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ABSTRACT

Typical analysis workflows map reads to a reference genome in order to detect genetic variants.
Generating such alignments introduces references biases, in particular against insertion alleles
absent in the reference and comes with substantial computational burden. In contrast, recent k-mer-
based genotyping methods are fast, but struggle in repetitive or duplicated regions of the genome.
We propose a novel algorithm, called PanGenie, that leverages a pangenome reference built from
haplotype-resolved genome assemblies in conjunction with k-mer count information from raw, short-
read sequencing data to genotype a wide spectrum of genetic variation. The given haplotypes enable
our method to take advantage of linkage information to aid genotyping in regions poorly covered
by unique k-mers and provides access to regions otherwise inaccessible by short reads. Compared
to classic mapping-based approaches, our approach is more than 4x faster at 30x coverage and at
the same time, reached significantly better genotype concordances for almost all variant types and
coverages tested. Improvements are especially pronounced for large insertions (> 50bp), where
we are able to genotype > 99.9% of all tested variants with over 90% accuracy at 30x short-
read coverage, where the best competing tools either typed less than 60% of variants or reached
accuracies below 70%. PanGenie now enables the inclusion of this commonly neglected variant type
in downstream analyses.

Keywords genotyping - pangenome - k-mers - haplotypes

1 Introduction

Diploid organisms have two copies of each autosomal chromosome, each of which can carry genetic variation. The
process of determining whether a known variant allele is located on one or both of these copies, or whether the variant
is absent in an individual’s genome, is referred to as genotyping. Different classes of genetic variants exist and include
SNPs (single nucleotide polymorphisms), indels (insertions and deletions) up to 50 bp in size, and larger structural
variants (SVs). Large studies have produced comprehensive catalogues of known variation of various types, ranging
from single-nucleotide variants (SNVs) to large structural variants (SVs), for the human genome [[1} 2} 3| 4]]. Many
variants have been linked to diseases, such as schizophrenia or autism, which makes genotyping an essential task for
studying such diseases [5. 16, (7,8} 19, 10]. Widely used genotyping methodss, such as GATK [L1], FreeBayes [12], Delly
[L3], Platypus [[14] and SVTyper [15]], are based on short-read alignments to a reference genome and thus, come with a
reference bias, as the aligner is unaware of possible alternative sequences that might be present in an individual’s genome
[L6,[17]. This can be especially problematic when genotyping structural variants, defined as events of 50bp and longer.
Recently, several approaches have been suggested that replace the linear reference genome by graph structures which
include possible alternative alleles. Graphs are either built from given variant calls or haplotype-resolved assemblies,
and genotypes are derived from alignments of sequencing reads to these graphs [[18} 17,1920 21]]. In general, these
graph-based approaches were shown to improve genotyping accuracy over methods that rely on a linear reference
genome by reducing reference bias. However, aligning sequencing reads is a time consuming task even for linear
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reference genomes, where mapping 30x short read sequencing data of a single sample takes around 100 CPU hours.
This problem is amplified when transitioning to graph-based pangenome references, where the read mapping problem
is even more computationally expensive.

A much faster alternative is to genotype known variants based on counts of k-mers, short sequences of a fixed length k,
in the raw sequencing reads. Cortex [22] was the first approach to genotyping variants leveraging read k-mer count
information based on a colored de Bruijn graph constructed from sequencing data and known allelic sequences. Dilthey
et al. [23] use a similar idea and construct population reference graphs from known haplotype sequences to genotype a
sample’s MHC region based on short read sequencing data, but this approach does not scale to whole genomes.

Dolle et al. [24] genotype SNPs and short indels based on querying reads containing allele specific k-mers in the
data. They derive genotypes from alignments of these reads to reference and alternative sequences. BayesTyper [25]
constructs graphs containing reference and alternative alleles for sets of variants that are less than a k-mer size apart in
the genome and genotypes are computed by sampling the likeliest pair of local haplotypes through each such cluster of
variants, based on the observed k-mer count profiles. Such k-mer-based methods allow fast genotyping by bypassing
the time consuming alignment step. However, they can struggle in repetitive and duplicated regions of the genome
which are not covered by any unique k-mers, as they lack the connectivity information contained in the reads. This is
especially problematic for structural variants which are often located in repeat-rich or duplicated regions of the genome
[26 3].

Turner et al. [27] aim to address this problem by introducing linked de Bruijn graphs which store long range connectivity
information from sequencing reads on top of a de Bruijn graph. They demonstrated that adding link information from a
set of reference sequences to the graph in this way improved drug resistance locus assembly in K.pneumoniae isolates.
In a similar manner, information of already known haplotype sequences of other samples could improve k-mer-based
genotyping especially in difficult to access regions of large diploid genomes, but methods for this have so far been
lacking. Known haplotypes (in form of a reference panel) have been used previously for population based phasing of
small variants. The Li-Stephens Model provides a theoretical framework by formulating this problem in terms of a
Hidden Markov Model [28]. Furthermore, reference panel information can be used to impute missing genotypes of a
sample [29, 30} 31} 132], but accurate SV-integrated reference panels have been challenging to construct.

Recently, single molecule sequencing technologies delivering long read data have enabled breakthroughs in producing
de novo haplotype-resolved genome assemblies [33} 134, [35]. Such assemblies are already available for several human
samples and major efforts are underwayﬂ to generate hundreds of human genome assemblies with the intention of
deriving a pangenome representation that replaces the current reference genome GRCh38. So far, however, scalable
methods to leverage such haplotype-resolved pangenome representations for the interpretation of short-read data sets
are not available.

In this paper, we describe an algorithm, PanGenie (for Pangenome-based Genome Inference), that makes use of
haplotype information from an assembly-derived pangenome representation in combination with read k-mer counts for
efficiently genotyping a wide spectrum of variants. That is, our method is able to leverage the information inherent in
the assemblies in order to infer the genome of a new sample for which only short-reads are available. PanGenie bypasses
read-mapping and is entirely based on k-mers, which allows it to rapidly proceed from the input short reads to a final
call set including SNPs, indels and structural variants, enabling access to variants typically not accessible in short-read
workflows — such as larger insertions. We applied our method to genotype variants called from haplotype-resolved
assemblies of six individuals, revealing a substantial advance in terms of runtime, genotyping accuracy, and in the
number of accessible variants.

