

1 **Ribosome-linked mRNA-rRNA chimeras reveal active novel virus host associations.**

2 **Authors:** J. Cesar Ignacio-Espinoza¹, Sarah M. Laperriere¹, Yi-Chun Yeh¹, Jake Weissman¹, Shengwei Hou¹, Andrew
3 M. Long^{*1}, & Jed A. Fuhrman¹

4

5 Affiliations:

6 1. Department of Biological Sciences, University of Southern California, Los Angeles CA 90089.

7 ♣ Current address: Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803

8

9 Correspondence to be addressed to: j.cesar.ignacio@gmail.com & fuhrman@usc.edu

10

11 **Abstract**

12 Viruses of prokaryotes greatly outnumber their hosts¹ and impact microbial processes across
13 scales, including community assembly, evolution, and metabolism¹. Metagenomic discovery of
14 novel viruses has greatly expanded viral sequence databases, but only rarely can viral
15 sequences be linked to specific hosts. Here, we adapt proximity ligation methods to ligate
16 ribosomal RNA to transcripts, including viral ones, during translation. We sequenced the
17 resulting chimeras, directly linking marine viral gene expression to specific hosts by transcript
18 association with rRNA sequences. With a sample from the San Pedro Ocean Time-series (SPOT),
19 we found viral-host links to Cyanobacteria, SAR11, SAR116, SAR86, OM75, and
20 Rhodobacteraceae hosts, some being the first viruses reported for these groups. We used the
21 SPOT viral and cellular DNA database to track abundances of multiple virus-host pairs monthly
22 over 5 years, e.g. with *Roseovarius* phages tracking the host. Because the vast majority of
23 proximity ligations should occur between an organism's ribosomes and its own transcripts, we
24 validated our method by looking for self- vs non-self mRNA-rRNA chimeras, by read recruitment
25 to marine single amplified genomes; verifiable non-self chimeras, suggesting off-target linkages,
26 were very rare, indicating host-virus hits were very unlikely to occur by mistake. This approach
27 in practice could link any transcript and its associated processes to specific microorganisms.

28

29 **Main**

30 Microbial communities are central players in the elemental transformations that sustain life on
31 our planet². Like all of life on earth, microbes are susceptible to viral infections, and in the

32 ocean, viruses dominate and exceed their hosts' numbers manifold¹. While the importance of
33 virus-host interactions is well recognized, the vast majority viruses observed microscopically
34 and those discovered in recent years by metagenomic approaches do not have a specifically
35 known host, so who infects whom remains largely unknown. This problem is nearly axiomatic in
36 non-marine environments as well, with potential economic, environmental, and health related
37 impacts. Virus-hosts links are therefore one of the main open questions in environmental
38 microbiology, and multiple methods have been developed to address this question, ranging
39 from the informatic (e.g. finding similarities between virus and host genomic sequences³) to
40 recent wet-lab based protocols such as viral tagging⁴, finding viruses in single amplified
41 genomes⁵ or adsorbed to cells⁶, digital PCR⁷ and DNA-DNA proximity ligation^{8,9}.

42

43 Viruses function and reproduce only when their genes are transcribed and then translated to
44 proteins by the host's ribosomal machinery. We adapted and applied the well-established
45 proximity ligation approach¹⁰, previously used to probe DNA⁹, RNA¹¹ and Protein¹² interactions,
46 to bond the viral transcripts to the host's ribosomal RNA after chemically fixing them both in
47 the act of translation, thus allowing us to associate viral gene transcripts directly to the host
48 that is translating them. The bioinformatic analysis allowing us to interpret these connections
49 as virus-host associations is only possible because we now have large libraries of known marine
50 viral sequences determined metagenomically^{13,14} as well as a massive database of ribosomal
51 RNA sequence from organisms across the entire phylogenetic tree¹⁵. Chimeric mRNA-rRNA
52 sequences that have a virus gene fragment next to a host ribosomal RNA sequence fragment
53 are a "smoking gun" to show an active virus-host link, contrasting with other recent methods
54 that also report more incidental relationships. Here we present proof of concept and the first
55 field application of rRNA-mRNA proximity ligation to specifically link viruses and their hosts
56 through this viral-transcript-host-ribosome connection. We also validate the method by
57 showing that among rRNA-mRNA chimeras, the vast majority are coded by the same organism's
58 genome, suggesting false, cross-organism, linkages are exceedingly rare.

59

60 **Summary of Methods**

61 We present XRM-Seq (Ribosome cross-linking and sequencing). Briefly (Figure 1a) described
62 (See extended methods below): Seawater samples collected in February of 2020 at the San
63 Pedro Ocean Time series station (SPOT¹⁶) were filtered serially through an 80 μ m nylon mesh
64 and a 1.2 μ m fiber glass filter to remove most eukaryotes; cells in the filtrate, containing mostly
65 free-living prokaryotes, were collected on a 0.2 μ m filter. (1) These cells were fixed with 1%
66 formaldehyde, cross-linking adjacent proteins to hold ribosomes together. (2) Intact crosslinked
67 ribosomes and total RNA were extracted using acid phenol-chloroform, particularly from the
68 interphase¹², where the protein-RNA complexes migrate. DNA was depleted with two rounds of
69 DNase treatment. (3) RNA was randomly cut with micrococcal S1 nuclease, cleaving accessible
70 rRNA strands in the ribosome (Suppl. Fig. 1), which is held together by covalent bonds from
71 crosslinking between the proteins that make most of the ribosomal mass, and it also generates
72 free ends in the mRNA. (4) Free RNA ends (from ribosomal or messenger RNA) were then
73 ligated into circular forms with a circRNA ligase¹¹. (5) To enrich for chimeric reads, samples
74 were then subject to degradation of non-circular RNA using RNase R¹¹. Crosslinks were cut by
75 proteinase K. (6) RNA was then retrotranscribed to cDNA, which was then used to prepare
76 libraries that were then deeply sequenced by Illumina Nova Seq. Merged and QC'ed reads (see
77 extended methods below) were then searched for chimeric reads by aligning them against Silva
78 v 132¹⁵, single cell genomes¹⁷, a local rRNA sequence database¹⁸, a set of local viral contigs
79 (representing 5 years of monthly samples) from our previous metagenomic work¹³ and our in-
80 house database of fully sequenced marine viruses, fosmids and assemblies from global marine
81 virus metagenomics projects.

