the comparison group.

Furthermore, simulated responses from the fitted diffusion decision model reproduce
the patterns of response time variability observed in the Flanker task. To generate simulated
responses in the Flanker task, we used each participant’s best-fitting DDM parameters. We
then compared the simulated response times across groups and found that the RTs were less
variable for simulated agents using parameters from the WMT participants than for simulated

agents based on CMP children’s parameters (Table S4).

Associations between post-training cognitive task performance and follow-up measures
The recent work of Berger and colleagues!® showed that some effects of working memory
training in children are only evident in follow-up assessments 6 or 12-13 months after training
was completed. Therefore, we investigated if the intra-individual variability measures that we
computed immediately after the training could serve as indicators of relevant future outcomes
at the subsequent follow-up assessments.

The ultimate goal of any training is to have a meaningful impact in the life of the
participants. Therefore, we focused on outcome measures of academic performance and

behavioural and psychological adjustment that could represent an impact in “real-life”.
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Specifically, we examined the total score in the Strength and Difficulties Questionnaire
(SDQ)*, a behaviour and mental health screening measure typically administered in clinical
settings to identify potential problematic areas in a child that merit further assessment by a
specialist. The SDQ was filled out by parents 6 months after training. We also examined tests
of academic performance in reading and two mathematics subscales (geometry and arithmetic)
conducted 1 year after training. We focused on these specific academic skills because of the

results from the independent sample in Berger et al'

, which show that working memory
training improved geometry and reading scores, but not arithmetic.

We conducted linear regression analyses that tested if these measures of future general
mental health and academic skill could be explained by children’s accuracy (d-prime) or
response time variability in cognitive tasks performed at the end of the training period.
Specifically, we used the coefficient of variation in response times and d-prime scores from
the N-Back task and the estimates of DDM drift rates from the flanker task to explain future
outcomes. Response time variability explained significant additional variance in future SDQ
scores (standardized coef. = 0.32 £ 0.14), geometry (standardized coef. = -0.66 + 0.23), and
reading (standardized coef. = -0.32 + 0.14), even after accounting for baseline scores in those
measures and 1Q (Table 4). In contrast, no post-training cognitive task performance or baseline
measures were significantly associated with future arithmetic scores. Thus, in our sample, the
intra-individual variability in response times measured right after the intervention correlated

with future performance in the same academic domains that Berger and colleagues previously

found to be improved one year after working memory training in an independent sample.

Testing the association between intra-individual variability and general mental health in an
independent sample.

We examined whether there were similar associations between intra-individual variability in
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response time during the N-Back task and mental and physical health in the children in the

ongoing longitudinal ABCD study (https://abcdstudy.org, data release version 2.0.1; N = 7894

children). In this case, we had to limit our analysis to concurrent baseline measures because
follow-up measures were not yet available. The ABCD study is a longitudinal, multicentre
study of children’s cognitive and neurobiological development starting from age 10. This study
includes a wide range of standardized questionnaires and interviews covering both general
well-being and clinical measures. In addition, participants perform several cognitive tasks,
including an N-back task®. We tested if intra-individual variability, once again quantified as
the coefficient of variation in response times, during the N-Back task was associated with
scores on the Child Behavioural Checklist (CBCL)>°. The CBCL is a measure of current
behavioural and psychopathological symptoms with high correspondence to the SDQ when
both scales are applied to the same individuals. The ABCD study includes the CBCL, but not
SDQ. We also tested for potential relationships between intra-individual variability and body
mass index (BMI) scores. We chose BMI as an additional translational measure robustly
associated with physical, cognitive, and socioeconomic well-being. Decreased intra-individual
variability in response times during the N-Back task was associated with decreased concurrent
total CBCL scores (i.e. lower variability was associated fewer potential problems, standardized
coef. = 0.27 £ 0.13). Less intra-individual variability during the N-Back was also associated
with lower BMI scores (standardized coef. = 0.15 + 0.04; Table 5). Thus, the results from this
large independent sample are consistent with our original findings showing that less intra-
individual variability in response time is associated with increased general mental health and

academic skills.
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Discussion

The present study examined how the neurocognitive mechanisms underlying the short-term
impact of adaptive working memory training in primary school children relate to training
benefits that emerge months or years after training. Overall, our results suggest that in addition
to working memory itself, there may be concurrent improvements in selective and sustained
attention during or directly after five weeks of training. We show that intra-individual
variability in response times during working memory and selective attention tasks can be used
to detect short-term training effects in children, and that such measures may be indicative of
the persistence and/or emergence of far-transfer benefits months to years after training is

completed.

