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HERITABILITY AND PLASTICITY 2

Abstract

Human brain plastically adapts to environmental demands. Here, we propose that naturally
occuring plasticity in certain brain areas should be reflected by higher environmental influence
and therefore lower heritability of the structure of those brain areas. Mesulam’s (1998) seminal
overview proposed a hierarchy of plasticity, where higher-order multimodal areas should be
more plastic than lower-order sensory areas. Using microstructural and functional gradients as
proxies for Mesulam’s hierarchy, we seek to test whether these gradients predict heritability of
brain structure. We test this model simultaneously across multiple measures of cortical structure
and microstructure derived from structural magnet resonance imaging. We also account for
multiple other explanations of heritability differences, such as signal-to-noise ratio and spatial
autocorrelation. We estimated heritability of brain areas using 984 participants from the Human
Connectome Project. Multi-level modelling of heritability differences demonstrated that
heritability is explained by both signal quality, as well as by the primary microstructural
gradient. Namely, sensory areas had higher heritability and limbic/heteromodal areas had lower
heritability. Given the increasing availability of genetically informed imaging data, heritability
could be a quick method assess brain plasticity.
Keywords: plasticity, heritability, spatial autocorrelation, Mesulam, gradient, brain structure,
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Highlights (up to 85 chars)
Cortical areas vary in heritability. This is seen across structural measures.

Heritability differences could be explained by plasticity, topography, or noise.
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HERITABILITY AND PLASTICITY 3
We build a comprehensive model testing many explanations across 5 measures.
Heritability is explained by noise and 1* structural gradient reflecting plasticity.

Heritability could be a method to study brain plasticity.

Introduction

The human brain is plastic: over time, experience alters brain structure. This alteration
can be detected at the level of cortical morphometry and white matter microstructure and
connectivity. An extreme example is early-onset blindness which is associated with widely
distributed changes in gray and white matter (Leporé¢ et al., 2010). More every-day life examples
include observations that people with different jobs, body size, or socio-economic status also
vary in brain structure (Farah, 2017; Maguire et al., 2000; Vainik et al., 2018; Wu et al., 2020).
Similarly, brain structure can change after cognitive training (Zatorre et al., 2012). However,
theoretical proposals have outlined that brain areas could differ in their propensity for plasticity —
that is, they differ in how they respond to typical environmental influences.

Such differences can be understood in the theoretical framework of synaptic plasticity
outlined by Mesulam (1998). The brain is organised according to a synaptic hierarchy that
follows a sensory-fugal gradient. This gradient spans from sensory-motor and unimodal areas
interacting with the external world towards heteromodal and paralimbic areas that are
increasingly dissociated from the here and now. It has been argued that this hierarchical
segregation allows for the formation of multimodal abstract representations that underpin higher-
order and self-generated cognition (Margulies et al., 2016; Murphy et al., 2018). Mesulam’s
seminal model suggested furthermore that at the sensory synaptic level, plasticity is likely to be

constrained, as “the accurate registration of new inputs necessitates a rapid return to a narrowly
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HERITABILITY AND PLASTICITY 4

tuned baseline (Mesulam, 1998, p. 1023)”. At the same time, durable neuronal changes “would
be highly useful at more downstream levels, where synaptic plasticity, induced by life
experiences, could play a critical role in the adaptive modification of response patterns”
(Mesulam, 1998, p. 1023). Therefore, blindness-induced plasticity is possible under certain
circumstances, but the perceptual areas are likely to be less plastic than higher-order areas when
observing sighted humans. On the other hand, environmental influences on brain structure are
more likely to be present for higher-order regions.

It is likely, that such naturally-occurring variability in plasticity of brain structures could
be reflected by variability of the heritability estimates of these structures. Heritability
characterises, how much of the variation in a phenotype can be attributed to genetic factors.
Phenotypic variance that is not explained by genetic factors is assumed to be explained by
environmental factors and measurement error. In its simplest form, heritability can be estimated
by correlating phenotype scores between monozygotic twins. Contemporary approaches use twin
modelling for a more precise estimate (Visscher et al., 2008). Many studies have demonstrated
differences in heritability coefficients of brain structures across multiple imaging measures, such
as cortical thickness, surface area, functional connectivity, and myelination (T1w/T2w ratio)
(Haak & Beckmann, 2019; Liu et al., 2019; Patel et al., 2018; Schmitt et al., 2008, 2019; Strike
et al., 2019; Wright et al., 2002). Heritability estimates replicate across datasets (Guen et al.,
2019; Strike et al., 2019) and across different heritability estimation methods (Guen et al., 2019).