82

83 **Results and Discussion**

84 *We validated our method and found a negligible rate of false positive linkages.* The general
85 validity of the approach was verified by examining chimeric linkages for those between rRNA
86 and protein-coding genes from the same organisms, which would be expected to be the vast
87 majority of linkages if the method worked as planned. For this validation we wanted to use
88 independently-determined and bona fide genome sequences, so we did not try to bin genomes
89 from our own local metagenomic data (to avoid assembly artifacts or any possible circular

90 reasoning), but instead used published marine genomes as a reference set. In particular, we
91 used sequences from a recently released set of tropical and subtropical marine single amplified
92 genomes (SAGs)¹⁷. This analysis showed that the vast majority these linkages were to the same
93 SAG or within the same close lineage (Figure 1b); Because these SAGs were not from our exact
94 site, we expect that these close (but not perfect) hits are due to database imperfections (i.e.
95 our local organism may not match a SAG exactly but may have two similarly-close SAG relatives)
96 and not because erroneous, i.e. non-self, linkages somehow always happened to occur only
97 with close relatives. Erroneous linkages would instead be expected to occur randomly among
98 and across the several most abundant and diverse taxa, which was not observed. Thus these
99 results validate our approach, and we felt confident extending the analyses to virus-host
100 linkages

101

102 *mRNA-rRNA chimeras reveal novel virus-host links.* To cast the widest possible net for potential
103 viruses and hosts in the chimeric linkages, we took advantage of the fact that we have been
104 studying the SPOT site for several years, and have considerable existing metagenomic (from
105 viruses) as well as rRNA sequence data. We used these local databases, including all contigs
106 from our previously published 5-year viral metagenomic dataset¹³, SILVA v. 132¹⁵ and our
107 collection of rRNA clones collected as part of our long-term SPOT ecological time series¹⁶. We
108 updated the characterization of viral contigs in our 0.02-0.2 μ m size fraction viral metagenome,
109 by adding newer and more sensitive virus-finding tools to the previous application of VirSorter
110 and VirFinder (confirmatory), specifically DeepVirFinder, CheckV, MEGAN-LR, VirSorter, and
111 homologies to the Tara Ocean proteomic datasets (see methods). We then mapped reads with
112 an overlap > 100 bp and > 95% identity to all the assembly from San Pedro Virome dataset,
113 Searching for rRNA ligated to newly identified viral contigs, we identified 699 mRNA-rRNA
114 chimeric reads, which represented 46 different viral contigs linked to 16S or 23S rRNA (Figure
115 2a, Suppl. File 1). We found more associations between mRNA and 16S than 23S rRNA (Fig 2a),
116 despite 23S being longer, perhaps suggesting 16S has more accessible loops to allow enzymatic
117 cleavage and re-ligations.

118

119 Our 46 identified viruses include those to hosts for which viruses were previously unknown,
120 significantly the first SAR86 virus (Figure 2b, Suppl. File 1), particularly notable because this
121 gammaproteobacterial group is globally abundant in seawater¹⁹. This virus appears to be an
122 abundant member of the community at the transcriptomic level, though surprisingly it has no
123 significant hits in the global ocean virome (GOV) dataset (Figure 2f), suggesting it may be
124 regional or ephemeral. We also describe the first putative OM75 (alphaproteobacterial) viruses,
125 and abundant Roseobacter phages unlike those previously reported (Figure 2; Suppl. Table1).
126 Cyanobacterial viruses were well represented in the host-virus chimeras characterized by our
127 methods, as expected due to their abundance in our samples, as well as their prevalence in the
128 cultivated virus database. Phylogenetic 16S assignment divided them between *Prochlorococcus*
129 (N= 7) and *Synechococcus* (N=3), and one whose associated 16S fragments did not allow us to
130 distinguish between those two genera (Suppl. File 1; Figure 2b-f). We also found abundant
131 phages associated with various Alphaproteobacteria, divided among Rhodobacteraceae (N= 132 16), SAR116 (N=8) and phages infecting the abundant SAR11 (N=8). Some of these host
133 assignments, due to the abundance of the chimeras (many 16S hits), can be placed to the exact
134 amplicon sequence variant (ASV) level, such as a *Roseovarius*, with multiple viral contig links to
135 a single 16S ASV (Suppl. Table 1, Figure 3, below), suggesting that they are probably fragments
136 of the same viral genome.

137
138 Due to the constraints of the bioinformatic methods used to identified viral contigs (complete
139 dependencies on databases), it is difficult to identify fully novel viruses, and it is possible that
140 linkages to many truly novel viruses have been missed by our conservative approach. We
141 assessed the novelty of the viral lineages linked to particular hosts in our analysis, by identifying
142 the percentage of known viral genes within a contig (Figure 2e) and the distribution of
143 nucleotide identities to sequences from GenBank and metagenomic projects (Figure 2f)^{14,20}. We
144 see that most of the contigs have either a good percentage of hits that can be identified as viral
145 or are represented in public metagenomic projects. Exceptions include the novel SAR86 virus
146 (mentioned above), an unassigned cyanophage and a phage that we couldn't place to any
147 phylogenetic group due to the scarcity of the chimeric reads, which appear to be poorly

148 represented in metagenomic assemblies. Beyond absolute novelty, our experiments revealed
149 viral groups previously reported only to infect very different host groups than we report here,
150 for example a novel T7-like Roseobacter phage (CT18917, Rank 6, Figure 2) with distant hits to
151 T7 cyanobacterial phage (Suppl. File 1), and novel SAR11 viruses (CT_SN_17500 and
152 CT_SN_38734, Ranks 20 and 21, Figure 2) that appear distantly related to enterobacterial T5
153 phages. This expands the range of known viruses infecting this numerically dominant ocean
154 clade.

