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Abstract 

Brain regions vary in their molecular and cellular composition, but how this heterogeneity 

shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of 

regional heterogeneity using a biophysical model of whole-brain functional magnetic 

resonance imaging (MRI) dynamics in humans. We show that models in which 

transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain 

regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical 

functional connectivity estimates than do models constrained by global gene expression 

profiles and MRI-derived estimates of myeloarchitecture. We further show that regional 

heterogeneity is essential for yielding both ignition-like dynamics, which are thought to 

support conscious processing, and a wide variance of regional activity timescales, which 

supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in 

generating complex neuronal dynamics and demonstrate the viability of using transcriptional 

data to constrain models of large-scale brain function.   
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Brain dynamics are often described as complex, displaying properties that are interposed 

between order and disorder (1, 2). These complex dynamics arise from two cardinal factors: 

(1) the properties of local population activity within each brain region; and (2) the mutual 

influences that these populations exert on each other, as mediated by their interconnecting 

anatomical projections.  

 

Biophysically plausible non-linear models of brain dynamics have been used to clearly 

demonstrate the importance of anatomical connectivity in supporting complex patterns of 

network activity. For example, when simulated on human inter-regional structural 

connectivity (SC) matrices (connectomes) generated with diffusion magnetic resonance 

imaging (MRI), these models can reproduce empirically observed patterns of inter-regional 

functional connectivity (FC) (reviewed in (2)). In macaque, a biophysical model simulated on 

a connectome derived from viral tact tracing indicated that both feedback projections and a 

heterogeneous distribution of connection strengths across projections are required for the 

emergence of ignition-like dynamics (3), which are thought to be a necessary precondition for 

conscious processing (4).  

 

By comparison, variations of local circuitry within each region have received less attention. 

Precise coordination of firing across spatially distributed neuronal ensembles depends on a 

delicate balance between excitatory and inhibitory activity. The first wave of biophysical 

models of large-scale brain activity treated all local population dynamics as homogenous, 

driven by sub-populations of inhibitory and excitatory neurons with uniform properties across 

all brain regions (5–7). However, heterogeneity in regional cytoarchitecture has been noted 

for over a century, as famously mapped by Brodmann (8), and subsequent work has provided 

mounting evidence for large-scale cortical gradients in gene expression, cellular composition, 

connectivity, and function (9, 10). Thus, quantitative variations of local circuit properties 

across the cortex also play an important role in shaping complex neural dynamics, likely 

through their influence on the local ratio, or balance, of excitatory and inhibitory cell activity 

(E:I balance) (9). 

 

Ideally, one could model regional heterogeneity using empirically observed estimates of areal 

variations in excitatory and inhibitory cell counts, or a related measure of cell-type specific 

activity. No such data are available on a large scale for primate brains, but some early 

modelling work has used alternative methods to constrain biophysical models. Deco et al. 
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(11) showed that heterogeneity in local feedback inhibition, in which E:I balances were 

algorithmically adjusted to achieve a uniform firing rate of 3 Hz across all regions (in line 

with experimental data; (12–14), yields networks with more stable dynamics and improves 

model fits to static measures of FC when compared with a strictly homogeneous model. 

Using data in macaque, Chaudhuri et al. (15) scaled the excitatory input strength of each of 

29 cortical areas according to its assumed hierarchical position, as determined by laminar 

patterning of inter-regional projections (16). They found that this heterogeneity was essential 

for generating dynamics characterized by a hierarchy of regional activity timescales, in which 

areas with a higher hierarchical position show a prolonged response to a simulated sensory 

input. This result mirrors previous single unit findings in macaque cortex (17) and aligns with 

other evidence for regional differences in activity timescales (see also (18–20)). Two 

subsequent studies modelling human functional MRI found that, when compared to a 

regionally homogeneous model, scaling a region’s excitatory activity according to its 

assumed hierarchical position improves fits to measures of edge-level and node-level 

functional connectivity, more faithfully reproduces empirically observed regional variations 

in activity timescales, and better explains FC disturbances in people with schizophrenia (21, 

22). A complementary study used a stochastic optimization procedure to invert local 

dynamical parameters such as recurrent synaptic connectivity strengths to optimally fit 

functional MRI data (23). Regional variations in the estimated local dynamical parameters 

showed hierarchical ordering and correlated with variations in myelin and layer-specific 

neuronal density, presumed cognitive functions (derived from meta-analysis of task-based 

fMRI studies), and a principal gradient of resting-state FC (24). 

