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Abstract

Factor analysis is among the most-widely used methods for dimensionality reduction in
genome biology, with applications from personalized health to single-cell studies. Existing
implementations of factor analysis assume independence of the observed samples, an
assumption that fails in emerging spatio-temporal profiling studies. Here, we present
MEFISTO, a flexible and versatile toolbox for modelling high-dimensional data when spatial
or temporal dependencies between the samples are known. MEFISTO maintains the
established benefits of factor analysis for multi-modal data, but enables performing spatio-
temporally informed dimensionality reduction, interpolation and separation of smooth from
non-smooth patterns of variation. Moreover, MEFISTO can integrate multiple related datasets
by simultaneously identifying and aligning the underlying patterns of variation in a data-driven
manner. We demonstrate MEFISTO through applications to an evolutionary atlas of
mammalian organ development, where the model reveals conserved and evolutionary
diverged developmental programs. In applications to a longitudinal microbiome study in
infants, birth mode and diet were highlighted as major causes for heterogeneity in the
temporally-resolved microbiome over the first years of life. Finally, we demonstrate that the
proposed framework can also be applied to spatially resolved transcriptomics.
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Main text

Introduction

Factor analysis is a first-line approach for the analysis of high-throughput sequencing data -
4 and is increasingly applied in the context of multi-omics datasets >2. Given the popularity of
factor analysis, this model class has undergone an evolution from conventional principal
component analysis to sparse generalizations *, including non-negativity constraints 2%°. Most
recently, factor analysis has been extended to model structured datasets that consist of
multiple data modalities or sample groups "2. At the same time, the complexity of multi-omics
designs is constantly increasing, where in particular strategies for assaying multiple omics
layers across temporal or spatial trajectories have gained relevance. However, existing factor
analysis methods do not account for the resulting spatio-temporal dependencies between
samples. Prominent domains where spatio-temporal designs are employed include
developmental biology '°, longitudinal profiling in personalized medicine "' or spatially resolved
omics 2. Such designs and datasets pose new analytical challenges and questions, including
(1) accounting for spatio-temporal dependencies across samples, which are no longer
invariant to permutations, (2) dealing with imperfect alignment between samples from different
data modalities and missing data, (3) identification of inter-individual heterogeneities of the
underlying temporal and/or spatial functional modules and (4) distinguishing spatio-temporal
variation from non-smooth patterns of variations. In addition, spatio-temporally informed
dimensionality reduction can provide for more accurate and interpretable recovery of the
underlying patterns, by leveraging known spatio-temporal dependencies rather than solely
relying on feature correlations. To this end, we propose MEFISTO, a flexible and versatile
method for addressing these challenges, while maintaining the benefits of previous factor
analysis models for multi-modal data.

Results

MEFISTO takes as input a dataset that contains measurements from one or more (possibly
distinct) feature sets (e.g. different omics) - referred to as views in the following - as well as
one or multiple sets of samples (e.g. from different experimental conditions, species or
individuals) - referred to as groups in the following. In addition to this high-dimensional data,
each sample is further characterized by a continuous covariate such as a one-dimensional
temporal or two-dimensional spatial coordinate. MEFISTO factorizes the input data into /atent
factors, similar to conventional factor analysis, thereby recovering a joint embedding of the
samples in a low-dimensional latent space. At the same time, the model yields a sparse and
thus interpretable mapping between the latent factors and the observed features in terms of
view-specific weights.
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Fig. 1 Method overview

(A) MEFISTO takes as input a possibly incomplete tensor-like high dimensional data set that can comprise multiple views (e.g.
omics, tissues, genomic regions) measured in multiple sample groups (e.g. individuals, biological conditions, species) at multiple
values of a covariate (e.g. time). Each element of this tensor is a high-dimensional feature vector of possibly different dimensions
and non-matching features across views. The covariates can be misaligned across groups and arbitrary combinations of the
dimensions can be missing. While accounting for the covariate, MEFISTO decomposes the high-dimensional input data into a
set of smooth latent factors that capture temporal variation as well as latent factors that capture variation independent of the
temporal axis. The latent factors can display arbitrary dependencies between groups including shared or group-specific factors.
Sparse view-specific weights link a latent factor to individual views and features in the measurements. If covariates do not
correspond between sample groups, MEFISTO infers a common scale by performing a simultaneous alignment and
decomposition. Once learnt, the functional approach of MEFISTO enables novel downstream analyses, including interpolation or
extrapolation and identification of relationships between sample groups or outliers per factor.

