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Abstract

The human microbiome influences the efficacy and safety of a wide variety of commonly
prescribed drugs, yet comprehensive systems-level approaches to interrogate drug-microbiome
interactions are lacking. Here, we present a computational resource of human microbial
genome-scale reconstructions, deemed AGORA2, which accounts for 7,206 strains, includes
microbial drug degradation and biotransformation, and was extensively curated based on
comparative genomics and literature searches. AGORA?2 serves as a knowledge base for the
human microbiome and as a metabolic modelling resource. We demonstrate the latter by
mechanistically modelling microbial drug metabolism capabilities in single strains and
pairwise models. Moreover, we predict the individual-specific drug conversion potential in a
cohort of 616 colorectal cancer patients and controls. This analysis reveals that some drug
activation capabilities are present in only a subset of individuals, moreover, drug conversion
potential correlate with clinical parameters. Thus, AGORA2 paves the way towards
personalised, predictive analysis of host-drug-microbiome interactions.

Introduction

Trillions of microbes are inhabiting our gastro-intestinal tract, with a high species and strain
diversity between individuals depending on, e.g., sex, age, geographic and ethnic origin,
lifestyle, and health status'. These microbes, collectively called microbiota, contribute essential
nutrients, such as short chain fatty acid, hormones, and neurotransmitters, to human
metabolism?. Importantly, this host-microbiota co-metabolism also extends to drug
metabolism®. At least 15 named microbial enzymes can metabolise over 50 commonly
prescribed drugs* resulting in activation, inactivation, detoxification, or re-toxification
depending on the drug?® (Figure 1). Accordingly, human gut microbes have been shown to
metabolise 176 of 271 tested drugs®. However, the extent, to which the different species
metabolise human-targeted drugs, remains largely unknown due to the lack of large-scale
analysis of the distribution of drug-metabolising enzymes in microbial genomes.
Consequently, it is currently not possible to estimate differences in drug response between
individuals caused by different microbiota composition. Personalised therapeutic interventions
that take diet, genetics, and the microbiome into account have been proposed as a promising
strategy to improve treatment efficacy®. However, such a systems level approach requires
computational, predictive modelling®.

A mechanistic, data-driven systems approach that enables large-scale predictions of human and
microbial metabolism is constraint-based reconstruction and analysis (COBRA). COBRA
relies on biochemically detailed, molecule-resolved genome-scale reconstructions that are
manually curated based on the available literature and represent a genomically, genetically,
and biochemically structured knowledge base of the target organism’. These reconstructions
can be converted into predictive computational models through the application of condition-
specific constraints®, including (meta-) omics and nutritional data. Importantly, COBRA has
been already successfully applied for the exploration of metabolic human-microbiome co-
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metabolism® !°, which has been facilitated by the increasing availability of genome-scale
Y g Y g

reconstructions for human microbial species!!-!?
automatically curated resource (AGORA1) of 773 genome-scale reconstructions of human gut
microbe strains, representing 605 named species and 14 phyla!l. To increase the microbial
metabolic reconstruction coverage and capture more of the thousands of known species

. For instance, we have assembled a semi-

inhabiting humans'#, a fast reconstruction tool, CarveMe, has been recently published!3.
Despite its many advantages, CarveMe does not account for manually refined genomic
annotations and microbial drug-metabolism.

Here, we present an expansion in scope and coverage of AGORA, AGORA?2, consisting of
microbial reconstructions for 7,206 strains, 1,644 species, and 24 phyla. AGORA2 summarises
the knowledge and experimental data obtained through extensive manual comparative
genomics analyses and literature and textbook reviews. Importantly, over 5,000 AGORA2
reconstructions have been expanded by manually formulated microbial drug biotransformation
and degradation reactions covering 98 drugs and 15 enzymes, which enables the prediction of
drug degradation and biotransformation in a molecule-and strain-resolved manner. AGORA2
follows the quality standards developed by the systems biology research community® !° and is
fully compatible with the generic!® and the organ-resolved, sex-specific, whole-body human
metabolic reconstructions!’. We demonstrate the use of AGORA2 for the prediction of
microbial drug metabolism by single strains, pairwise combinations of microbes, and 616
personalised microbiomes. Taken together, the AGORA2 reconstructions can be used
independently or together for investigating microbial metabolism and host-microbiota co-
metabolism in silico.

Results
A data-driven refinement pipeline for large-scale microbial metabolic reconstructions

To build the reconstructions of the 7,206 gut microbial strains in the AGORA2 compendium,
we substantially revised and expanded a previously developed data-driven reconstruction
refinement workflow!!. Overall, the reconstruction workflow consists of data collection, data
integration, draft reconstruction generation and refinement, gap-filling and debugging, and
iterative reconstruction curation (Figure 1). After expanding the taxonomic coverage (Figure
2a-b, Table S1, Supplemental Note 1), we generated draft reconstructions using genome
sequences obtained from, e.g., the National Center for Biotechnology Information (NCBI,
Table S1), and the online reconstruction tool KBase!2. All reactions and metabolites of these
draft metabolic reconstructions were translated into the Virtual Metabolic Human (VMH)!®
name space and semi-automatically refined by including the manually collected genomic,
biochemical, and phenotypic information (Figure 1). More specifically, for 5,438/7,206 (75%)
genomes, we manually validated and improved the annotations of 446 gene functions across
35 metabolic subsystems using PubSEED! (Table S2a-c). We performed an extensive
literature search of 130 carbon sources, 30 fermentation pathways, 64 growth factors,
consumption of 73 metabolites, and secretion of 51 metabolites resulting in information from
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732 peer-reviewed papers and >8.000 pages of microbial reference textbooks resulting in
information for 6,871/7,206 strains (95%) (Table S3a-e). For the remaining 336 strains, either
no experimental data was available, or all biochemical tests reported in the literature were
negative. A newly developed test suite ensured correct reconstruction structure, biochemical
and thermodynamic consistency (TableS4, Supplemental Note 2). Using an unbiased quality
measure, we determined the subset of flux and stoichiometrically consistent reactions®°. The
curated reconstructions had a significantly higher (p<le-08) percentage of flux consistent
reactions compared to the draft reconstructions (Figure S2) despite being larger in their
metabolic content (Figure 2c). Consistently, the extensive refinement of the curated
reconstruction based on genomic annotation and experimental resulted in average in the
addition and removal of 489.84 (standard deviation (1): 421.10) and 111.02 (£61.96) reactions,
respectively, per reconstruction (Figure S1). Note that our reconstructions represent knowledge
bases, thus, if genetic or biochemical evidence exists for a gene or reaction, it will be included
in the reconstruction. This approach is in contrast to other pipelines generating reconstructions
containing only the flux consistent part (e.g., CarveMe 3, Path2Model?!). This property allows
the use of AGORAZ2 to rapidly identify current knowledge gaps, thereby enabling biological
discovery. Moreover, we retrieved the metabolic structures for 1,838/3,533 (52%) metabolites
and provide atom-atom mapping for 5,583 of the overall 7,300 (76%) enzymatic and transport
reactions captured across all microbial reconstructions. Finally, biomass objective functions
provided in the draft reconstructions from KBase were corrected according to gram status and
reactions were placed in a periplasm compartment where appropriate (Supplemental Note 3).