These observed differences in heritability of regional brain measures have been proposed
to reflect differences in plasticity (Haak & Beckmann, 2019; see discussion in Strike et al.,
2019). The reason is that lower heritability likely marks greater environmental influence over the

expression of a phenotype (Harden, 2021). In the behavioural domain, one example of
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HERITABILITY AND PLASTICITY 5

environmental influence is lower socio-economic status. Lower socio-economic status can
suppress the emergence of genetic potential for higher intelligence (Tucker-Drob & Bates, 2016)
but supports the emergence of genetic potential for higher obesity (Silventoinen et al., 2019). In
the brain, as per Mesulam (1998), the environmental suppression of heritability likely depends
on the function of the brain area.

Here, we seek to empirically test, whether the plasticity potential, as outlined by
Mesulam’s proposed hierarchy, could be reflected in heritability differences between cortical
areas. To quantify plasticity potential, we use the functional connectivity and microstructural
gradients (Margulies et al., 2016; Paquola et al., 2019). These gradients come from data driven
dimensionality reduction of the whole brain functional connectomes (Margulies et al., 2016; Vos
de Wael et al., 2020) and microstructural covariance patterns (Paquola et al., 2019). They both
exhibit a general sensory-fugal organization (Mesulam, 1998) placing sensory/motor areas at one
end and transmodal and paralimbic systems at the other. However, the microstructural gradient
describes decreasing laminar differentiation, more in line with Mesulam’s notion of synaptic
distance from external input, whereas the functional gradient depicts a transition from locally-
connected sensory regions towards a default mode core with longer-rage connectivity (Valk et
al., 2020).

Other indicators of variation in brain morphometry could include brain development and
evolution. Hill et al. (2010) showed how postnatal brain development is non-uniform — the
surface area of lateral temporal, parietal, and frontal cortex expands almost twice as much as
other regions. Similar expansion profiles are also seen when comparing human to macaque brain,
suggesting recent human evolution of those areas. It is possible that areas showing greater

expansion during development and evolution could be more sensitive to postnatal experience,
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that is the demands of the environment (Buckner & Krienen, 2013; Hill et al., 2010). Cortical
maps reflecting development and evolution have indeed both been related to the genetic
correlation map of cortical surface area (Schmitt et al., 2019). We therefore use those brain maps
as additional predictors of heritability.

Variation in heritability estimates may also reflect measurement error. For example,
smaller brain regions display lower heritability (Patel et al., 2018) because they are noisier,
which reduces the ability to detect genetic effects. At the same time, heritability is unrelated to
test-retest reliability of brain parcels (Haak & Beckmann, 2019; Strike et al., 2019), suggesting
that noise pertains to aggregation of vertices and not to variations in signal-noise-ratio across the
cortex.

Another explanation of heritability differences between regions is spatial autocorrelation.
It is likely that brain parcels that are physically close together have similar features (Alexander-
Bloch et al., 2018; Burt et al., 2020), including heritability estimates. In geography, this is
highlighted by Tobler’s first law — “everything is related to everything else, but near things are
more related than distant things” (Tobler, 1970, p. 237). This law may account for descriptions of
heritability differences along the antero-posterior (Y) axis in the sagittal plane (Liu et al., 2019;
Patel et al., 2018). Therefore, we account for spatial autocorrelation (Burt et al., 2020; Miller,
2004).

In sum, we seek to test the link between heritability estimates and plasticity, as indicated
by the sensory-fugal brain hierarchy. We focus on cortical brain structure including cortical
thickness and surface area as most widely used measures of gray matter morphology (Winkler et
al., 2018), intracortical T1w/T2w ratio, a proxy for intracortical myelin content (Glasser &

Essen, 2011), as well as diffusion MRI based neurite imaging that is sensitive to the
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microstructural context within a given voxel (NODDI; Fukutomi et al., 2018). Our primary
indicators of plasticity are functional and microstructural gradients, as they are theoretically
linked to Mesulam’s hierarchy of plasticity. However, we will consider several alternative
explanations of heritability differences, such as evolution and developmental patterns, noise,

antero-posterior axis, and spatial autocorrelation.