2 Results

2.1 Algorithm overview

The input to our algorithm consists of short read sequencing data for the sample to be genotyped, a reference genome,
as well as a pangenome graph containing variants and paths representing known haplotype sequences. The latter is
represented in terms of a fully-phased, multisample VCEF file. In a first step, clusters of variants less than the k-mer
size apart are combined into single, multi-allelic variants. We identify all k-mers unique to a variant region, that is,
k-mers that cover the variant position and do not occur anywhere else in the genome, and use Jellyfish [36] to determine
their counts in the reads. Our genotyping model combines two sources of information in order to derive genotypes for
the variants: read k-mer counts and the already known haplotype sequences. The distribution of k-mer counts along
the allele paths of a variant can hint towards the genotype of the sample. Figure[Th provides an example: three alleles

"https://www.genome.gov/news/news-release/NIH-funds-centers-for-advancing-sequence-of-human-genome-reference
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Figure 1: Genotyping approach. Our genotyping algorithm combines two sources of information: read k-mer counts
and known haplotypes. a) A variant region in the constructed genome graph is shown. Each path corresponds to an
allele. Colors indicate copy number estimates for the k-mers, based on which a genotype can be determined. Here, the
variant likely carries the red and the blue allele, indicated by the two dashed lines. b) A larger proportion of the graph
is shown, with three known haplotypes threaded through it. Again, colors indicate copy number estimates. The second
bubble is poorly covered by k-mers, however, linkage to adjacent variants can be used to infer the two local haplotype
paths. ¢) A genome graph with two variant positions is shown with the corresponding HMM below. Gray circles in the
graph indicate k-mers. The hidden states of the HMM correspond to possible pairs of the three haplotype paths shown
in the graph. These states output counts for unique k-mers characterizing the alleles.

are shown for a variant. All k-mers corresponding to the middle one are absent from the reads of the sample. This
indicates that the individual carries the red and the blue allele at this position. However, variants may be poorly covered
by k-mers, or no unique k-mers may exist for a variant in repetitive regions of the genome. Such positions cannot be
reliably genotyped by an approach based purely on the k-mer counts. In these regions, information of known haplotype
sequences of a population can help to infer genotypes based on neighboring variants. An example is provided in Figure
[Ipb: known haplotype sequences can be represented as paths in the graph. The second variant is poorly covered by
k-mers but the count distribution of k-mers along the alleles of the first variant indicates that the unknown genome is
composed of the green and blue haplotype.

For genotyping, we combine these two sources of information by constructing a Hidden Markov Model which models
the unknown haplotypes of a sample as mosaics of the provided haplotypes and reconstructs them based on the read
k-mer counts observed in the sample’s sequencing reads. To achieve this, our HMM has a hidden state for each possible
pair of given haplotypes that can be chosen at each variant position. These states emit counts for the unique k-mers in
the variant region based on the copy number of these k-mers in the two selected haplotypes. Changes in the selected
haplotype paths between adjacent variant positions correspond to recombination events. Therefore, we define transition
probabilities based on recombination probabilities defined in [28]]. We show an example in Figure[Tk. Running the
Forward-Backward algorithm, we can compute genotype likelihoods for each position, from which we finally derive a
genotype. Using the Viterbi algorithm, we can compute the two likeliest haplotype sequences given the observed k-mer
counts.

2.2 Constructing a pangenome reference from haplotype-resolved assemblies

In order to construct a pangenome graph, we used haplotype-resolved assemblies of five individuals that have recently
been produced [34,[35]. These samples include two individuals of Puerto Rican descent (HG00731, HG00732) as well
as NA12878, NA24385 and PGP1. For each sample, we separately mapped contigs of each haplotype to the reference
genome and used these alignments to call variants on each haplotype of all autosomes (see [d.1] for details). In order to
filter out low quality or erroneous calls, we only kept variants located in regions in which all haplotypes were covered
by exactly one contig alignment. These callable regions cover 87.42% (2.51 Gb) of chromosomes 1-22.
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Figure 2: Combining variant calls. a) Shown are alignments of two contigs to the reference genome and variant calls
for both of them: a deletion for the contig of the first haplotype, and two SNPs for the second haplotype. Additionally,
the pangenome graphs that result from inserting these variants into the reference genome, are shown. b) Variant calls
of both haplotypes are overlapping and will be represented as a single bubble when constructing a graph that contains
all variants. In the resulting VCE, only those paths through the bubble will be listed, that were observed in at least one
of the input haplotypes and additionally, the genotypes corresponding to each sample.

111 We create an acyclic and directed pangenome graph that contains bubbles representing the variation observed in all of
112 the input haplotypes. Variants overlapping across haplotypes are combined into a single bubble with potentially multiple
113 branches reflecting all allele sequences observed in the respective genomic region. The input haplotypes are represented
114 as paths through the resulting pangenome. The final graph is represented in terms of a fully phased, multi-sample VCF
115 file. Figure 2] provides an example of how we construct the graph.

ey

116 Due to the lack of haplotyped-resolved assemblies for other samples, the number of haplotype paths in our graph is
117 relatively small. Until more assemblies become available in the future, we showcase the performance of our method
118 by extending our pangenome reference panel using additional short read data sets. To this end, we apply PanGenie to
119 phase the same set of variants in these additional samples. In this way, we used short-read sequencing data of a sample
120 of Chinese descent, one individual of Yorubian descent as well as four samples from different populations (see Figure
121 [3h and Section[4.T)) in order to produce an “extended” panel consisting of eleven samples.

s

-

122 We present callset statistics in Figure [3] The transition/transversion (ti/tv) ratio for SNPs and the heterozy-
123 gous/homozygous ratio are commonly used quality control measures for callsets [37} 38]]. The ti/tv ratio is expected to
124 be around two as transitions (changes from A to G, G to A, C to T and T to C) are twice as frequent as the remaining
125 transversions. The distribution of these substitution types for our SNP calls are shown in in Figure 3p. We computed
126  ti/tv ratios between 2.04 and 2.05 for all of our samples. Theoretically, the expected het/hom ratio for a callset is two
127 for variants in Hardy-Weinberg equilibrium [37]]. However, it has been previously reported to vary by ancestry and was
128 observed to be smaller for individuals of American, Asian and European origin [38,|39]]. This is in line with what we
129 observe for our callsets. The five samples from which variant calls were generated are of American or European origin.
130 We observed het/hom ratios between 1.56 and 1.67 for all these individuals (Figure[3h). Additionally, we show detailed
131 counts observed for SNPs, insertions, deletions and complex variants of different lengths in Supplementary Table
132 Insertions and deletions include only bi-allelic variants, other types of structural variants or multi-allelic variants (that
133 are not SNPs), are defined as complex variants. We distinguish small variants (1 — 19bp), midsize variants (20 — 50bp)
134 and large variants (> 50bp). The total number of calls in each category can be found in Supplementary Table [3d. We
135 additionally re-run our variant calling using reference version hg19 in order to be able to compare the resulting variant
136 calls to the structural variants (> 50bp) contained in the Genome Aggregation Database (gnomAD) [4]. We found an
137 overlap of 6,398 variants. 21,370 positions were only contained in our assembly-based callset set (see Supplementary
138 Section[d.3).