The metabolic models derived from the semi-automatically curated reconstructions showed a
clear improvement in predicted aerobic and anaerobic growth on unlimited medium and on a
Western diet and in their agreement with experimental data over models derived from the draft
reconstructions (Figure 2¢, d; Supplemental Note 2). This increased predictive capability was
expected as the reconstructions were curated against this data during the refinement step.
Overall, AGORAZ2 reflects the diversity of captured strains as they clustered by class according
to their reaction coverage (Figures 2e, S3a, Supplemental Note 4). Several genera in the Bacilli
and Gammaproteobacteria classes formed multiple subgroups illustrating important metabolic
differences between them (Figures 2f-g, S3b-c, Supplemental Note 4). Cross-phylum
metabolic differences also translated to differences in predicted growth rates in Western diet
(Figure 2 h-k) and in their potential to consume and secrete metabolites (Figure S4a-b). Taken
together, the AGORAZ2 reconstructions capture current genomic and biochemical knowledge
of the reconstructed microbes and can be converted into condition-specific metabolic models.

Microbial drug metabolism guided by literature and refined genome annotations

Microbes can directly or indirectly influence drug activity and toxicity through degradation
(e.g., hydrolysis) and biotransformation (e.g., reduction)® # (Figure 3a). To account for this
microbial capability, we performed an extensive, manual comparative genomic analysis for 25
drug genes, encoding for 15 enzymes shown to directly or indirectly affect drug metabolism
(Table S5), their subcellular locations, and 12 genes encoding for drug-transporter (Table S2d).
All 5,438 analysed strains carried at least one drug-metabolising enzyme (Figure 3a, Table
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S2c¢). As these enzymes are also involved in central metabolism, e.g., nucleoside metabolism,
this high coverage was expected. We then carried out a thorough literature and database review
of metabolite structures, formulas, and charges for 98 frequently prescribed drugs belonging to
10 drug groups and 32 subgroups (Figure 3b). We formulated 1,440 reactions containing 363
metabolites and added, in average, 254 reactions and 110 metabolites to the reconstructions
depending on the genomic evidence (Table S6a-b). We validated, with an accuracy of 0.78
(Fisher’s exact test: p=1.50e18), the drug-metabolising predictions against independent
published experimental data for 238 drug-microbe pairs (Table S7, Figure S5-S6). The 19 false
positive predictions may indicate non-functional genes or regulatory mechanisms, whereas the
34 false negative predictions could be due to incompleteness of genomes or non-orthologous
displacement in complete genomes. Taken together, this large-scale genome-annotation effort
revealed a wide range of phyla capable of drug metabolism.

Taxonomic distribution of drug-metabolising capabilities

We analysed the taxonomic distribution of the annotated drug and transport genes (Figure 3c-
e, Table S2c¢). At least one strain in each of the 14 analysed phyla encoded for genes involved
in drug metabolism (Figure 3e). The most widespread drug-metabolising enzymes were the
central metabolic enzymes, cytidine deaminase and nitroreductase, which were found in 12 and
13 phyla, respectively (Figure S7a-b). Another central metabolic enzyme, the pyrimidine-
nucleoside phosphorylase, was also widely distributed, but the monophyletic branch specific
for the metabolism of brivudine and sorivudine?? was only found in the Bacteroidetes phylum
(Figures 3d-e, S7¢). Many drugs are detoxified by the liver through the addition of glucuronic
acid®>. The microbial B-glucuronidase removes glucuronic acid through hydrolysis thereby
reverting the drug to its active form. This enzyme was in >99% of analysed Escherichia coli
strains and was also widely distributed across Bacteroidetes and Firmicutes strains (Figures
3d-e, S7d), consistent with previous analyses?. Interestingly, E. coli was the species most
enriched in drug metabolism with >99% of all analysed strains carrying seven to ten drug
enzymes (Table S2¢). The cardiac glycoside reductase and dopamine dehydroxylase could only
be found in Eggerthella lenta, in agreement with previous reports** 2, Taken together, drug-
metabolising enzymes, and transporters, are widely distributed but important phyla-specific
and strain specific differences exist.

Drugs can serve as carbon, energy, and nitrogen sources and influence microbe-microbe
interactions

Next, we investigated in silico the theoretical benefit of metabolising drugs for each microbe.
Therefore, for all 5,378 reconstructions expanded with the drug reactions and for one example
drug per enzyme (15 in total), we computed, using flux balance analysis?®, the yields for ATP,
carbon dioxide, pyruvate, and ammonia from 1 mmol drug/gary weigh/hr (Figure 4a). Of the 5378
strains, 3,828 could use carbon-containing drugs as a source of energy (ATP), carbon dioxide,
and/or pyruvate (Figure 4a, Table S8). Additionally, 1,619 and 2,319 strains could use
gemcitabine or 5-fluorocytosine, respectively, as a nitrogen source through deamination, and
672 strains could use taurine cleaved from taurocholate as a nitrogen source (Figure 4a, Table
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S6). These results suggest that the presence of drugs could alter the nutrient environment for
microbes, which may have implications on interspecies growth and interactions®’. To test this
hypothesis, we simulated co-growth of 19,900 microbe-microbe pairs on three different diet
compositions (Western diet'!: alone, plus glucuronidated irinotecan (SN38G), and plus free
glucuronic acid, (Table S9)). Mutualistic interactions increased from 22% to 33% when the [3-
glucuronidase was only in one strain and the other had only the glucuronic acid pathway
(Figure 4b). In contrast, when both microbes had B-glucuronidase and the glucuronic acid
degradation pathway, SN38G supplementation resulted in decrease in mutualism from 15% to
10% (Figure 4b). Taken together, the human-targeted drugs can serve in silico as nutrients to
the microbes and may thus alter interspecies interactions.