Our findings indicate that improvements in attention are among the immediate results of
adaptive working memory training. Working memory and attention processes are thought to
be closely linked and interdependent®!7-66-7! Although they have different primary targets, both
the Flanker and N-Back tasks require the ability to maintain attentional focus throughout the
duration of the task (sustained attention), and to identify the target stimuli and filter out or
inhibit responses to non-target stimuli (selective attention). At the neural level, differences
between the WMT and CMP groups were found in striatum as well as the lateral and medial
prefrontal cortices, which are brain regions that, among other things, support selective and
sustained attention functions'®!>72, These neural differences were accompanied by better
signal detection performance (i.e. higher d-prime), reduced intra-individual variability in
response times, and more efficient accumulation of relevant information (i.e. higher DDM drift
rates) in children that received adaptive working memory training. All of these behavioural
measures are related to and dependent on attention. Therefore, taken together, our neural and

behavioural results suggest that the benefits of the working memory training program used in
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this study are at least partially mediated by improvements in attention processes leading to
consistent and effective responses to task relevant information and reduced processing of

irrelevant, distracting stimuli.

These results lend further support to theories of the mechanisms underlying training benefits.
A meta-analysis of previous training studies concluded that the Cogmed-RM adaptive working
memory training program has effects on attention in daily life”>. The improvements in attention
processes we detected at the end of the training are consistent with previous results and theories
about the basis of far transfer effects following cognitive training as well3>*374, Specifically,
these far-transfer benefits occur when the trained and transfer skills share common fundamental
cognitive processes. Given the important role of attention as a prerequisite to many cognitive

processes, it could serve as a basis for far-transfer effects following working memory training.

Recently, the effects of the adaptive working memory training in school-age children have been
shown to emerge over 6 to 12 months!®. Initial improvements in attention may serve as a
scaffold for later changes in higher cognitive processes that facilitate better school
performance. Our current results suggest that attention functions might be among the first to
improve from this type of training, and that later emerging benefits to academic skills and
general mental health are associated with immediate improvements in attention processes. It is
not surprising that working memory training would also influence attention control (e.g.
selective attention, sustained attention, or goal-directed attention reallocation) given that these
processes are postulated to be pre-requisites for the successful implementation of working

memory6,l7,66-68,7l

. There is also evidence that the associations between working memory
capacity and various cognitive and academic skills are partially mediated by a common reliance

on attention control®7%75, Given the apparent role of attention processes in mediating the far
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transfer of training effects, it is important to measure these processes when assessing the

efficacy of working memory training and other forms of cognitive training.

The ability of intra-individual variability metrics to detect individual differences in attention
control could explain the association we find between them and the future emergence of
benefits to academic skills and general mental health after working memory training. Intra-
individual response time variability metrics are sensitive and reliable measures of individual
differences in attention control processes#3>. They are often used as an index of an individual’s
attention allocation efficiency or degree of fluctuation in attention control during task
performance*#6-7¢-78  Intra-individual variability has been linked with cognitive control
measures in healthy children and adults, and the variability in response times measured in one
task is correlated with working and long-term memory or intelligence measured in separate
tasks2842:4546.79-81 Tt also differs between healthy individuals and those with attention deficit
hyperactivity disorder (ADHD)?3¢-3742:8283 However, increased response time variability is not
unique to ADHD and is seen in various psychiatric and neurological disorders (e.g. traumatic
brain injury, dementia, and schizophrenia), in which attention deficits may play an important,
though less prominent, role®6-38448384 Increased intra-individual variability is commonly
observed in non-affected relatives as well as patients, indicating that it may capture shared
genetic or environmental risk factors for current and future psychopathologies**76-82:8586 n
fact, a recent review by Haynes et al. highlights several longitudinal studies in older adults that
have shown that the intra-individual variability in response times is associated with future
levels of cognitive impairment and mortality®*. Thus, intra-individual variability measures are
sensitive to not only to current cognitive and neurological function, but also associated with

the future stability or decline in those functions.
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Here, we have shown that intra-individual variability metrics can detect the short-term efficacy
and are indicative of the emergence of longer-term benefits of working memory interventions
aimed at improving cognitive skills and academic performance in children. Five weeks of
working memory training led to significant decreases in intra-individual response time
variability on two separate cognitive tasks (N-Back and Flanker), completed soon after the
training period ended. Consistent with their ability to forecast cognitive decline in the elderly,
we found that measures of the intra-individual variability computed at the end of training were
associated with improvements in academic skills and general mental health in children up to
one year after training. Lower post-training variability was related to better future scores on
tests of academic skills and strengths/weaknesses in classroom and social behaviour for the full

sample.