(B) lllustration of a decomposition using MEFISTO compared to sparse factor analysis that is not aware of time (MOFA+) in a
setting with a non-smooth factor (Factor 1), a smooth, non-shared factor (Factor 2) and a smooth, shared factor (Factor 3).

(C, D) Comparison of MEFISTO (time-aware) to sparse factor analysis (non-aware, MOFA+) on simulated data in terms of
recovery of the latent space (C) and mean squared error (MSE) of imputation for missing values (D) for varying number of time

points, groups and level of missingness. The dashed line indicates the base parameters (see Methods) used for simulation.
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Critically, and unlike existing methods, MEFISTO incorporates the continuous covariate to
account for spatio-temporal dependencies between samples, which allows for identifying both
spatio-temporally smooth factors or non-smooth factors that are independent of the continuous
covariate (Figure 1A,B). Technically, MEFISTO combines factor analysis with the flexible non-
parametric framework of Gaussian processes ' to model spatio-temporal dependencies in the
latent space, where each factor is governed by a continuous latent process to a degree
depending on the factor's smoothness (see Supp. Methods).

For experimental designs with repeated spatio-temporal measurements, e.g. longitudinal
studies involving multiple individuals, species or experimental conditions (termed groups in
general), MEFISTO furthermore models and accounts for heterogeneity across these groups
of samples, thereby inferring the extent to which spatio-temporal patterns are shared across
groups (referred to as sharedness, Figure 1B). To cope with imperfect alignment across
groups, MEFISTO comes with an integrated data-driven alignment step of the temporal
covariate, e.g. aligning developmental stages between different species with unclear
correspondences (see Supp. Methods).

To enable efficient inference in large datasets, MEFISTO leverages sparse Gaussian process
approximations ', as well as regular designs with a common spatio-temporal sampling across
groups " (see Supp. Methods). Once fitted, the model enables a broad range of downstream
analyses (Figure 1A), including imputation as well as interpolation and extrapolation along
the spatio-temporal axis, identification of molecular signatures underlying the latent factors
using enrichment analysis as well as clustering and outlier identification on the level of
samples, e.g. the measurement at a single time point, as well as groups of samples, e.g. an
individual with distinct temporal trajectories.

Validation using simulated data

To validate MEFISTO, we simulated time-resolved multi-modal data drawn from the
generative model with multiple views and sample groups (Methods). We evaluated MEFISTO
in terms of recovery of the latent factors, imputation of missing values in the high-dimensional
input data, as well as recovery of the smoothness and sharedness of each factor. For
comparison we also considered MOFA+ 8, a related multi-modal factor analysis method that
however does not take the temporal covariate into account. Over a range of simulated settings,
we observed improved recovery of the latent space and better imputation of missing data when
accounting for the spatio-temporal dependencies (Figure 1C,D). At the same time, MEFISTO
correctly determined the smoothness of the factors, allowing to distinguish temporal variation
from non-temporal variation (Supp. Fig. 1A). In addition, the model correctly identified
relationships of the groups, distinguishing group-specific and shared factors in a continuous
manner (Supp. Fig. 1B). MEFISTO was robust to misaligned time points across the different
sample groups, learning the correct alignment in a data-driven manner (Supp. Fig. 2, 3).
Finally, we showed how the sparse Gaussian processes approximations employed by
MEFISTO can improve its computational complexity, enabling applications to larger sample
sizes, while maintaining accurate inference (Supp. Fig. 4).
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Application to an evolutionary atlas of mammalian organ development identifies
conserved and diverged developmental programs

