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Highlight
Crop improvement rate in maize increased after implementation of drought breeding efforts.
Harnessing crop, quantitative genetics and gap models will enable the transition from genetic

evaluation to crop design.

Abstract

Over the last decade, society witnessed the largest expansion of agricultural land planted with
drought tolerant (DT) maize (Zea mays L.) Dedicated efforts to drought breeding led to
development of DT maize. Here we show that after two decades of sustained breeding efforts
the rate of crop improvement under drought is in the range 1.0-1.6% yr!, which is higher than
rates (0.7% yr') reported prior to drought breeding. Prediction technologies that leverage
biological understanding and statistical learning to improve upon the quantitative genetics
framework will further accelerate genetic gain. A review of published and unpublished analyses
conducted on data including 138 breeding populations and 93 environments between 2009 and
2019 demonstrated an average prediction skill () improvement around 0.2. These methods
applied to pre-commercial stages showed accuracies higher that current statistical approaches
(0.85 vs. 0.70). Improvement in hybrid and management choice can increase water
productivity. Digital gap analyses are applicable at field scale suggesting the possibility of
transition from evaluating hybrids to designing genotype x management (GxM) technologies
for target cropping systems in drought prone areas. Due to the biocomplexity of drought,
research and development efforts should be sustained to advance knowledge and iteratively

improve models.
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Introduction

Over the last decade, society witnessed the largest expansion of agricultural land planted
with drought tolerant (DT) maize (Zea mays L.) While maize hybrids characterized for superior
tolerance to water deficits in the US corn-belt were commercialized over 50 years of breeding,
it was recognized that there was an important need to accelerate breeding for DT (Campos et
al. 2004, Barker et al. 2005). Dedicated research efforts emerged. Following the
commercialization of the AQUAmax® hybrids (AQ herein) in 2011 and the widespread
drought event in 2012 (Boyer et al. 2013), the average area of the US corn-belt planted to DT
maize hybrids grew quickly to over 20% of the total area (McFadden et al., 2019). In drought
prone areas in the western US corn-belt, the land allocated to DT maize can reach 40-60%, as
documented for the states of Nebraska and Kansas. Although molecular breeding made feasible
the development of most commercial DT products (Cooper et al. 2014a,b) gene editing and
transgenic approaches demonstrated the potential for yield improvement under water deficit
(Castiglioni et al., 2008; Guo et al., 2014, Habben et al., 2014; Shi et al., 2015; Adee et al.,
2016; Shi et al., 2017). Gene edited maize for modified expression of the ARGOSS gene yielded
33 ¢ m? more than a control under flowering stress but not grain fill stress (Shi et al., 2017).
Similarly, under water deficit maize transformed with ARGOSS yielded 35 g m™ more than
transgene negative hybrids (Shi et al., 2015).

AQUAmax® DT maize is the most studied brand of maize of this class. Over thousands of
comparisons and environments in contrasting geographies, AQ maize yielded 37 g m™ more
than non-AQ maize when exposed to drought stress. Yield improvement under drought
increased with planting density to at least 6.9 pl m2, where the yield difference was 50 g m™
(Gaffney et al., 2015). An important attribute of AQ hybrids is that the yield improvement under
water deficit did not come at the expense of reduced performance under irrigation (Hao et al.,
2015a,b; Lindsey and Thomison, 2015; Gaffney et al., 2016; Adee et al., 2016; Zhao et al.,
2018). This outcome of breeding is consistent with well-defined objectives. The systematic
application of 1) selection to a strong legacy germplasm with high levels of drought tolerance
(Bruce et al., 2002; Duvick, 2005; Cooper et al., 2014a) evaluated in managed-stress
environments and the target population of environments (TPE), 2) precision phenotyping
methods, 3) physiological knowledge to inform selections, and 4) advanced predictive
analytics, enabled breeders to achieve the objectives (Cooper et al., 2014a,b; Messina et al.,
2011). AQ technology was developed for current cropping systems, but increased seeding rates
were required for these hybrids to fully express their biological potential (Gaffney et al., 2015;
Lindsey and Thomison, 2015). On farm trials followed to demonstrate the advantages of GxM
technology (Gaffney et al., 2015). Because of the lower water use of AQ hybrids but
maintenance of harvest index (HI) under water deficit (Hao et al., 2015b; Mounce et al., 2016;

Zhao et al., 2018), the increased plant population was required to fully utilize the available soil

3


https://doi.org/10.1101/2020.10.29.361337
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361337; this version posted October 30, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

water. Modeling studies using AQ hybrids indicated that reduced stomatal conductance under
high VPD (Messina et al., 2015) can increase the water use during the reproductive period at
the expense of the vegetative phase. The improved water status during the critical window for
kernel set, and the smaller size of the ear at silking (Messina et al., 2011; Messina et al., 2018)
can underpin the observed shortened anthesis-silking interval (ASI; Cooper et al., 2014a,b),
higher silk number under water deficit (Messina et al., 2019) and the maintenance of harvest
index under drought. The experience developing DT maize for the US corn-belt showed how
the integration of biological knowledge can increase the rate of crop improvement.

A product development process pipeline in a seed industry is represented in Figure 1. The
pipeline starts with the creation of millions of doubled haploids in maize with genotypes that
were never tested in the field (Fig.1, 1). Prediction methodologies are utilized to select families
and individuals for further testing at all stages during product development. Throughout various
stages of testing and selection, the number of individuals tested in field trials reduces to tens of
hybrids. Prior to commercialization, these hybrids are evaluated in large areas in thousands of
locations (Fig. 1, 2; Gaffney et al., 2015). Around the time of commercialization, agronomists
start optimizing the management practices for optimal performance. Further knowledge about
the product is gained once the hybrids are grown in farmer fields (Fig. 1, 3). At the early stages
of breeding, genotypes are evaluated in few environments, which grow exponentially as these
hybrids move through the pipeline. It is not until advanced stages of product evaluation that the
norms of reaction and responses to agronomic management are understood. Prediction
technologies that account for genotype (G), management (M) and environment (E) were
developed to support AQ development to overcome the testing constraints at early stages of
development (Cooper et al., 2014a,b; Messina et al., 2018).