Our results suggest that measures of intra-individual variability are useful in evaluating
intervention efficacy. However, there are several important questions that still need to be
addressed. For example, can we use intra-individual variability metrics to determine when an
individual has received a sufficient dose of the training intervention? If so, then we could tailor
the amount of training to each person in order to improve the cost benefit trade-offs inherent
in any training program. Another key question our findings raise is what types of tasks (e.g.
those targeting working memory, attention, task-switching, etc) and measures of intra-
individual variability are best suited to assessing the short and long-term outcomes of cognitive
training. Previous work has quantified intra-individual variability in response times in several
different ways®2#>87. We found significant differences in response time variability between
training groups in both selective attention (Flanker) and working memory (N-Back) tasks, that
were robust across common measures of variability (coefficient of variation, ex-gaussian

decomposition, and diffusion decision modelling). However, there may be differences in how
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well the different measures of variability and/or task designs predict the emergence of benefits
to specific areas of academic performance or general mental health in the longer term. This
question will be important to address in future studies that collect and compute multiple

longitudinal measures in large samples of participants.

Although a relative strength of our study is the amount of longitudinal data we have on each
participant, one of the limitations is the small sample size. The concerns that small sample sizes
might raise are mitigated, in this case, by the fact that key results replicate in much larger
samples. Specifically, the working memory training effects we find replicate those found in
Berger et al'® using the same form and duration of training in a separate sample of over 500
children. We also conceptually replicate the associations between the coefficient of variation
in response times during an N-Back task and measures of mental and physical health in over
7800 children from the ABCD study®. Another limitation of this study is that, although it
contains a number of pre-training baseline measures, it lacks data from the Flanker and N-Back
tasks before training. The lack of baseline data on these tasks prohibits us from testing if the
level intra-individual variability before the intervention is related to either short or long-term
training outcomes. It will be important to determine if baseline measures of intra-individual
variability can be used to help assign individuals to the appropriate level of initial training
duration or potentially even training types. Moreover, changes in variability (i.e. post minus
pre-training) may be even better predictors of the emergence of future benefits than post
training measures alone!%%8,

Effective means of enhancing cognitive abilities have been a long-standing goal in many
disciplines. Our current work adds to the existing evidence that adaptive working memory
training can significantly benefit school-aged children®!%#%%0, Moreover, it provides additional

insights into the mechanisms underlying these benefits. Together with the recent findings of
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Berger et al'®, it also highlights the importance of including long-term follow-ups in any
evaluation of training efficacy. In addition to long-term follow-up data, we demonstrate the
utility of using response time variability metrics as an immediate indicator of intervention
success. The practical relevance of such an immediate assessment tool should not be
overlooked, as it could potentially allow for tailoring training interventions in terms of duration
or content without needing to wait for years for follow-up data to determine whether or not

long-term benefits will emerge.
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Table 1. Regions showing increased BOLD signal response in the WMT versus CMP groups during the
low working memory condition of the N-Back task.

Region Cluster X;y;Z T-stat (1) T-stat (2)
Size

Juxtapositional Lobule Cortex (formerly
Supplementary Motor Cortex); Precentral

Gyrus; Superior Frontal Gyrus; Cingulate 189 - 10;-8;58 7.1 6.01
Gyrus, anterior division

Frontal Pole; Middle Frontal Gyrus; Superior 146 37: 36: 43 4.66 457
Frontal Gyrus

Right Putamen; Right Caudate 133 15:9: 18 479 4.18
Right Pallidum; Right Accumbens; Right

Putamen; Right Hippocampus; Right 125 10; -13; -12 591 542
Amygdala

Superior Frontal Gyrus; Paracingulate Gyrus; 77 2: 41: 45 43 4.06
Frontal Pole

Precentral Gyrus; Inferior Frontal Gyrus, pars

opercularis; Postcentral Gyrus; Central 46 47; 4; 18 4.78 3.72
Opercular Cortex

Right Putamen 24 25;-8;23 5.02 5.01
Cingulate Gyrus, anterior division;

Paracingulate Gyrus; Juxtapositional Lobule .