Next, we applied MEFISTO to a comprehensive evolutionary atlas of mammalian organ
development '° (Figure 2A), comprising gene expression of 5 species (groups) profiled across
5 organs (views) along development, starting from early organogenesis to adulthood (14 - 23
time points per species). MEFISTO identified 5 robust latent factors (Supp. Fig. 5), which
explained 35 to 85% of the transcriptome variation for different organs (Figure 2B). In addition
to dealing with missing time points for several organs and species (Supp. Fig. 6), MEFISTO
aligned the developmental time points of the samples (Figure 2C, Supp. Fig. 7, 8), thereby
identifying meaningful correspondences of the developmental stages between species (Supp.
Fig. 9). All five factors showed a high degree of smoothness (Figure 2D), which is consistent
with most variation in this dataset being driven by developmental programs. However, the
sharedness across species varied considerably between the factors (Figure 2D). The first
three factors displayed similar temporal profiles across all species, indicating that they
captured conserved development programs. Factor 1 explained variation in all organs (Figure
2B) and captured expression dynamics with a gradual change along development. To further
characterize the underlying developmental programs and their molecular drivers, we
investigated the weights of the factor. This revealed shared molecular signatures across
organs that were linked to broad developmental processes and proliferation, e.g. cell cycle
related pathways (Supp. Fig. 10A). Among the genes identified, there were key modulators
of development such as IGF2BP1, SOX11 or KLF9 "8, which are ubiquitously expressed in
all organs and display conserved expression dynamics across species (Supp. Fig. 10B,C). At
the same time, the weights of Factor 1 also revealed conserved but organ-specific signatures
that vary in line with the major functions of the respective organ, e.g. upregulation of GFAP
along Factor 1 in brain tissues of all species (Supp. Fig 11)'°. Factor 2 was also active in
multiple organs (Figure 2B) and captured developmental programs with onset in intermediate
development, for example as characterized by a transient upregulation of HEMGN during
development in the liver along Factor 2 in all species (Supp. Fig. 12)%°. Factor 3 captured
conserved gene expression signatures specific to the development of testis with a sharp
transition in gene expression with the onset of male meiosis (Figure 2B, D, Supp. Fig. 13). In
addition to these shared factors, MEFISTO identified two factors that explained variation
specific to some of the species (human and opossum, Figure 2D). Here, MEFISTO identified
a clear clustering that separated either human (Factor 4) or opossum (Factor 5) from the other
species, which is consistent with their larger evolutionary distances to the remaining species
(Figure 2E). Interestingly, these two affect gene expression programs in all organs (Figure
2B, Supp. Fig. 14, 15). Based on the weights of these factors MEFISTO provides a direct
means to identify genes for each organ that have undergone trajectory changes along
evolution. To illustrate this, we compared the weights of these factors to previously identified
genes with distinct developmental expression trajectories that evolved on the branch
separating opossum or human from the other species and found a clear enrichment for high
weights on the factors (Supp. Fig. 16, 17). Finally, we considered this dataset to further assess
the applicability of MEFISTO to settings with pronounced missingness: We masked data for
random species - timepoint combinations in some or all of the organs, and observed an
accurate imputation by MEFISTO and the ability to interpolate time points with completely
missing data (Supp. Fig 18).
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Figure 2: Application of MEFISTO to an evolutionary gene expression atlas across development

(A) lllustration of the input data and model setup, covering gene expression data from 5 species (groups) and 5 organs (views)
across 14-23 developmental stages.

(B) Variance explained in each species and organ per factor (bottom) and in total (top)

(C) Scatter plot of first two latent factors with samples colored by the inferred common developmental time

(D) Learnt latent factors are plotted against the inferred common developmental time. Points represent individual factor values,
line and ribbons provide the mean and variance of the underlying latent process that generates the factor values. Bars on top
indicate the smoothness along development and sharedness across species of the factor.

(E) Learnt correlation structure of the species for the latent factor shown on top in (D)
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Application to sparse longitudinal microbiome data

As a second use case, we applied MEFISTO to longitudinal samples of children’s microbiome
after birth 2?2, As common in microbiome data and longitudinal studies, this dataset is
extremely sparse with 97.1 - 99.8% of zero or missing values and up to 17 missing time points
per child (out of 18, with an average of 4 time points missing). Nevertheless, MEFISTO
identified distinct temporal trajectories depending on the birth mode (Factor 1, Figure 3A) and
(to a lesser extent) the diet of the children (Factor 2, Figure 3B). Jointly, these two factors
explained between 8 and 56% of variation in each child. While at the sample level clustering
is mainly driven by time (Figure 3C), at the individual level Factor 1 shows a clustering
depending on the delivery mode of the child (Figure 3D). Factor 2 does not show a clear
clustering on the individual-level (Figure 3D). Microbial communities that are associated with
Factor 1 reveal an enrichment of several bacteroid species in children with vaginal delivery as
previously reported 2'?? (Figure 3E).