Leveraging the experience from developing DT maize hybrids for the US corn-belt, this
paper is structured in three parts: Breeding (Fig. 1), Prediction, and Design. Firstly, we review
breeding for genetic gain in maize yield under water deficit conditions that has been achieved
during the last decade. Secondly, we demonstrate advances in prediction methods, creation and
use of DT maize hybrids throughout the US corn-belt. In this section, we discuss prediction
applied to the early (Fig.1, 1), precommercial (Fig.1, 2), and on-farm (Fig.1, 3) stages of the
hybrid product development pipeline. Thirdly, we put forward a perspective for future
application of new design methods that have emerged from the broader complex systems
research community in the further development and use of non-transgenic DT maize hybrids.
In this section, we discuss leveraging knowledge created at different stages of product

development to predict and create GxM technologies at early stages of breeding.

Breeding

1.1 Yield improvement for drought tolerance during two decades of breeding
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Over 80 years of reciprocal recurrent selection, breeders increased temperate maize yields at an
average rate of 8.6 g m? yr? (Cooper et al., 2014b). Because the TPE in the US corn-belt
includes various water deficit types (Messina et al., 2015), breeders also improved yields under
water deficit at a rate of 6.2 g m™? yr'' (Cooper et al., 2014b). Crop improvement was largely
driven by phenotypic selection, with molecular breeding methods contributing to maintain or
increase the rate of genetic gain in the first part of the 21% century. After a decade since the
introduction of DT maize, it is opportune to ask whether the strategies and technologies put in
place in the late 2000s were conducive to increase or maintain the rate of genetic gain.

The comparison between non-AQ and AQ hybrids, and between the first and the new
generation of AQ hybrids can provide a first answer to this question. To this end, a set of
experiments was conducted in managed-environments in 2019 in Viluco (Chile), Woodland
(CA), Garden City (KS), and Plainview (TX); the latter three are in the United States. The first
generation AQ includes hybrids P1151, P1498, P0636, P0506 and P0760, all commercialized
between 2011 and 2015. The new generation AQ includes P0574, P0657, P0622, P1244, and
P1443 commercialized in 2017 and 2018. A set of non-AQ, P0987, P1197, PO801, P1311,
P1422,P0789, P1366, P1370, P0950, and P1138, commercialized between 2012 and 2018 were
included as a reference of improvements achieved without targeted breeding for DT. The
experiment was conducted in four-row plots of 5.2 m of length, and three replicates per location.
Irrigation treatments included water withdrawal around flowering and grain filling periods. An
irrigated (well-watered) control was included in all locations. Because of the previously
reported differential response of AQ (Gaffney et al., 2015; Lindsey and Thomison, 2015; Adee
etal., 2016) and other DT maize hybrids (Hao et al., 2019) to plant population, the experiments
were grown at 2.5,4.4, 6.4, 8.4, and 10.4 pl m™. Irrigation quantities for well-watered, flowering
stress and grain fill stress were as follows: 854, 741 and 818 mm at Viluco, Chile; 323, 120 and
76 mm at Woodland, CA; 356, 0 and 89 mm at Garden City, KS; and 457, 220 and 276 mm at
Plainview, TX.

Results demonstrated that limited-irrigation treatments were effective in reducing yields at
optimal seeding across locations. Mean yields across hybrids for flowering stress and grain fill
stress were 812 and 937 g m?, respectively. These results contrast with observed yield of 1562
¢ m2 for a well-watered control (P<0.05). Plant population treatments were also effective, with
the amplitude of the yield response to population varying between 312 to 625 g m™. The largest
differences among hybrid groups were expressed at optimal plant population for yield, which
varied by water deficit scenario. The rate of genetic gain of AQ increased with plant population
for flowering stress, expressed a definite optimum under grain filling, and showed no clear
pattern under well-watered conditions (Fig. 2). At optimal plant population the genetic gain for
AQ hybrids was higher (1.0-1.6% yr'!) than prior estimates of genetic gain in maize yield under

water deficit conditions (0.7% yr!, Cooper et al., 2014a). Under well-watered conditions, the
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genetic gain for this hybrid set was comparable with prior estimations (Fig. 2; Cooper et al.,
2014b).

The sustained genetic gain under flowering stress suggests improvement for reproductive
resilience. Silk elongation is susceptible to water deficit (Hall et al., 1982; Fuad Hassan et al.,
2008; Turc et al., 2016). The reduction in ASI and kernel abortion was demonstrated in prior
studies (Edmeades et al., 1993; Bolafios and Edmeades, 1996; Bruce et al., 2002; Messina et
al., 2019). Improved kernel set in modern hybrids could be associated with reduced ASI and
more silks pollinated, but also to reduced competition within the ear for assimilates among
pollinated silks (Messina et al., 2019) and resource availability per kernel (Edmeades et al.,
1993; Bolafos and Edmeades, 1996). Under grain filling stress, genetic gain was found to
decrease when population increased beyond 6 pl m? (Fig. 2). This optimum indicates that the
observed increased in reproductive resilience under flowering stress treatments extended to
grain fill, likely through reduced abortion, but also that limited water availability may have led
to an early termination of grain fill limiting the realization of an increased kernel set. Prior
studies suggest that yield improvement was not associated with increased water capture at
constant density (Reyes et al., 2016; Messina et al., 2020a) and that AQ hybrids rather shifted
the patterns of water use instead of increasing total water capture (Cooper et al., 2014a; Messina
et al., 2015). A recent study demonstrated that water capture differed between planting density
treatments under water deficit conditions but not between double cross and single cross hybrids
(Messina et al., 2020a). The absence of a differential genetic gain under well-watered
conditions is consistent with the selection criteria focused on improvement of yield under water
deficit while not compromising yield potential under well-watered conditions (Gaffney et al.,
2015). Taken together, the result supports our current understanding of the mechanisms
underpinning genetic gain in maize, which suggest artificial selection did not improve water
capture but improved the ability of individual plants to support reproductive structures under
crowded stands and stress. Increasing water capture was advocated as a path to improve drought
tolerance in maize (Tuberosa et al., 2002; Hammer et al., 2009; Ruta et al., 2010; van Oosterom
et al., 2016; Hochholdinger et al., 2018), which seems to remain an unexplored opportunity.
These results agree with theoretical predictions using simulation modeling (Cooper et al.,
2020b), thus creating the opportunity to use prediction methodologies to hasten crop

improvement (Cooper et al., 2020a,c).