W

139 2.3 Genotyping evaluation

140  For evaluation, we conducted a “leave-out-one experiment” and genotyped each of the four unrelated samples HG00731,
141 HG00732, NA12878 and NA24385 based on Illumina reads from the HGSVC [3]], the Genome in a Bottle Consortium
142 [40] and 1000 Genomes Project high-coverage data (Mike Zody, personal communication). We used the variants from
143 the pangenome graph constructed in Section [2.2]and two different sets of haplotype paths from this graph as input to
144 our genotyping algorithm: first we only used the haplotypes that we obtained from haplotype-resolved assemblies,
145 second, we added haplotypes from our extended callset. Thus, the former small panel consists of haplotypes for
146 samples: HG00731, HG00732, NA12878, NA24385 and PGP1. The latter, extended panel, additionally contains
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Figure 3: Callset statistics. Statistics for variants called from haplotype-resolved assemblies. a) Samples for which
variants were called from haplotype-resolved assemblies are shown in red, as well as the population they originate from
an the het/hom ratio observed for the variant calls. Furthermore, samples used to extend the panel are shown (orange).
b) Shown are the number of different substitutions reported for all samples. c¢) Length distribution of insertions and
deletions across all samples. Deletion lengths are reported as negative numbers, insertion lengths are positive. d)
Number of variants per category: small (1 — 19bp), midsize (20 — 50bp), and large (> 50bp). Insertions and deletions
include only bi-allelic variants, other types of structural variants or multi-allelic variants (that are no SNPs).

haplotypes of: HG00512, NA19238, NA20847, NA19036, HG0O0171 and HGO1571. We genotyped each of the four
samples in a leave-one-out manner by removing it from the small and extended panels, respectively, and genotyped it
based on the remaining samples. We then compare the genotype predictions to the ones of the left out, ground truth
haplotypes derived from the haplotype-resolved assemblies. We additionally ran Platypus [14]], BayesTyper [23], GATK
HaplotypeCaller [[11] and Paragraph for comparison. Since Platypus, GATK and Paragraph are mapping-based
approaches and require BAM-files as input, we used bwa mem to align the reads to the reference genome prior to
genotyping. PanGenie and BayesTyper are k-mer-based and were provided with the raw, unaligned sequencing reads
(in FASTQ-format). We ran our experiments on different levels of read coverage. For this purpose we downsampled the
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reads of each sample to coverages 30x,20x, 10x and 5x. Not all tools can handle all types of variants. We ran GATK
only on SNPs, small and midsize variants and Paragraph was only run on midsize and large variants.

Evaluation metrics. Given a truth set of variants with known genotypes and genotype predictions made by a
genotyper for these positions, we compute two metrics in order to evaluate the genotyping performance. The first one is
the percentage of variants for which a tool was able to give a genotype prediction. Ideally, this fraction should be as
large as possible. The second one is the genotype concordance that we define as the percentage of correct genotype
predictions among all variants that were typed by the method.

correct predictions

genotype concordance = 100 1

correct predictions + wrong predictions

Results. We show the genotyping results for sample HG00731 that we obtained from PanGenie using the extended
panel as well as from the remaining methods in Figure @] and 5] Respective results for the three other samples are
similar and can be found in Supplementary Figures [8I3] The results we got from using the small panel are presented in
Supplementary Figures The plots show the genotype performances outside and inside of STR/VNTR regions,
which we obtained from the UCSC genome browser [42]. We observed that between 54 — 78% of midsize and large
variants are indeed located inside of repeats (Supplementary Table [3). Like most genotyping tools, PanGenie also
calculates a phred-scaled genotype quality score which can be used to filter the genotypes. In our evaluation, we
consider two configurations for PanGenie: “lenient” filtering, where we do not apply any filter and use all reported
genotypes, and “strict”’, where we only used high quality genotype predictions (quality >= 200) and treat all other
variants as not genotyped. For all other tools, we did not apply any filters on the genotype quality and used all genotypes
that they reported.

For SNPs, all methods reach similar levels of genotype concordances. Platypus and PanGenie (small + extended panel)
perform best on the lowest tested coverage of 5x. While PanGenie is able to genotype almost all variants (> 99.998%)
using “lenient” filtering on high and low coverage, the other methods show larger levels of variants that they leave
untyped. This is especially the case for BayesTyper, which reaches higher levels of genotype concordances than the
other tools at coverages 10 — 30, but does not genotype 9% of the SNPs outside of STR/VNTR regions, and 40%
inside these repeat regions at coverage 30x for sample HG00731.

For the small variants, PanGenie outperforms the mapping-based approaches on most coverages using the small panel.
With the extended panel, we can improve the performance of our method even further, especially inside of STR/VNTR
regions. Here, PanGenie reaches genotype concordances superior by 6.5%, 6.26% and 28% compared to the best
performing mapping-based approach on insertions, deletions and complex variants, respectively, when using the “lenient”
model. BayesTyper produces higher percentages of correct predictions, but is not able to determine genotypes for
30 — 90% of the variants outside of repeat regions, and between 50 — 91% of variants located inside of STR/VNTR
regions. Using “strict” filtering, PanGenie is able to reach genotype concordances similar to BayesTyper, while still
being able to type much larger fractions of variants.

We observe a similar trend for midsize and large variants as well. Here, PanGenie clearly outperforms the mapping-
based tools even when using the small panel of haplotypes. Improvements were largest for large variants inside of repeat
regions, where PanGenie with the extended panel and “lenient ” filtering is able to reach genotype concordances that are
up to 15%, 37% and 89% higher than those of the best performing mapping-based approach for insertions, deletions
and complex variants, respectively. The percentages of large variants that could not be genotyped by BayesTyper is
between 60 — 80% in all cases, while PanGenie types more than 99% of the variants in each category in “lenient” mode.

When restricting the evaluation to variants contained in the Genome in a Bottle (GIAB) small variant calls [43],
PanGenie showed genotyping performances similar to the other methods, while outperforming them on the lowest
tested coverage of 5x (Supplementary Section [4.3).

In general, genotyping longer variants based on short-read data is a challenging task, since such variants are often
located in repetitive or duplicated regions of the genome [26]. Their short length makes it difficult to unambiguously
map the reads in these regions which also effects the genotyping process that relies on these alignments. K-mer based
approaches additionally lack the connectivity information contained in the reads, which makes genotyping variants in
such difficult regions even more complicated. This is one possible explanation why we observed such high numbers of
untyped variants for BayesTyper. PanGenie overcomes these limitations of short reads, as it additionally incorporates
long-range haplotype information inherent to the pangenome reference panel it uses. This enables imputation of
genotypes in regions poorly covered by k-mers and helps to improve genotyping performance over the other methods,
especially for midsize and large variants located in repetitive regions of the genome.
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Runtimes. Runtimes (in CPU hhh:mm:ss) of all methods for sample HG00731 are shown in Table (I} The runtimes
for the other samples were very similar and are provided in Supplementary Table 4] For each method, we measured
the time required to produce genotypes given an input set of variants and raw, unaligned sequencing reads. Since
k-mer based methods PanGenie and BayesTyper bypass the time-consuming read alignment step, they are much faster
compared to the remaining, mapping-based methods. GATK and Paragraph were the slowest methods, although they
were — unlike the other tools — only run on a subset of variants. PanGenie in contrast, was the fastest method on all
coverages. Using the small panel, it was between 3.3 — 3.56 x faster than Platypus on the lowest tested coverage of 5,
and between 6.52 — 8.21 x faster on coverage 30x. Using the extended panel, these numbers were 1.07 — 1.25x and
4.03 — 4.27x, respectively.

method coverage
5% 10x 20x 30x

PanGenie-4 5:43:14 7:13:16 10:34:05 14:41:47
PanGenie-10 16:30:46 18:38:24 21:58:38 26:59:57
BayesTyper 19:15:14 21:06:09 23:30:17 27:47:37
bwa + Platypus 20:24:03 39:20:30 76:55:22 115:32:52
bwa + GATK! 47:24:18 74:16:30 125:25:19 177:37:56
bwa + Paragraph? 21:49:04 42:42:03 84:28:32 127:27:47

! GATK was run on SNPs, small and midsize variants only.
% Paragraph was run on midsize and large variants only.