Application to spatial transcriptomics

Last, we demonstrate the applicability of the method to spatial data by applying it to a spatial
transcriptomics data set of anterior part of the mouse brain 23, where it identified major
anatomical structures and its associated markers such as Ttr as a marker of the choroid plexus
(Figure 4), without the need of single-cell reference data. In addition, MEFISTO provides an
integrated measure of the smoothness of each pattern across space (Figure 4A). Making use
of sparse inference, time and memory requirements could be greatly reduced compared to full
inference (Supp. Fig 19).

Conclusions

In summary, we here presented MEFISTO, a computational framework to open up multi-modal
factor analysis models for applications to temporal or spatially-resolved data. We found that
the ability to explicitly account for spatial or temporal dependencies is especially helpful in
settings where data are sparse with many missing values in the high-dimensional
measurements. Additionally, MEFISTO adds substantial value in cases where extra- or
interpolation of temporal or spatial trajectories is required and/or when the temporal covariate
and the associated measures are imperfectly aligned across data sets. We focused on an
application of MEFISTO to temporal and longitudinal studies, such as the developmental time
courses. These designs are rapidly gaining relevance both in basic biology and biomedicine.
However, the model is also readily applicable to spatial domains and settings, as illustrated in
the application to visium gene expression arrays. Future developments could focus on
extensions to enable spatial alignment across datasets, as well as the deployment of specific
noise models for example tailored for single-molecule data. In addition to time or space, other
continuous covariates could be used to inform the factorization both for the factor values as
well as their weights, e.g. using continuous clinical markers instead of time or known
relationships in the feature space such as genomic positions in methylation or ATACseq data.
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Figure 3. Application to a longitudinal microbiome study following children after birth.

(A, B) Factor values (y-axis) across time (x-axis) colored by delivery mode (A) and predominant feeding mode (B), termed diet;
bd denotes breast milk-dominant, fd denotes formula-dominant. Dots represent inferred factor values per baby, the line shows
the average across all samples in the respective category.

(C) Scatterplot of samples on Factor 1 and 2 colored by delivery mode, diet and month of life

(D) Inferred baby-baby correlation matrix for Factor 1 (left) and 2 (right)

(E) Genus with the highest absolute mean weight for Factor 1 (left) and Factor 2 (right). Bars show the mean across the weights

of all species in this genus, dots show the weights of individual species.
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(A) Recovered factor values across space. Bars below indicate smoothness per factor.
(B) Genes with highest absolute weight per factor

(C) Normalized gene expression of genes with highest absolute weight per factor
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Methods

MEFISTO model

MEFISTO is a probabilistic model for factor analysis that accounts for continuous side
information during inference of the latent space. To achieve this, MEFISTO combines multi-
modal sparse factor analysis frameworks ® with a functional view on the latent factors based
on Gaussian processes and additionally provides alignment functionalities and an explicit
model of inter-group heterogeneity. As input MEFISTO expects a collection of matrices,
where each matrix Y™ corresponds to a group g =1, ...,G and view m = 1, ..., M with N,
samples in rows and D,,, features in columns. Each sample is further characterized by a
covariate €9 € R¢*Ns that represents for example temporal or spatial coordinates. The
matrices are jointly decomposed as

ym9 = Z9IWwmT + gmg m=1.,Mg=1,..,G

where Z9 € RVs*Kcontains the K latent factors and W™ € RPm*K their weights. A feature-
and view-wise sparsity prior is employed for W™ as in previous multi-modal factor analyses
models "8, Unlike existing factor models, however, the model additionally accounts for the
covariate €Y. Each factor value z37, is modelled as realization of a Gaussian process

Zfl]k = filen) + nﬁk with fi, ~ GP(0, k),

where the covariance function k;, models the relationship between groups as well as along
the covariate, i.e.

ri(cd, clt) = k8(g, h) K (cn €p).

The first term in this covariance function captures the covariance of the discrete sample
groups g,h, while the second term describes the covariance along values of the covariate,
which provide a continuous characterization of each sample, e.g. its temporal or spatial
location. We choose a low-rank covariance function for k® and a squared exponential
covariance function for «C, i.e.