Cortex (formerly Supplementary Motor 2 12,115 35 4.64 4.34
Cortex)

Inferior Frontal Gyrus, pars opercularis;

Inferior Frontal Gyrus, pars triangularis; 16 52;19; 10 4.29 3.11
Precentral Gyrus

Precentral Gyrus; Postcentral Gyrus 12 -25;-26; 50 5.15 4.04
Middle Frontal Gyrus; Inferior Frontal Gyrus,

pars triangularis; Inferior Frontal Gyrus, pars 7 42;29; 23 4.42 3.56
opercularis

Precentral Gyrus 6 22;-11; 45 5.26 4.11

All reported regions are significant at p <0.05 after whole brain FWE correction at the voxel level. Here we report
only regions with a cluster extent greater than 5 voxels. The full sets of unthresholded t-statistics can be found on
Neurovault.org (https://identifiers.org/neurovault.collection:9005). The FWE correction was based on 5000
permutations of the threshold free cluster enhancement (TFCE) values. The TFCE values and permutation-derived
test statistics were calculated using the Randomise function implemented in FSL. All coordinates are listed in MNI
space and represent the peaks of all clusters formed by contiguous voxels Anatomical labels were derived from the
Harvard—-Oxford cortical and subcortical atlases. The two T-stat columns show the T value for the comparisons (1)
in the whole sample (working memory training group = 14, comparison group = 11, total N=25); (2) in the sample
after excluding the three children with non-random assignment to the pure control condition (working memory
training group = 14, comparison group = 8, total N=22)
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Table 2. Associations between BOLD signal in ROIs where group differences were identified in the LWM
contrasts and intra-individual coefficient of variation and d-prime across all trials

Dorsal striatum

Estimate (se) T value P value
Group 0.17 (0.15) 1.16 -
ICV -0.25 (0.08) -3.26 0.004*
d-prime 0.12 (0.06) 2.10 0.049*

dIPFC

Estimate (se) T value P value
Group 0.56 (0.31) 1.782 -
ICV -0.32 (0.16) -1.978 0.0619
d-prime 0.09 (0.13) 0.689 0.4989

dACC-SMA

Estimate (se) T value P value
Group 0.50 (0.20) 2.497 -
ICvV -0.13 (0.10) -1.249 0.2260
d-prime 0.14 (0.08) 1.794 0.0879

The table reports the results from three linear regression models testing the association between the intra-
individual coefficient of variation and d-prime during the N-Back task and BOLD signal after accounting for the
effects of training condition (Group). The linear model in each region was computed as BOLD signal ~ Group +
ICV + d-prime + Delay, where Delay is a control variable that accounts for the delay between the end of the
intervention and the scanning session (omitted from the table for conciseness). We list the T-values for the binary
regressor indicating training group for comparison with the linear regressor for ICV. However, we do not report
p-values for the Group regressor because the functional ROIs were originally identified with this contrast, making
the analysis circular. The point of these regressions is to test if differences in ICV provide additional explanatory
power in the region where activity differed between training groups. se = standard error; ICV = Individual
Coefficient of Variation; dIPFC = dorsolateral prefrontal cortex; dACC= dorsal anterior cingulate; SMA =
supplementary motor area. * denotes significance at 0.05 p-value threshold.
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Table 3. Diffusion Decision Model parameters for the Flanker task

WMT CMP WMT - CMP

DDM Parameter m HDI m HDI m HDI

Target drift coef. 2841230 338|199 | 1.65 237 0.84* | 020 1.49
Distractor drift coef. | 0.20 | 0.03 038 | 0.25 | 0.00 0.51 | -0.05 | -0.36 0.25
Target - Distractor 264 (206 320175131 219 0.89* | 0.14 1.57
Boundary 253 (213 296|209 | 175 242 0.45% | -0.08 0.98
Non-Decision Time | 0.30 | 0.22 037 | 024 | 0.14 0.35| 0.05 | -0.07 0.18

This table lists the mean (m) as well as the lower and upper bounds of the 95% highest density interval (HDI) of
the posterior distributions for parameters or parameter differences from the decision diffusion model (DDM) fit
to the Flanker task. The DDM was fit to the Flanker task data separately for the children in the group that received
working memory training (WMT) and those in the comparison group (CMP). The asterisks next to the mean
differences between WMT and CMP denote those means that are significantly different based on a one-sided test
of posterior probability of the mean for WMT being greater than the CMP group.
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Table 4. Results of the regression analyses showing the association between task performance and follow-
up measures in our sample.