Methods

Data were provided by the Human Connectome Project, S1200 release, WU-Minn
Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)
funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Washington University
(David C. Van Essen et al., 2013).

Visual inspection of T1w images by X.W. excluded 26 participants with suspected
intracranial arachnoid cyst. We further excluded single monozygotic twins, and people with
missing data on control variables, leaving 984 individuals. This included 274 monozygotic twins,
and 629 dizygotic twins or siblings, altogether nested in 341 families (162 with 2 members, 142
with 3 members, 33 with 4 members, 3 with 5 members, and 1 with 6 members), as well as 81
single individuals. Age range was 22-37, mean = 28.81, SD = 3.66. Education year range was 11-
17, mean = 15, SD = 1.77. The sample included 528 females and 456 Males. 755 identified
themselves as white, 122 as Black/African American, 6 as Asian /Native Hawaiian/Other Pacific
islander, and 44 used either other label or were unknown. 93 identified themselves to have

Hispanic ethnicity, whereas 891 did not. Ethics statement: current analysis is secondary data
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HERITABILITY AND PLASTICITY 8

analysis of publicly available Human Connectome Project, all authors have been authorised to
access the database.

Data preparation

Heritability of cortical brain structure has previously been studied across multiple
structural MRI imaging measures, such as cortical thickness, surface area, and ratio of TIw/T2w
images (Liu et al., 2019; Patel et al., 2018; Strike et al., 2019). We further include neurite
orientation dispersion and density imaging (NODDI) to capture brain microstructure (Fukutomi
et al., 2018). Altogether, computed the heritability estimates of five structural MRI measures: 1)
cortical thickness and 2) cortical surface area, characterising respectively radial and tangential
neuronal expansion during development (Winkler et al., 2018); 3) T1w/T2w ratio reflecting
myelination (Glasser & Essen, 2011); 4) intra-cellular volume fraction (ICVF) reflecting
neuronal density, and 5) orientation dispersion (OD) reflecting angular heterogeneity of neurites
(Fukutomi et al., 2018).

T1w and T2w images were co-registered using rigid body transformations, non-linearly
registered to MNI152 space and cortical surfaces were extracted using FreeSurfer 5.3.0-HCP
(Dale et al., 1999; Fischl, 2012), with minor modifications to incorporate both T1w and T2w
(Glasser & Essen, 2011). Cortical surfaces in individual participants were aligned using MSMAII
(E. C. Robinson et al., 2014, 2018) to the hemisphere-matched conte69 template (D. C. Van
Essen et al., 2012). T1w images were divided by aligned T2w images to produce a single
volumetric T1w/T2w image per subject (Glasser & Essen, 2011). Notably, this contrast nullifies
inhomogeneities related to receiver coils and increases sensitivity to intracortical myelin.
Cortical thickness, surface area and T1w/T2w intensity at the midsurface were estimated for each

subject.
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To measure the microstructural variations of each region, neurite imaging profiles (ICVF
and OD) of cerebral cortices were adopted based on the HARDI dataset (Fukutomi et al., 2018).
In brief, all neurite imaging profiles were first estimated voxel-by-voxel at individual-level by
using Accelerated Microstructure Imaging via Convex Optimization (Daducci et al., 2015)
(intrinsic free diffusivity = 1.7 x 10—3 mm2/s), and then, the profiles on 32k fs LR surface were
extracted using individual midthickness surfaces from the HCP dataset. By adopting the HCP
workbench (https://www.humanconnectome.org/software/connectome-workbench), we execute:

https://www.humanconnectome.org/software/workbench-command/-volume-to-surface-
mapping notably, we used the option -ribbon_constrained for ribbon-constrained mapping
algorithm by inner and outer surfaces.