155

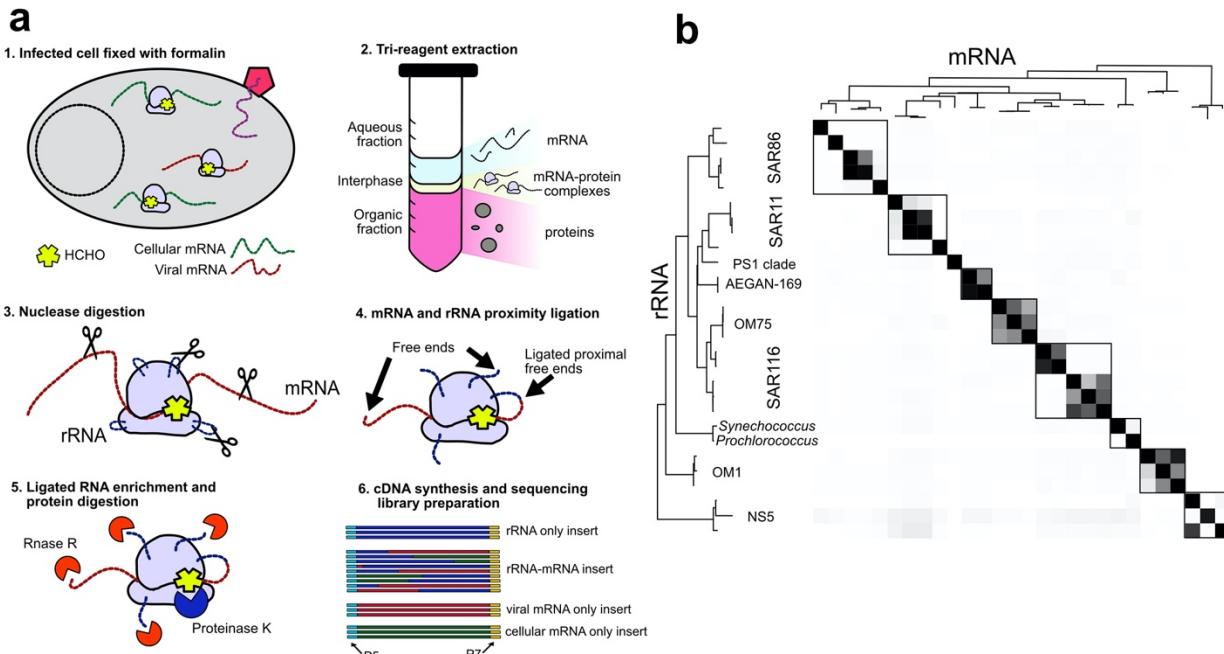
156 We can track viruses and their presumed host abundances from our San Pedro Time series, and
157 interestingly we find contrasting virus-host patterns. The tracking is possible because we used
158 the assemblies from our recently completed five-year viral metagenomic survey as a database
159 to find viral sequences, and we can estimate relative abundances via read recruitment to those
160 data. We also have time series data on potential host relative abundances from amplicon
161 sequencing of SSU rRNA. Some of the linked viral contigs have many chimeric reads, and this
162 allowed us to pin-point the specific 16S ASV associated to the host infected by this virus. So we
163 tracked the long-term (5Yr) virus-host dynamics of these associations (Fig 3). Here we show
164 three cases, one with a match to a *Synechococcus* ASV, and two with perfect matches a
165 *Roseovarius* ASV (Suppl. File 1). The abundance of the host ASV in the latter case across time
166 closely matches the dynamics of the virus in this case (Fig 3), consistent with a persistent virus
167 infection where the virus essentially tracks the dynamic host abundances over many months.
168 Yet that is not the only pattern we observed; we also were able to find the specific host for the
169 third most abundant contig in the 5-year virome, and this cyanophage (Figure 3c-d) and its
170 associated *Synechococcus* ASV are both dynamic but do not closely track each other. Perhaps
171 this is due to strain-level variations in viruses and/or hosts that control the extent of infection,
172 yet variation cannot be detected by short read recruitment nor fairly conserved 16S sequences;
173 such strain variation is part of the Red Queen-like dynamics we previously reported for this
174 location¹³. Similar *Synechococcus* strain variation in apparent infection dynamics was also
175 reported for this location by Ahlgren et al²¹. Note also the cyanophage virus-host pair are both

176 much more abundant than the *Roseovarius* pair, which may also relate to the difference in
177 patterns.

178

179 We recognize there are potential shortcomings in requiring the virus has a well-assembled
180 contig in order to match to a host; we know due to high genomic variability, it is often difficult
181 to assemble many viral contigs in the first place, especially from only one or a few
182 samples^{13,22,23}. So as an alternative approach avoiding the need for assemblies, we searched for
183 chimeric sequencing reads that aligned to known virus marker genes. We found 171 reads that
184 match both cyanomyoviral marker gp20 or myoviral marker gp23 as well as a 16S rRNA for host
185 phylogenetic placement (Figure S2). Not surprisingly, these were enriched for cyanobacterial
186 viruses (which has a large cultured database) but they also matched, SAR11, SAR92, OM162 and
187 *Puniceicoccales* (*Verrucomicrobia*), groups for which we have relatively few, if any, previously
188 known viruses. This shows that our method can operate at the read level, and although the
189 information is not as satisfactory as having a long viral contig or genome, it is still valuable to
190 know a particular host is infected by a virus for which we now have at least one specific marker
191 that can be tracked in metagenomes (for occurrence) or metatranscriptomes (for active
192 infections) via read recruitment.

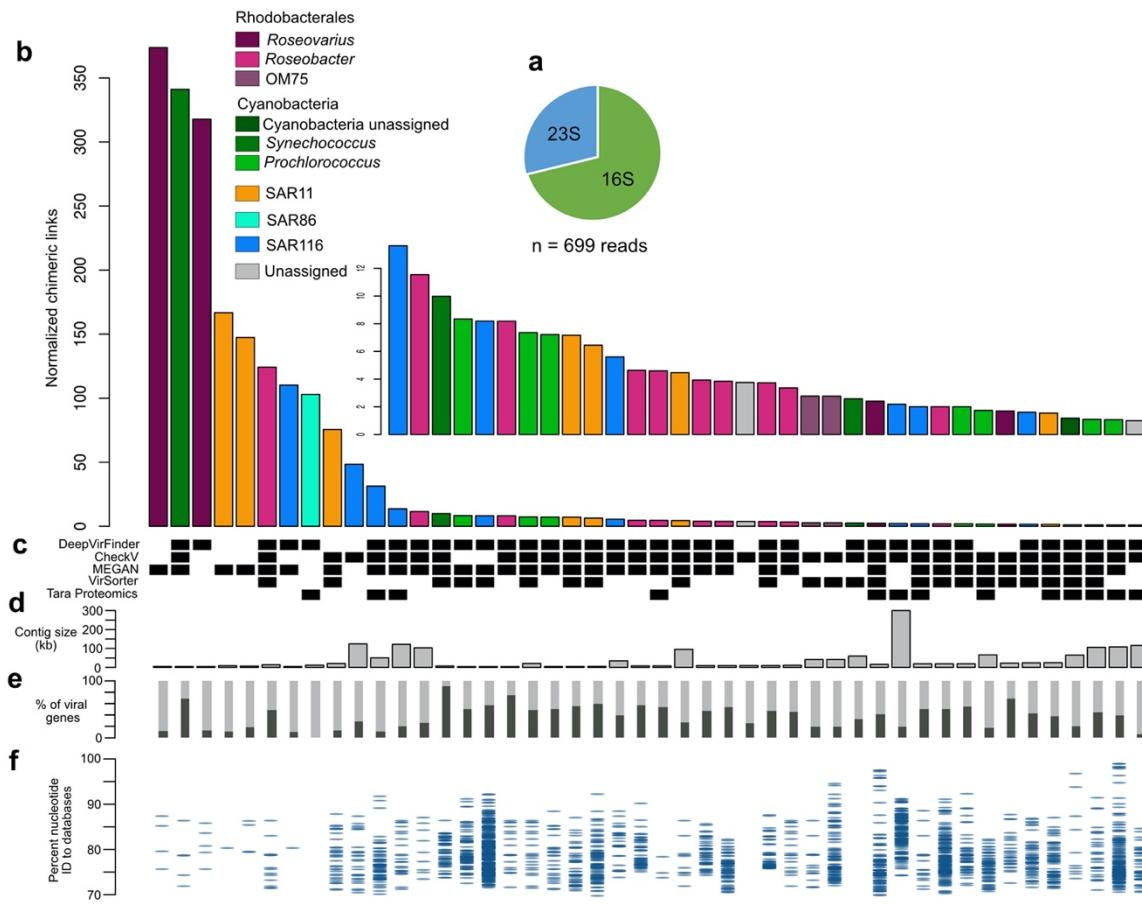
193


194 In comparison to other methods that aim to link unknown viruses and hosts, this approach has
195 some obvious advantages. It is much more specific than k-mer baser methods³, which are
196 general purpose and provide probabilities of matches, but typically do not narrow the hosts
197 down to better than genus or family levels with confidence. It is more high-throughput, and less
198 costly per match, than methods requiring sequencing sorted cells after amplification^{5,6}. It is
199 most similar to DNA-DNA proximity ligation methods^{8,9}, and the principal differences are that
200 (1) our approach catches the virus in the act of transcription while DNA-DNA approaches will
201 link any DNA within in close proximity, perhaps catching non-infection situations or
202 unsuccessful infections, and (2) we can place any host on a phylogenetic tree (or find an exact
203 match if available) by its 16S (or 23S) rRNA sequence while the general DNA-DNA proximity
204 ligation method requires host genome sequence information to identify it, and such