Community modelling reveals rare and common drug-metabolising capacities among
colorectal cancer cases and healthy controls

We then addressed the important question on how the drug-metabolising capacities may differ
between individuals due to different microbiota composition using a comprehensive, large-
scale metagenomic data set from a Japanese cohort of 365 colorectal cancer (CRC) patients
and 251 healthy controls®®. A total of 97% of the named species could be mapped onto the
AGORA2 (compared to 72% for AGORA1). For each individual, we integrated all microbial
models having a non-zero abundance in the sample into one personalised microbiome model.
We then computed, using flux balance analysis®®, each individual microbiomes’ drug-
metabolising potential (Figures 5, S8, Table S10). All drugs but digoxin and balsalazide could
be qualitatively metabolised in silico by at least 95% of the microbiomes (Figure 5a, Table
S10a-b), but the microbiomes’ quantitative drug-metabolising potentials varied (Figure S8).
Digoxin could be metabolised by only 53% of the microbiomes presented the capacity to
metabolise digoxin (Figure 5a), being strictly dependent on the presence of Eggerthella lenta
(Figure S9). Balsalazide could be metabolised by 42% of the investigated microbiomes (Figure
5a) with a tendency of enrichment in CRC cases (Figure 5b) (odds ratio (OR)=1.39, 95%-
CI=(0.99;1.96), p=0.056). Accordingly, the azoreductase was only found in 78 of 5,438 (1.4%)
analysed strains (Figure 3a, Table S2c¢), of which only seven species were present in this cohort
(Figure 6a, Supplemental Note 5, Table S11). The conversion of the prodrug 5-fluorocytosine
into the active drug 5-fluorouracil and subsequent detoxification* 2 was limited by the
presence of certain species (Figure 6b, Supplemental Note 5, Table S11). Equally, the
conversion of Parkinson’s Disease drug levodopa into m-tyramine?’, which limits the levodopa
bioavailability, was dependent on the presence of E. lenta in a microbiome (Figure 6c,
Supplemental Note 5, Table S11). We found that diet altered only the predicted microbial
community drug-metabolising potentials for 4-hydroxyphenylacetate and soriduvine
highlighting putative diet-drug-metabolome interactions (Figure S10, Table S12). These
examples demonstrate the added value of simulating enzymatic functions in their metabolic
context rather than merely counting gene functions captured in a given microbiome sample.

Drug-metabolising capacities of microbiomes are associated with age, sex, BMI, and CRC
stages
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Next, we investigated the statistical association pattern of age, sex, and body mass index (BMI)
to the drug-metabolising capacities of the microbiome. Predicted secretion potentials of drug
metabolites were clearly associated with age (Figure 5c), although the effect sizes were small
to medium. For example, the conversion of sorivudine into a toxic byproduct showed a reverse
U-shaped association to age with old and young individuals having lower production potentials
than middle aged persons (Figure 5¢, R?= 0.06, p=7.67¢-08). Interestingly, women had clearly
higher fostamatinib and taurocholate metabolising capability, while slightly, but significantly,
lower conversion potential of the chemotherapy drug gemcitabine (Figure 5¢). However, the
latter effect was not significant when adjusted for BMI indicating that the lower potential in
women was putatively related to the sex-differences in BMI. Indeed, conversion of gemcitabine
was positively associated with BMI measures (Figure 5c¢), indicating that BMI acts statistically
as a mediator variable.

Lastly, we investigated whether drug-metabolising capacities were associated with the CRC
stage. Interestingly, conversion potential of the antibiotic chloramphenicol was clearly reduced
in late stage CRC (p=0.003), which would result in increased toxicity (Figure 3a). For the other
drugs, including the cancer drugs, no clear differences in drug-metabolising capacities could
be observed, despite the reported enrichment in 29 species in CRC metagenomes®.
Nonetheless, individual differences, regardless of disease status, due to distinct microbiota
composition existed (Figure S8). In conclusion, AGORA2 in conjunction with metagenomic
data and clinical parameters enables the investigation into the physiological and
pathophysiological traits associated with drug-metabolising capacities.

Discussion

Here, we introduced AGORA?2, a resource of 7,206 genome-scale reconstructions for human-
associated microbes with unprecedented coverage, scope, and curation effort. AGORA2 is
freely available to the scientific community both as a knowledge base and a metabolic
modelling tool'®. AGORA?2 accurately captures biochemical and physiological traits of the
target organisms and includes manually refined, strain-resolved drug-metabolising capabilities.

Computational modelling of microbial consortia is increasingly recognised as a
complementary method to in vitro and in vivo experiments and has the potential to generate
efficiently experimentally testable hypotheses!®3!. Our knowledge about gut microbes remains
limited and thus, any in silico reconstruction will be inherently incomplete and require regular
updates®?. Consequently, AGORA2 currently does not yet capture the breath of microbial drug
and secondary metabolism, e.g., for plant polyphenols®®. However, this information may be
added once a strain-and enzyme-resolved understanding is obtained, as it has been done for
bile acid metabolism in AGORA13*, When modelling microbial consortia, it is important that
any reconstruction bias (e.g., set of pathways included) is consistent as it is the case for
AGORA2. Moreover, as AGORA?2 uses the same metabolite and reaction nomenclature!® as
the human metabolic reconstruction'® and the whole-body metabolic reconstructions'’, the
microbiome-level reconstructions (and models) can be used to predict host-microbiome co-
metabolism*, up to their potential contribution to human organ-level metabolism!’. Available
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software tools®® 37 allow for the contextualisation of microbial and human metabolic models
with omics data, thereby allowing for condition-specific and personalised modelling!” and for
modelling of the gut (e.g.,*®), lung?®, tumor*’, wound*!, and bioremidiation*.

The taxonomic extension of AGORA2 (Figure 2a, b) covers all 83 named microbes in the
Broad Institute-OpenBiome Microbiome Library®’, all strains in the human gastrointestinal
bacteria culture collection*, 99 of 100 named species in 92,143 metagenome-assembled
genomes from 11,850 human gut microbiomes* as well as 477 of the 573 named species (83%)
in a resource of over 150,000 microbial genomes*. Furthermore, AGORA?2 accounts also for
species pre-dominantly found in non-Western populations and in disease states, which we
demonstrated by investigating metagenomic samples of Japanese CRC patients and controls
(Figure 5-6, Figure S8-10). AGORA2 also captures almost 500 currently uncultured and/or
uncharacterised strains, and 127 mouse-associated strains (Figure 2a, Table S1). Together, this
extension increases the prediction fidelity of microbiome-level models and will further broaden
its application areas.

Using AGORAZ2, we predict that gut microbes could use a broad range of frequently prescribed
drugs (Figure 3b) as energy, carbon, and nitrogen sources (Figure 4a). In fact, depending on
drug and microbes, the microbe-microbe interactions were altered, which may introduce
changes in the microbial ecology (which cannot be readily predicted using the COBRA
approach). The predicted changes in interspecies interactions through liberation of sugars from
drugs is similar to cross-feeding networks in the gut mediated by polysaccharides®.
Competitive and mutualistic interactions, which were influenced by the presence of glucuronic
acid and SN38G (Figure 4b), have been shown to destabilise microbial communities*®. These
predictions underpin increasing reports of the extent, to which gut microbes may alter the
bioavailability and toxicity of human-targeted drugs*. The microbial communities could only
be modelled on the species level, in the absence of strain-level abundances?®. However, the
well-described strain-level differences for, e.g., E. lenta®*, were captured by AGORA?2 (Tables
S2c, S11). To harness the full potential of AGORA2 as a predictive tool, metagenomic
sequencing on the strain-level would be valuable.