1.2 Strategies for yield improvement under drought

The objective of commercial breeding programs is to make the highest possible rate of
genetic gain for one or more traits at the minimum cost (Cooper et al., 2014b, Ramirez-Villegas
et al., 2020). Breeding objectives for maize in the US corn-belt generally include yield

improvement, drought tolerance, standability including ear and plant height, disease tolerance,
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and incorporation of transgenic traits for insect and herbicide resistance, among others. A
general structure of a breeding program and the hybrid development pipeline is described in
Cooper et al. (2014b). Briefly, in hybrid crops such as maize, a drought breeding program is
the result of running two breeding programs in parallel that complement each other. Traits
conferring drought tolerance may be contributed from lines identified in the female or male
heterotic group, or as the result of heterosis (Barker et al. 2005, van Eeuwijk et al. 2010). At
industrial scale, a drought breeding program is more complex resulting from the integration of
multiple breeding programs. In this case, adaptive traits could be contributed from any of the
active programs for temperate maize (Cooper et al., 2014b). Once DT maize lines are identified,
further testing occurs to identify superior hybrid combinations. During the testing and
advancement of hybrids, one of more transgenes are introgressed into the parental lines of the
hybrids prior to their commercial release. The complexity of industrial programs opens
opportunities to optimize processes that minimize costs and increase rates of genetic gain.
Design of breeding strategies and the product development pipeline from the creation of
genotypes to the optimization of agronomic practices are promising areas to increase the
efficiency and effectiveness of drought breeding. Selection criteria and intensity, the structure
of reference populations, and the testing systems implemented to express standing genetic
variation for adaptive traits are all decisions breeders make to systematically change the
frequencies of the alleles of the genes underpinning adaptation to drought (Cooper et al.,
2020a). Modeling and simulation can help breeders manage this complex system and increase
the probability of shifting allele frequencies towards the desired directions. However,
simulation of biological systems using principles of quantitative genetics is not a new concept
and dates back to the 1970s (Fraser and Burnell 1970). The development of simulation software
(e.g., QU-GENE software Podlich and Cooper 1998) made more accessible the application of
simulation to the study and optimization of breeding strategies. The link functions connecting
genotype and phenotype was based on the infinitesimal quantitative genetic models (Lynch and
Walsh, 1998; Walsh and Lynch 2018; Cooper et al., 2020a). Using the flexible model E(NK)
to simulate GXE and GxG interactions, Cooper et al. (2005) demonstrated that the largest impact
of molecular breeding would be for complex traits such as drought tolerance, where such
interactions are commonplace. Extension of this study was demonstrated for breeding for
drought tolerance in both maize and sorghum (Chapman et al., 2003; Messina et al., 2011).
Studies of maize breeding outcomes revealed behaviors consistent with those of complex
systems, including sensitivity to initial conditions, such as the selected set of founder genotypes,
and the physiological state of the breeding germplasm (Messina et al., 2011). The accessibility
of trait combination associated with peaks of high yield under drought stress were dependent
on the distribution of reproductive resilience and canopy architecture in the reference

population of genotypes of the breeding program. These studies were possible by nesting the
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E(NK) model within a new gene-to-phenotype link function, now represented by hierarchical
structure of crop growth models (Messina et al., 2011). These studies both indicated that the
largest opportunities for improving genetic gain under drought stress were whole-genome
prediction enhanced by design of field testing and evaluation strategies based on biological
insights. Uncertainty determined by the linkage disequilibrium conditioned by founder
genotypes, the stochasticity of recombination, environment, and internal variation of the system
was embraced and incorporated in the decision making. Outcomes from simulation (Messina
et al., 2011) implementing concepts for weighted selection (Podlich et al., 1999) informed
selection decisions on sampling of the TPE, irrigation protocols for managed-stress
environments, and precision phenotyping (Cooper et al., 2014a; Cooper et al., 2014b).
Biological insights were used to design experimental management strategies in key
environments to expose genetic variation for adaptive traits. For example, managed-stress
environments were implemented in Woodland, CA and Viluco, Chile to expose the germplasm
to conditions that were conducive to express variation for traits that affect the dynamics of the
water balance, water capture, and reproductive resilience. In shallow soils, traits such as limited
transpiration (Choudhary et al., 2013; Shekoofa et al., 2015; Tardieu et al., 2017), canopy
expansion (Lacube et al., 2017) and silk elongation response to water deficit (Cooper et al.,
2014a; Fuad-Hassan, 2018; Messina et al., 2019) would confer adaptation to drought. In
contrast, in deep soils, breeding lines with deep root systems can manifest higher yields (Reyes
et al., 2015; Messina et al., 2020a). A robust breeding strategy must include selection in both
of these environment types to enable identification of trait combinations that contribute to
stability of yield performance across the diverse range of environments expected in the TPE of
the US corn-belt (e.g., Gaffney et al. 2015). The application of the robust quantitative genetic
framework (Lynch and Walsh, 2018, Walsh and Lynch 2018), biological knowledge and

precision phenotyping led to the observed large impact on genetic gain (Fig.2).

Prediction
2.1 Progress and application of prediction at early stages of breeding for drought

The application of gene-to-phenotype prediction methodologies, mainly whole genome
prediction (WGP), enabled the revolution in molecular breeding (Meuwissen et al., 2001;
Gianola et al., 2009; Cooper et al., 2014b; Heslot et al., 2014; Crossa et al., 2017; Voss-Fels et
al. 2019). This transformation in breeding was only possible because of the convergence of
molecular approaches with other technologies such as double haploid production, and precision
phenotyping (Cooper et al., 2014b). These technologies are applied routinely at early stages of
breeding programs to enable the generation of and selection upon large numbers of untested
and tested individuals increasing the size of the breeding programs (Fig. 1; Araus et al., 2018;

Hammer et al., 2019; Washburn et al., 2020). However, ubiquitous GxE interactions under
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water-limited conditions place a cap on the rate of attainable genetic gain (Voss-Fels et al.,
2019; Cooper et al., 2020a).