As vertex-based estimates were likely noisy, we used the 7 network version of Schaefer-
200 parcellation (Schaefer et al., 2018) on the 32k fs_LR surface

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable projects/brain_parcellation/

Schaefer2018_LocalGlobal/Parcellations/HCP/fslr32k/cifti), and for each measure, average

values for each of the 200 regions were computed. We replicated our analysis on the 68 parcel
Desikan—Killiany—Tourville (DKT) parcellation (Klein & Tourville, 2012), as this parcellation is
commonly used and shared as default across large neuroimaging studies, such as ABCD and UK

Biobank (Casey et al., 2018; Elliott et al., 2018).

Brain maps
For both parcellations, we generated brain maps, providing a number for each parcel.
Parcel location was determined by midpoint xyz coordinates. Parcel size was characterised by

number of vertices forming the parcel. As another estimate of noise, we used parcel signal-to-
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noise ratio (Fukutomi et al., 2018), which was estimated as parcel mean divided by parcel’s
standard deviation. This statistic was estimated for each of the MRI measures separately across
the same Human Connectome participants as used for heritability estimation.

The principle microstructural and functional gradients were generated in a previous study
of 100 Human Connectome Project subjects (Paquola et al., 2019). Structural gradients were
derived from T1w/T2w maps while functional gradients were based on resting state fMRI
connectivity. In brief, we generated 14 equivolumetric surfaces within the cortical ribbon and
sampled T1w/T2w intensities along 64,984 linked vertices from the outer to the inner surface.
Microstructure profile covariance matrices were generated by averaging depth-wise intensity
profiles within parcels and calculating pairwise product-moment correlations, controlling for the
average whole-cortex intensity profile. Resting-state functional connectivity matrices were
generated by averaging preprocessed timeseries within parcels, correlating parcel-wise timeseries
and converting them to z scores. Group-average microstructure profile covariance and resting-
state functional connectivity matrices were independently subjected to row-wise thresholding
(90%) and transformed into cosine similarity matrices. Finally, diffusion map embedding was
applied to each cosine similarity matrix to identify the principle axes of microstructural or
functional differentiation. In line with previous work, we focused on the first two eigenvectors,
based on identifying the inflection point in the scree plot. The first functional and structural
gradients (G1ry and Glwec) characterise the major gradient from sensation to cognition — from
sensory-motor and unimodal areas to heteromodal and paralimbic areas. The second functional
gradient (G2gy) ranges from somatosensory and auditory areas to visual areas, and the second
structural gradient (G2wpc) ranges from somatosensory and ventral prefrontal areas to visual

arcas.
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Additionally, we downloaded developmental and evolutionary surface expansion maps

(Hill et al., 2010) from http://brainvis.wustl.edu/wiki/index.php/Sums:About and averaged

values within cortical parcels.

Analysis
Heritability of the parcel-wide features was estimated in R 3.6.3 (R Core Team, 2013)

using SOLAR-Eclipse 8.4.2 (Kochunov et al., 2015) (http://www.nitrc.org/projects/se_linux :

http://solar-eclipse-genetics.org/index.html) via the solarius package (Ziyatdinov et al., 2016)

controlling for background variables: age, sex, race, ethnicity, and proxy brain volume. The
categorical variables were recoded as dummies, with white or nonhispanic as reference category.
The solarPolygenic() formula was parcel~age+sex+black+asian+other+ethnicity+proxy brain
volume. Proxy brain volume was the sum of Freesurfer variables: Cortical WhiteMatterVol +
CSF + SubCortGrayVol) (Karama et al., 2011).

Product moment correlations between brain maps across parcels was presented using
ggcorrplot (Kassambara, 2019). Predictors of heritability were compared with linear mixed
models with crossed random effects and spatial autocorrelation using glmmTMB 1.0.2.1 (Brooks
et al., 2017). Crossed random effects account for correlation of parcels across different MRI
estimates. Because the same parcels are analysed with multiple structural imaging estimates, the
current study has essentially a repeated measures design. In repeated measures, the subject and
the measurement point are analysis factors, and they are crossed, because every subject is in
every measurement point. In our current analysis, instead of participants there are individual
brain parcels. Spatial autocorrelation accounts for similarity of parcels due to physical proximity.