Dependent variable: Strength and Difficulties Questionnaire Total Scores 6 months after end of training

Mean SD HDI Post. Prob.
N-Back ICV 0.318 0.143 0.034 0.604 0.983*
N-Back dprime -0.253 0.125 -0.489 0.006 0.973
Flanker drift rate 0.208 0.207 -0.236 0.583 0.847
Time after training 0.014 0.174 -0.33 0.34 0.539
1Q baseline -0.113 0.143 -0.386 0.176 0.794
SDQ baseline 0.543 0.189 0.167 0.906 0.996*
Omission errors GNG Baseline -0.218 0.184 -0.593 0.126 0.883
Reading baseline 0.234 0.202 -0.181 0.628 0.882
Arithmetic baseline -0.064 0.201 -0.447 0.348 0.643
Geometry Baseline -0.178 0.15 -0.491 0.111 0.893

Dependent variable: Reading Scores 12 months after end of training

Mean SD HDI Post. Prob.

N-Back ICV -0.321 0.144 -0.597 -0.027 0.981*
N-Back dprime -0.022 0.126 -0.273 0.225 0.568
Flanker drift rate -0.117 0.199 -0.508 0.278 0.729
Time after training -0.136 0.153 -0.437 0.17 0.822
1Q baseline -0.015 0.15 -0.32 0.285 0.541
SDQ baseline 0.008 0.176 -0.342 0.361 0.522
Omission errors GNG Baseline 0.119 0.166 -0.205 0.455 0.776
Reading baseline 0.268 0.199 -0.12 0.667 0.92
Arithmetic baseline 0.269 0.207 -0.15 0.674 0.908
Geometry Baseline -0.243 0.15 -0.54 0.05 0.947

Dependent variable: Mathematics - Arithmetic Scores 12 months after end of training

Mean SD HDI Post. Prob.

N-Back ICV -0.443 0.278 -0.997 0.116 0.943
N-Back dprime 0.014 0.224 -0.426 0.457 0.519
Flanker drift rate -0.147 0.401 -0.905 0.616 0.633
Time after training 0.006 0.238 -0.478 0.47 0.515
1Q baseline 0.36 0.275 -0.157 0.897 0.906
SDQ baseline 0.066 0.285 -0.483 0.636 0.591
Omission errors GNG Baseline 0.197 0.251 -0.296 0.695 0.79

Reading baseline 0.107 0.329 -0.535 0.758 0.618
Arithmetic baseline 0.473 0.343 -0.227 1.13 0.916
Geometry Baseline -0.154 0.234 -0.601 0.322 0.757

Dependent variable: Mathematics - Geometry Scores 12 months after end of training

Mean SD HDI Post. Prob.
N-Back ICV -0.666 0.225 -1.09 -0.215 0.996*
N-Back dprime -0.074 0.194 -0.453 0.304 0.648
Flanker drift rate -0.232 0.29 -0.787 0.347 0.802
Time after training 0.043 0.231 -0.401 0.494 0.575
1Q baseline 0.42 0.237 -0.049 0.904 0.962
SDQ baseline 0.069 0.273 -0.455 0.624 0.598
Omission errors GNG Baseline -0.096 0.251 -0.587 0.408 0.654
Reading baseline -0.223 0.298 -0.807 0.37 0.775
Arithmetic baseline 0.476 0.309 -0.159 1.063 0.932
Geometry Baseline 0.075 0.227 -0.372 0.53 0.632

Bayesian linear regressions testing for relationships between N-Back ICV and Flanker task DDM drift rates and
follow-up measures 6 or 12 months after the end of training. The columns labeled mean and SD list the mean and
standard deviation of the posterior distribution for each coefficient. All independent variables in these models
were standardized using the z-score transformation. The two columns labeled HDI give the lower and upper
bounds of the 95% highest density interval for the posterior distributions of each coefficient. The regressions
included the child’s standardized score at baseline for 1Q, go-nogo task performance, SDQ, and all three academic
skills to account for any potential baseline differences. They also included an additional control covariate for the
number of months between the training and the performance of the N-Back and Flanker tasks (Time after training).
Abbreviations: ICV = intra-individual coefficient of variation in response times, IQ = intelligence quotient, SDQ
= strengths and difficulties questionnaire score, GNG= Go/NoGo task, HDI = highest density interval of the
posterior distribution, Post. Prob. = posterior probability that the estimated regression coefficient is greater or less
than zero.
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Table 5. Results of the regression analyses showing the association between Intra-individual variability
and general mental and physical health in the ABCD Study