Transdisciplinary approaches that leverage biological insights and statistical learning
methods are changing the ways in which we approach crop improvement (Hammer et al., 2019;
Messina et al., 2020b). The challenge to prediction that stems from the need to predict GXExM
interactions motivated modeling GxE within statistical frameworks (Jarquin et al., 2014;
Jarquin et al., 2017; Li et al., 2018; Millet et al., 2019). Although these statistical approaches
are essentially static in character, they can capture the dynamics of crop systems when
biological understanding is leveraged in the selection of environmental covariates and the
aggregation of information by stages of development known to be of critical importance for
yield determination (Millet et al., 2019; Bustos-Korts et al., 2019a,b). Other approaches fully
incorporate the dynamics of the crop system. The integration of WGP with crop growth models
(CGM-WGP, Technow et al., 2015; Cooper et al., 2016; Messina et al., 2018) is such an
example. This approach enables a new generation of prediction methods that, by explicitly
modeling GxMXE interactions, has the potential to increase predictive skill and expands
domains of inference in both the environmental and agronomic management dimensions. CGM
can predict phenotypes for a given genotype and management for productivity and water use,
nitrogen loss, and other metrics that can enable decision makers to assess the value of genotypes
in the context of environment sustainability (Peng et al., 2020) and contribution to the
implementation of a circular economy. Because physiological traits in CGM-WGP are directly
modeled using marker information, it is possible to estimate these with accuracies that are
dependent on the degree of relatedness between populations to generate prior knowledge, and
the genotypes of interest. Physiological traits are parameters in the model that quantify, for
example, how transpiration is converted to mass (Tanner and Sinclair, 1983). The stringency
of experimental designs and information management increases but the field experimentation
demands decrease. In CGM-WGP it is not necessary to measure any physiological traits.
However, it is critical to expose the germplasm to environments that elicit trait x environment
interactions to enable the estimation of parameters (Messina et al., 2018). When possible,
observation of trait physiology is preferred to complement and evaluate estimation approaches.
Whether some traits are measured or estimated, CGM-WGP enables breeders to access
biological knowledge, physiological and genetic, to inform selection decisions at early stages
of breeding when phenotyping of physiological traits is limited at an industrial scale. Advances
in high throughput phenomics (Araus and Cairns, 2014; Araus et al., 2018; Reynolds et al.,
2020), our understanding of how trait and state phenotypes are connected within modeling
frameworks (Cooper et al., 2014b; van Eeuwijk et al., 2019), and the possibility to assimilate
phenomics and genomics information within CGM-WGP (Messina et al., 2018) will increase

our understanding of adaptation to drought and predictability thereof.
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The central hypothesis underlying CGM-WGP is that by harnessing biophysical knowledge
through the CGM to capture the gene-to-phenotype relationships for traits contributing to yield
variation and consequently trait-by-environment norms of reaction, it is possible to a)
understand effects of allele substitution and genetic variation for traits across environments,
and b) increase predictive skill. The first demonstration of a reduction to practice of the method
(Cooper et al., 2016) used a CGM to enable WGP to predict GxE for yield for one population
and two drought environments. Subsequent implementations used Bayes A as a baseline model,
which does not model GxE interactions (Messina et al., 2018). The augmented model, CGM-
WGP, uses a hierarchical Bayesian algorithm to model the relationship between markers and
physiological traits, and the relationship between environment and yield conditioned on
agronomic management through the CGM. The comparison between Bayes A and CGM-WGP
is an estimator for the capacity of CGM-WGP to model GXxExM interactions. CGM-WGP
improvement of predictive skill relative to WGP can depend on the similarities between
environments, how the environment elicits genetic variation in adaptive traits, and the
physiological mechanisms underpinning adaptation to drought.

Results from Cooper et al. (2016) demonstrated empirical application of CGM-WGP for a
drought study where there was little improvement of over genomic BLUP alone (Fig. 3). The
drought environments considered by Cooper et al. (2016) discriminated the germplasm in a
very similar manner. There was a high genetic correlation (rg=0.88) for yield between the two
flowering stress environments included in their study. While the timing of water deficit varied
between the two treatments, the same physiological mechanism underpinned the observed
tolerance to drought, limiting the expression of differential GXE for yield (Cooper et al., 2016).
In contrast, significant improvements in predictive skill of CGM-WGP over WGP alone were
observed when contrasting environments (deficit irrigation and full irrigation) and populations
expressing contrasting genetic correlations (-0.08-0.49) were considered (Fig. 3, Messina et al.,
2018).

Because adaptation to drought is complex and prior studies seeking to understand and
assess the CGM-WGP methodology include few environments and populations (Fig. 3), the
potential to improve predictive skill was not fully explored. In the current paper we use larger
datasets to further understand the domains of application of CGM-WGP. The hierarchical
Bayesian algorithm is from Messina et al. (2018). The maize model (Messina et al., 2015;
Cooper et al., 2016) was modified to simulate cohorts of silks, the dependence of silk number
on the number of rings per ear and kernels per ring. Silk elongation was simulated as a function
of water deficit, and time to silking was determined by both the rate of elongation and the
average distance between the cob and the tip of the husk (Messina et al., 2019). The simulated
total number of silks determined the attainable harvest index as described in Cooper et al.

(2016). The selection of traits to model as a function of markers was informed by assessing the
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relative contribution to predictability é, where r is the correlation coefficient and estimator of

predictive skill and p is the variation in the physiological trait (Table 1).

Two datasets were utilized in this study. The first set (S1) included experiments conducted
in 17, 12 and 6 locations in the US corn belt in 2017, 2018, and 2019, respectively. A second
set of experiments was conducted in Corteva managed-stress environments located in Viluco,
Chile and Woodland, CA in 2017 and 2018, where irrigation was managed to satisfy all water
demands, and to impose water deficits around flowering, and during grain filling. Irrigation was
applied using buried drip tape (Cooper et al., 2016). The genetic material included in both
experiments was from crosses between nine non-stiff stalk inbred parents in a half-diallel
mating design, and the doubled haploids were crossed to a common tester. A total of 35 families
were included in the study. The second dataset (S2) included experiments conducted in
managed-stress environments (five to eight locations/treatments per year) with irrigation
treatments described above, and in the US corn-belt (one to four locations per year in the states
of Iowa and Nebraska). The experiment was conducted between 2009 and 2014 in two-row
plots 5.25 m of length for a total of 52 unique location/environment combinations. Hybrids
evaluated in the MET shared a common tester within year but not across years. Populations
differed among years for a total of 103 populations. Experiments conducted under water deficit
included two replications. A set of common checks were included across experiments that
enabled a combined analysis across years. Phenotypic analyses of both data sets were conducted
applying a mixed-model framework with spatial adjustment for row and columns. Best linear
unbiased estimators (BLUEs) by location were used to train both WGP and CGM-WGP for S1,
and best linear unbiased predictions (BLUPs) for S2. Prediction algorithms were trained using
data from all environments and a sample of 250 genotypes. Predictions were contrasted with
observations from genotypes not included in the training set, which comprised 90% of the
individuals for S1, and 78% on average per year for S2 (note populations varied with year in
S2).