Table 1: Runtimes (in CPU hhh:mm:ss) for sample HG00731 on all coverage levels. Note that GATK was only run on
SNPs, small and midsize variants. Paragraph was only run on midsize and large variants. All other methods were run
on all variant types.

2.4 Genotyping larger cohorts

The low runtime of PanGenie makes it well suited to genotype large cohorts. To demonstrate this use case, we applied
our tool to a set of 100 randomly selected 1000 Genomes samples based on 1000 Genomes Project high-coverage data
(Mike Zody, personal communication). We genotyped all variants contained in the callset that we described in section
[2.2]and the 2 x 11 haplotypes contained in our extended panel. We used VCFTools [44] to test the genotype predictions
of bi-allelic variants for conformance with Hardy-Weinberg equilibrium and corrected for multiple hypothesis testing
by applying Benjamini-Hochberg correction [45] (o« = 0.05). We skipped such variant positions at which there was a
missing genotype for more than 10 samples.

We observed no significant deviation from Hardy-Weinberg equilibrium for 95.7% of all bi-allelic variants. When
looking at the different variant types individually, this percentage is between 93.7% and 95.7% (Figure|6)), indicating that
the genotype predictions made by PanGenie are of good quality. Even for larger structural variants, allele frequencies
obtained from our variant predictions largely behave as expected by Hardy-Weinberg equilibrium (Figure[6). At the
same time, PanGenie on average only took about 30 CPU hours per sample, demonstrating the scalability of our tool.

3 Discussion

We presented an algorithm which uses k-mer counts from short read sequencing data together with a panel of haplotype-
resolved assemblies to genotype a yet uncharacterized sample. We show how to formulate this problem in terms of a
Hidden Markov Model that models each of the haplotypes of the sample in question as a mosaic of the given haplotype
sequences. This algorithm is fast since it bypasses the expensive read alignment step and can also genotype variants
located in repetitive or duplicated regions of the genome that are usually poorly covered by unique k-mers. We believe
that this is the first approach which can leverage the long-range haplotype information inherent to a panel of assembled
haplotype sequences in combination with read k-mer counts for genotyping a new sample. While we generated such
pangenome reference panels from haplotype-resolved assemblies for this work, we want to stress that generating these
panels was not the main focus of this paper and that our genotyping algorithm is not restricted to panels created in this
way. In fact, it can be applied to any acyclic pangenome graph which is represented as a fully-phased, multisample
VCF file.

Our experiments showed that PanGenie works as well as mapping-based approaches for small variants, and at the
same time, was able to genotype larger fractions of variants compared to the other k-mer based method BayesTyper.
Especially for large and midsize variants, PanGenie clearly outperforms mapping-based approaches, while again,
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Figure 6: Genotyping larger cohorts. The table provides the amount of variants for which no significant deviation
from Hardy-Weinberg Equilibrium was observed. Each plot shows the fraction of heterozygous genotypes at a variant
position as a function of the allele frequency. The red curve shows what is expected according to Hardy-Weinberg
equilibrium.

compared to BayesTyper, being able to provide genotypes for much larger amounts of variants not typable by the latter.
At the same time, our approach was faster than the other methods, especially when comparing to the mapping-based
approaches which require alignments of reads to a reference genome. The fast runtime of our method also makes it well
suited for genotyping larger cohorts.

We hence have presented a method that is both scalable and leverages a haplotype resolved pangenome reference to
enable genotyping of otherwise inaccessible variants. Still, some limitations remain. Since we assume that the unknown
haplotypes of the sample to be genotyped are mosaics of the given panel haplotypes, it currently cannot be used in
order to genotype rare variants that are only present in the sample, but in none of the other haplotypes. Here, we believe
that there are exciting opportunities to define downstream workflow that only discover variation that our approach has
not captured because it was not present in the reference panel. That is, one could filter the reads for yet “unexplained”
k-mers and use those for the discovery of rare variants.
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The runtime of our method depends on the number of input haplotypes, as we define a hidden state for each possible
pair of haplotypes that can be selected at a variant position. Therefore, additional engineering will be required to use
much larger panels, which could be approached similarly to how statistical phasing packages prune the solution space
and/or proceed iteratively.

All in all, we have presented a method that we see as a way forward once high-quality phased reference assemblies
become widely available to the genomics community while, at the same time, the size of disease cohort used in
association studies grows further.

4 Methods

The input to our genotyping algorithm is a reference genome (FASTA-file), short-read sequencing reads (FASTQ
format) and a multisample VCEF file that defines a pangenome graph containing variants and known haplotype sequences.
In order to create such an input VCF, we have developed a pipeline which calls variants from haplotype resolved
assemblies as described below. However, we want to stress that our tool is not restricted to VCFs created in this way
and in fact can be run with any fully phased, multisample VCF file.

4.1 Pangenome reference construction

We used haplotype-resolved assemblies of five individuals (HG00731, HG00732, NA12878, NA24385 and PGP1)
[34.,135] and separately aligned the contigs of each haplotype to the reference genome (GRCh38). This was done using
minimap?2 [46] with parameters -cx asmb --cs. Next, we called variants on each haplotype using paftools (https:
//github.com/1h3/minimap2/tree/master/misc) with default parameters. We only kept variants located in
regions in which all haplotypes were covered by exactly one contig alignment in order to filter out low quality or
erroneous calls. All other regions, in which at least one of the haplotypes was covered by none or multiple contig
alignments, were excluded from further analyses.

Our goal is to construct an acyclic and directed graph by inserting the variants of all haplotypes into the linear reference
genome. Each variant produces a bubble in the graph whose branches define the corresponding alleles. The input
haplotypes can be represented as paths through the resulting pangenome. When constructing the graph, we represent
sets of variants overlapping across haplotypes as a single bubble with potentially multiple branches reflecting all the
allele sequences observed in the haplotypes in the respective genomic region. See Figure [2]for an example. We represent
the pangenome in terms of a fully phased, multi-sample VCF file that contains an entry for each bubble in the graph. At
each site, the number of alternative alleles is limited by the number of input haplotype sequences and the genotypes of
each sample define two paths through this graph corresponding to the respective haplotypes.