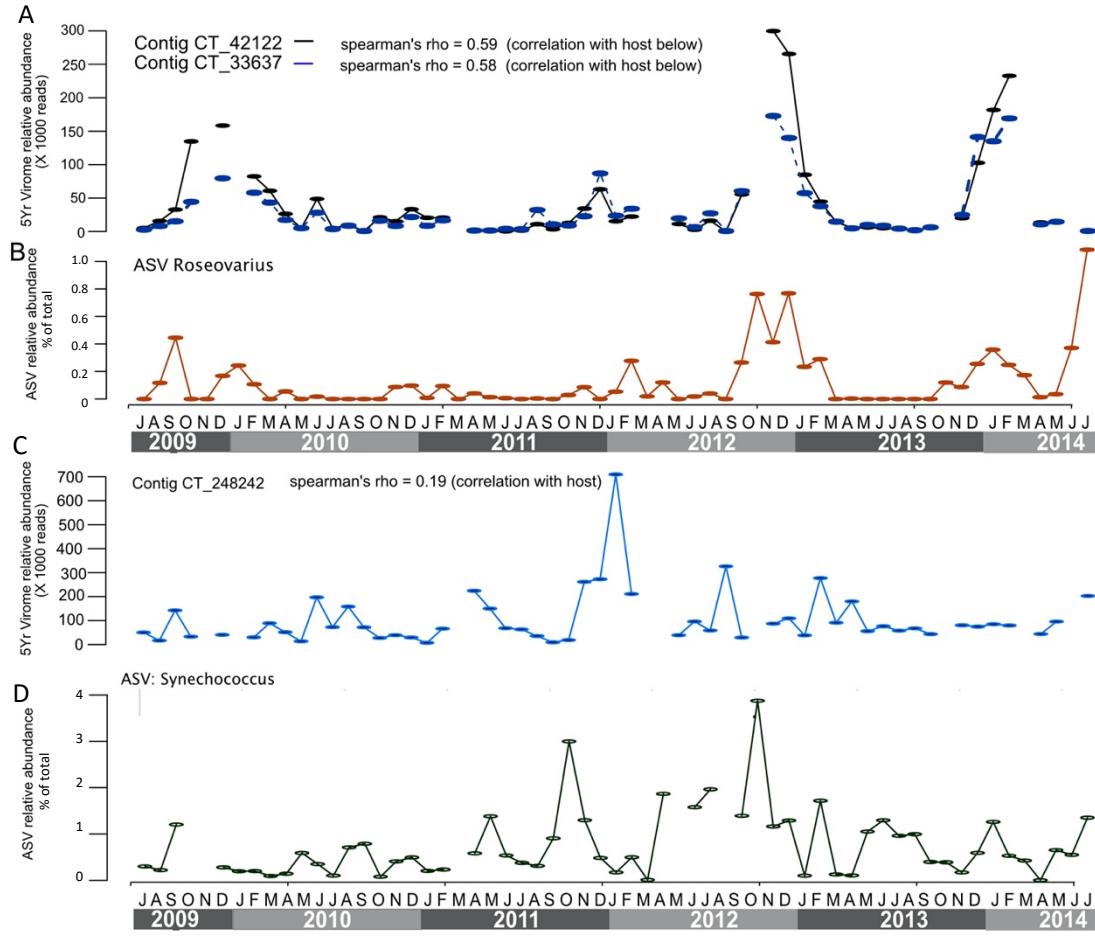
205 information on most naturally occurring organisms is limited. One important limitation of our
206 method is that by the nature of sequencing, the information in short reads is limited. We expect
207 that future developments such adapting long read sequencing²⁴ will help overcome this
208 shortcoming.

209

210 In conclusion, we have adapted molecular biology technique based on proximity ligation and
211 applied to a first field sample to uncover novel virus-host associations. We anticipate our
212 methods will be widely applied and improved upon to study the dynamics of interaction
213 networks in natural environments. Finally, because the proximity ligation is non-specific for
214 viruses and in fact can associate any translated protein with the ribosome doing the translation,
215 it can link environmental functions to taxonomic units, much needed for a mechanistic
216 modeling of a changing ocean.


217

218


219 **Figure 1.- a)** Diagram of the general method: (1) *In vivo* cross-linking of infected cells in which
220 formalin fixes ribosome (light purple) complexes during translation of host (green) or virus (red)
221 mRNA. (2) Acid phenol chloroform extraction separates the components of the cell lysate;
222 ribosome-mRNA complexes migrate to the interphase. (3) Ribosome complexes are subject to
223 a nuclease digestion that generates free ends in the rRNA (blue) and mRNA (red). (4) Free
224 proximal ends are ligated, which generates chimeras. (5) To enrich for ligated RNA, RNA with
225 exposed ends is degraded with RNase R (orange pie); Crosslinking is reversed with Proteinase K
226 (dark blue pie). (6) Sequencing libraries were prepared from retrotranscribed purified RNA,
227 many where chimeric, containing host rRNA (Blue) and viral (red) or host (green) mRNA. **b)**
228 Validation, based upon mRNA-rRNA chimeras within SAGs, is demonstrated by the strong
229 domination of within-organism linkages, as expected if the method only links mRNA and rRNA
230 within each cell, not between cells. This is shown by the taxonomic distribution of chimerically-
231 linked ribosomal RNA (y-axis) and mRNA transcripts (x-axis), as determined by sequences
232 mapping to a subtropical-tropical single amplified genome dataset representing all major
233 marine prokaryotic lineages. Intensity is normalized within rows, reflecting number of linkages,
234 as determined by sequences mapping (>95 %ID) to a subtropical-tropical single amplified
235 genome dataset. Tree on left and top (mirrored) is based on 16S rRNA sequences, not similarity
236 among rows/columns. Note the vast majority of all linkages are either to the identical SAG or to
237 a very closely related one, the latter probably reflecting situations where our local organism
238 had no identical SAG but two different very close relatives in the SAG database (accuracy, i.e.
239 the fraction of self-hits within the shown boxes, is 95%, with an associated *p*-value
240 <2.2x10⁻¹⁶).