Results from the analyses of S1 and S2 data showed that CGM-WGP is an effective method
to model GxE. The experiments encompass environments that range from 250 to 800 mm of
evapotranspiration (ET), which covers most of the yield range simulated and observed by
Cooper et al. (2020a). It is apparent that the improvement in prediction accuracy is larger under
drought conditions, where CGM-WGP consistently improved predictive skill over Bayes A
(Fig. 3). More variable results were observed when ET was greater than 500 mm. The estimates
of predictive ability for the reference method, Bayes A in this case, were 0.40 and 0.14 for S1
and S2, respectively. The low predictability in S2 was in part due to the presence of significant
GxE interactions. Cooper et al. (2016) and Messina et al. (2018) showed genetic correlations

for a subset of populations ranging from -0.18 to 0.88. The improvement in predictive skill
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between CGM-WGP with respect to the base ranges between 0.1 and 0.2 across 103 breeding
populations in S2 (Fig. 3). The use of the biophysical model to model GXE improved the
estimation of allele values and value of genotype. Considering the following form of the
breeder’s equation R = ir,0,, where R is response to selection, g, additive genetic variance
and i intensity of selection (Lynch and Walsh, 1998; Voss-Fels et al., 2019), doubling predictive
ability (1) implies doubling the response to selection or gain under drought stress conditions.

Cooper et al. (2020a) shows that the ratio between the genetic variance (05) relative to the
GxXExM variance (62, gxu)- p +;§me

theoretical work, it is possible to predict that the difference between CGM-WGP would be

, decreases with increasing water deficit. Based on this

higher under water deficit conditions than under well-watered conditions. Based on the analyses
of 138 populations and 97 environments (Messina et al., 2018; Fig. 3) it is possible to conclude
that the combination of biological understanding and statistical learning methodologies can
improve predictive skill and therefore will hasten the rate of genetic gain, at least for maize in
the US corn-belt.

The sensitivity analyses conducted on the physiological traits for their marginal
contribution to predictive skill proved useful to increase prediction accuracy. The uses of
optimization for estimation of parameters in biological models is an active and promising area
of research (Pathak et al., 2007; Casadebaig et al., 2016; Wallach et al., 2019). Methods for
automated selection of traits for a given set of experiments can become an enabler such that
breeders can utilize physiological understanding to inform breeding decisions without requiring

detailed knowledge of the inner workings of the physiological model.

2.2 Delineating areas of adaptation using ex-ante assessment of genotype x management
interactions

A critical component of the hybrid maize development process, especially for the
improvement of drought tolerance, is the wide area testing of hybrids at farm scale (Fig. 1, 2)
and the need to conduct ex-ante analyses of the performance of candidate hybrids for production
in the TPE (Cooper et al., 2014; Kruseman et al., 2020). This is necessary because of the need
to characterize and manage in the best possible ways ubiquitous GxExM interactions that drive
performance in the US corn-belt (Cooper et al. 2014b; Cooper et al., 2020b) and the probability
of making incorrect selections and pairings of G and M and the corresponding poor
9

performance and farmer’s risk increase with decreasing —

> . On-farm testing of G and
0G+OGxExM

M pairings is the current solution to deal with this problem, but it is expensive and poses a great
challenge to breeders and agronomists because of the combinatorial nature of the problem

defined by GXExM interactions.
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Predicting G norms of reaction for GXExM has been a long-term ambition of both breeders
and agronomists. Such tools can enable the placement of hybrids in the geographies, landscapes
and fields with customized management to the genetics for famers to realize the biological and
environmental potentials of their on-farm systems. But the availability of such tools at scale has
been elusive. While tools such as crop models that enable management of irrigation have been
around for more than half a century (Jones et al., 2017), their adoption has been low. Only less
than 1% of US farmers use these prediction methods to manage irrigation in the United States
(United States Department of Agriculture, 2019). While the lack of access to the technology in
simplified user-friendly forms can explain the low adoption, particularly in developing
countries (Lowenberg-DeBoer and Erickson, 2019), the lack of knowledge on the physiological
basis of adaptation and access to genotype-specific information and prescriptions is another
probable cause. While efforts have been proposed to use molecular markers to characterize
genotypes to enable biophysical prediction (Messina et al., 2006; Yin et al., 2004; Bogard et
al., 2020), these approaches have not been applied at scale to predict complex phenotypes.

During the last decade, a method comprised of field experimentation and use of CGM-
WGP was developed. Between 2017 and 2019, field experiments were conducted at five to
seven locations per year in the US corn-belt, and Corteva managed-stress environments in
Woodland, CA and Viluco, Chile. The experiments included variable irrigation interrupted at
flowering and grain fill stages or reduced by 25, 50 and 75% of reference ET during the growing
cycle. Nitrogen fertilizer rates ranged between 0 and 210 kg ha' and plant population was
reduced and increased by 20 % relative to normal seeding rates for the location. A set of traits
were measured based on knowledge of genetic variation of the germplasm as it was developed
through the breeding pipeline (Cooper et al., 2014b; Messina et al., 2018). This set included
leaf number counts at regular intervals ranging between 3 and 10 days, size of the largest leaf
within the canopy (Cooper et al., 2016), ear size at silking (Cooper et al., 2014b), flowering
notes, yield and yield components. Carbon assimilation response to light intensity, kernel
growth rates, mass during the growth cycle, light interception, specific leaf N of the largest leaf
(DeBruin et al., 2013), and transpiration response to VPD (Choudhary et al., 2013; Shekoofa et
al., 2015) were measured in a subsample of hybrids to characterize prior distributions (Messina
et al., 2018). Parameters within the crop model such as radiation use efficiency and its
maintenance at low water potentials, root elongation rates (Reyes et al., 2015; van Oosterom et
al., 2016) and other traits for which information was generated to estimate prior distributions,
were then estimated using marker information and the procedure described by Messina et al.
(2018).

The result of combining a field research program with the use of markers and a prediction
methodology to estimate parameters within the crop model was a scalable capability to predict

hybrid performance. The data generated through simulation are complementary and thus
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augment the data collected within the multienvironment trials (MET; Fig. 4a). To test the
predictability of the data collected within the MET, these data were segmented through a series
of concentric circles with origin placed at a research station in Windfall, Indiana. A subset of
the data within the circle was retained as the truth, and the reminder was used to estimate the
correlation between the two samples. A second correlation was estimated by averaging the
sample of observed values and the simulated values for the location at the origin. The procedure
was repeated 50 times to estimate variability of the prediction. For the example shown in Figure
4, augmenting the observed data with predictions based on biophysical knowledge can increase
predictive skill up to 300 km when the observed data is at least 50% of the original data.
However, this distance could be influenced by the genetic correlation between the central
location and the rest of the locations in the region. The improvement in predictive skill of the
combined approach (statistical and CGM prediction) increased with predictive skill of the CGM
(Fig. 4b). Both methods are capturing different genetic signal that could be utilized to further
increase yield prediction through ensemble methodologies (Wallach et al., 2019; McCormick
et al., 2020). This result indicates that the approach is predictive, scalable and can both increase
predictive skill of statistical methodology while reducing the experimental footprint.

