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ABSTRACT

Plasmids play a critical role in rapid bacterial adaptation by encoding accessory functions that
may increase the host’s fitness. However, the diversity and ecology of plasmids is poorly
understood due to computational and experimental challenges in plasmid identification. Here,
we report the Plasmid Classification System (PCS), a machine learning classifier that
recognizes plasmid sequences based on gene functions. To train PCS, we performed a
large-scale discovery and comparison of gene functions in a reference set of >16,000 plasmids
and >14,000 chromosomes. PCS accurately recognizes a diverse range of plasmid subtypes,
and it outperforms the previous state-of-the-art approach based on k-mer decomposition of
sequences. Armed with this model, we conducted, to our knowledge, the largest search for
naturally occurring human gut plasmids in 406 publicly available metagenomes representing 5
countries. This search yielded 6,257 high-confidence predicted plasmids, of which 576 had
evidence of a circular conformation based on pair-end mapping. These predicted plasmids were
found to be highly prevalent across the metagenomes compared to the reference set of known
plasmids, suggesting there is extensive and uncharacterized plasmid diversity in the human gut
microbiome.
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INTRODUCTION

The human body is home to an astonishing number of microbes, collectively encoding ten times
more genes than the human genome itself (Ursell et al. 2014). Through this extensive genetic
diversity, gut microbes play critical roles in our well-being by extracting energy from dietary
nutrients (Schwalm and Groisman 2017), synthesizing vitamins (Goodman et al. 2009), offering
protection against pathogens (Zeng et al. 2016), and promoting immune homeostasis (Peterson
et al. 2015). Changes in these microbial communities have been associated with a multitude of
diseases, including inflammatory bowel disease (Vila et al. 2018), metabolic disorders (Backhed
et al. 2004), and cancer (Kostic et al. 2013). These associations have largely focused on the
presence or absence of microbial taxa in the human gut. However, most microbially-mediated
human diseases require much deeper insights into the molecular and functional properties of
the gut microbial community that go beyond the level of individual taxa.

A maijor driver of microbial evolution are plasmids: self-replicating, extrachromosomal DNA that
can be exchanged between different bacterial cells. Plasmids can inhabit specific bacterial
hosts, or may have a broad host range (A. Jain and Srivastava 2013; Klimper et al. 2015). The
acquisition of a plasmid through conjugation or transformation may allow the host to rapidly
adapt to changing environmental conditions by expressing the genes that are present on the
plasmid (Sentchilo et al. 2013). Plasmids have typically been studied in pathogenic bacteria for
their ability to alter virulence (Timothy J. Johnson 2009) and antibiotic resistance (Millan 2018).
For example, Enteroinvasive E. coli (EIEC) possess a large plasmid called pINV, which encodes
the genes necessary for EIEC invasion of human macrophages and epithelial cells (Lan,
Stevenson, and Reeves 2003).

However, plasmids also exist in many non-pathogenic organisms that inhabit the human gut.
Besides genes involved in pathogenesis, plasmids can carry genes for increased salt tolerance
(Broaders et al. 2016), inter-bacterial competition (Millette et al. 2008), and increased metabolic
potential (Chassy, Gibson, and Guiffrida 1978; Kankainen et al. 2009). A plasmid can change
the fitness of its bacterial host, which may in turn reshape key ecological properties of the gut
microbiome. Despite their significant role in bacterial lifestyles, plasmids remain difficult to study,
particularly when the fithess advantages gained by the plasmid are not linked to a clear
phenotype such as virulence.

Monoculture of bacteria in nutrient-rich media is one approach to studying their genetic content,
including plasmids. However, it is challenging to cultivate many gut bacteria, and plasmids are
frequently lost from cells when bacteria are grown in laboratory media. To address this
bottleneck, (Jones and Marchesi 2006) developed TRACA, a system to physically capture
plasmids from environmental samples without the need for culturing. The captured plasmids are
replicated in laboratory E. coli and can be further characterized in this experimental system.
TRACA is effective for plasmid capture, yet is laborious and requires the researcher to have
access to the biological sample. Recently, high-throughput sequencing technologies have
enabled unprecedented characterization of gut microbiomes through ‘metagenomics’, a strategy
that sequences the entire DNA content of a sample (Handelsman 2004). Although