A Dependent variable: CBCL total score

Estimate Std Error T value p-value
N-Back ICV 0.27035 0.12445 2.17 0.02985
N-Back correct rate -1.07062 0.12994 -8.24 <le-6
Controlling for:
Race
Sex
Parental education
Age
B Dependent variable: Body Mass Index (BMI)

Estimate Std Error T value p-value
N-Back ICV 0.1463 0.04249 3.44 0.000578
N-Back correct rate -0.0487 0.04434 -1.10 0.27215
Controlling for:
Race
Sex
Parental education
Age

This table shows the relationship between the intra-individual coefficient of variation in response times (ICV), as
well as the correct response rate in the N-Back task and measures of mental and physical health. A ) The mental
health measure was the total score from the Child Behavioral Checklist (CBCL total score). Lower scores on the
CBCL are better. B) Shows the results for physical health as indexed by body mass index (BMI). The N-Back
ICV and accuracy measures were scaled using a z-score transformation before fitting the model. The CBCL and
BMI scores are in their native units. The mixed effects regressions also included fixed effect control covariates
for child’s age, sex, race (Asian, Black, Other/mixed, White; from parental report), and highest parental education
level (< Highschool diploma, Highschool diploma/GED, Some College, Bachelor degree, Post Graduate degree;
from parental report). In addition to these fixed effects the regression model included random effects covariates
for sibling pairs.
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Supplementary Material

Figure S1. Schematic representation of the fMRI tasks.
a) N-Back working memory task

I

b) Flanker task

D) BOD D

c) Intertemporal Choice Task

Schematic representation of the fMRI tasks. (a) N-Back working memory task. The image respresents a trial in
the 2-Back condition, where the participant has to press the button when the image presented is the same as 2-
before it. (b) Flanker task. The image represents an incongruent trial, where the direction of the central fish (target
stimuli) is opposed to that of the flanker stimuli. (c)Intertemporal choice task. The image respresents a trial where
the participant can receive either 2 tokens immediately (shown on the left side of the screen), or 8 tokens after a
14-days delay (shown on the right side of the screen).
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Figure S2. ROIs included in the analysis of the association between individual differences in task
activation and coefficient of variation

We computed the average BOLD response across significant voxels in the dorsal striatum (green), the
dorsolateral prefrontal cortex (blue) and the dorsal anterior cingulate /supplementary motor area (red).
These were regions of interest (ROls) were selected from the contrast between the WMT and CMP
groups on low-working memory trials.
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Supplemental Tables

Table S1. Scores and group differences on school-based performance and mental health measures at
baseline

Task Group Mean (std) F value (df) P value

Ravens CMP -0.11 (1.10) 0.603 (2,25) 0.5549
WMT 0.22 (0.96)

Odd-one-out CMP 0.39 (0.78) 0.777 (2,25) 0.4707
WMT -0.04 (0.99)

Digit Span CMP 0.43 (1.15) 0.0536 (2,25) 0.9479
WMT 0.39 (1.01)

Lottery game CMP 0.13 (0.99) 0.2229 (2,25) 0.8018
WMT 0.12 (1.17)

Saving box game CMP 0.19 (1.05) 0.0234 (2,25) 0.9769
WMT 0.11 (1.12)

Commission errors GNG | CMP -0.06 (1.30) 0.4481 (2,25) 0.6439
WMT 0.02 (0.98)

Omission errors GNG CMP -0.09 (1.10) 1.801 (2,25) 0.186
WMT -0.12(0.76)

SDQ total score CMP (N=12) | 0.07 (0.89) 0.7868 (2,21) 0.4682
WMT (N=12) | -0.34 (0.68)

SDQ internalizing score | CMP (N=12) -0.30 (0.71) 2.246 (2,22) 0.1296
WMT (N=13) | -0.59 (0.45)