K¢ = (k,f(g,h)) = xpxk + 0?1 xj € RO¥R

g,h
e, — cill?
Kzg (cn €1) = sg exp ——52z

Mo~ N(O, 1 — 5¢)

The hyperparameters xy, o I, s, determine the group-group covariance structure (xy, o) as
well as the smoothness of the latent factors along the covariate (l, si). In particular, the
scale parameter s, determines the relative smooth versus non-smooth variation per factor,
and the lengthscale parameter [, the distance over which correlation decays along the
covariate, e.g. in time or space. Details on the model specification, illustrations of the
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resulting covariance structures and a plate diagram are provided in Supp. Methods,
Section 2.

Inference

To infer the unobserved model components as well as the hyperparameters of the Gaussian
process, MEFISTO makes use of variational inference combined with optimization of the
evidence lower bound in terms of the hyperparameters of the Gaussian processes. Details
on the inference are described in Supp. Methods, Section 3, where the specific updates of
the inference algorithm are described. For large sample sizes, inference of the covariate
kernel can be based on a subset of the original covariates chosen on a regular grid to
reduce computational complexity (see Supp. Methods, Section 4). In addition, if the
covariance matrix of the latent processes can be decomposed in terms of a Kronecker
product, i.e. as K¢ ® K¢, MEFISTO leverages this structure for accelerated inference based
on spectral decomposition of the group- and covariate covariance (see Supp. Methods,
Section 3).

Alignment

If temporal correspondences between different groups are imperfect, a non-linear alignment
between sample groups is learnt based on dynamic time warping * in the latent space. To
reduce noise prior to the alignment, MEFISTO simultaneously decomposes the input data
and aligns the covariate. This is implemented by interleaving the updates of the model
components with an optimization step, where a warping curve is found that minimizes the
distance of each group to a reference group in the current latent space. The alignment can
be partial, i.e. have different end or start points between groups using an asymmetric step
pattern in the time warping algorithm, or provide a global alignment using a symmetric step
pattern in the time warping algorithm. Details are described in Supp. Methods, Section 5.

Downstream analyses

Once the model is trained, the Gaussian process framework enables to interpolate or
extrapolate the latent factors to unseen samples, groups or views as well as provide
measures of uncertainty. Given a set of new covariate values ¢*, MEFISTO makes
predictions of the corresponding latent factor values z* based on the predictive distribution
p(z*|Y) (see Supp. Methods, Section 6). Missing values of the considered features are
then imputed from the model equation as in previous models 2. Furthermore, the
hyperparameters of the model give insights into the smoothness of a factor (s, between 0
(non-smooth) and 1 (smooth)) and the group relationships specific to a latent factor (K¢) that
can be used to cluster the groups or identify outliers. An overall sharedness score per factor
is calculated by the mean absolute distance to the identity covariance matrix in the off-
diagonal elements.

Related methods

MEFISTO is related to previous matrix factorization and tensor decomposition methods, which
however mostly ignore temporal information ' | use it only for pre-processing  or interpret it
post-hoc %. Those who incorporate such information do not allow multiple views (e.g. omics)
2628 or are restricted to the same features in each view %. In addition, sparsity constraints are
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not employed in these models which enhance interpretability and identifiability of the model.
Besides linear methods, non-linear approaches have made use of continuous side-
information, e.g. in the context of variational autoencoders *3! or recurrent neural networks
32 In particular, all of the above methods are incapable of handling non-aligned time courses
across data sets (apart from Duncker & Sahani 2°) and cannot capture heterogeneity across
sample groups in the latent factors. For a detailed overview on related methods we refer to
Supp. Methods, Table 1.