https://paperpile.com/c/K99Jdt/A1QB
https://paperpile.com/c/K99Jdt/MPjm
https://paperpile.com/c/K99Jdt/suVf
https://paperpile.com/c/K99Jdt/F0Fx
https://paperpile.com/c/K99Jdt/jO5U
https://paperpile.com/c/K99Jdt/jO5U
https://paperpile.com/c/K99Jdt/eJgW
https://paperpile.com/c/K99Jdt/Ei3o
https://paperpile.com/c/K99Jdt/Ei3o
https://paperpile.com/c/K99Jdt/GdQU
https://paperpile.com/c/K99Jdt/Rt5g+HJ1z
https://paperpile.com/c/K99Jdt/hH0m
https://paperpile.com/c/K99Jdt/AZLF
https://paperpile.com/c/K99Jdt/3zxS
https://paperpile.com/c/K99Jdt/5AKm
https://paperpile.com/c/K99Jdt/5AKm
https://paperpile.com/c/K99Jdt/X1lU
https://paperpile.com/c/K99Jdt/1CXE
https://paperpile.com/c/K99Jdt/P64G+ZGqe
https://paperpile.com/c/K99Jdt/oq0h
https://paperpile.com/c/K99Jdt/RV1LW
https://doi.org/10.1101/2020.11.01.361691
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.01.361691; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

metagenomes contain an enormous amount of information, avoid the requirement for culturing,
and are often publicly available, it remains a challenge to categorize the resulting DNA
sequences according to their origin.

Several computational strategies have been developed to help distinguish between plasmid and
chromosomal DNA. One strategy uses machine learning (Zhou and Xu 2010; Krawczyk,
Lipinski, and Dziembowski 2018; Pellow, Mizrahi, and Shamir 2020) to learn patterns based on
short signatures of typically ~3-7 nucleotides, called k-mers. Another strategy is to identify
plasmids based on their circularity during assembly (Antipov et al. 2019; Rozov et al. 2017).
Another strategy has been to annotate sequences with known genes related to plasmid
replication and conjugative transfer. Plasmidfinder (Carattoli et al. 2014) identifies genes related
to plasmid replication, but it is trained on a limited number of plasmids of the family
Enterobactericiae. A more recent tool, MOB-suite (Robertson and Nash 2018), applies a similar
approach using a broader set of plasmid replication and mobilisation genes. Beyond these
canonical functions, the full repertoire of genes that distinguishes plasmids from other
sequences has not been extensively modeled in a systematic and data-driven manner.

Here, we develop a machine learning approach, the Plasmid Classification System (PCS), to
identify plasmids based on all molecular functions encoded in a sequence. We apply PCS on
assemblies from 406 human gut metagenomes, revealing a diverse set of new plasmids.
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RESULTS AND DISCUSSION
Establishing a vocabulary of plasmid and chromosome-enriched gene functions

As a first step in training a plasmid classifier, we ran a large-scale analysis of >50 million genes
across a reference set of 16,827 plasmids and 14,367 chromosomal sequences (Figure 1A,
Methods). To understand the functions of these genes, we annotated them to evolutionarily
conserved gene families using two different approaches. First, to take advantage of prior
biological knowledge, we searched genes for sequence homology with known gene families in
two databases: the Cluster of Orthologous Groups of proteins (COG) (Galperin et al. 2015) and
Pfam (EI-Gebali et al. 2019). Second, to capture uncharacterized functions potentially missed by
these databases, we also clustered genes into >1 million de novo families using a highly
parallelized sequence alignment and clustering tool called mmseqs (Steinegger and Soéding
2017). We allowed genes to be assigned to multiple families.

We found that de novo families were critical for a comprehensive study of plasmid-enriched
functions. Known gene families are biased, explaining functions for only 71% of all plasmid
genes plasmids as opposed to 89% of chromosomal genes (Figure 1B). Moreover, many
plasmids have only a small subset or none of their genes annotated (Figure 1C). Incorporating
de novo families enabled us to characterize 95% of all plasmid genes and a large fraction of
genes in any one plasmid. To further understand if these families would be informative for
creating a plasmid classifier, we calculated their enrichment in plasmids versus chromosomes.
While some of the known families were enriched in plasmids, there were thousands of more de
novo families that were not only enriched at all but also enriched at stronger levels (Figure
1D-E).