We extended the number of haplotype paths in the graph by using PanGenie to phase additional samples based on short
read sequencing data and the paths already present in our graph. This is achieved by applying the Viterbi algorithm to
our Hidden Markov Model (see Section[d.3|for details). In this way, we added haplotypes of six additional individuals
to the graph. These include samples of Chinese and Yorubian descent (HG00512, NA19238) as well as four samples
from different populations (see Figure [3h) The underlying reads for the Chinese and Yorubian samples were obtained
from [3]] and those of the remaining samples from 1000 Genomes Project high-coverage data (Mike Zody, personal
communication). We used bcftools (https://github.com/samtools/bcftools), VCFTools [44] and vcfstats
from Real Time Genomics [47] to generate the callset statistics presented in Figure

The individuals of Puerto Ricean, Chinese and Yorubian descent, are part of three trios. We additionally determined the
genotypes for the remaining samples (HG00733, HG00513 and HG00514, NA19239 and NA19240). This was done in
a similar way as for the other samples, using haplotype-resolved assemblies to determine phasings for HG00733, and
short-read sequencing reads in order to phase the remaining samples, for which such assemblies were not available
to us. Using the trio information, we can check whether the variant calls are consistent with the laws of Mendelian
inheritance. For the Puerto Rican trio, we observed 98.34% Mendelian consistent genotypes for the phasings produced
from haplotype-resolved assemblies. For the Chinese and Yorubian trios, these percentages were 98.76% and 97.96%,
respectively, for the phasings produced by PanGenie. For further analysis, we removed all variants from our graph for
which there was a Mendelian error in at least one of the trios.

4.2 Identifying unique k-mers
Sets of variants that are less than the k-mer size apart (we use k = 31) are combined and treated as a single variant

position. The alleles corresponding to such a combined variant are defined by the haplotype paths in the respective
region. For each variant position v, we determine a set of k-mers, kmers,, that uniquely characterize the variant
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region. This is done by counting all k-mers along haplotype paths in the pangenome graph using Jellyfish [36], and
then determining a set of k-mers for each variant, that occur at most once within a single allele sequence and are not
found anywhere outside of the variant bubble. We additionally count all k-mers of the graph in the sequencing reads.

4.3 Hidden Markov Model

We define a Hidden Markov Model that can be used to compute the two most likely haplotype sequences of a given
sample based on known haplotype paths and the sample reads. The new haplotype sequences are combinations of
the existing paths through the graph and are computed based on the copy numbers of unique k-mers observed in the
sequencing reads provided for the sample to be genotyped.

Hidden States and Transitions. We assume to be given N haplotype paths H;,i = 1, ..., N, through the graph.
Furthermore, for each variant position v,v = 1,..., M, we are given a vector of k-mers, kmers, that uniquely
characterize the alleles of a variant. We assume some (arbitrary) order of the elements in kmers, and refer to the ¢th
k-mer as kmers,[i]. Additionally, we are given sequencing data of the sample to be genotyped and corresponding k-mer
counts for all k-mers in kmers,. For each variant position v, we define set of hidden states H, = {H,; ; | ,j < N}
which contains a state for each possible pair of the N given haplotype paths in the graph. Each such state /1, ; ; induces
an assignment of copy numbers to all k-mers in kmers, defined as shown below.

0 k¢HUH;

ke H;\ H,
1 ke H;\ H;
2 kEHiﬂHj

en(k,i, j) = Vk € kmers,,i,7=1,...N

The idea here is that we expect to see copy number 2 for all k-mers occurring on both haplotype paths. In case only one
of the haplotypes contains a k-mer, its copy number must be 1 and k-mers that do not appear in any of the two paths
must have copy number 0. Thus, for each state H, ; ; in H,, we define the vector a,, ; ; that contains the assigned copy
numbers for all k-mers, i.e. a,; ;[l] = en(kmers,[l],1, j).

From each state I, ; ; € H, that corresponds to variant position v, there is a transition to each state corresponding to
the next position, v + 1. Additionally, there is a start state, from which there is a transition to each state of the first
variant, and an end state, to which there is a transition from each state that corresponds to the last variant position. See
Figure [Tk for an example.

Transition Probabilities. Transition probabilities are computed similar to how the Li-Stephans model [28] defines
them. We assume to be given a recombination rate r and the effective population size N.. For two ascending variant
positions v — 1 and v that are x bases apart in the genome, we first compute the genetic distance:

1
1000000

We further compute the Li-Stephans transition probabilities as:

d=2x T'4'Ne

d 1

pr=(1- GCUP(—N)) N

d
%:mﬂ—ﬁﬂmr

Finally, the transition probability from state [, _1 ; ; to state H,, j ; is computed as shown below.
qr - qr t=kandj=1

¢ - pr t=kandj #I
PHyi'H’Uf 1) = . .
(Hui Lk1) @ - pr i1#kandj =1

Dr - Drr i£kandj #£1

2

Observable States. Each hidden state H, ; ; € #, outputs a count for each k-mer in kmers,. Let obs(k) be a
function that returns the observed count in the reads of a k-mer k € X and the vector such that O, [l] = obs(kmers,[j]).
In order to define the emission probabilities, we first need to model the distribution of k-mer counts for each copy
number, P(obs(k)|cn(k) = i), = 0,1,2. For copy number 2, we use a Poission distribution whose mean A\ we
compute from the read k-mer-count histogram. Similarly, we approximate the k-mer count distribution for copy number

12


https://doi.org/10.1101/2020.11.11.378133
http://creativecommons.org/licenses/by-nd/4.0/

323
324
325

326

327
328
329
330
331

332

333

334
335

336

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378133; this version posted November 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A PREPRINT - NOVEMBER 11, 2020

1 in terms of a Poisson distrubution with mean A/2. For copy number 0, we need to model the erroneous k-mers that
arise from sequencing errors. This is done using a Geometric distribution. whose parameter p we choose based on the
mean k-mer coverage. Finally, we compute the emission probability for a given state and given observed read k-mer
counts as shown below, making the assumption that the k-mer counts are independent.

|kmers,|

P(Oy|Hu,ij) = H P(O,[l] | av,i ;1)
=1

Genotypes and Haplotypes. In this model, genotypes correspond to pairs of given haplotype paths at each variant
position. Genotype likelihoods can be computed using the Forward-Backward algorithm, and haplotype sequences can
be computed by running Viterbi. We assume to have observed copy number obs(k) of each unique k-mers in K.

Forward-Backward algorithm. The initial distribution of our HMM is such that we assign probability 1 in the start
state and 0 to all others. Forward probabilities v, () are computed in the following way.

ap(start) =1

For states corresponding to variant position v = 1, ..., M, the Forward probabilities are computed as shown below. The
set of observed k-mer counts at position v is given by O, = {obs(k), k € kmers,}.

oy (Hy,ij) = Z ay—1(Hy—1,5) - P(Hy i j|Hoo1,5,¢) - P(Oy|Hoi 5) Vi, j
Hy 1,st€EHy -1

The transition probabilities are computed as described above, except for transitions from the start state to all states in
the first column, which we assume to have uniform probabilities.
Backward probabilities are computed in a similar manner. We set

BM(end) =1
Forv=1,..., M — 1, we compute them as

Bv(Hv,i,j) = Z /Bu+1(Hv+1,s,t) . P(Hv+1,s,t|Hv,i,j) . P(OU|HU+1,s,t) VZ,]

Hyq1,6,t€Hv11

Finally, posterior probabilities for the states can be computed.