We used a random intercept model without modelling random slopes, as we were mainly
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interested in global effects across multiple measures and we tried to avoid making the model
overtly complex. The formula for final model was:

Heritability ~ control variables + theoretical variables + exp( position + 0 | measure) +
exp( position + 0 | parcel)

Control variables were number of vertices, signal-to-noise, and xyz coordinates.
Theoretical variables were structural and functional gradients, developmental, and evolutionary
maps. Position refers to coordinates of the parcel in MNI space. Exp stands for exponential
modelling of spatial autocorrelation, as used in other brain imaging analyses (Burt et al., 2020).
We applied False Discovery Rate (FDR; Benjamini & Yekutieli, 2001) correction to highlight the
individual predictors in the final model.

We tested step-by step, whether it made sense to add the spatial autocorrelation, random
effects, control variables, and predictor variables. The improved model fit was assessed in terms
of AIC, BIC change. Here, lower is better, with a meaningful difference of ~4 units (Burnham &
Anderson, 2004). Once fixed effects, that is control and explanatory variables were introduced,
improvement was assessed in terms of marginal R?, higher is better. Marginal R? characterises
the R? of fixed effects (Nakagawa et al., 2017). Model fit statistics were extracted with the
anova() function in R, and marginal R? estimated with the performance::r2 function (Liidecke et
al., 2020). To get a sense, whether certain MRI measures are more important than others, we
conducted leave-one-out cross-validation, leaving out one MRI measure and repeating the
analysis. We also relied on several other useful packages, such as WriteXLS, broom, ggpmisc,
vroom, patchwork, psych, data.table, synthpop, tidyverse, cowplot, magick (Aphalo &

Slowikowski, 2020; Dowle et al., 2020; Hester & Wickham, 2020; Nowok et al., 2016; Ooms,
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2020; Pedersen, 2020; Revelle, 2014; D. Robinson et al., 2020; Schwartz, 2020; Wickham &
RStudio, 2017; Wilke & Wickham, 2016).

Data/code availability statement: individual-level data can be accessed from Human
Connectome Project. We provide preprocessing scripts, analysis scripts, synthetic individual-
level data, and summary statistics at https://osf.io/dwjr5/.

Results

We found that brain parcels differ in heritability (Guen et al., 2019; Liu et al., 2019; Patel
et al., 2018; Wright et al., 2002). Fig. 1a provides the average heritability estimates across the
five studied MRI measures. At a glance, it seemed that primary areas tend to be more heritable
than multimodal areas. The potential control and theoretical variables explaining heritability are
shown in Fig. 1b. Visually, the heritability appeared to overlap with most other variables such as
signal to noise, Y axis, developmental and evolutionary patterns, as well as with the hierarchical
gradients. Numeric estimates of all variables, their per parcel means, and global means are

presented in Tables S2-S4.

Heritability b Number of vertices Signal-to-noise
. 3000 16 .
14 0
2000
12
-50
1000 10
06 Glen G2ry Glmprc
. : ) 0.1 < 0.1 9\ o
| ) Y ’ ! 005
0.5 0.05 0.05 5
0 0 v
04 0.05 -0.05 b
01 0.1 01
03
G2ypc Developmental Evolutionary

0.05 0.2
0 [
-0.05 -0.2
-0.1



https://doi.org/10.1101/2020.11.03.366419
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366419; this version posted November 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

HERITABILITY AND PLASTICITY 14

Fig. 1a. Average heritability of Schaefer-200 parcels across five measures. Top row displays
lateral left and right views, and bottom row medial left and right views. Fig. 1b. Brain maps
across Schaefer-200 parcels of analysed variables, using left-lateral view. We omitted X and Z
axes as the visualisations are conceptually similar to Y-axis visualisation. Signal-to-noise is
average signal to noise ratio across five measures. Abbreviations: G1gy — first functional
gradient; G2py — second functional gradient; G1wec — first structural gradient; G2ypc — second

structural gradient.