Because the crop models used in this approach to prediction encapsulate biological
knowledge (Jones et al., 2017; Hammer et al., 2019), it is possible to utilize biological insight
to understand the physiological basis of adaptation and yield determination under various
environments. Figure 5 shows the relative contribution of different traits to yield determination
within a gradient of yield. To determine the sensitivity of yield to variation in physiological
traits, the crop model was run for 30.5 million simulations (137 hybrids over 54 historical years
across production regions of the US) comprised by changes in management and environment.
For this study, weather and soil data were from National Oceanographic Administration and
Natural Resources Conservation Service, respectively (see details in Messina et al., 2015). The
graphical representation of the contribution of various physiological traits to yield shows that
biological complexity decreases towards environment extremes. For example, ear size at silking
is a major contributor to improved performance under drought (Cooper et al., 2014b; Messina
et al., 2011; Messina et al., 2018). This is associated with silk elongation maintenance under
water deficit (Hall et al., 1982; Fuad Hassan et al., 2008; Messina et al., 2019) and reduced
ovule/kernel abortion (Edmeades et al., 1993; Messina et al., 2019). In contrast, in the absence
of water deficit and ample nutrient availability, plant size and radiation use efficiency are major
determinants of yield potential through radiation capture and transformation efficiency. At
intermediate levels of productivity, which encompass most of the production environments in
the US corn-belt, yield determination is dependent upon multiple traits and their interactions
(gray area, Fig. 5), sometimes affecting yield in opposite ways, all occurring within a TPE,

where environments oscillate from water deficit to mild water stress. Because it is possible to
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create a physiological profile for each hybrid in the selection set, it is also possible to apply the
concept that each trait confers an advantage depending on the drought environment (Tardieu,
2012) to cope with uncertain weather. Breeders can select, and farmers can include in
production systems hybrids that do not depend on the same mechanisms to determine yield in
the target environments by accounting for the genetic correlations and the frequency of
occurrence of drought environments. By doing so, it is feasible to deliver a set of hybrids that
can increase the resilience of the production system by leveraging genetic and trait functional
diversity. Biological knowledge, both genetic and physiological, can enable the creation of
portfolios of products with improved yield stability as demonstrated by combining different
crops in response to drought forecasts (Messina et al., 1999; Jones et al., 2000).

Figure 5 shows that ear mass at silking is a major determinant of yield under water deficit
and often discriminates DT from drought susceptible maize hybrids (Cooper et al., 2014b;
Messina et al., 2018). To evaluate this prediction, data from a MET conducted at three locations
in the central and western corn-belt in 2013 was analyzed for the relationship between yield
and kernel set, and kernel set and ear size at silking. The experiment was conducted under
rainfed conditions and managed according to the best management practices. Yield and kernel
numbers were measured in three replicates at Johnston, IA, Garden City, KS, and Elgin, NE in
three replicates, of four row plots spaced by 0.76 m and 5.4 m in length. Ear size at silking was
measured at Johnston, IA on four plants and three replications. In this experiment, yield was
highly associated with variation in kernel numbers across all three locations following the east-
west precipitation gradient (Fig. 6). The correlations calculated between yield and ear size at
silking by location across ten pre-commercial single cross hybrids were 0.6, 0.9, and 0.7 for
Johnston, Elgin and Garden City, respectively. This result provides empirical evidence that
conform well with the predictions from the biological model (Fig. 4, 5).

Models parameterized and evaluated as described above (Fig. 3, Fig. 4) can be utilized to
inform selection and commercialization decisions (Fig. 1, 2). Figures 7 and 8 show an example
of an ex-ante assessment of two commercial hybrids contrasting for their response to water
deficit. Breeders and agronomists can assess the performance over thousands of virtual
experiments across all of the US corn-belt and adjacent geographies for individual years or
across a number of years of simulation. Figure 8 shows a clear domain of adaptation for the
hybrids P1197 and P1244 with a transition point around 400 mm of water use. However, due
to timing of rainfall and climate variability it is possible that for any field the performance could
be reversed. Simulation results can quantify the probability for this to happen, thus creating
opportunities to utilize not only information about the mean shift in yield but also the variability
at a given location and potential management scenarios to inform decisions (Fig. 8). Producers’
attitudes towards risk are related to their degree of confidence when obtaining more precise

information for deciding the best management practices with the goal of increasing the
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likelihood of improving yield and profits. Producers could be considered as slightly ‘risk-
seeking’ with a mild degree of aversion (Bard and Barry, 2001). Frameworks that consider risk
attitude can fully harness this information to manage climate risk through hybrid and crop

diversification (Messina et al., 1999; Jones et al., 2000; Hammer et al. 2014, 2020).

2.3 On-Farm analyses and opportunities to improve dryland maize production using
current and prospective genotype x management technologies

Predictive analytics for agronomic research and management of agricultural systems were
available since the 1980s (Jones et al., 2017; Hammer et al., 2010). However, it was not until
2014 that we witnessed the application of prediction methods for on-farm analyses at scale for
the use of N management in the central corn-belt. In contrast, only less than 1% of farmers use
prediction and design methodologies to define strategies and manage irrigation in the United
States (United States Department of Agriculture, 2019). Limited accessibility to the technology
in user-friendly forms was implicated in explaining the low adoption. Instead, descriptive
methodologies based on yield-ET empirical relations (Stone et al., 2006; Irmak et al., 2020)
often inform irrigation planning and interpret crop productivity in rainfed systems (van Ittersum
et al., 2013). Farmers incorporate hybrid DT scores to inform decisions, but the integration of
the information is subjective. The empirical nature of yield-ET methods limits their
applicability for prediction to an adjacent agronomic and genetic state space. These
relationships are of great value to identify productivity gaps, but they need to be combined with
prediction methods to enable design to close yield gaps through agricultural innovation (Cooper
et al., 2020b; Messina et al., 2020Db).