We reported associations between CRC patient-specific microbial drug conversion capabilities
and clinical parameters, such as age and BMI (Figure 5). The example of balsalazide, an anti-
inflammatory drug utilised in treating inflammatory bowel disease (IBD), showcases how
AGORA2 could be used to inform clinical research, and potentially facilitate personalisation
of treatment. Balsalazide has high numbers need to treat (NNT) metrics for inducing remission
(NNT:10) and maintenance (NNT:6) in ulcerative colitits*’, indicating that most patients do
not profit from the drug. Consistently, less than half of the analysed microbiomes activated the
drug (Figure 5a). Whether this ratio holds in IBD cohorts is yet to be shown, but we revealed
that the required azobond reduction is a rare capacity among the gut microbiota, suggesting a
role in limiting efficacy of balsalazide treatment. Thus, AGORA2 in conjunction with
metagenomics could be utilised to decide on an individual’s benefit of balsalazide treatment.
Naturally, follow-up clinical trials would be needed to validate such stratification of
inflammatory bowel patients into responders and non-responders. The finding that drug-
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metabolising capabilities are varying over age-groups, BMI, and sex (Figure Se, f)
demonstrates that AGORAZ2 in conjunction with community modelling can be utilised in large
epidemiological cohort studies, by mapping the drug-metabolising capacities across diseases
and risk factors, and thereby opening new research possibilities to understand the role of the
microbiome in drug metabolism.

We demonstrated the theoretical drug-metabolising potential of human microbes. Drug
response to realistic drug concentrations will require hybrid modelling approaches, e.g.,
integrating constrained-based modelling with physiological-based pharmacokinetic
modelling®!-3? and using a constrained-based model of organ-resolved whole-body metabolism
with integrated gut microbial community!”. In a first step, we showed that the diet plays a role
for the drug conversion potential of, e.g., sorivudine (Figure S10). Dietary supplements,
probiotics, antibiotics, or drugs targeting microbial enzymes, which have been shown to
attenuate side effects of drugs?, could be predicted and validated using such hybrid modelling
approach®'. Taken together, AGORA?2 paves the way for an integrative, multi-scale modelling
approach that may enable in silico clinical trials>! and contribute to precision medicine.
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Material and methods
Selection of newly reconstructed organisms and retrieval of whole-genome sequences

First, we retrieved 4,185 genomes of human gut-associated strains that were available on
PubSEED?? (Supplemental Note 6). To expand the species coverage, we performed an
extensive literature search of species isolated from or detected in the human microbiome with
available whole-genome sequences (Table S1). This search led to the addition of further 1,324
strains, which included 127 genomes of mouse-associated strains. The corresponding whole-
genome sequences were retrieved in FASTA format from the NCBI FTP site
(ftp:/ftp.ncbi.nlm.nih.gov/). Moreover, we included 26 genomes of Eggerthella lenta strains>*
provided through personal communication. Finally, we retrieved 761 human microbial
genomes from the Human Gastrointestinal Bacteria Culture Collection (HBC)* in FASTQ
format from https://www.ebi.ac.uk/ena/data/view/PRIEB23845 and
https://www.ebi.ac.uk/ena/data/view/PRJEB10915. Together with AGORA1.03, which was
obtained from the VMH!®, these combined efforts resulted in 7,206 strains and 1,644 species
included in AGORA2.

Manual refinement of metabolic pathways and gene annotations through comparative
genomics

Of the 7,206 analysed strains, 5,438 bacterial strains and three archaeal strains were present in
the PubSEED resource®> 3 (Supplemental Note 6) and could be re-annotated for their
metabolic functions through comparative genomics. 34 metabolic subsystems that had been
reconstructed previously for a smaller subset of gut microbial strains!!> 343638 " ag well as a
newly created drug metabolism subsystem, were considered for the analysis. All subsystems

are available at the PubSEED website.

Curation of subsystems: We used the subsystems for biosynthesis of amino acids, B-vitamins,
quinones, and nucleotides, as well subsystems for central carbon catabolism, biotransformation
of bile acids, respiration, activation of N-acetylglucosamine, fermentation of amino acids, and
drug metabolism (Table S2a for a comprehensive list of subsystems). For annotation of the
genes in each subsystem, the PubSEED platform was used®’. Functional roles for each
subsystem were annotated based on the (1) prescribed functional role for the protein, (2)
sequence similarities of the protein to proteins with previously confirmed functional role, and
(3) genomic context (Supplemental Note 7).

Metabolic pathways considerations for comparative genomics analysis: Absence of gene(s)
for one or more enzymes in a pathway may result in blocked reactions in a metabolic
reconstruction. To avoid this, we estimated the completeness of metabolic pathways during the
genome annotation. For each potentially synthesised metabolite, all the biosynthetic pathways
were collected in agreement with the KEGG PATHWAY resource®® and genes of the
subsystem were attributed to corresponding steps of the metabolic pathways. Absence of the
consequent reactions was determined as a gap. Only pathways with no more than two gaps
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with gap length of no more than one step (Supplemental Note 8) were further gap-filled and
used for generation of reactions.

Sequence-based gap-filling: For the gapped pathways, the bidirectional best-hit (BBH)
method®® was used: (1) The gene corresponding to the gap and present in the genome for the
related organisms (belonging to the same species, genus, or family) was used as a query for a
BLAST search in the genome with the gap. (2) Possible BBHs were defined as homologs for
that alignment with the query protein having an e-value < e->° and protein identity > 50%. (3)
For each possible BBH, the reverse search was done for the genome that was a source of the
query protein. (4) If the query protein and its best homolog in the analysed genome formed
BBH pair, the gap was filled. (5) A similar genomic context for the query protein and its
ortholog was considered as an additional confirmation for orthology of the identified BBH pair.

Annotation of the drug metabolic genes: To annotate drug-metabolising genes, we used the
following pipeline. (1) Identify genes known to encode for drug-metabolising enzymes in a
range of microbial organisms, from the scientific literature (Table S5). (2) Using the amino
acid sequences of these known drug-metabolising genes as queries, we performed a BLAST
search for every analysed genome. (3) The resulting best BLAST hit was then used as a query
for the BLAST search in the genome having known drug-metabolising gene to confirm that
the known protein sequence and its best BLAST hit form a pair of best bidirectional hits
(BBHs). (4) All proteins being BBHs were used for the construction of a rooted maximal-
likelihood tree. (5) All previously known proteins were mapped onto the tree, and all
monophyletic branches containing known drug-metabolising enzymes were determined
(Figure S11). (6) All annotated proteins in these branches were considered as orthologs of the
known drug-metabolising proteins. All the proteins not being in branches with known drug-
metabolising proteins were considered as proteins with other function and were excluded from
further analysis. After the exclusion of the later, a tree was constructed again for orthologs of
the known drug-metabolising proteins. (7) For two of the drug-metabolising genes, being the
L-tyrosine decarboxylase (TdcA, EC 4.1.1.25) and the cytidine deaminase (cCda, EC 3.5.4.5),
we found that genomic context is conserved between species. For these two proteins, we also
analysed the genomic context. If genomic context of a candidate gene was similar to that of a
known drug-metabolising gene, the candidate was considered as an ortholog of the known
protein. Otherwise, it was considered to as a false-positive prediction and excluded from further
analysis (Supplemental Note 9, Figure S11). As for (6), the tree was constructed again for only
the orthologs of the known proteins. (8) For each tree, including only the orthologs of the
known genes, we defined the monophyletic branches containing proteins derived from only
one species. For each of such species-specific branch, we predicted subcellular localisation
(Supplemental Note 10), using the CELLO v.2.5 system (cello.life.nctu.edu.tw). (9) For
cytoplasmic enzymes, drug transporters were predicted based on genomic context
(Supplemental Note 11, and Table S2d).