To quantify this impression, we estimated spatial correlations between parcels in terms of
heritability of different MRI measures, control variables, and theoretical variables (Fig. 2 and 3).
Control variables were number of vertices, signal-to-noise, and coordinates. Theoretical variables
were structural and functional gradients, developmental, and evolutionary maps. The heritability
estimates were fairly independent from each other, but they were all associated with various
control variables, mostly signal-to-noise ratio, Y-axis (antero-posterior), and Z axis (left-right). In
addition, heritability estimates related to structural and functional gradients, and evolution and
developmental patterns. These control and theoretical variables also related to each other. This
relatedness suggests that there were multiple competing explanatory mechanisms and a single

model was needed to obtain the most parsimonious explanation.
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Fig 2. Spatial correlations between brain maps of heritability across five measures, brain maps of
control variables, and brain maps of theoretical variables, using the Schaefer-200 parcellation.
Abbreviations: Corr — correlation; CT — cortical thickness; Devo — developmental; Evo —
evolutionary; Gl — first functional gradient; G2y — second functional gradient; G1ypc — first
structural gradient; G2upc — second structural gradient; ICVF — intra-cellular volume fraction; N
vertices — number of vertices in a parcel; OD — orientation dispersion; SA — surface area; SNR —
average signal to noise ratio across five measures; T1/T2 — T1w over T2w ratio (myelination);

X,Y, Z — axis coordinates on the cortex.
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Fig. 3. Scatterplots between mean heritability of Schaefer-200 parcels and key control and
theoretical variables. Abbreviations: G1gy — first functional gradient; G1ypc — first structural

gradient.

To find the independent factors that influence heritability estimates, we fitted a multi-

level model accounting for crossed random effects for parcels across different MRI measures and
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parcel spatial autocorrelation. We performed a step-by-step model comparison to show that
modelling spatial autocorrelation (M.auto) is better than the null model (MO0), and that modelling
crossed random effects further improves the model fit (M.cross.auto), in terms of lower AIC and
BIC (Table 1). We tried other spatial autocorrelation modelling methods, such as Gaussian, but
they were not as good (M.cross.auto.gau in Table 1). We then added control variables, which
considerably improved the model in terms of BIC and AIC (M.ctl.cross.auto in Table 1). We also
tried removing spatial autocorrelation. While this removal made the Y axis effect very clear
(standardised estimate = 0.23, p < 0.001), the overall model fit and fixed effects’ R* dropped
considerably (M.ctl.mod vs M.ctl.cross.auto in Table 1), suggesting that modelling spatial
autocorrelation is better than just having xyz coordinates as covariates. The final step added all
discussed theoretical variables (M.ctl.theo.cross.auto in Table 1). As the model became more
complex, BIC improved very little. However, the R? and AIC still improved, suggesting that we

are able to explain more heritability on top of control variables (delta marginal R* = 0.06).

Table 1. Summary of models tested.

Model name Model content Df AIC BIC Marginal R*

MO Null model 3 2838.9 2853.6

MO+ exponential spatial
M.auto autocorrelation 4 2728.1 2747.7

M.cross.auto M.auto+crossed random effects 6 2397.6 2427.0

Like M.cross.auto, but with

M.cross.auto.gau gaussian spatial autocorrelation 6  2417.4 2446.9
M.ctl.cross.auto M.cross.auto + control variables 11 2311.1 2365.1 0.35

Like M.ctl.cross.auto, but without

M.ctl.cross spatial autocorrelation 9 2668.0 2712.1 0.17
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M.ctl.theo.cross.auto  M.ctl.cross.auto + predictors 17 22969 2380.3 0.41

Note. AIC = Akaike Information Criterion. BIC = Bayes Information Criterion. The formula for
final glmmTMB model (M.ctl.pred.cross.auto) was Heritability ~control variables + theoretical
variables + exp( position + 0 | measure)+ exp( position + 0 | parc), and is summarised in Fig. 4.

Marginal R* characterises the R* of fixed effects only (Nakagawa et al., 2017).

Fig. 4 summarises the effects of the final model. As suggested in the introduction, control
variables, such as higher number of vertices per parcel and better signal to noise ratio improved
heritability estimates. The MNI coordinates had low effects, as they were likely accounted for by
spatial autocorrelation. Altogether, the control variables without spatial autocorrelation explained
17% and with spatial autocorrelation 35% of the variance, suggesting that control variables
explain substantial part of heritability differences between parcels.