Only by harnessing biophysical and environment knowledge one can reimagine agricultural
systems and conduct ex-ante evaluations to increase water productivity (Messina et al., 2018;
Kruseman et al., 2020). While any trait can improve adaptation to drought stress in a particular
context (Tardieu, 2012), the stochastic nature of the environmental processes that define
repeatable and non-repeatable patterns of the TPE severely limits use of such awareness of
dependency on context and our capacity to effectively sample the TPE. On-farm research
programs could benefit from integrated approaches to prediction that account for properties of
the TPE in the context of the germplasm available to the grower and their management
practices. By combining genetic gain and yield gap methodologies, Cooper et al. (2020a)
leveraged genetic and agronomic knowledge to transform descriptive yield-ET relations (Irmak
et al., 2020) into a prediction framework (herein Digital Gap Analysis; DGA) to identify GxM
technologies to close the production gap and increase water productivity across a range of water
limited environments.

In contrast to yield-ET relations, the non-linear responses identified in DGA creates an

opportunity to optimize water productivity for economically feasible yields. The DGA
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methodology provides quantitative and knowledge-based references for the grower to compare
against alternative GxM technologies. The grower can optimize water productivity by 1)
defining the ET level at which potential yield is attained, 2) identifying the domain within which
ET and yield are linearly related, and 3) selecting GxM technologies to close the yield gaps.
The discrepancy between linear and non-linear yield response to ET is explained by considering
the linear response being one plausible realization out of many linear responses that could be
observed within the GXExM state space defined by DGA, which implies that there are several
possibilities to close yield gaps by leveraging GxM technologies.

Is the DGA framework applicable on-farm? To answer this question, an on-farm
experiment with three producers in the western corn-belt was conducted using central pivot
irrigation in 2019. Farms were in Webster County, NE, Chase County, NE and Thomas County,
KS. The hybrid P1366 was planted under irrigation in the centers, and rainfed conditions in the
corners of the fields with the center pivot with two replicates at each location. Yield was
estimated using the farmers’ combines and ET was estimated from sixteen sensors deployed at
each location using a modified surface renewal approach (McElrone et al., 2019). This method
used semi-high frequency infrared radiometer surface temperature measurements to calculate
sensible heat flux (H) to calculate latent heat flux (LE), and thereafter ET, as a residual to the
energy budget R,= H + G + LE, where R, is the net radiation and G is the soil heat flux.

Figure 9 shows the observed yields and ET pairs by environment and location. Quantile 99
and 80 are shown to quantify gaps. This result demonstrates the practical application of DGA
on-farm. Using current technologies, it is feasible to implement systems to maximize water
productivity. Overall, the results conform well with predictions from Cooper et al. (2020a).
Minor differences in timing of irrigation (rainfed vs irrigated) for very similar ET levels led to
a large productivity gap in Bluehill, NE in agreement with results from Cooper’s (2020)
window experiment where reductions in irrigation were possible when water deficit was
avoided at flowering time. These results suggest that in many of these rainfed environments
supplemental deficit irrigation can have great impact on water productivity. Results are also
consistent with the spread of simulated yields for a given level of ET (Cooper et al., 2020b; Fig.
8) and with the amplitude in observed yields shown by Cooper et al. (2020a) and Messina et al.
(2019) in experiments conducted in managed-stress environments. The susceptibility of
reproductive biology in maize (Daynard and Moldoon, 1983; Bolafios and Edmeades 1996)
amplifies small differences in water deficit during the critical period for kernel set. The
availability of image-based methods to estimate ET (McCabe and Wood, 2006; Jiang et al.,
2020) can enable DGA for application at scale, and thus create avenues for improvement of
water productivity. Estimates of ET can be obtained by using remote sensing-based models and
satellite imagery data, with multiple methods and imagery data sources explored and tested

during the last decade (Mu et al., 2009; Allen et al., 2011; Vyas et al., 2016; Yagci and
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Santanello, 2018). Considering the availability of phenotyping methods for ET, current
opportunities to identify yield gaps at the farm scale (Fig. 9) and the ability to predict GxM
(Fig. 3, Fig. 4), it is now possible to accelerate yield improvement and water productivity

through selection.

3 Design
3.1 Transitioning from evaluation to design of GxM technologies for cropping systems
Design is the user-centered process of imagining solutions to problems and the articulation
of these in the form of blueprints that describe form and function of objects and systems that
guide the subsequent process of creation. Design often must satisfy goals given a set of
constraints. The use of optimization frameworks to find local or global solutions whenever
possible was explored using tools to aid systems design (Peart and Curry,1998). As a user-
focused activity, design starts by understanding the customer needs and with in-depth dialogues
with agronomists. Often in product development, these product specifications take the form of
a vector of thresholds for biotic and abiotic stress tolerance, standability and yield and yield
stability metrics. With these blueprints, breeders and agronomists use phenotypic and genomic
prediction to build a pipeline of biological products that minimizes the distance to targets
(Cooper et al., 2014b). While the use of systems approaches to design solutions from field and
regional scales dates back to the 1990s (Teng et al., 1997; Jones et al., 2000; Jones et al., 2017;
Holzworth et al., 2014), the use of CGM in the design of crops is more recent (Hammer et al.,
2014; Hammer et al., 2020; Cooper et al., 2020b). As part of a design toolkit, biophysical CGM
and economic models were further integrated enabling ex-ante evaluation of designs and
foresight analyses (Kruseman et al., 2020; Antle and Ray, 2020). Of importance for this review,
are designs that seek to combine crops and genotypes in combinations with climate predictions
to deal with climate risk and the devastating effects of drought (Messina, et al., 1999; Hammer
et al., 2000; Jones et al., 2000). Current CGM with capabilities to utilize molecular markers for
prediction, open opportunities to expand the decision set and augment the opportunities for
farmers to cope with climatic risk through selection of DT genotypes among different crops.
During the last decade the assimilation of biological knowledge within models suitable for
integration with genomic prediction was advanced (Hammer et al., 2010; Soufizadeh et al.,
2018; Messina et al., 2019; Wu et al., 2019) and demonstrated for genetic improvement of
drought tolerance in maize (Cooper et al., 2014b; Messina et al., 2018). This linked
methodology created an unprecedented opportunity to harness genetics, agronomy and
environmental science to enable design of GxM technologies to close crop improvement gaps
identified at farm level (Fig., 9; Fig. 1). The debates about the required level of biological reality
and approaches for integration of methodologies, however, have just begun (Hammer et al.