Tools. The PubSEED platform®* > was used to annotate the subsystems. To search for BBHs
for previously known proteins, a BLAST algorithm®' implemented in the PubSEED platform
was used. Additionally, the PubSEED platform was used for analysis of the genomic context.
To analyse the protein domain structure, we searched the Conserved Domains Database
(CDD)%? using the following parameters: an e-value <0.01 and a maximum number of hits
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equal to 500. For the prediction of protein subcellular localisation, the CELLO® web tool was
used. Alignments were performed using MUSCLE v.3.8.31%4. For every multiple alignment,
position quality scores were evaluated using Clustal X% %6, Thereafter, all positions with a
score of zero were removed from the alignment and the modified alignment was used for
construction of the phylogenetic trees. Phylogenetic trees were constructed using the
maximum-likelihood method with the default parameters implemented in PhyML-3.0%. The
obtained trees were midpoint-rooted and visualised using the interactive viewer Dendroscope,
version 3.2.10, build 19%.

Literature and database searches

Biochemical and physiological characterisation papers were retrieved by entering the names of
AGORA2 species into PubMed (https://www.ncbi.nlm.nih.gov/pubmed/). Information on
carbon sources, fermentation pathways, growth requirements, consumed metabolites, and
secretion products (Table S3a-e) were subsequently manually extracted on the species and/or
genus level from 732 peer-reviewed papers and >8,000 pages of microbial reference
textbooks®®. Moreover, the traits of each reconstructed strain including taxonomy, morphology,

metabolism, and genome size were retrieved through database searches. The taxonomic
classification  of  the strains ~ was  retrieved from  NCBI  Taxonomy
(https://www.ncbi.nlm.nih.gov/taxonomy/) and, to our knowledge, is up to date at the time of
this publication. Information on morphology, habitat, body site, gram status, oxygen status,
metabolism, motility, and genome size were retrieved from the Integrated Microbial Genomes
and Microbiomes’® database (https://img.jgi.doe.gov/) (Table S1).

Generation of draft reconstructions

Draft reconstructions were generated through the KBase!? narrative interface. Genomes present
in KBase were directly imported into the narrative. Otherwise, genomes in FASTA format were
uploaded into the Staging Area and subsequently, imported into the narrative through the
“Batch Import Assembly From Staging Area”
(https://narrative.kbase.us/#catalog/apps/kb_uploadmethods/batch_import_assembly_ from st
aging) app. Genomes in FASTQ format were directly imported into the narrative through the
“Import Paired-End Reads From Web”
(https://narrative.kbase.us/#catalog/apps/kb_uploadmethods/load paired end reads from U
RL) app after retrieving the links to the corresponding files from
https://www.ebi.ac.uk/ena/data/view/PRJIEB23845 and
https://www.ebi.ac.uk/ena/data/view/PRJEB10915. The imported assemblies were annotated
using RAST  subsystems’!  through the “Annotate  Multiple = Assemblies”
(https://narrative.kbase.us/#appcatalog/app/RAST SDK/annotate contigsets) app. Draft
metabolic reconstructions were generated through the “Create Multiple Metabolic Models”
(https://narrative.kbase.us/#appcatalog/app/tba_tools/build multiple_metabolic_models) app
and exported in SBML format through the “Bulk Download Modelling Objects”
(https://narrative.kbase.us/#appcatalog/app/tba_tools/bulk download modeling_objects) app.

Semi-automated, data-driven refinement pipeline
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The AGORA pipeline has been described previously!'!. Here, we revised the pipeline
substantially to accommodate additional curation efforts needed for the new reconstructions.
Specifically, we (i) translated ~1,000 additional reactions and ~800 metabolites from KBase to
VMH!8 nomenclature; (ii) introduced additional gap-filling reactions, where needed, to enable
biomass production under anoxic conditions on the previously defined Western diet!! with
thermodynamically consistent reaction directionalities; (iii) removed futile cycles resulting in
thermodynamically implausible ATP production by making the responsible reactions
irreversible; (iv) ensured through gap-filling and/or deletion of appropriate reactions that all
reconstructions captured the collected experimental data (Table S3a-c); and (v) adjusted
biomass objective functions to account for class-specific cell membrane and cell wall structures
(Supplemental Note 3). As described previously!'!, all solutions were manually determined for
few reconstructions and subsequently propagated to many reconstructions, as appropriate.
Reactions identified through comparative genomics (Table S2b-c) were added to the up to
5,438 reconstructions. Non-gene associated reactions, for which the respective gene could not
be found through comparative genomics, were removed from the draft reconstructions if doing
so did not abolish biomass production. Moreover, published information on metabolite uptake
and secretion in ~570 gut microbial species retrieved from’? was mapped onto VMH
nomenclature and used for validation of the predictive potential and subsequent further
expansion of the reconstructions (Supplemental Note 2). Finally, to ensure proper
compartmentalisation, a periplasm compartment was introduced. For consistency, the existing
818 AGORA1.03 reconstructions (version 25.02.2019, available at
https://www.vmbh.life/files/reconstructions/ AGORA/1.03/AGORA-1.03.zip) also underwent
the revised pipeline. The AGORA1.03 reconstruction of Staphylococcus intermedius ATCC
27335 was removed since it was a duplicate of the newly reconstructed strain Streptococcus
intermedius ATCC 27335. The names of 26 AGORA 1.03 reconstructions were changed to
account for recent changes in taxonomical classification (Table S1).

All pipeline functions were written in MATLAB (Mathworks, Inc.) version R2018b and relied
on functions implemented in the COBRA Toolbox¢. All newly included metabolites and
reactions were formulated based on literature and/or database!® 73 7* searches while ensuring
mass and charge balance through the reconstruction tool rBioNet’.

Test suite for quality control and quality assurance

To ensure that curation efforts were successful, a COBRA Toolbox-based test suite for the
AGORAZ2 reconstructions was created and regularly performed during revision of the pipeline.
Specifically, it systematically accessed whether each reconstruction (i) grew anaerobically on
the Western diet, (ii) had correct reconstruction structure, i.e., mass and charge balance, and
correct syntax for gene-protein-reaction associations, (iii) was thermodynamically feasible,
e.g., produced realistic amounts of ATP, and (iv) captured known metabolic traits of the
organism according to the collected experimental and comparative genomic data. Table S4
summarises all features that were tested by the test suite.