_ av(Hv,i,j) ) ﬂv(Hv,i,j)
Zhem ay(h)By(h)

Several states at a variant position v can correspond to the same genotype, as different paths can cover the same allele.
Also, the alleles in a genotype are unordered, therefore states I, ; ; and H, ; ; always lead to the same genotype. In
order to compute genotype likelihoods, we sum up the posterior probabilities for all states that correspond to the same
genotype. In this way, we can finally compute genotype likelihoods for all genotypes at a variant position, based on
which a genotype prediction can be made.

P(H,,,;|0)

Viterbi algorithm. In order to get the haplotype sequences, we can compute the two haplotypes underlying the
Viterbi path. We again start in the start state.
vo(start) =1

For the other positions v = 1, ..., M, we compute:

vo(Hyig) = max oy 1(Hyo160)  P(HyijlHoo150) - P(Ou|Hoij) Vi j

Hy_1,st€Hy-1

We finally obtain the Viterbi path by backtracking.

Availability of data and materials

Code to reproduce the data and rerun the analysis is available at https://bitbucket.org/jana_ebler/
genotyping-experiments/src/master/.

The implementation of PanGenie is available at https://bitbucket.org/jana_ebler/pangenie/src/master/,
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Supplementary material

Callset statistics

Table |2 shows the numbers of variants of each type that were present in the callset constructed from reference-resolved
assemblies. For each sample, we show the total number of variants present in at least one of its haplotypes, i.e. all
variants for which the sample has a genotype different from 0/0 (total), as well as the number of variants for which a
sample carried at least one allele not seen in any of the remaining samples (unique). All variants that are unique to a
sample will not be genotypable by our HMM based approach, since the assumption underlying our model is that the
unknown haplotypes can be constructed as a mosaic of the haplotypes already known. Thus, if the sample in question
carries an allele not seen before, it cannot be correctly genotyped with such a re-typing approach.

type HG00731 HG00732 NA12878 NA24385 PGP1 total
total unique total unique total unique total unique total unique
SNP 3373316 403185 | 3389303 439356 | 3325551 378925 | 3366074 417201 | 3318739 383258 | 6145661
small insertion 234440 28826 244847 39585 232557 29133 237708 36741 | 244933 43243 | 461260
small deletion 226717 28092 233600 35492 228234 30416 271670 68500 | 245842 47462 | 493717
small complex 203420 51015 205868 58164 200898 48802 217340 85518 | 204459 57751 | 260595
midsize insertion 5907 1223 6081 1420 5817 1221 5929 1248 5986 1319 13201
midsize deletion 4730 667 4707 698 4649 643 4757 714 4626 638 9129
midsize complex 20102 9251 20178 9690 20027 9314 20251 10143 20075 9634 23694
large insertion 3502 1021 3665 1179 3560 1025 3575 1072 3599 1072 9202
large deletion 2096 207 2159 233 2055 191 2148 231 2101 192 3577
large complex 10264 4012 10269 4350 10304 4089 10442 4627 10284 4203 12818

Table 2: Variant statistics. Total number of variants detected in each sample, as well as the number of variants for
which a sample carried an allele not present in the other samples.

Comparison to gnomAD We compared the variant calls that we obtained from haplotype-resolved assemblies
of five individuals to the variants that are part of the Genome Aggregation Database (gnomAD) [4]. gnomAD
contains 433,371 structural variants collected across 14,891 genomes from different populations. Since gnomabD calls
were generated relative to reference genome version hg19, we used UCSC liftOver (https://genome.ucsc.edu/
cgi-bin/hgLift0ver) to convert their coordinates to hg38. We compared the variants contained in gnomAD to our
assembly-based variant calls. We excluded variants genotyped with an allele frequency of 0.0 across all 100 genotyped
samples (Section . We determined all variants with a reciprocal overlap of at least 50% between the gnomAD
calls and our assembly-based callset (chromosomes 1-22) and found that both callsets had 6,398 variants in common.
368,530 variants were only contained in gnomAD and 21,370 were only in our assembly callset. 35.3% of the 6,398
variants in the intersection are located inside of STR/VNTR regions. For the variants contained only in our assembly
callset, this percentage is around 80%. We suspect that the reason these variants cannot be found in gnomAD might be
that such repetitive regions are not accessible by short read data used to produce the gnomAD variant calls. For each
variant in our assembly callset, we further computed the distance to the closest gnomAD variant. Additionally, we used
bedtools shuffle [48] to randomly permute the variants among the genome. Then we again determined distances to
the closest gnomAD variants. We show the resulting distances in Figure[7]
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Figure 7: Comparison to gnomAD. a) Histogram of the variant length of the structural variants contained in the
gnomAD callset (blue) and our assembly callset (orange). b) For each variant in our assembly callset, we computed the
distance to the closest gnomAD variant (blue). We repeated the same analysis after randomly permuting our variant
calls along the reference genome (orange).

Benchmarking results

STR/VNTR regions Especially structural variants tend to be located in repetitive and more complicated regions of
the genome. For all variants that we genotyped in sample HG00731 (Section [2.3)), we show the number of sites located
inside and outside of STR/VNTR regions which we obtained from the UCSC genome browser [42]. The numbers are
presented in Table It can be observed that the majority (between 54 — 79%) of midsize and large variants are indeed
inside of repetitive regions.

variant type all regions non-repetitive regions repeat regions

SNP 5742475 5527879 96,26% 214596 3,74%
small deletion 465625 401391 86,20% 64234 13,80%
small insertion 432434 382244 88,39% 50190 11,61%
small complex 209580 144809 69,09% 64771 30,91%
midsize deletion 8462 2971 35,11% 5491 64,89%
midsize insertion 11978 5497 45,89% 6481 54,11%
midsize complex 14443 3092 21,41% 11351 78,59%
large deletion 3370 1100 32,64% 2270 67,36%
large insertion 8178 3220 39,37% 4958 60,63%
large complex 8806 2071 23,52% 6735 76,48%

Table 3: Repetitive regions. Shown are the number and percentages of variants located inside and outside of STR/VNTR
regions for sample HG00731.

Results for the extended panel We additionally show the genotyping results of all methods using the extended panel
for samples HG00732, NA12878 and NA24385 in Figures[8{I3] Genotyping experiments where run in the same way
as for HG00731 presented in Section[2.3] For PanGenie, we used the extended panel that contained 10 samples (20
haplotypes). Besides using all output genotypes produced by PanGenie regardless of the reported genotype quality
(“lenient”), we additionally report results of PanGenie when applying a much more strict filtering using genotype
quality score of 200 (“strict”). For all other tools, we used all genotypes that they reported and did not use any filtering
on genotype qualities. We again show results for variants inside and outside of repetitive regions.