Simulations

Data was simulated from the generative model varying the number of time points per group in
a [0,1]-interval, noise levels, number of groups and fraction of missing values. Ten
independent data sets were simulated for each setting from the generative model with three
latent processes, having scale parameters of 1, 0.6, 0 and lengthscales of 0.2, 0.1, 0. For the
first two (smooth and partially smooth) factors, one was randomly selected to be shared across
all groups, while for the other factor a correlation matrix between groups of rank 1 was
simulated randomly based on a uniformly distributed vector. MEFISTO was compared to
MOFA+ & in terms of factor recovery given by the correlation of the inferred and simulated
factor values as well as in terms of the mean squared error between imputed and ground-truth
values for the masked values in the high-dimensional input data. Base settings for all non-
varied parameters are 20 time points per group, five groups, four views with 500 features each
and a noise variance of 1. 20% of randomly selected time points were masked per group and
view, whereof 50% were missing in all views. To assess the alignment capabilities of the
model, data was simulated with the same setup for 3 groups and covariates were transformed
before training by a linear mapping (h(t) = 0.4t +0.3), a non-linear mapping (h(t) = exp(t)) and
the identity in each group, respectively. These transformed covariates were passed to the
model and the learnt alignment was compared to the ground-truth warping functions. To
assess the scalability in the number of timepoints using sparse Gaussian processes, data was
simulated from one group and with the same base parameters as above.

Evo-devo data

Count data was obtained from Cardoso-Moreira et al ™, corrected for library size and
normalised using variance stabilizing transformation provided by DESeq2 *. Genes were
subsetted to orthologous genes as given in Cardoso-Moreira et al '°. Following the trajectory
analysis of the original publication, we focused on 5 species, namely human, opossum,
mouse, rat and rabbit, and 5 organs, namely brain, cerebellum, heart, liver and testis. In total,
this resulted in a data set of 5 groups (species) and 5 views (organs) with 7,696 features each.
The number of time points for each species varied between 14 and 23. As developmental
correspondences were unclear we used a numeric ordering within each species ranging from
1 to the maximal number of time points in this species as input for MEFISTO and let the model
infer the correspondences of time points between species. Stability analysis of the latent
factors was performed by re-training the model on a down-sampled data set, where random
selections of 1-5 time points were repeatedly masked in each organ-species combination.
Gene set enrichment analysis was performed based on the reactome gene sets **. To assess
the imputation performance gene expression data in 2-20 randomly selected species - time
combinations (out of a total of 82) were masked in 3, 4 or all organs and the model was
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retrained on this data as described above. The experiment was repeated ten times and the
mean squared error was calculated on all masked values.

Microbiome

Data was obtained from ‘Code Ocean’ capsule: https://doi.org/10.24433/C0.5938114.v1 and
processed using a robust-centered log ratio and filtering steps as provided by Martino et al %2,
This resulted in a total of 43 babies (groups) with up to 18 time points (months) and 3,236
features that were provided as input to MEFISTO using month of life as covariate. All zero
values were treated as missing following previous work .

Spatial transcriptomics

Data was obtained from the SeuratData R package as stxBrain.anterior1, normalized and
subset to the 2,000 most variable features using NormalizeData and FindVariableFeatures
functions provided by Seurat 2. Normalized expression values at all 2,696 spots were
provided to MEFISTO with tissue coordinates as 2-dimensional covariate. For training of
MEFISTO 1,000 inducing points were selected on a regular grid in space. For comparison a
model with 500 inducing points and one with all spots was trained and compared in terms of
their inferred factors.

Data availability

The evodevo data was obtained from Cardoso-Moreira et al ' and can be accessed from
ArrayExpress with codes E-MTAB-6782 (rabbit), E-MTAB-6798 (mouse), E-MTAB-6811 (rat),
E-MTAB-6814 (human) and E-MTAB-6833 (opossum) (https://www.ebi.ac.uk/arrayexpress/).
The microbiome data is based on Bokulich et al 2 and can be found on Qiita
(http://qiita.microbio.me), processed data was obtained from the ‘Code Ocean’ capsule:
https://doi.org/10.24433/C0.5938114.v1 provided by Martino et al ?. The spatial
transcriptomics data set was obtained from the SeuratData package under the name
stxBrain.anterior1.

Code availability

MEFISTO is implemented as part of the MOFA framework "® which is available at
https://github.com/bioFAM/MOFAZ2. Installation instructions and tutorials can be found at
https://biofam.github.io/MOFA2/MEFISTO. Code to reproduce all figures is available at
https://github.com/bioFAM/MEFISTO analyses. In addition, we provide vignettes on the main
applications as part of the MEFISTO tutorials on https://biofam.github.io/MOFA2/MEFISTO.
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