241

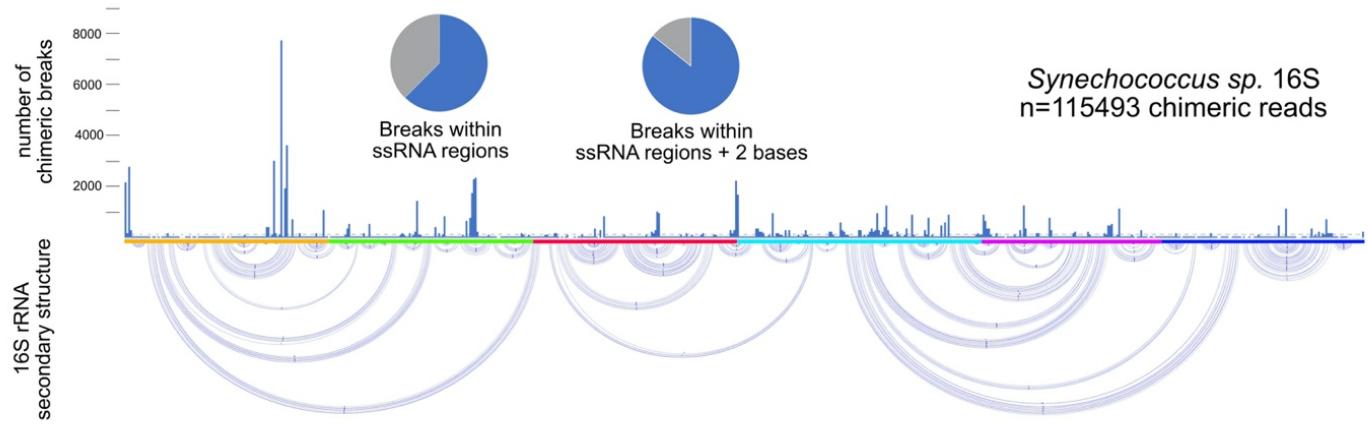
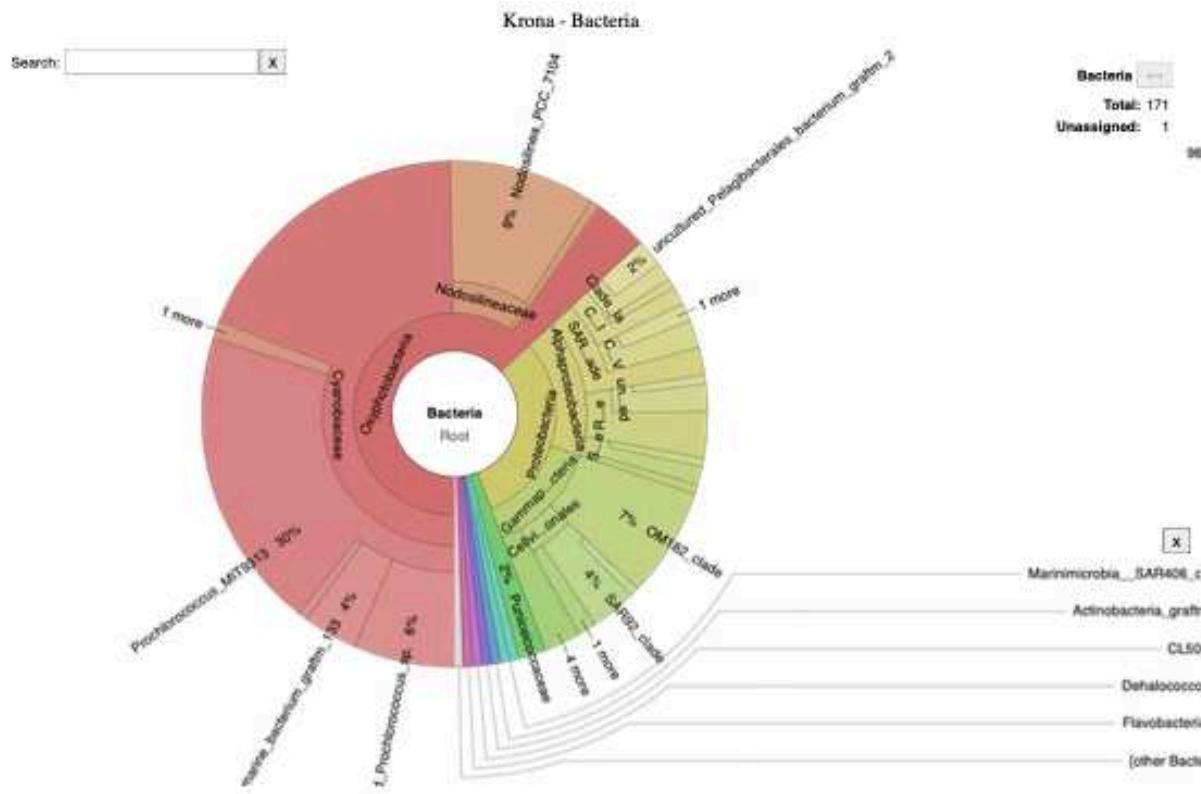

242
243
244
245
246
247
248
249
250
251
252
253
254
255

Figure 2. Novel virus-host associations discovered by RNA proximity ligation. **a)** More rRNA-mRNA chimeras are formed with 16S than 23S rRNA. **b)** Plot of the viral contigs (each bar a different contig) ranked from most to least normalized number of chimeric reads, with colors reflecting the taxonomy of the host from the rRNA within the chimeras. **c)** Black boxes indicating how a contig was identified as viral, methods named on the left. **d)** Length in kb for each contig. **e)** Percentage of genes (dark gray) within each contig currently identified as viral (note uncultivated virus genes are often not known as such) **f)** Distribution of similarity between gene matches obtained from within each contig and genes in public environmental virus databases (GOV and viral isolates from NCBI).

256
257

258 **Figure 3.** Tracking putative virus-host pairs over five years of ~monthly sampling at the San
259 Pedro Ocean Time Series. Data are from 16S rRNA amplicons (host ASVs, are shown as
260 percentage of the total community) and normalized recruitment of 0.02-0.2 μ m (viral) size
261 fraction metagenomic reads to viral contigs. **a)** Two virus contigs that both match the same
262 putative *Roseovarius* host which is shown in **b**. These two contigs are both short (6.1 and 5.4
263 kbp) and considering the same host match and nearly identical dynamics of both contigs, are
264 probably from the same virus. Note the general correspondence in abundances over time of
265 contigs and presumed host, suggesting the virus largely follows its host abundance on this
266 monthly time scale. **c)** and **d)** show an abundant viral contig and its presumed *Synechococcus*
267 host, but in this case there is little correspondence between the dynamics, possibly due to
268 strain variations we cannot detect by 16S and short read recruitment alone.
269
270



271
272
273

274 **Suppl. Figure 1. In accordance with the premise of our experiment the vast majority of the**
275 **chimeric break points occur in single stranded (loop) regions.** Bottom panel of the figure
276 represents the known secondary structure of the 16S ribosomal RNA from *Synechococcus*
277 (<https://crw-site.chemistry.gatech.edu/RNA/Structures/d.16.b.Synechococcus.sp.pdf>). Top
278 panel shows the number of chimeric read breakpoints at each base, scale on the left side. Pie
279 charts show the majority of the breaks were at single stranded regions, i.e. loops (or within 2
280 bases to accommodate natural variation in an environmental sample). Single stranded regions
281 represent only 1/3 of the length of the 16S rRNA yet it accounts for up to 85% of the
282 breakpoints; note the breaks are relatively non-random and appear to be enriched at the
283 beginning of the sequence.