Addressing length and taxonomic biases in reference sequences

We further preprocessed the reference sequences to address three major challenges in
discovering new plasmids in metagenomes. The first challenge is that plasmids (~1-100kb, with
the exception of megaplasmids) are typically much shorter than chromosomes (~500kb-5Mb),
so sequence length would be a highly accurate but not insightful predictor. Second, assembly of
metagenomes from short-read sequencing typically results in short contigs that are fragments of
the original genome. To address these two challenges, we sliced plasmids and chromosomes
into subsequences using a 10kb window with Skb increments.

The third challenge is that reference plasmids are highly redundant and not a uniform
representation of possible genetic diversity. The taxonomic assignments of plasmids are heavily
skewed, with 5,974 (35%) from the family Enterobacteriaceae. The three most common species
assignments are well-studied human pathogens: E. coli (2589), K. pneumoniae (1465), and S.
enterica (817). Because taxonomy is missing or possibly incorrect for some plasmids, we also
categorized plasmids into XYZ subtypes based on sequence similarity (see Methods). This
analysis recapitulated a similar skew, with the largest subtype containing 9,524 (57%) of the
plasmids on one extreme and 3,971 (19%) plasmids alone in their own subtypes on the other
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extreme. To address this skew, we assigned fractional weights to the sliced sequences such
that the total weight for every subtype was equal.

PCS: a state-of-the-art plasmid classifier system based on gene functions

Using 10kb sliced sequences and subtype-based weights, we trained a logistic regression that
uses the known and de novo families as features to distinguish plasmids from chromosomes.
The resulting model, called the Plasmid Classification System (PCS), takes in as input the set of
families encoded in a sequence, and it returns a score between 0 to 1 representing the
probability of being a plasmid.

We compared PCS versus PlasClass (Pellow, Mizrahi, and Shamir 2020), a recent method that
also fits a logistic regression but uses k-mers of length 3-7 as features, in their ability to classify
the 10kb sequences. We did not compare with other k-mer methods (Krawczyk, Lipinski, and
Dziembowski 2018; Zhou and Xu 2010) because the PlasClass study reported better
performance than them. We first evaluated performance in 4-fold cross-validation using a
“naive” random splitting of sequences (Figure 1A) and a uniform weighting of 10kb slices to
calculate precision and recall. PCS achieved a moderately higher area under the
precision-call-curve (AUC=0.55) than PlasClass (AUC=0.45, Figure 2B). While this type of
naive splitting has often been used in microbial classification tasks, it is ill-designed because the
existence of sequence subtypes causes the training and test data to have similar sequences. As
a more accurate benchmark, we also evaluated using an “informed” split, which keeps
sequences from the same subtype together in training or test, and calculated precision and
recall using the subtype-based weights. This scenario reveals a greater performance divide
between PCS (AUC=0.70) versus PlasClass (AUC=0.17), demonstrating the importance of
using gene functions to identify new types of plasmids.

PCS-predicted plasmids are more prevalent in healthy human gut microbiomes than
previously established plasmids.

Plasmids are important drivers of microbial evolution, and allow for rapid adaptation of their
microbial host to new or changing environments. Even in a healthy human gut, a microbe may
encounter situations where maintenance and expression of a plasmid is beneficial, for example
in dealing with bile salt stressors (Broaders et al. 2016). A plasmid that is conserved across
many human guts may provide particularly advantageous traits, or may be able to replicate in a
broad range of microbial hosts. We are interested in identifying plasmids that are prevalent
across healthy individuals as they may contribute to maintaining a homeostatic environment.
Many reference plasmids are human-associated, however, these plasmids are often isolated
from individuals with diseases, and may not represent plasmids found in healthy human guts.
Here, we examined how our current understanding of plasmids (the reference set of plasmids)
compares to the plasmids predicted by PCS with respect to their distribution and relevance
across human populations.


https://paperpile.com/c/K99Jdt/wFmU
https://paperpile.com/c/K99Jdt/hYiq+NxoX
https://paperpile.com/c/K99Jdt/hYiq+NxoX
https://paperpile.com/c/K99Jdt/X1lU
https://doi.org/10.1101/2020.11.01.361691
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.01.361691; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We downloaded 406 publicly available human gut metagenomes from Fiji, Tanzania, ltaly,
China and the USA. We individually assembled each metagenome into contigs using IDBA_UD
(Peng et al. 2012). We ran PCS on the 7,787,977 assembled contigs and applied a score cutoff
of 20.5 to identify plasmids. We depreplicated the predicted plasmids by assigning plasmids with
greater than 90% alignment coverage and sequence identity to the same group, and used the
longest contig as a representative (see Methods), resulting in a set of 31,399 putative plasmids.
A similar de-replication was applied on the reference plasmids. We separately recruited reads
for all 406 metagenomes to the remaining 11,059 reference plasmids and 31,399 predicted
plasmids using bowtie2 (Langmead and Salzberg 2012) and the snakemake (Koster and
Rahmann 2012) workflows in anvi'o (Shaiber and Murat Eren 2018). For each plasmid, we
computed its detection (the fraction of the plasmid covered by at least one read) across all
metagenomes.