Results for the small panel We provide the genotyping results that we obtained for all four samples using the small
panel (8 haplotypes) in Figures[T4}21] Experiments were run analogously to what we describe in Section[2.3]
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i PanGenie when using “strict” filtering (genotype
2 quality >= 200). Note that GATK was not run
£ on large variants, and Paragraph was only run
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on midsize and large variants.
Bb 8‘5 9‘0 9‘5 160
total genotyped variants [%]
Deletions Insertions Complex
00 _e® .09 ®
99 1 P 99 1 " @ o /r A
“ /
SETR 98 s /
] ] g
& 5971 57
%71 g g
° © 96 1 ° v
@ @ @ B
5961 s 81 o
2 S 954 s =
& & &
> 95 1 > >
E E 94 4 g 80 1
S 941 S 93 g
75 A
93 92
6‘0 7‘0 8‘0 9‘0 160 6‘0 7‘0 8‘0 9‘0 160 2‘0 4‘0 6‘0 8‘0 1(I)0
total genotyped variants [%] total genotyped variants [%] total genotyped variants [%]
100 A
100.0 100 1
o —® . /.
99 4 .
. 97.5 4
8 o8- g S
9 v 95.01 i
2 2 2
£ 974 8 k]
S S 925 g B
1 o] i 1 o] =
g 2 90.0 1 z 2
g 951 @ @ @
o o o
2 2> 87.54 2
S 94+ S g 704
8 S 850 8
934
92 82.5 60
7‘5 8‘0 8‘5 9‘0 9‘5 160 6‘0 7‘0 8‘0 9‘0 l(l)O 2‘0 4‘0 6‘0 8‘0 1(IJO
total genotyped variants [%] total genotyped variants [%] total genotyped variants [%]
100 100 A
100 A e .
" - /r" —a //-/‘. o
— . o« ° -
_ — 954 _. 90
X 951 S S
s 5 5 8o
§ 90 g % g =
3 3 3 2
= = 2 701 ®
2 g5 2 851 2
[ [ [
o o o
2 2 2
g s S 60
S 80+ 5 801 5 /
g g g
501
754 751
8‘0 8‘5 9‘0 9‘5 l(IJO 7‘0 8‘0 9‘0 l(IJO 40 6‘0 8‘0 1(I)0
total genotyped variants [%] total genotyped variants [%] total genotyped variants [%]

21


https://doi.org/10.1101/2020.11.11.378133
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378133; this version posted November 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A PREPRINT - NOVEMBER 11, 2020

SNPs === PanGenie (lenient)  Figure 11: extended panel results for NA12878
m== PanGenie (strict) ) . . .
s BayosTyper in repeat regions We ran PanGenie using the
o Platypus extended panel, BayesTyper, Paragraph, Platy-
1 ¢ % —e mmm Paragraph ;
_ — e pus .and GATK in Qrc?er to re-genotype all callset
& 96 o 5x variants located inside of repetitive STR/VNTR
5 I regions. Besides not applying any filter on the
29 ® 30x reported genotype qualities ( “lenient”), we addi-
] ) . o .
ol tionally r.epm:f ge{u)’t’ypmg statistics for PanGen.le
s when using “strict” filtering (genotype quality
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Figure 12: extended panel results for NA24385
in non-repetitive regions. We ran PanGenie us-
ing the extended panel, BayesTyper, Paragraph,
Platypus and GATK in order to re-genotype
all callset variants located outside of repetitive
STR/VNTR regions. Besides not applying any fil-
ter on the reported genotype qualities (“lenient”),
we additionally report genotyping statistics for
PanGenie when using “strict” filtering (genotype
quality >= 200). Note that GATK was not run
on large variants, and Paragraph was only run
on midsize and large variants.
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=== PanGenie (lenient) ~ Figure 13: extended panel results for NA24385
mmw PanGenie (strict) o O . .
s BayesTyper in repeat regions We ran PanGenie using the
Platypus extended panel, BayesTyper, Paragraph, Platy-
- gf;lg(raph pus and GATK in order to re-genotype all callset
o 5x variants located inside of repetitive STR/VNTR
. ;gi regions. Besides not applying any filter on the
® 30x reported genotype qualities ( “lenient”), we addi-
tionally report genotyping statistics for PanGenie
when using “strict” filtering (genotype quality
>= 200). Note that GATK was not run on large
variants, and Paragraph was only run on midsize
and large variants.
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=== PanGenie (lenient)  Figure 14: small panel results for HG00731 in
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. regions. Besides not ap.plylr‘z‘g any ff’lter on th(.e

® 30x reported genotype qualities ( “lenient”), we addi-
tionally report genotyping statistics for PanGenie
when using “strict” filtering (genotype quality
>= 200). Note that GATK was not run on large
variants, and Paragraph was only run on midsize
and large variants.
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== PanGenie (lenient)  Figure 15: small panel results for HG00731
mmm PanGenie (strict) ] t ; We PanG / / th
s BayosTyper in repeat regions We ran PanGenie using the
Platypus small panel, BayesTyper, Paragraph, Platypus
P h . .
e and GATK in order to re-genotype all callset vari-
o 5x ants located inside of repetitive STR/VNTR re-
e 10x . . .
o 20x gions. Besides not applying any filter on the re-
® 30x ported genotype qualities (“lenient”), we addi-
tionally report genotyping statistics for PanGenie
when using “strict” filtering (genotype quality
>= 200). Note that GATK was not run on large
variants, and Paragraph was only run on midsize
and large variants.
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== PanGenie (enient)  Figure 16: small panel results for HG00732 in
mmm PanGenie (strict) oy . . .
=== BayesTyper non-repetitive regions. We ran PanGenie using
Platypus the small panel, BayesTyper, Paragraph, Platy-
T aregranh pus and GATK in order to re-genotype all callset
o 5x variants located outside of repetitive STR/VNTR
. regions. Besides not applying any filter on the
® 30x reported genotype qualities ( “lenient”), we addi-

tionally report genotyping statistics for PanGenie
when using “strict” filtering (genotype quality
>= 200). Note that GATK was not run on large
variants, and Paragraph was only run on midsize
and large variants.
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SNPs == PanGenie (enient)  Figure 17: small panel results for HG00732
. oonGeme GV in repeat regions We ran PanGenie using the
ayesTyper
08 Platypus small panel, BayesTyper, Paragraph, Platypus
—oe - (P;Zr;graph and GATK in order to re-genotype all callset vari-
g% o 5x ants located inside of repetitive STR/VNTR re-
£ o4 : ig" gions. Besides not applying any filter on the re-
= X .. . .
S, ® 30x ported genotype qualities (“lenient”), we addi-
3 tionally report genotyping statistics for PanGenie
2901 when using “strict” filtering (genotype quality
o
> g3 >= 200). Note that GATK was not run on large
9 . . .
£ . variants, and Paragraph was only run on midsize
° and large variants.
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== PanGenie (enient)  Figure 18: small panel results for NA12878 in
mmm PanGenie (strict) oy . . .
=== BayesTyper non-repetitive regions. We ran PanGenie using
Platypus the small panel, BayesTyper, Paragraph, Platy-
T aregranh pus and GATK in order to re-genotype all callset
o 5x variants located outside of repetitive STR/VNTR
. regions. Besides not applying any filter on the
® 30x reported genotype qualities ( “lenient”), we addi-
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Runtimes We measured the runtimes of all genotypers for the experiments described in Section|2.3|and show them
in the table below. For all methods we measured the time needed to produce genotypes given the raw, unaligned
sequencing reads. Therefore, runtimes for the mapping based approaches (Platypus, GATK, Paragraph) include the
time that was needed to align the reads to the reference genome.