The hypothesised theoretical variables increased model R* to 41%. The strongest effect
was a negative relation between heritability and the first microstructural gradient ranging from
sensation to cognition. This supports Mesulam’s theory that higher-order structures have lower
heritability due to greater plasticity (Mesulam, 1998). There was a slight additional effect of the
evolutionary brain map, supporting the notion that recently evolved areas may have lower
heritabilities. Heritability was also linked with G1ry and G2ypc at uncorrected p-value thresholds,

but the associations became p > 0.05 once FDR correction was applied.
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Fig 4. Independent effects of variables explaining heritability, based on Schaefer-200. XYZ axes
are presented, but their effect is zero, as we account for spatial autocorrelation structure. See
Supplementary Fig. 4S for DKT replication. Abbreviations: G1gy — first functional gradient;
G2y — second functional gradient; G1wpec — first structural gradient; G2ypc — second structural

gradient. Numeric values are presented in Table S5.

To get a sense of robustness of the results with respect to preprocessing choices, we
repeated the main analysis pipeline using the DKT parcellation (supplementary Fig. S1-S4, Table
S1). The DKT parcellation follows sulco-gyral folding patterns, has fewer parcels (68) and parcel
sizes are more unequal. Expectedly, there is variability in heritability and in other analysed
variables (Fig. S1, Tables S6-S8). As can be seen in Fig. S2-S3, the heritability of parcels is more
similar to each other across MRI measures, and heritability estimates have associations with

control variables and several theoretical variables.
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Model fit procedure was very similar (Table S1). The final model similarly outlined the
relatively strong effects of number of vertices and signal-to-noise on heritability (Fig. S4). This
is expected, as DKT parcels sizes are more unequal. The first microstructural gradient had even
stronger negative effect size estimate than in the Schaefer-200 parcellation (standardised
estimate: -0.28 in DKT vs -0.13 in Schaefer-200). Other variables had no detectable effects on
heritability.

Leave-one-measure out analysis showed that associations with larger effect size are less
vulnerable to leaving out one MRI measure. The effects of control variables generally replicated
across all leave-one-out iterations for both Schaefer-200 and DKT parcellations (Fig. S5 and S6,
Tables S5 and S9). The effect of the first structural gradient needed the inclusion of cortical
thickness, T1w/T2w and intra-cellular volume fraction to survive when using Schaefer-200 (Fig.
S5), but was more robust when using DKT, as the effect was stronger (Fig. S6). The effect of
evolutionary brain map only survived when orientation dispersion was excluded (Fig. S5). While
DKT estimates seemed more robust, DKT modelling did not converge when cortical thickness or
surface area were excluded. These results suggest that diverse MRI measures and parcellation

schemes with more parcels may be needed to show heritability effects.

Discussion

We demonstrated that heritability could reflect brain plasticity, as indexed by the microstructural
sensory-fugal gradient. This association held across multiple imaging measures of gray matter
morphology and microstructure and two parcellation schemes, while accounting for several other

factors, such as signal-to-noise ratio of parcels and spatial proximity. Therefore, heritability
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could be considered as a marker for naturally occurring propensity for experience-dependent
change in cortical morphometry.

The heritability patterns ultimately characterise the individual’s response to the
environment. As outlined in the introduction, all brain areas can display plasticity. However, our
environment usually does not require their constant reconfiguration. In response to typical
demands of the environment, some areas may be more plastic than others, particularly the ones
processing higher-order information (Mesulam, 1998). In particular, Mesulam suggests that it is
desirable to limit plasticity in unimodal sensory areas, where faithfully transcribing information
from the sense organs is paramount, while allowing experience-dependent changes in brain areas
involved in cognition, emotion, planning and adaptive behaviour. This is also supported by
recent findings that structure-function relationships in the brain are region-specific, with greater
correspondence in primary sensory areas compared to association areas (Baum et al., 2020;
Paquola et al., 2019; Preti & Van De Ville, 2019; Vazquez-Rodriguez et al., 2019). Put another
way, it appears to be adaptive to favour predictable, less environmentally influenced
transformations of input data in primary areas, but to allow the association cortices to be more
flexible to the demands of the environment.