To ensure that the contigs were likely to be plasmids, we filtered out all predicted plasmids that
had a score of less than 0.90, leaving 6,257 high-confidence plasmids. For both known and
predicted plasmids, we only kept those that had a detection greater than 0.95 in at least one of
the 406 metagenomes, to ensure all of the plasmids could be considered human gut-associated
for fair comparison. Of the 11,059 reference plasmids, only 148 passed this filter, compared to
5,311 of the 6,257 predicted plasmids. However, it was still possible that the 148 reference
plasmids would be more prevalent across the 406 metagenomes than the 148 most prevalent
predicted plasmids. To identify the distribution of the known and predicted plasmids, we plotted
the detection of both sets of 148 plasmids across all metagenomes (Figure 3). The detection
(between 0 and 1) of each plasmid in each metagenome is shown, and known and
PCS-predicted plasmids are individually clustered based on their detection across all samples.
53% (78/148) of the subset of PACS-predicted plasmids is present in greater than 10% of all
metagenomes, compared to 7% (11/148) of the reference plasmids.

Within the predicted plasmids there is a clear distinction between plasmids that are prevalent in
industrialized versus non-industrialized countries. Italy and Tanzania have few plasmids that are
present across most samples, however, these results may be influenced by their lower depth of
sequencing. A comparison between the USA and Fiji indicates that there is a geographical
stratification of plasmids, similar to what has previously been observed about the geographical
distribution of mobile genetic elements (Brito et al. 2016).

These results indicate that if we are interested in studying how plasmids impact microbial
evolution in a healthy human gut, we are missing the vast majority of highly conserved plasmids
by traditional methods. Using our model, we are able to identify novel plasmids that are
maintained across many individuals. Maintenance of a gene or organism across similar
environments often indicates that it plays an important role in ecosystem functioning or
maintenance of a stable community. This method of identifying plasmids that are conserved
across many individuals will allow us to focus on relevant targets for future experimental
investigations examining the impacts of plasmids on microbial fitness.
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PCS predicts a wide variety of plasmids

To ensure that PCS was not biased to predicting plasmids of a particular length or genetic
content, we manually examined a large subset of the predicted plasmid sequences.
Reassuringly, we are able to predict many different types of plasmids. We focused on the
analysis of gene content and coverage of four specific plasmids. These plasmids are depicted in
Figure 4, with their predicted ORFs and corresponding annotations, and the short read
coverage of that plasmid in the metagenome it was assembled from. Consistent read coverage
indicates that these plasmids exist in this conformation in the sample, and are not assembly
artifacts that are non-specifically recruiting reads. Although we can also predict fragmented
plasmids, all four plasmids are predicted to be circular (see Methods), indicating that they are
fully assembled contigs. The only example of a substantial variation in read coverage can be
seen in Plasmid 3, where a transposase recruits twice as many reads as the rest of the plasmid,
indicating that it is present in another context in another place in the genome, as could be
expected for a transposon.

PCS can predict plasmids with canonical genes, for example Plasmid 1, which contains a
replication gene, as well as a toxin-antitoxin system. Toxin-antitoxin systems produce a long
lasting toxin and a short lasting anti-toxin, so that cells that lose the plasmid will be killed by the
toxin. Toxin-antitoxin systems that force the maintenance of their plasmid are common in many
plasmids.

PCS is also able to predict short plasmids (Plasmid 2) that contain only a predicted replication
gene. PCS is able to predict larger plasmids that carry many more genes with known and
unknown functions (Plasmid 3). The longest plasmid predicted by PCS was 205,445 base pairs.