The comparison with the experimental and comparative genomic data was carried out by
predicting the capability of AGORAZ2 reconstructions to take up or produce reported consumed
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or secreted metabolites. If the strain was known to take up or produce the metabolite and the
corresponding AGORAZ2 reconstruction could also take or secrete the metabolite, this resulted
in a true positive prediction, while a false negative prediction occurred when the strain was
known to have this capability but the corresponding reconstruction did not capture the trait.
For growth requirements, two types of experimental information were available: nutrients that
are known to be required by the organism in question, and nutrients that are known to not be
required. This information allowed us to additionally determine true negatives (the nutrient is
nonessential for growth in the experiment and in the reconstruction) and false positives (the
nutrient is nonessential for growth in the experiment but required for growth in the
reconstruction) for growth requirements. False positive and false negative predictions were
routinely retrieved, and reaction gap-filling and/or deletion solutions were included in the
reconstruction pipeline functions to eliminate them. This refinement was performed in an
iterative effort.

Flux and stoichiometrically consistent reactions

The subset of flux and stoichiometrically consistent reactions, as defined in’, was retrieved for
each AGORA2 reconstruction and corresponding draft reconstruction through the
‘findFluxConsistentSubset’ and ‘findStoichConsistentSubset’ functions implemented in the
COBRA Toolbox*¢. The fraction of stoichiometrically and flux consistent reactions, excluding
exchange and demand reactions, was determined for each draft and curated reconstruction.
Briefly, the subset of stoichiometrically consistent reactions in a reconstruction includes all
reactions that are mass and charge conserved, excluding exchange reactions, which are by
definition mass and charge imbalanced?’. The subset of flux consistent reactions consists of all
reactions that are stoichiometrically consistent and can carry flux®°.

Formulation of the drug reactions

A literature search for microbial enzymes known to transform, degrade, activate, inactive, or
indirectly influence commonly prescribed drugs was performed yielding 15 enzymes in total
(Figure 3a, Table S5), which are encoded by 29 genes (Table S2b). To enable comparative
genomic analyses, only drug transformations that could be linked to specific protein-encoding
genes were considered. As described above, enzyme-encoding genes were analysed in their
genomic context as outlined in”® using PubSEED subsystems!®: 3.

Literature and database searches were performed for the metabolic fate of commonly
prescribed human-targeted drugs. The structures of 287 drug metabolites and drug degradation
products were retrieved from 73 peer-reviewed papers, HMDB”’, DrugBank’®, and
Transformer”. Reactions were formulated based on the collected experimentally determined
drug structures, drug downstream product metabolite structures, and reaction mechanisms.
Both, cytosolic and extracellular, enzymatic reactions were formulated depending on the
identified subcellular protein locations. Since at least six drugs undergoing glucuronidation in
the human body have been shown to be substrates for the microbial B-glucuronidase®®-#! (Table
S5), it was assumed that all retrieved glucuronidated drug metabolites (118 in total) could serve
as substrates. Additionally, B-glucuronidase reactions were formulated for 33 glucuronidated
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drug metabolites from a previously reconstructed module of human drug metabolism®?. New
metabolites and reactions were assigned VMH IDs following standards in nomenclature used
for COBRA reconstructions®, and formulated while ensuring mass and charge balance through
the reconstruction tool rBioNet’. In total, for 98 drugs (Figure 3b), 353 unique metabolites,
381 enzymatic reactions, 373 exchange reactions, and 710 transport reactions (Table S6a-b)
were formulated.

Atom-atom mapping

Atom-atom mappings were obtained using a database standardisation pipeline described in *
and the AGORAZ2 reconstructions, specifically the information of the metabolites present in
the reconstructions together with the reaction stoichiometry. The database standardisation
pipeline®® was executed in MATLAB and use different external software tools, such as
ChemAxon®*, Open Babel® and, the Reaction Decoder Tool®. The process to obtain the atom-
atom mappings for the AGORAZ2 reconstructions can be summarised as follows: 1) 1,838/3,533
metabolic structures of the metabolites present in the AGORA2 reconstructions were collected
from different chemical databases, such as VMH'®, KEGG’*, HMDB"’, PubChem?®’ and
ChEBI® databases. The metabolic structures were standardised based on the InChI algorithm®
and can be found in the VMH database®®; 2) the standardised metabolites and the reaction
stoichiometry in the AGORAZ2 reconstructions were used to generate 5,583/7,300 MDL RXN
files; 3) 5,583/7,300 AGORAZ2 reactions were atom mapped using the Reaction Decoder Tool
algorithm®® for active reactions and a pipeline's algorithm®® for passive transport reactions and
coupled transport reactions. Atom-atom mappings can be found in the VMH database!®.

Simulations

All simulations were performed in MATLAB (Mathworks, Inc.) version R2018b with IBM
CPLEX (IBM) as the linear and quadratic programming solver. The simulations relied on
functions implemented in the COBRA Toolbox?¢, and the Microbiome Modelling Toolbox?’.
Flux balance analysis (FBA)?® was used to interrogate drug metabolism. All additional scripts
for data generation, data analysis, and data visualisation are available at
https://github.com/ThieleLab/CodeBase.

Validation of drug-metabolising capacities against independent, experimental data

A literature search was performed for in vitro experiments demonstrating the capabilities of
human microbial strains to metabolise reconstructed drugs through the 15 annotated enzymes
(Table S7). If no studies on the reconstructed drugs were found for the enzyme, studies on
demonstrated drug activity of the enzyme were recorded. Subsequently, the capabilities to
metabolise the drugs through the respective enzymes for 169 AGORA2 metabolic model, for
which data could be found, were tested by computing whether the corresponding reaction could
carry flux (Table S7). If possible, the tested organisms were matched to AGORA2 models on
the strain level, otherwise pan-species models were used. Accuracy, sensitivity, and specificity
of predictions were calculated by determining the number of true positive, true negative, false
positive, and false negative predictions.
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Drug yields

To determine each strains’ capability to metabolise drugs, all AGORA2 were constrained with
a simulated Western diet!! and the flux through the exchange reactions corresponding to each
drug was minimised through FBA, corresponding to maximal uptake of the drug. For all
AGORA2? organisms capable to take up at least one drug, the yield of ATP, carbon, and
ammonia from 1 mmol of the drug/gary weigh'hr was evaluated as follows. Each reconstruction
was constrained to only allow the uptake of water, phosphate, and oxygen (VMH IDs: h2o, pi,
02). Demand reactions for ammonia as well as CO; and pyruvate (as proxies for carbon
sources) (VMH IDs: nh4, co2, pyr) were added, while a demand reaction for ATP (VMH ID:
atp) already existed in each reconstruction. Next, the uptake of each drug metabolite (15 in
total, one representative for each enzyme) was allowed one by one at an uptake rate of 1
mmol/gdry weigh'hr. For each drug metabolite, the yields of ATP, ammonia, CO,, and pyruvate
from each drug metabolite were computed using flux balance analysis (FBA) by maximising
the flux through the respective demand reactions. As control, yields were also computed for 1
mmol/gdry weigh'hr of glucose and without any metabolites added.