We have shown that heritability could be a useful metric to measure the potential
plasticity of the brain. While the structural heritability patterns of the brain of contemporary free-
living humans tend to be similar across datasets, this does not mean it would always have to be
this way. Like plasticity, heritability is a function of the environment of the participants in the
study (Visscher et al., 2008). For example, if some siblings were accidentally blind and others
not, we could likely observe much higher plasticity and lower heritability in the sensory areas

(Leporé et al., 2010). Luckily, this is not the case for most people.
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Position on the sensory-fugal microstructural gradient was the best theoretical explainer
of heritability differences. This microstructural gradient depicts a transition in myeloarchitecture
across the cortex, from overall high intracortical myelin in sensory areas towards infragranular
heavy microstructure profiles in paralimbic regions (Paquola et al., 2019). Intracortical myelin is
thought to enhance stability by insulating fibres from making new synaptic connections
(Braitenberg, 1962; Braitenberg & Schiiz, 2014; Micheva et al., 2016), providing a plausible
biological mechanism that links the sensory-fugal gradient to degree of plasticity. Furthermore,
within the prefrontal cortex, intracortical myelin is inversely correlated with markers of
plasticity, and this balance of stability/plasticity also aligns with changes in laminar
differentiation (Garcia-Cabezas et al., 2017). In line with these findings, our results further
support the relationship between the cortical architecture, synaptic distance from external input
and plasticity as proposed by Mesulam.

Still, the microstructural gradient is not a direct measure of plasticity. In the future, we
would like to relate the heritability map to other potential indicators of plasticity, such as aerobic
glycosis (Goyal et al., 2014). Among other tested brain maps, the evolutionary brain map had a
detectable effect when using the Schaefer-200 parcellation. Given it did not replicate across
DKT, more research is needed to understand its robustness. We suggest considering other tested
brain maps in future analyses alongside the first microstructural gradient. It may also be that all
those brain maps offer different nuances of the same general phenomenon, and once the
plasticity-related brain maps are found, some integration of them is necessary.

Besides reflecting plasticity, heritability also depends on the noisiness of the estimates.
Here, we showed heritability is higher for larger parcels with higher signal-to-noise ratio. This

suggests that heritability estimates are most easily compared when parcel sizes are uniform.
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However, parcellations also have anatomical relevance, which may require non-uniform parcels.
Nonetheless, even if parcels are more uniform, as they were in Schaefer-200 compared to DKT
parcellation, variability in signal to noise ratio should still be taken into account.

Brain topography is another factor explaining variation in heritability. As parcels are not
islands but relate to each other, neighbouring parcels also have similar heritability coefficients.
For instance, the antero-posterior axis of brain heritability (Liu et al., 2019; Patel et al., 2018) is
largely explained by spatial autocorrelation, already used for decades among geographers
(Miller, 2004). While the spin test has also been proposed (Alexander-Bloch et al., 2018), that
approach does not readily support multiple simultaneous predictors. Recently, spatial
autocorrelation modelling has been specifically adapted for the brain — using the exponential
function to model spatial autocorrelation (Burt et al., 2020), as done here.

Current analysis is limited to one sample — the Human Connectome Project composed of
mostly healthy young adults. As previous comparisons of heritability across datasets and
methods suggest that the heritability measures converge (Guen et al., 2019; Strike et al., 2019),
we believe our results are robust. However, further analysis would allow an exploration of the
generalizability of our findings to older cohorts or those affected by disease. Ideally, the
noisiness of the parcel should be estimated from test-retest reliability data, as it would account
for sources of measurement error beyond parcel size. Current signal-to-noise ratio may also
partly capture brain plasticity, as plasticity could genuinely introduce more variance in the brain.
Assessing methodological influences on our results, our main results held over two different
parcellation schemes. However, more parcellations could be analysed to verify replication.
Further, it would be interesting to conduct a search for parcel size / noise trade-off (e.g., Urchs et

al., 2019) to determine the optimal parcel size for heritability analysis. Possibly, a richer set of
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brain maps could emerge as predictors if more fine-grained parcellation is used. Similarly, it

v —

see if the outlined structural principles hold.

Taken together, we have shown that the primary microstructural gradient explains part of
the inter-regional heritability differences of brain morphology and microstructure. This
association held across multiple structural imaging measures and two different parcellation
schemes, while accounting for noisiness and spatial autocorrelation of the parcels. We also
outlined the general principles of using multiple brain maps to explain a patterns of interest. As
genetically informed brain imaging samples become larger and more available, heritability could

become an important window into brain plasticity.
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