An interesting set of plasmids predicted by PCS are those that are circular (see Methods),
indicating a complete assembly, yet do not carry replication genes matching any COG or
replication gene in NCBI databases (Plasmid 4). These plasmids may carry novel types of
replication genes, or replicate using a different strategy than reference plasmids. Alternatively,
these contigs may represent mobile genetic elements with lifestyles that blur the distinctions
between categories of horizontally transferred elements. Serendipitous discoveries have given
us examples of phages carrying plasmid segregation proteins (Oliva et al. 2012), plasmids
encoding capsids (“Characterization of Streptomyces Plasmid-Phage pFP4 and Its Evolutionary
Implications” 2012), and phagemids, which can integrate into the genome like phages or
replicate in the cytoplasm like a plasmid (Dokland 2019). A targeted effort to understand the
spectrum of plasmids to phages may reveal many undiscovered mobile genetic elements that
do not fall into defined categories. The insights into novel avenues of plasmid biology generated
by PCS will enable experimental biologists to systematically explore new plasmid lifestyles.
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METHODS

Analysis of reference plasmids and chromosomes

We obtained a reference list of NCBI accessions of plasmids from the March 5, 2019 version of
PLSDB (Galata et al. 2019). A collection of complete bacterial genomes were download on
October 26, 2019 from NCBI RefSeq database using the instructions at
https://www.ncbi.nim.nih.gov/genome/doc/ftpfag/#allcomplete. In the bacterial genomes, we
added the replicons that were labeled as plasmids in the metadata to the set of plasmids from
PLSDB, resulting in a total set of 16,827 plasmids. Other replicons in the bacterial genomes
formed the set of 14,637 chromosomal sequences.

To infer plasmid and chromosome subtypes, we ran ‘mash dist" (sketch size 100000,
kmer size 21) to calculate a distance score of 0 to 1 between every pair of sequences (Ondov et
al. 2016). Conceptually, these distances form an undirected graph. To identify highly similar
sequences, we applied a threshold of 0.1 on the distances to produce an undirected graph
connecting sequences. We defined a “subtype” as one of the 7,326 connected components in
the graph. As some of these components contain both plasmids and chromosomes, there were
3,971 subtypes containing at least plasmid, and 3,391 subtypes containing at least one
chromosome.

We annotated genes in the reference plasmids and chromosomes using the “contigs”
snakemake (Koéster and Rahmann 2012) workflow in anvi’o (Shaiber and Murat Eren 2018; Eren
et al. 2015). This workflow first identified >50 million protein-coding genes and their
corresponding amino acid sequence using Prodigal (Hyatt et al. 2010). Next, it searched these
sequences for homology in Cluster of Orthologous Groups of proteins (COG) (Galperin et al.
2015) using diamond (Buchfink, Xie, and Huson 2015), an accelerated blast-like tool. It also
searched for homology with profile HMMs in the Protein Family Database (Pfam) (El-Gebali et
al. 2019) using the hmmscan command in the HMMER software package (v3.3, hmmer.org).
For both searches, the default e-value cutoff of 10" by anvi'o was used.

Additionally, we inferred a set of de novo gene families by applying mmseqs version
10.6d92c (Steinegger and Sdéding 2018) on all genes. As a pre-processing step, we first ran the
‘mmseqs clusthash® command to collapse identical amino acid sequences into a non-redundant
set for faster downstream analysis; the collapsing was inverted afterwards to annotate all genes.
Next, we ran the ‘'mmseqs cluster’, which computes all pairwise alignments above a minimum
sequence identity threshold and then clusters genes using a greedy linear-time algorithm. We
set the identity threshold “--min-seqg-id" to either 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2, 0.15,
0.1, or 0.05 to infer a wide range of possible families. Afterwards, we merged nested families,
i.e. if family X contains all the genes in family Y, then we only keep X. We also discarded any
family for which all of its genes are in only one sequence. The final result was 1,090,132
families with 162,783,114 annotations to the genes (genes may have multiple annotations). This
analysis took advantage of mmseqs built-in parallelism, taking ~6 hours using 256 CPU cores.

Training and evaluation of PCS

We trained a logistic regression with elastic net regularization using the LogisticRegression
class from the scikit-learn Python package (Pedregosa et al. 2011). We performed a grid search
of hyperparameters, with alpha ranging from 10® and 10° in multiplicative increments of
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np.log10(2) and /1_ratio being 0.0, 0.25, 0.5, 0.75, or 1.0. The best hyperparameters were
chosen separately for the two scenarios in Figure 3B-C. For the “informed” split and sample
weighting scenario (Figure 3C), the best values were alpha=3.16x10° and /1_ratio=0.0. We
used this setup and values to retrain PCS on all 10kb sliced sequences.