Pairwise simulations

We randomly selected 50 AGORA?2 strains each out of (i) all 872 strains that could use
glucuronic acid but did not have the b-glucuronidase enzyme, (ii) all 79 strains that did have
b-glucuronidase but could not use glucuronic acid, (iii) all 1,473 strains that could use
glucuronic acid and had b-glucuronidase, and (iv) all 3,423 strains that neither used glucuronic
acid nor had B-glucuronidase. The resulting 200 strains were joined in all possible
combinations, as described previously®® resulting in 19,9000 pairwise models. For each pair,
co-growth was predicted using functions implemented in the pairwise modelling module in
Microbiome Modeling Toolbox?” with the possible outcomes being competition, parasitism,
amensalism, neutralism, commensalism, and mutualism as defined in”’. Pairwise models were
grown anaerobically on the previously defined Western diet!! under three conditions: (i) no
additional compound added, (ii) supplementation with 10 mmol/gary weight/hr of irinotecan in its
glucuronidated form SN38G (VHM ID: sn38g), (iii) supplementation with 10 mmol/gary
weight/hr of free glucuronic acid (VMH ID: glcur).

Definition of an average Japanese diet

An average Japanese diet was defined based on the mean daily food consumption in 106
Japanese dietitians determined from a food frequency questionnaire and 28 days weighed diet
records®!. The reported food items were mapped to the corresponding or closest possible item
in a database of >8,000 food items available on the VMH!® website. The Diet Designer function
on the VMH website permits the design of a personalised diet through input of daily food
consumption quantities with the uptake flux values in mmol/person/day for each nutrient as the
output'®. The designed diets are suitable for the contextualisation of personalised microbiome
models*’. The mapped mean daily food consumption quantities in gram were entered into the
Diet Designer tool and the generated diet uptake fluxes were exported. To perform microbiome
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modelling simulations, the retrieved diet fluxes were adapted to enable biomass production of
all AGORA2 strains by using the ‘adaptVMHDiet2AGORA’ function as described
previously**. Table S13a) shows the retrieved quantities of food items in grams that were the
input for the Diet Designer tool. Table S13b shows the adapted uptake fluxes in
mmol/person/day that were used to contextualise the microbiome models for 616 Japanese
individuals in silico (see also next section).

Simulation of drug metabolism by individual gut microbiomes

Previously, metagenomic sequencing from faecal samples of a cohort of 616 Japanese
colorectal cancer patients and healthy controls had been performed?®. Species-level abundances
for this cohort, which has been determined with MetaPhIAn2%?, were retrieved from
https://www.nature.com/articles/s41591-019-0458-7#MOESM3. Unclassified taxa on the
species level, eukaryotes, and viruses were excluded. Of the remaining 517 species, 502 (97%)
could be mapped onto 1,644 AGORA2 species based on names. Pan-species models for

AGORA2 were created through the ‘createPanModels’ function. From the pan-species models,
personalised microbiome models for each of the 616 samples were built and parameterised as
described elsewhere®* 37 with the species-level abundances as input data. To contextualise the
models with appropriate diet constraints, the Average Japanese Diet described above was used
instead of the previously used Average European diet**. To predict the drug conversion
potential of each microbiome, the faecal secretion reactions for 13 drug metabolism end
products were optimised one by one using FBA?S, while providing the respective precursor
drug as well as oxygen at a de facto unlimited uptake rate of 1000 mmol/gary weighthr.

Shadow price analysis

To determine species in microbiome models that were of importance for the microbiome’s
combined potential to metabolise a drug, a shadow price analysis was performed as described
previously**. Briefly, shadow prices are a feature of every flux balance analysis solution (i.e.,
the shadow price is the dual to the primal linear programming problem) that reflect the
contribution of each metabolite in the model to the flux through the objective function’. Briefly,
a non-zero shadow price for a metabolite indicates that this metabolite has importance for the
total flux capacity through the optimised objective function, i.e., in our case, the secretion of a
drug metabolic product. A shadow price of zero indicates that increasing the availability of this
metabolite would not change the flux through the objective function. To determine the species
that were bottlenecks for the conversion potential of the 13 drugs in each microbiome model,
nonzero shadow prices for species biomass metabolites (‘species _biomass[c]’), which reflect
the contribution of the species to the community biomass reaction, were retrieved.

Statistical analysis

We analysed statistically the net production capacity of 13 drug metabolites (Figure 5b) among
252 healthy individuals and 364 CRC patients. For each drug metabolite, we calculated the
mean flux and the share of microbiomes with a flux greater zero. Drug metabolites, which had
in over 50% of the cases a zero flux were dichotomised (can be produced vs. cannot be
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produced) and subsequently, analysed via logistic regressions. Drug metabolites with over 50%
non-zero entries were analysed via linear regressions using heteroscedastic robust standard
errors. First, we investigated potential effects of basic covariates (age, sex, and BMI) via
generalised linear regressions (logistic or linear) with the net production capacity being the
response variable (dichotomised or metric). Age and BMI were introduced into the models as
restricted cubic splines” using four knots (the 5%-percentile, the 33%-percentile, the 66%-
percentile, and the 95%-percentile) resulting in three spline variables, each to test on potential
non-linear relationships. Significance was then determined by testing the three spline variables
belonging to age (or BMI, respectively) simultaneously on zero via the Wald test®>. While for
age substantial non-linearities were found, no indication for non-linear BMI effects could be
identified. The final models included, therefore, only the linear BMI term. Second, we tested
for potential associations of net production capacities with case control status. This was done
via generalised linear regressions (logistic or linear) with the net production capacity being the
response variable (dichotomised or metric), while adjusting for age (restricted cubic splines),
sex (male/female), and BMI (linear). Finally, we tested analogously on associations with the
CRC stage by introducing the stage as categorical variable (multiple polyps, 0, I/II, and III/IV)
into the model. We corrected for multiple testing using the false discovery rate, adjusting
significance values for 13 tests per analyses stream. A test was considered nominal significant
with p<0.05 and FDR-corrected significant if FDR<0.05. For sensitivity analysis, we
recomputed the drug-metabolising capabilities using an average European diet instead of a
Japanese diet. Then, we calculated Pearsons correlations for each drug metabolite between the
secretion potentials under Japanese and an average European diet. All statistical analyses were
performed with STATA 16/MP.