284
285
286

287

288

289 **Suppl. Figure 2. Read level analysis reveals potential links between T4-like viral genes and**
290 **diverse hosts.** We identified reads that matched T4 like genes, and the 16S region of the rRNA-
291 mRNA chimera was then placed onto a phylogenetic tree using the graftm²⁵ 16S package. Not
292 unexpectedly (due to their high representation in the database and also high natural
293 abundance), cyanobacteria accounted for 60 % of the chimeric reads, but nonetheless T4 is a
294 widespread family with a great variety of marine hosts.

295 **Materials and Methods:**

296

297 *Sample collection.* Seawater was collected aseptically using a bucket previously stored in
298 5% HCl during the February 2020 cruise of the San Pedro Ocean Time series
299 (<https://dornsife.usc.edu/spot/>); 16 L were filtered through a 1 um fiber glass AE filter
300 (Millipore) to remove larger particles, as well as larger phyto- and bacterioplankton. Filtrate was
301 then filtered unto a 0.22 um Sterivex cartridge (Millipore, with a Durapore filter); filter was then
302 dried by pushing air with a 50 mL syringe. We immediately proceeded to crosslink our sample
303 on this sterivex filter.

304

305 *Crosslinking and RNA extraction.* Samples were fixed with 1% formalin (0.4%
306 formaldehyde) to create cross-links between adjacent proteins, 2 mL of formalin were added
307 inside the sterivex cartridges, filter ends covered with locking luer caps, and filter tilted gently
308 over 5 mins. Excess liquid was pushed out of the sterivex using a clean syringe. Formalin was
309 then quenched by filling the sterivex cartridge with 250 nM glycine for 20 minutes. Glycine was
310 pushed out using a clean syringe. Extraction of RNA-Protein complexes was accomplished
311 largely following the directions described by Trendel et al.¹² modified to accommodate a filter
312 enclosed in a sterivex cartridge. 1.5 ml of Trizol (Sigma-Aldrich) were added inside the
313 cartridge, which was capped and mixed for 5 minutes on a vortexer; sterivex cartridge was then
314 opened again and 0.3 mL of chloroform were added to induce phase separation. The contents
315 of the sterivex filter (~1.8 mL) were the transferred to a LoBind 2mL tube and rested at room
316 temperature for 5 minutes. Tubes were centrifuged at 7000 x g and 4C for 10 minutes. RNA was
317 recovered from the aqueous part following the directions of manufacturer. RNA-Protein
318 complexes were recovered from the interface as recommended by Trendel et al¹², resuspended
319 in 100 uL of DEPC water. RNA from interface and aqueous fraction was then subjected to two
320 rounds DNase I (NEB) treatment, 100 uL of DNase I (100 Units) and 1.8 mL of 10X DNase buffer
321 to a final reaction of 2mL. Each time the RNA was concentrated and cleaned by one round of
322 isopropanol and then one of ethanol precipitation. It was suspended in 100 uL in DPEC water,
323 quantified with Qbit RNA, we immediately proceeded to the following steps.

324

325 *RNA cleavage and ligation.* RNA was randomly cleaved generating accessible ends both
326 in the rRNA and mRNA, largely based on the methods by Sharma et al.¹¹ Multiple 20 uL
327 reactions were run in parallel, 100 ng of RNA (RNA-protein complexes) each, with 2 Units of S1
328 enzyme (ThermoFisher, 2 uL of a 1:100 dilution) and 1X S1 Buffer. Reactions were run for 30
329 mins at room temperature, reactions were stopped by phenol chloroform extraction. Free
330 mRNA and rRNA ends were then ligated into circular forms with a circRNA ligase (Lucigen); it
331 favors ligation events between proximal RNA ends¹¹ and it has limited activity at high
332 temperature, which would favor ligation of proximal ends only. Specifically, multiple 20 uL
333 reactions were run in parallel, 50 ng of S1-digested RNA was incubated with 2 uL of 10X circRNA
334 ligase buffer at 85C for 2 minutes. Tubes were transferred to ice where 1 uL of 10 mM ATP and
335 1 uL of circRNA ligase were added. Reactions were run at 60C for 60 minutes.

336

337 *Enrichment for Chimeric reads, crosslinking reversal.* Multiple 25 uL reactions were run
338 in parallel, reactions were set up by adding 0.5 uL of RNaseR (Lucigen), 2.5 uL of RNase R buffer

339 and 2 uL of water to the previous set ups (ligated RNA). These reactions were incubated for 10
340 minutes at 37C. RNase reactions were stopped with Proteinase K by adding 30 uL of 2X
341 Proteinase K buffer, 3 uL of Proteinase K and 2 uL of water, reactions were incubated 30
342 minutes at 60C. Proteinase K treatment also reverses the crosslinking. RNA was purified by
343 phenol chloroform extraction and suspended in nuclease free water.
344

345 *Retro transcription and library generation.* Multiple 20 uL reactions were run each with
346 100 ng of RNA using the NEB first strand synthesis module (Parts no. E7525). 13.5 uL of RNA
347 and 1 uL of random primers were incubated at 65C for 5 minutes then put on ice. To this, 4 uL
348 of reaction buffer and 0.5 uL of RNase inhibitor were added, incubated at 25 C for 2 minutes.
349 Finally 1 uL of Protoscript II reverse transcriptase was added and incubated 10 min at 25 C, 50
350 at 42C and 15 min at 70C, then put immediately on ice. We then proceeded with the NEB
351 Second Strand Synthesis Module (Parts no. E7550), by adding 8 uL of the dNTP mix, 4uL of the
352 enzyme mix and 48 uL of nuclease-free water to a total volume of 80 uL. Reactions were
353 incubated at 16C for 1 hour. Samples were pooled, cleaned and concentrated using a 1.2 X
354 AMPure magnetic beads (Beckman-Coulter) and resuspended in 40 uL of low EDTA TE.
355 Sequencing libraries were generated using the Ovation Ultralow V2 (NuGen) with 14
356 amplification cycles. Libraries were sent out for sequencing on a 2X250 PE NovaSeq, with a final
357 sequencing depth of 41 M (aqueous fraction) and 35 M (interface) on each sample. Data from
358 these two samples was pooled and treated identically in subsequent steps.
359