We defined a set of weights on 10kb sliced sequenced to satisfy the following conditions:
(a) the total weight of a plasmid (or chromosome) across its 10kb slices is equal to the weight of
any other plasmid (or chromosome) in the same subtype, (b) the total weight of a plasmid
subtype is the same as any other subtype, (c) the total weight of all plasmid slices equals that of
all chromosomal slices, and (d) the total weight across all slices is equal to the number of slices.
These conditions result in a unique assignment of weight values.

Metagenomic datasets, assembly, read recruitment, and profiling

We downloaded the metagenomic datasets from the National Center for Biotechnology
Information (NCBI) using the software ‘fastqg-dump’. The countries represented are Tanzania
(Rampelli et al. 2015), Italy (Rampelli et al. 2015), China (Qin et al. 2012), Fiji (Brito et al. 2016)
and the USA (Turnbaugh et al. 2007; Obregon-Tito et al. 2015).

All steps of quality filtering, metagenomic assembly, read recruitment and profiling were
automated using snakemake (Kdster and Rahmann 2012) workflows in anvi'o (Shaiber and
Murat Eren 2018). We used the ‘ilumina-utils (Murat Eren et al. 2013) commands
‘iu-gen-configs’ and ‘iu-filter-quality-minoche™ with the flag "--ignore-deflines™ to quality filter the
raw paired-end reads. We assembled each metagenome individually using IDBA_UD (Peng et
al. 2012) with default settings except the flag “--min_contig 1000°. To calculate the coverage of
each contig within its respective metagenome, we recruited the reads from that metagenome
back to the assembled contigs using bowtie2 v.2.0.5 (Langmead and Salzberg 2012) with
default parameters. We converted the SAM files into BAM files using samtools v1.3.1 (Li et al.
2009). We generated profile databases from the BAM files using anvi'o (Eren et al. 2015), which
stores coverage information and allows for visualization of the coverage plots. The per
nucleotide coverage values were exported from the profile database with the command
“anvi-get-split-coverages’. The coverage values were averaged every 20 base pairs and used to
create circular coverage plots in anvi'o (Eren et al. 2015).

To identify circular contigs, we examined the reads that mapped onto the predicted
plasmids in a paired-end configuration. While paired ends typically map near each other in a
contig, some should map in a “reverse-forward” (RF) configuration at opposite ends of a circular
contig as an artifact of how the contig was linearized. We deemed a contig as circular if (a) there
were at least 5 RF paired ends with a distance (insert length) 2500 and (b) the median insert
length of such paired ends satisfying (a) is 280% of the contig’s length.

Predicting plasmids from metagenomic assemblies

We followed the same procedure as the reference plasmids and chromosomes to annotate
known gene families in all contigs in the metagenomic assemblies. To annotate de novo
families, we first converted every de novo family into a position-specific scoring matrix, which
captures the observed sequence variation of genes in this family, using ‘'mmseqs result2profile’
(default parameters). We then used ‘'mmseqs search’ (default parameters) to search for genes
across the assembly contigs against the profile. We kept hits for which the alignment coverage
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was 280% in both the assembly gene and the profile and where the identity was at least 2X-0.05
where X is the minimum identity threshold used to infer the family. For example, if a family was
inferred using a threshold of 0.8, then we kept hits with an identity =0.75. Finally, we ran the
trained plasmid classifier based on these known and de novo annotations to assign a score to
every contig.

Determining the detection of the known and predicted plasmids across metagenomes
PCS assigns a plasmid prediction score between 0 and 1 to each contig. We dereplicated these
sequences by calculating the average nucleotide identity (ANI) between every pair of predicted
plasmids using FastANI (--fragLen 1000, -k 16) (C. Jain et al. 2018). We defined groups of
highly similar plasmids as the connected components in an undirected graph consisting of pairs
(s, t), for which the FastANI alignment had an ANI=90% and covered 290% of both s and t. We
took the longest plasmid in every cluster, resulting in 31,399 de-replicated plasmids. We used
the same approach to dereplicate the reference plasmids. To ensure we were using the contigs
most likely to be plasmids, we filtered out the predicted plasmids with a score of less than 0.90,
resulting in 6,257 remaining plasmid sequences. We recruited reads from all 406 metagenomes
to each plasmid set (reference and predicted) separately, using the same software and
approaches as we had for recruiting reads to the assembled contigs. Detection of each contig is
a value between 0 and 1 that indicates the proportion of the contig that had at least one read
map to it. Detection is automatically calculated during profiling in anvi'o. We accessed the
detection data using ‘anvi-export-table’, and used these tables to generate the heatmaps in
Figure 3.