Data visualisation

The phylogenetic tree of AGORA2 organisms was constructed in PhyloT
(https://phylot.biobyte.de/) and visualised in iTOL (https://itol.embl.de/)**. Violin plots were
generated in BoxPlotR (http://shiny.chemgrid.org/boxplotr/). Clustering of taxa by reaction
presence through t-distributed stochastic neighbour embedding (t-SNE)®> was performed using
the t-SNE implementation in MATLAB with Euclidean distance, barneshut set as the
algorithm, and perplexity set to 30. Taxa with fewer representatives than 0.5% of all clustered

strains were excluded from the t-SNE plots. Circle plots were generated using the online
implementation of Circos®®. Figure 5 was generated with the graphics functions of STATA
16/MP. All other data was visualised in MATLAB and RY’.
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Figure 1: Overview of the AGORA2 pipeline. The pipeline consists of (i) collection of draft
reconstructions, comparative genomic data, biochemical and physiological data, and drug
structures and microbial conversion reactions, (ii) conversion of data into a MATLAB-readable
format, and integration into pipeline functions, (iii) data-driven refinement of KBase draft
reconstructions with continuous testing against input data and subsequent update to pipeline
functions to correct for false predictions.
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Figure 2: Features of AGORAZ2. a) Taxonomic coverage and sources of reconstructed strains.
b) Taxonomic distribution of the included 7,206 strains. ¢) Features of the AGORA?2 curated
reconstructions and KBase draft reconstructions. ¢ = cytosol, e = extracellular space, p=
periplasm. Growth rates on Western diet (WD) and unlimited medium (UM) (Methods) are
given in 1/hr. ATP production potential on WD is given in mmol/gry weigh'hr . d) Number of
reconstructions with available positive findings from comparative genomics and literature, and
percentage of curated and draft reconstructions agreeing with the findings for the respective
organism. N/A = not applicable since pathway was absent in draft reconstructions. e-g)
Clustering through t-distributed stochastic neighbour embedding (t-SNE)* of reaction
presence across all pathways per reconstruction. ) Members of the 23 largest classes by class.
f) Members of the Bacilli class by genus. g) Members of the Gammaproteobacteria class by
genus. h-k) Features of all AGORAZ2 reconstructions across phyla: h) Number of reactions. i)
Number of metabolites. j) Number of genes, and k) Growth rate in 1/hr on aerobic WD.
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Figure 3: Overview of reconstructed drugs and annotated drug enzymes present in
AGORAZ2. a) Description of the 15 enzymes directly or indirectly metabolising drugs that were
annotated in this study. The IDs for associated genes are as given in the PubSEED subsystem
and in Table S2c. ‘c’ indicates genes for cytosolic enzymes and ‘e’ indicates genes for
extracellular enzymes. b) Description of the 98 drugs, for which microbial metabolism was
reconstructed. ¢) Fraction of strains carrying each gene encoding drug enzymes or transport
proteins in the four main phyla in the human microbiome. For the list of abbreviations, see
Figure 3a and Table S2b. d) Distribution of the number of drug genes per strain for the four
main phyla. e) Distribution of the number of strains carrying each drug enzyme over the 14
analysed phyla.
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a) Yields from drug metabolites
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Figure 4: Drugs serve as nutrients for human microbes and influence microbe-microbe
interactions. a) Yields from 1 mmol/gary weighv/hr of drugs that can serve as sources for ATP,
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COg, pyruvate, and NH4 production. Shown are all microbes that could use at least one drug to
produce the respective source. Glucose and no compound added are shown as controls. One
example drug per enzyme was tested. b) Pairwise interactions between 200 microbes
corresponding to 19,900 microbe-microbe pairs on an anaerobic Western diet with no
additional compounds (none), SN38G added (+sn38g), and free glucuronic acid added
(+glcur). Shown are percentages of the six possible interactions grouped by the characteristics
of the two microbes in each pair regarding the presence of glucuronic acid degradation
pathway, B-glucuronidase, or neither.
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a) Total drug conversion capacity in the 616 micobiomes

Blue =conversion in this microbiome, red =no conversion
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Figure 5: The drug conversion potential of 616 microbiomes in a Japanese cohort of 365
CRC patients and 251 controls correlates with BMI, age, sex, and CRC stage. a) Total
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qualitative drug conversion potential in the 616 microbiomes Blue=microbiome can convert
the drug, red=no conversion. Only 53% (95%-CI=(49%;0.57%) and 42% (95%-
CI=(38%;46%) of the microbiomes could metabolise digoxin and balsalazide, respectively. b)
Overview on descriptive statistics for the modelled drug metabolites. c¢) Scatter plots (red:
controls; blue cancer) of various drug metabolites in dependence on age with non-linear
regression lines for cases and controls. Regression lines were estimated with restricted cubic
splines. All regression models had p<0.0001 (FDR<0.05) and regression coefficients were
virtually the same for cases and controls. d) Scatter plot (red: controls; blue cancer) of 2',2'-
difluorodeoxyuridine (microbial metabolite of 5-fluorocytosine) in dependence of BMI with
linear regression lines for cases and controls. The slope of BMI was significant (b=2.11, 95%-
CI=(1.12;3.09), p=2.88e-05, FDR<0.05) adjusted for sex and age (restricted cubic splines), but
no significant differences could be found between CRC cases and controls (p=0.71). e) Box
plots of 2'.2'-difluorodeoxyuridine (metabolite of gemcitabine), cholate (metabolite of
taurocholate r406 (metabolite of fostamatinib) on sex. P-values were derived from linear
regressions adjusted for age (restricted cubic splines). All three effects were significant after
correction for multiple testing (fostamatinib: b=-31.3, 95%-CI =(-43.70;-19.05), p=7.58e-07,
FDR<0.05; gemcitabine: b=12.89, 95%-CI=(4.85;20.92); cholate: b=-25.81, 95%-CI:(-37.45;-
14.18), p=1.55e-05, FDR<0.05). f) Predicted share from logistic regressions of microbiomes
able to produce 5-aminosalicylic acid in dependence of age (restricted cubic splines) and case-
control status. Effect of age was significant corrected for multiple testing FDR<0.05.
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a) Species limiting balsalazide conversion flux
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Figure 6: Bottlenecks limiting drug-metabolising capacity in 616 microbiomes. Non-zero
shadow prices indicate that increasing the abundance of this species would increase the
secretion flux of the end product of the shown enzymatic reaction in this microbiome. A
shadow price of zero shows that increasing the abundance of the species would not affect
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secretion of the end product. a) Pathway of balsalazide azo-reduction to 5-aminosalicylic acid
and subsequent acetylation to N-aetyl-5-aminosalicylic acid. b) Pathway of 5-fluorocytosine
deamination to 5-fluorouracil and subsequent reduction to 5,6-dihydro-5-fluorouracil. c)
Pathway of levodopa decarboxylation to dopamine and dopamine dehydroxylation to m-
tyramine. In each panel, the x axis shows net secretion flux of the drug metabolite per
microbiome in mmol/gary weigh/day and the y axis shows the relative reaction abundance per
microbiome.
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