coverage method runtime (CPU sec)

HG00731 HG00732 NA12878 NA24385

5 PanGenie-4 5:43:14 5:47:27 5:24:09 5:50:16
PanGenie-10 16:30:46 16:09:53 16:33:56 16:39:10
BayesTyper 19:15:14 19:01:26 19:15:50 19:18:32

bwa + Platypus 20:24:03 20:17:03 17:49:02 20:23:04

bwa + GATK! 47:24:18 46:41:48 43:53:18 46:28:50

bwa + Paragraph? 21:49:04 21:42:20 19:42:04 21:58:48

10 PanGenie-4 7:13:16 7:21:35 6:53:07 7:28:14
PanGenie-10 18:38:24 18:32:37 17:58:22 18:39:40
BayesTyper 21:06:09 20:48:47 20:44:49 21:32:58

bwa + Platypus 39:20:30 39:00:07 33:41:37 39:29:54

bwa + GATK! 74:16:30 73:38:42 67:07:30 73:17:21

bwa + Paragraph? 42:42:03 42:20:31 38:30:50 43:26:37

20 PanGenie-4 10:34:05 10:17:36 9:03:41 10:16:48
PanGenie-10 21:58:38 21:12:08 19:39:27 21:24:34
BayesTyper 23:30:17 23:14:27 22:28:14 24:27:43

bwa + Platypus 76:55:22 76:40:07 65:51:00 77:35:07

bwa + GATK! 125:25:19 124:35:58 113:03:27 124:42:22

bwa + Paragraph? 84:28:32 84:03:30 77:15:57 86:23:53

30 PanGenie-4 14:41:47 17:34:07 12:59:47 14:07:18
PanGenie-10 26:59:57 26:38:29 23:42:00 23:49:38
BayesTyper 27:47:37 27:27:24 25:18:09 30:04:13

bwa + Platypus 115:32:52 114:32:36 95:31:42 115:59:24

bwa + GATK! 177:37:56 175:12:35 152:07:04 175:26:41

bwa + Paragraph? 127:27:47 126:00:29 115:11:40 129:51:49

! GATK was run on SNPs, small and midsize variants only.
% Paragraph was run on midsize and large variants only.

Table 4: Runtimes (in CPU hhh:mm:ss) of the different genotyping methods at different coverages.
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Figure 22: Genotyping Performance for sam-
ple NA12878 on GIAB variants at different
coverages. Evaluation of the genotypes pro-
duced by PanGenie, BayesTyper, Paragraph,
Platypus and GATK for the variants overlap-
ping with the Genome in a Bottle ground truth.

We also evaluated our genotyping results for individual NA12878 taking the Genome in a Bottle (GIAB) small variant
calls [43] as a ground truth. We determined all variants that the GIAB callset and our assembly-based VCF had in
common and compared the genotype predictions made by the genotypers to the true genotypes. We only considered
exact matches, that is, a variant was considered an overlap, if the positions and genotype alleles between both callsets
where exactly identical. Figure[22]shows the results. Variants that were present in the GIAB callset but not our assembly
calls, were treated as “untyped” when creating the plots.
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SNPs small deletions | small insertions | midsize deletions | midsize insertions
GIAB callset 3085616 247499 242711 2658 1925
variants in overlap | 2534770 182493 183257 1613 1390
overlap [%] 82,15% 73,73% 75,50% 60,68% 72.21%

Table 5: GIAB overlap. Number of variants that overlap with the Genome in a Bottle small variant calls.
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Figure 23: Genotyping larger cohorts (strict filtering). The table provides the amount of variants for which no
significant deviation from Hardy-Weinberg Equilibrium was observed. Each plot shows the fraction of heterozygous
genotypes at a variant position as a function of the allele frequency. The red curve shows what is expected according to
Hardy-Weinberg equilibrium. Only genotypes with a quality of at least 200 were considered and positions with more
than 10 low quality genotypes were skipped.

Genotyping Larger Cohorts
Here we additionally show the results for the experiment described in Section[2.4] that we get when using strict filtering
on the reported genotypes. At each biallelic variant position, only genotypes with a quality >= 200 were considered.

Additionally, we skip if a genotype quality below that threshold was reported for more than ten samples. Results are
shown in Figure 23]

Command lines used for genotyping

We used a VCF-file containing the variants detected from the haplotype-resolved assemblies as input variants for all
genotyping tools and genotyped them based on short Illumina reads as described in Section [2.3]
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We ran BayesTyper (version v1.5) and PanGenie with default parameters using the raw, unaligned Illumina
reads (FASTQ format) as input. For BayesTyper, we used the Snakemake pipeline provided in their repository
(https://github.com/bioinformatics-centre/BayesTyper). PanGenie (https://bitbucket.org/jana_
ebler/pangenie/src/master/, commit: £46a9e5) was run based on the command shown below,

PGGTyper -i reads.fq -v variants.vcf -r reference.fa -o pangenie-results -j 22 -t 22 -g
where variants. vcf refers to the input VCEF file that contains the variants to be genotyped.

The remaining tools were provided with the aligned reads in BAM format, produced by mapping them to
the reference genome using bwa. Platypus (version 0.8.1) was run in re-typing mode with additional options
--source=variants.vcf, --minPosterior=0 and --getVariantsFromBAMs=0.

In order to run GATK (version 4.1.3.0), we first marked duplicates in our BAMs and then used HaplotypeCaller in
re-typing mode in order to compute genotypes for the input variants using the command below. Note that we did not
genotype large variants with GATK, therefore we removed them from the input VCF file prior to genotyping.

GATK HaplotypeCaller -reference reference.fa --input reads.bam --output GATK-results
--minimum-mapping-quality 20 --genotyping-mode GENOTYPE_GIVEN_ALLELES --alleles
variants_no_large.vct

In order to run Paragraph, we first computed the depth of the input BAM file using the command
/bin/idxdepth -b reads.bam -r reference.fasta -o depth.json

and prepared the Manifest file required for genotyping. In the next step, we used the command bin/multigrmpy.py
with default parameters in order to genotype the input variants. Note that we removed all variants shorter than 20 bp
from the input VCF before running Paragraph in order to only type midsize and large variants.

The complete pipeline used to run the evaluation including the commands used to run all tools can be found in this
repository: https://bitbucket.org/jana_ebler/genotyping-experiments/src/master/
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