360 **Bioinformatic analysis.**

361

362 *Quality Control and read merging.* Reads were qc'ed using fastp²⁶ using a minimum
363 quality score of 15 covering at least 75 % of the read length (Options: “-q 15 -u 25”) ; we
364 allowed for a relatively low score value since we use the reads for read recruitment. Reads
365 were then merged using fastq-join²⁷ allowing a maximum 10% differences on a minimum 20
366 bases overlap (Options: “-p 10 -m 20”). In practice this generated an insert size range from 250
367 bp to 480 bp.
368

369 *Custom perl scripts:* Custom perl scripts that were written to parse and analyze the data
370 from our experiment have been deposited at <https://github.com/phagenomics/VirHostLinker>,
371 they are referenced throughout the methods as <script>.pl <input files>.
372

373 *A posteriori evaluation of crosslinking specificity.* The initial dataset (76M reads) was
374 blasted against the collection of single cell genomes from Pachiadaki et al.¹⁷ with all default
375 options (Options= “blastn -outfmt 6 – num_threads 8”) , the 16S sequences from these SAGs
376 were clipped out prior to running the blast program. We then extracted a list of sequences that
377 matched anything within that database with a percent identity higher than 95% over at least
378 100 bp using a linux one liner (“awk ‘(\$3 >= 95)’ | awk ‘(\$4 >=100)’ | awk ‘{print \$1}’ | uniq >
379 LIST”). We then extracted all these reads from the initial dataset using custom perl scripts (perl
380 splitRNA.pl LIST). This subset of sequences was then blasted against all the previously extracted
381 16S sequences from these SAGs (N = 4726 sequences), hits with a percent identity higher or
382 equal to 98% over at least 100 bp were chosen selected as high quality chimeric reads (“awk

383 '\$(3 >= 98)' | awk '\$(4 >=100)' | awk '{print \$1}' | uniq" as above). Only the top blast hit of the
384 16S region is considered, while all the hits higher than 95% ID on the non-rRNA regions were
385 considered equally good. This last constraint implies that if a read matches one 16S sequence
386 and five non-16S SAG sequences it will appear counted in the matrix of figure 1b five times.
387 We only validated using the 16S/18S gene.

388

389 *Identification of novel-virus host linkages.* The initial dataset (76M reads) was blasted
390 against the final viral contig assembly from our previous work¹³ (N = 99907 contigs, > 5Kb) with
391 all default settings (Options= "blastn -outfmt 6 – num_threads 8"). We then extracted a list of
392 sequences that matched anything within that database using a Linux one liner ("awk '{print \$1}'
393 | uniq"), at this point we did not filter for any level of identity. We then extracted all these
394 reads from the initial dataset using custom perl scripts ("perl splitRNA.pl LIST"). This subset of
395 sequences was then blasted against SILVA¹⁵ and an in house collection of local near-full length
396 16S-ITS clone sequences¹⁸. High quality chimeric reads were then identified using custom Perl
397 scripts, and were chosen if between 40 and 60 percent of the read is covered by a match in one
398 database and the rest by another match in the other database and if the minimum length of
399 either alignment is 100 bp ("perl PartialAlignment.pl"). We found 1.5 M reads that were
400 identified as high-quality chimeras linking contigs from the 5Yr virome and a ribosomal RNA
401 molecule. Many of these hits were to cellular fragments within the 5Yr virome, so we curated
402 further using different bioinformatic pipelines. We narrowed the final contig list to include only
403 contigs that met one of the following criteria: VirSorter²⁸ (Categories 1 to 3), DeepVirFinder (Scores
404 > 0.9) were selected, MEGAN-LR²⁹, CheckV³⁰ and by finding homologies to proteins
405 within Tara viral proteomics datasets³¹ (see below); The identification tool used for each contig
406 is depicted in figure 2C, and all the values from each pipeline are in Suppl. Table 1. Each read
407 was uniquely assigned to the contig as the top hit with the additional minimum identity to be
408 95%. The other end of the reads was assigned to the top hit in the previously described clone
409 database and to silva if the closest match within the local clones databases was lower than 95%
410 and/or the chimeras was formed with 23S rRNA (Suppl. File 1).

411

412 *Additional curation of viral contigs.* Contigs were annotated using the top blastp hit to nr
413 (Accessed August 2020). Additionally, we used the virus proteomic³¹ dataset from Tara to
414 inform some of the annotations of our dataset as viral, this second approach identified
415 structural proteins in 33 contigs (Suppl. File Table 1). For MEGAN-LR, contigs were aligned using
416 LAST³² to the NCBI nt database (June 20, 2019) and the results were input to MEGAN-LR²⁹ using
417 the lowest common ancestor (LCA) algorithm. CheckV was run using default settings using
418 checkv-db-v0.6. Viral contigs were predicted de novo on contigs longer than 2000 bp using
419 DeepVirFinder³³ requiring a p-value of 0.01.

420

421 *16S PCR amplification and ASV calling.* Prokaryotic DNA (0.2-1 um fraction)
422 corresponding to the sampling dates overlapping with our metagenomic work was extracted as
423 described by Chow et al.³⁴. V4 and V5 regions were amplified using the primers described by
424 Parada et al.³⁵, following the methods described by Yeh et al³⁶. ASVs used in this study have
425 been deposited at <https://github.com/phagenomics/VirHostLinker>.

426

427 **Code Availability and Supplementary Information:** Custom code and supplementary
428 files (for pre-print version) available at <https://github.com/phagenomics/VirHostLinker>.
429 Formatted bash scripts to obtain the results presented in this manuscript can also be found
430 there.
431

432 **Data availability:** All data needed to evaluate the conclusions in the paper are present in
433 the paper or the supplementary materials. Final cross-assembled sequences and raw
434 sequencing data are deposited at NCBI under the BioProject PRJNA672948.
435

436 **Author Contributions:** JCIE and JF conceived and designed the experiment; SL, YCY, SH,
437 and AML contributed with bioinformatic pipelines, analyses, and databases. JW contributed
438 with data visualization and statistical analyses. JCIE, SL, JW, YCY, SH, AML and JF contributed
439 and commented on the final form of this manuscript.
440