SDQ externalizing score | CMP (N=12) | 0.35 (1.08) 1.202 (2, 21) 0.3204
WMT (N=12) | -0.12 (0.94)

Reading CMP 0.24 (1.09) 0.186 (2,25) 0.8313
WMT 0.46 (0.95)

Math Arithmetic CMP 0.46 (0.85) 0.0029 (2,25) 0.9971
WMT 0.49 (0.95)

Math Geometry CMP 0.12 (0.93) 1.542 (2,25) 0.2337
WMT 0.33 (0.96)

This table lists the results from comparisons between the two groups in relevant school-based and mental health
measures assessed during the pre-training assessment. The table shows the group means and standard deviations
in each of the measures and the results from the statistical comparisons. Linear regression analyses showed no
differences between the two groups were observed in any of the variables. For all the comparisons CMP N = 12
and WMT N = 16, except for the SDQ total score where both groups have N=12. GNG= Go/NoGo task, SDQ =
Strengths and Difficulties Questionnaire; CMP = comparison group of children who did not receive the Working
Memory Training; WMT= Group of children who received the WMT; std = standard deviations; df= degrees of
freedom.
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Table S2. Results from group comparison in cognitive task performance measures

Task Mean (sd) Main Effects
Estimate (se) | T value | P value
N-Back task
d-prime LWM? CMP: 2.67 (0.96)
WMT: 3.25 (0.60) Group: 0.56 (0.32) 1.74 0.09
WM Level: -0.10(0.2) -0.49 0.62
d-prime HWM? CMP: 2.57 (0.69) Group x WM Level: -0.64(0.27) -2.40 0.025
WMT: 2.52 (0.84)
% Correct LWM?* CMP: 91 (7) Group: 1.09 (0.45) 243 0.01
WMT: 95 (4) WM Level: -0.21 (0.20) -1.05 0.29
% Correct HWM? CMP: 90 (5) Group x WM Level : -0.91 (0.29) -3.15 0.002
WMT: 89 (6)
Intra-individual CV LWM? CMP: 0.27 (0.04) Group: -0.05(0.02) -2.84 0.009
WMT: 0.22 (0.05) WM Level: 0.09 (0.03) 2.98 0.006
Group x WM Level: -0.05(0.04) -1.30 0.206
Intra-individual CV HWM? CMP: 0.36 (0.13)
WMT: 0.26 (0.08)
Flanker task
% Correct Congruent” CMP: 95 (6) Group: 1.10 (0.36) 3.07 0.002
WMT: 97(3) Congruency: 0.92 (0.27) 3.41 0.0006
Group x Congruency: -0.19 (0.38) -0.514 0.607
% Correct Incongruent® CMP: 90 (5)
WMT: 95 (4)
Intra-individual CV congruent® CMP: 0.21 (0.03) Group: -0.033 (0.01) -3.108 0.005
WMT: 0.18 (0.02) Congruency: -0.01 (0.006) -1.544 0.14
Group x Congruency:0.0007(0.008) 0.09 0.93
Intra-individual CV incongruent® | CMP: 0.20 (0.03)
WMT: 0.17 (0.02)
Intertemporal Choice Task
% choices delayed option chosen® CMP: 48 (36) Group: -0.53 (0.70) -0.762 0.45
WMT: 40 (19) Amount Today: -0.58 (0.20) -2.86 0.004
Time Delay: -0.27 (0.13) -2.16 0.03
Group x Amount: -0.13 (0.26) -0.41 0.61
Group x TimeDelay: -0.06 (0.16) -0.50 0.68

This table lists the Results from comparisons between the two groups in the main performances measures of the fMRI-based
N-Back, Flanker and Intertemporal Choice tasks. The first column shows the means and standard deviation of each measure
within each group, and the last three columns report the estimates and standard errors of the main effects of task condition and
group as well as their interaction effects for each performance measure. LWM = Low Working Memory condition, HWM=
High Working Memory condition; CV= Coefficient of Variation; CMP = comparison group of children who did not receive
the Working Memory Training; WMT= Group of children who received the WMT; se = standard errors; *CMP N=11, WMT
N =14; °CMP N = 10, WMT N=14; <CMP N = 12, WMT N=16
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Table S3. Between-groups differences in Ex-Gaussian reaction times

Ex-Gaussian | Estimate of Group | T value P value
parameter difference (SE)

Mu -0.019 (0.022) -0.851 0.4047

Sigma -0.020 (0.006) -3.450 0.0025

Tau -0.021 (0.009) -2.427 0.0248

This table shows the results from the analysis of ex-gaussian parameters fit to individual’s response times. Group
differences are computed as WMT — CMP groups. The T and P-values were computed from linear regressions
explaining the variability in one parameter as a function of training group and the other two parameters of the ex-
gaussian function (e.g. mu ~ 1 + sigma + tau + Group).