2019; Messina et al. 2020; Peng et al., 2020). Outcomes of this debate will enable translating
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genomic innovation (Bevan et al., 2017) into designs and breeding decisions. A range of
approaches were proposed from the use of detailed mechanistic models (Hammer et al., 2019;
Washburn et al., 2020) to the use of CGM to generate features to enhance prediction of
statistical models (Boer et al., 2007; Rincent et al., 2019; van Eeuwijk et al., 2019; Washburn
et al., 2020). Hammer et al. (2019) assessed the impact of changes of gene transformation on
photo-biochemistry on yield across a range of environments using a biochemistry to field model
based on APSIM (Wu et al., 2019). In contrast, Messina et al. (2018) demonstrated the use of
simpler biological models embedded within a hierarchical Bayesian framework to improve
genomic prediction in DT maize (Fig., 3,4). Despite the diversity of approaches, design
blueprints could be now represented as vectors of markers, genes, physiological attributes, and
agronomic management that could be contrasted with predicted scores between targets and
genotypes that have never been tested. A more dynamic development of models is anticipated
through iterative model building (Schrag, 1999; Messina et al., 2011; Hammer et al., 2019).
The foundations of crop design have been established and provide the opportunity to build a

new prediction-based paradigm for genetic improvement of crops.

Conclusions and perspectives

Molecular breeding approaches transformed breeding and dedicated efforts to improve DT
in maize demonstrated sustained genetic gain at industrial scale and will continue providing the
foundation to deliver DT maize. Here, our review demonstrates near-term opportunities to
realize yield improvement that may include using technologies that harness both quantitative
genetics and physiological frameworks for prediction at early stages of breeding, for placement
of hybrids within regions, and design strategies given the DT hybrids and agronomic practices
available to the grower. The feasibility to apply technologies to improve DT in maize from
breeding to farm has the potential to accelerate crop improvement by designing and developing
GxM technologies. DGA enables us to predict the outcome of combining haplotype genetic
blocks that control physiological processes and agronomic practices even for genotypes that
were created in a breeding program but never tested in the TPE. DGA in a way closes the cycle
from breeding to farm and back to breeding.

Prediction methodologies were evolved and demonstrated to have the largest opportunities
to deliver increased rates of crop improvement gain under water deficit conditions. Harnessing
biological insights for end-to-end prediction is a promising path towards increasing yields and
water productivity. However, there is a clear need for investments in plant science to advance
our biological understanding of adaptation, germplasm diversity, algorithm development that
improves statistical methodologies, and of most importance the development of a new
engineering and design paradigm that harnesses complexity science and by doing so leverages

noise and uncertainty to improve decisions and systems performance.
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Crop growth model-whole genome prediction (CGM-WGP) methodology proved to be
effective at modeling GXExM and has potential to improve decisions at all stages of product
development and agriculture in drought prone environments. While the evaluation of CGM-
WGP was specific to one combination of statistical and biophysical model, we argue that results
could be generalized to the state that the combination of statistical learning and biological
understanding can improve predictive skill. Model development and analytical approaches will
be iterative as more information is gained through the process development pipeline and new
data types are integrated. Closing the breeding-agronomy-production loop has potential to

optimize both the effectiveness of the breeding program and farmers’ production.
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Tables

Table 1. Sets and values used to define prior distributions for physiological traits that define

parameters in the crop growth model.

Data set Set 1 Set 2

x o X o
Number of rings per ear 45.0 2.6 45.0 2.6
Leaf appearance rate (°C) 0.00275 0.00012
Husk Length (mm) 190.0 10.2 190.0 10.2
Rooting rate (mm day™) 25.0 2.6
Senescence response to water 0.05 0.01

supply/demand
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Figure Legends

Figure 1. Schematic of a product development process pipeline in a seed industry from the
creating of genotypes that were never tested in the field (1) to the time these are testing at
scale (2) to the optimization of agronomic practices and growth at farmer fields (3). Crop
growth model-whole genome prediction (CGM-WGP) methodology uses statistical learning
and biological understanding to prediction and it is built iteratively as more information is

gained through the process development pipeline.

Figure 2. Genetic gain for AQ maize measured in a multienvironment trial across a range of
plant populations and with water deficits imposed at flowering time (m) and grain fill (e)
stages of development, and a well water control (A ). Genetic gain expressed as the ratio (%)
between two cohorts (2011-2015 vs. 2017-2018) of AQ hybrids and average yield for the
density and water stress environment combination. Significant differences in yield between
cohorts shown as closed symbols (* P<0.1; **P<0.05). Genetic gain for non-AQ hybrids

estimated by Cooper et al. (2014a) under water deficit conditions shown as dashed line.

Figure 3. Average prediction accuracy difference between the Crop Growth Model — Whole
Genome Prediction methodology and Bayes A as a function of evapotranspiration (A), and
number of locations (B) and populations (C) included in each study. Accuracy estimated by
the correlation coefficient () for the validation set. Open symbols indicate results from
experiments conducted under irrigation or well-watered conditions in US corn belt. Closed

symbols indicated results under water deficit. Mean and standard error of the mean for prior

studies: Cooper et al. (2016) ( * ), Messina et al. (2018) (A), Setl (m), and set 2 (o).

Figure 4. Multienvironment trial for maize (a) and predictive skill variation with distance to
the center WN (b). Circles drawn to illustrate areas with constant distant to center WN that
define a set of data to calculate predictive skill. Predictive skill calculated for three cases: 1)
estimation of accuracy through resampling the data in the multienvironment trial (MET
sample only), 2) accuracy estimated by the correlation between crop model simulation and
observation (simulation only), and 3) correlation between the average prediction of 1 and 2,
with an independent sample of yield data for all the hybrids included in the trial. The

correlation (r) is calculated across genotypes.

Figure 5. Biological determinants of yield across a range of environments represented as

percent of total phenotypic variation (a), and examples for a set of contrasting hybrids along
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with a representation of yield variation with respect to average yield as a function of yield

level (b).

Figure 6. Yield under drought increased with increasing kernel set across an east-west
precipitation gradient in the US Corn belt in 2013 and across experimental AQUAmax®
hybrids. Johnston, IA (©), Elgin, NE (©) and Garden City, KS (®)

Figure 7. Simulated yields for two hybrids with contrasting behavior under water deficit for
one dry year (1988), one wet year (2017) and 30 x 30 km grids characterized by a unique

combination of soil, weather and agronomic management.

Figure 8. Simulated yield probability distributions along an environmental gradient defined

by the water use for two hybrids contrasting in their response to water deficit.

Figure 9. Theoretical maize yield response to evapotranspiration for quantiles 80 and 99
percentiles (lines) and yield observations for the hybrid P1366 at three locations in the
western US corn belt for maize grown under rainfed and irrigated conditions, and under

normal (closed symbols) and increased plant population by 1 pl m (open symbols).
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