441 References:
442

- 443 1. Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine
444 microbial realm. *Nature Microbiology* (2018) doi:10.1038/s41564-018-0166-y.
- 445 2. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth's
446 biogeochemical cycles. *Science* (2008) doi:10.1126/science.1153213.
- 447 3. Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A. & Sun, F. Alignment-free d2*
448 oligonucleotide frequency dissimilarity measure improves prediction of hosts from
449 metagenomically-derived viral sequences. *Nucleic Acids Res.* (2017)
450 doi:10.1093/nar/gkw1002.
- 451 4. Deng, L. *et al.* Viral tagging reveals discrete populations in *Synechococcus* viral genome
452 sequence space. *Nature* (2014) doi:10.1038/nature13459.
- 453 5. Labonté, J. M. *et al.* Single-cell genomics-based analysis of virus-host interactions in
454 marine surface bacterioplankton. *ISME J.* (2015) doi:10.1038/ismej.2015.48.
- 455 6. de Jonge, P. A. *et al.* Adsorption sequencing (AdsorpSeq) as a rapid method to link
456 environmental bacteriophages to hosts. *iScience* (2020) doi:10.1016/j.isci.2020.101439.
- 457 7. Tadmor, A. D., Ottesen, E. A., Leadbetter, J. R. & Phillips, R. Probing individual
458 environmental bacteria for viruses by using microfluidic digital PCR. *Science* (80-.). (2011)
459 doi:10.1126/science.1200758.
- 460 8. Bickhart, D. M. *et al.* Assignment of virus and antimicrobial resistance genes to microbial
461 hosts in a complex microbial community by combined long-read assembly and proximity
462 ligation. *Genome Biol.* (2019) doi:10.1186/s13059-019-1760-x.
- 463 9. Marbouth, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and
464 probing host-virus interactions in gut microbiome by proximity ligation (chromosome
465 capture) assay. *Sci. Adv.* (2017) doi:10.1126/sciadv.1602105.
- 466 10. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation.
467 *Science* (80-.). (2002) doi:10.1126/science.1067799.
- 468 11. Sharma, E., Sterne-Weiler, T., O'Hanlon, D. & Blencowe, B. J. Global Mapping of Human
469 RNA-RNA Interactions. *Mol. Cell* (2016) doi:10.1016/j.molcel.2016.04.030.
- 470 12. Trendel, J. *et al.* The Human RNA-Binding Proteome and Its Dynamics during

471 13. Translational Arrest. *Cell* (2019) doi:10.1016/j.cell.2018.11.004.

472 13. Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red

473 Queen-like strain dynamics in marine viruses. *Nature Microbiology* (2019)

474 doi:10.1038/s41564-019-0628-x.

475 14. Roux, S. *et al.* Ecogenomics and potential biogeochemical impacts of globally abundant

476 ocean viruses. *Nature* (2016) doi:10.1038/nature19366.

477 15. Glöckner, F. O. *et al.* 25 years of serving the community with ribosomal RNA gene

478 reference databases and tools. *Journal of Biotechnology* (2017)

479 doi:10.1016/j.jbiotec.2017.06.1198.

480 16. Cram, J. A. *et al.* Seasonal and interannual variability of the marine bacterioplankton

481 community throughout the water column over ten years. *ISME J.* (2015)

482 doi:10.1038/ismej.2014.153.

483 17. Pachiadaki, M. G. *et al.* Charting the Complexity of the Marine Microbiome through

484 Single-Cell Genomics. *Cell* (2019) doi:10.1016/j.cell.2019.11.017.

485 18. Brown, M. V. & Fuhrman, J. A. Marine bacterial microdiversity as revealed by internal

486 transcribed spacer analysis. *Aquat. Microb. Ecol.* (2005) doi:10.3354/ame041015.

487 19. Hoarfstok, A. *et al.* Global ecotypes in the ubiquitous marine clade SAR86. *ISME J.* (2020)

488 doi:10.1038/s41396-019-0516-7.

489 20. Brum, J. R. *et al.* Patterns and ecological drivers of ocean viral communities. *Science* (80-)

490 J. (2015) doi:10.1126/science.1261498.

491 21. Ahlgren, N. A., Perelman, J. N., Yeh, Y. C. & Fuhrman, J. A. Multi-year dynamics of fine-

492 scale marine cyanobacterial populations are more strongly explained by phage

493 interactions than abiotic, bottom-up factors. *Environ. Microbiol.* (2019)

494 doi:10.1111/1462-2920.14687.

495 22. Sieradzki, E. T., Ignacio-Espinoza, J. C., Needham, D. M., Fichot, E. B. & Fuhrman, J. A.

496 Dynamic marine viral infections and major contribution to photosynthetic processes

497 shown by spatiotemporal picoplankton metatranscriptomes. *Nat. Commun.* **10**, 1169

498 (2019).

499 23. Martinez-Hernandez, F. *et al.* Single-cell genomics uncover Pelagibacter as the putative

500 host of the extremely abundant uncultured 37-F6 viral population in the ocean. *ISME J.*

501 (2019) doi:10.1038/s41396-018-0278-7.

502 24. Warwick-Dugdale, J. *et al.* Long-read viral metagenomics captures abundant and

503 microdiverse viral populations and their niche-defining genomic islands. *PeerJ* (2019)

504 doi:10.7717/peerj.6800.

505 25. Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically

506 informed classification of genes within metagenomes. *Nucleic Acids Res.* (2018)

507 doi:10.1093/nar/gky174.

508 26. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. in

509 *Bioinformatics* (2018). doi:10.1093/bioinformatics/bty560.

510 27. Aronesty, E. ea-utils : Command-line tools for processing biological sequencing data.

511 *Expr. Anal. Durham* (2011) doi:<http://code.google.com/p/ea-utils>.

512 28. Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from

513 microbial genomic data. *PeerJ* (2015) doi:10.7717/peerj.985.

514 29. Huson, D. H. *et al.* MEGAN-LR: New algorithms allow accurate binning and easy

515 interactive exploration of metagenomic long reads and contigs. *Biol. Direct* (2018)
516 doi:10.1186/s13062-018-0208-7.

517 30. Nayfach, S., Pedro Camargo, A., Eloé-Fadros, E. & Roux, S. CheckV: assessing the quality
518 of metagenome-assembled viral genomes. *bioRxiv* (2020)
519 doi:10.1101/2020.05.06.081778.

520 31. Brum, J. R. *et al.* Illuminating structural proteins in viral ‘dark matter’ with
521 metaproteomics. *Proc. Natl. Acad. Sci. U. S. A.* (2016) doi:10.1073/pnas.1525139113.

522 32. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic
523 sequence comparison. *Genome Res.* (2011) doi:10.1101/gr.113985.110.

524 33. Ren, J. *et al.* Identifying viruses from metagenomic data using deep learning. *Quant. Biol.*
525 (2020) doi:10.1007/s40484-019-0187-4.

526 34. Chow, C. E. T. *et al.* Temporal variability and coherence of euphotic zone bacterial
527 communities over a decade in the Southern California Bight. *ISME J.* (2013)
528 doi:10.1038/ismej.2013.122.

529 35. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small
530 subunit rRNA primers for marine microbiomes with mock communities, time series and
531 global field samples. *Environ. Microbiol.* (2016) doi:10.1111/1462-2920.13023.

532 36. Yeh, Y.-C., McNichol, J. C., Needham, D. M., Fichot, E. B. & Fuhrman, J. A. Comprehensive
533 single-PCR 16S and 18S rRNA community analysis validated with mock communities and
534 denoising algorithms. *bioRxiv* 866731 (2019) doi:10.1101/866731.

535

536