Table S4. Group differences in ICV in DDM-simulated Flanker task response times

Estimate Std.Error T-Value P Value
Group -0.108625 0.04441 -2.446 0.0185
Trial Type 0.014553 0.047969 0.303 0.763
Group x Trial Type -0.005607 0.062806 -0.089 0.9293

This table shows the results of a linear regression analysis testing whether or not the fitted DDM parameters can
reproduce the patterns of response time variability seen in the two empirical groups. The dependent variable in
this regression is the intra-individual coefficient of variation in response times (ICV) from simulated agents
performing the Flanker task. Each simulated agent performed the task using the best-fitting parameters for the
empirical data from one child. Analogous to the empirical data, we analyzed these simulated data as a function of
Trial Type (Congruent, Incongruent) and Group (i.e. the training group the child whose parameters the agent used
belonged to). The response times generated by the DDM simulations reproduce the group difference in ICV that
we observe in the empirical data.
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Supplementary text

Here we give a brief description of the relevant measures used to assess the impact of the training are provided
below. For an extensive description see Berger et al (2020).

Computerized stimuli were presented via headphones (when auditive) or on a touch-screen (when visual). Their
responses had to be provided via touch-screen. All test scores were standardized to mean =0 and SD = 1.

1. Working memory measures
Three different measures were used to identify the potential presence of transfer effects to non-trained working
memory tests (near transfer effects).

- Verbal simple span. After listening to a series of one-digit numbers, the child must enter the
sequence in the correct order on the touch-screen in front of him. Scores are calculated taking into
account the number of correct sequences and the number of items in each sequence.

- Verbal complex span. This is a two-step task. In the first step, the child listens to a sequence of
words describing objects, after each of them (s)he must indicate whether the object is an animal.
After the sequence is finished, a grid with 3x3 images is shown, and the child has to reproduce the
sequence of words heard in the correct order. As above, scores are calculated taking into account
the number of correct sequences and the number of items in each sequence.

- Visuo- spatial complex span. This is also a two-step task. In the first step, the child is shown a
series of 3 shapes in a single row and has to indicate the one that is different (left/center/right).
After a number of screens, each with the three shapes shown in a row, the child has to indicate in
an empty screen the position of the different stimulus on each screen, in the right sequence order.
The difficulty increases by the increasing number of screens shown until the child gets to the
empty response screen, thus increasing working memory demands with an increasingly longer
sequence of positions.

2. Educational achievements

As above, three different measures were used to assess educational achievements, targeting reading, arithmetic
and geometry skills. These assessments increased in difficulty with each follow-up assessment to incorporate
the natural development of these skills throughout the school year.

- Reading: the child is presented with a series of sentences including a gap in the upper part of the
screen. The child must fill in the gap choosing from the four alternative options presented in the
lower part of the screen.

- Arithmetic: the final arithmetic score was the result of adding three different subscores. The first
subscore was given by the “number sense” test, where participants are presented a varying number
of circles/balls in a horizontal empty grid (2 rows x10 columns), and they have to compute the
number of balls shown on each trial. While there are different mechanisms by which the child
might get to the correct answer, the short presentation time (1.7s) prevents them from simply
counting the balls and requires some basic arithmetic skills. The second subscore is obtained from
the auditory arithmetic task, where the child listens to additions or subtractions of two numbers
and has to provide the correct answer in the touch-screen. In the final written arithmetic subtest,
the participant is presented with visual stimuli including at least three elements and they have to
perform the calculation (addition/subtraction) sequentially to arrive to the correct solution, which
has to be provided again with the touch screen.

- Geometry: the child is visually presented with a large geometric object and must determine how
many smaller, simple-shaped object (i.e. square, rectangle, triangle) would fit into that larger
object. Both are simultaneously presented on the screen and remain on screen until response is
provided.

3. IQ measures
Two different sets of 17 items from the Colored Progressive Raven’s Matrices were used in an alternate fashion
to assess IQ on each assessment wave.
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