Plasmid clustering by detection

We used the built in functionality of heatmap.2 to cluster the plasmids based on their detection
across all metagenomes. The dendrograms were generated using Euclidean distance and
median linkage.

Manual plasmid gene annotation

We ran the program ‘anvi-gen-contigs-database’ and “anvi-run-ncbi-cogs™ on the fasta files
containing the dereplicated known and predicted plasmids. anvi-gen-contigs-database’ runs
Prodigal v2.6.3 (Hyatt et al. 2010), which identifies open reading frames (ORFs) in contigs.
“anvi-run-ncbi-cogs’ identifies COG functions (Galperin et al. 2015) from the ORFs predicted by
Prodigal. We manually imported the COG functions from the anvi’'o interactive interface into the
plasmid maps produced by snapgene (Insightful Science; snapgene.com). Any gene that did not
have a COG function assigned was manually curated using NCBI BLASTx.

Data visualization

We used the R package "heatmap.2’ to generate the raw heatmap and dendrogram, and
inkscape to refine the figure. We used anvi'o to create the circular coverage plots, and
shapgene to create the plasmid maps with labeled genes. These were combined in inkscape
1.0.1.
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Figure 1. Establishing a vocabulary of gene functions in plasmids and chromosomes. (A)
A pangenomics workflow was applied to characterize gene functions in a reference set of
16,827 plasmids from the PLSDB database (Galata et al. 2019) and 14,367 complete
chromosomes from NCBI RefSeq. Across these sequences, >50 million protein-coding genes
were identified using Prodigal (Hyatt et al. 2010). To infer function, every gene was assigned to
one or more gene families, each representing an evolutionarily conserved amino acid sequence.
A known set of gene families consisted of COGs (Galperin et al. 2015) and Pfam (El-Gebali et
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al. 2019). A set of gene families were also inferred de novo by pairwise alignment of amino acid
sequences followed by clustering using a highly parallelized tool (Steinegger and Séding 2017).
(B) Fraction of all plasmids or all chromosomal genes that are annotated by using known
families (blue), de novo families (orange), or a combination of both (green). (C-D) Histograms
showing the number of plasmid (C) or chromosomal (D) sequences as a function of genes
annotated using known or de novo families. (E-F) 2-D histograms showing the number of known
(E) or de novo (F) gene families as a function of the number of plasmid and chromosomal
sequences that contain a family. The number of gene families is log-scaled.
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Figure 2. Evaluation of PCS model performance. (A) Diagrams of different training-test split
configurations. A random “naive” split of plasmids and chromosomal sequences would result in
training and test sets that have similar sequences, due to the existence of plasmid and
chromosomal subtypes that each contain highly similar sequences. An “informed” split assigns
all sequences of the same subtype to either training or test, creating a more representative
evaluation of a model’s ability to generalize to unseen sequences. (B-C) We evaluated the
performance of PCS and PlasClass (Pellow, Mizrahi, and Shamir 2020) in 4-fold cross
validation. We calculated the precision-recall curve and its area-under-the-curve (AUC) using a
naive split and uniform sample weighting (B) or an informed split with sample weights that
assign plasmid and chromosomal subtypes equal representation (C) (see Methods).
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Figure 3. PCS-predicted plasmids are more prevalent than previously established
plasmids across globally distributed human populations. We recruited reads from 406
globally distributed metagenomes to the collections of known and predicted plasmids. Only
plasmids with greater than 0.95 detection in at least one metagenome are shown. Red indicates
the plasmid was highly detected, green indicates no detection. Plasmids are hierarchically
clustered based on detection values across metagenomes using Euclidean distance and
median linkage.
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Figure 4. PCS can predict a variety of plasmids. Four plasmids with gene annotations and
coverage plots based on short read mapping from the metagenome they were initially
assembled from. All four plasmids are predicted to be circular. All uncharacterized genes are left
unannotated. Plasmid 1: plasmid with canonical replication and toxin/anti-toxin genes. Plasmid
2: 1.7kb plasmid containing only repL. Plasmid 3: 21kb plasmid containing genes of known and
unknown function. Plasmid 4: non-canonical plasmid that does not contain a discernible
replication gene.
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