 

These initial models of regional heterogeneity demonstrate the critical role of local variations 

in E:I balance for generating realistic patterns of brain-wide dynamics. However, in the 

absence of a gold-standard biological constraint, there has been considerable variability in 

how heterogeneity has been instantiated within a given model. There is also substantial 

variability in the dynamical properties that have been modelled. For example, modelling 

work in macaques shows that it is, in principle, possible to find a parameter regime that 

results in ignition-driven and hierarchical dynamics (3, 15), but the parameters were not fitted 

to empirical data making it difficult to evaluate the model’s capacity to reproduce other key 

features, such as realistic patterns of static or dynamic FC. Similarly, studies in humans have 

modelled specific outcome measures, such as static or dynamic FC at the level of individual 

connections (6, 7, 22, 25), the mean static FC of each region (22), or timescale hierarchies (3, 
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22), meaning that it is unclear whether the working point for a model fitted to one property 

can also capture other properties. Developing a coherent approach that can account for each 

of these diverse features is an essential step towards developing a unified model that can 

parsimoniously explain diverse empirical properties of complex whole-brain dynamics. 

 

Here, we seek to address this aim by introducing a model that leverages brain-wide 

transcriptional data (26) to constrain regional heterogeneity and tune each region’s dynamics 

according to regionally-specific measures of inhibitory and excitatory receptor gene 

expression. We evaluate the performance of this model with respect to some of the major 

outcome measures evaluated thus far in the literature; namely, edge-level static FC, node-

level static FC, FC dynamics (FCD), ignition capacity, and timescale hierarchy. We show 

that our model more faithfully reproduces empirical properties of static and dynamic FC than 

other models in which heterogeneity is imposed using plausible biological constraints, such 

as regional variations in the ratio of T1-to-T2-weighted MRI signal (T1w:T2w) and loadings 

on the dominant mode of gene expression (22, 27). We then show that transcriptomically-

constrained models show the greatest capacity for ignition-like dynamics and display a broad 

range of regional activity timescales. Our results indicate that regional variations in the 

transcriptional activity of inhibitory and excitatory receptor genes provide a viable means for 

constraining biophysical models of large-scale neural dynamics and, when coupled with an 

empirically-derived connectivity matrix, can offer a parsimonious account of diverse 

properties of large-scale human brain activity.  

 

 

Results 

Overview 

Our overall analysis strategy is outlined schematically in Figure 1 and the details of our 

approach are provided in the Methods. Briefly, we use diffusion MRI to generate a group-

level representative structural connectome for a sample of 293 healthy individuals, 

representing SC between each pair of 68 regions defined according to an extensively used 

neuroanatomical atlas (Figure 1A). We also estimate, for a partially overlapping sample of 

389 individuals, various empirical FC properties using task-free resting-state functional MRI 

to probe spontaneous blood-oxygenation-level-dependent (BOLD) dynamics (Figure 1B).    
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We incorporate different forms of regional heterogeneity (Figure 1C) into a whole-brain 

model in which the local neuronal dynamics of each brain region evolve according to a 

dynamic mean field reduction analytically derived from the collective behaviour of 

empirically validated integrate-and-fire (80% excitatory and 20% inhibitory) neurons (13, 

14). Regional dynamics in the model are driven by a pool of excitatory neurons, a pool of 

inhibitory neurons, the interactions between them, and with the net output of other areas, as 

mediated by the SC matrix (Figure 1D). In this model, local feedback inhibition is adjusted 

separately for each region to ensure a consistent firing rate of 3 Hz across regions (11). We 

thus refer to this model as the balanced excitation-inhibition (BEI) model. Although the local 

adjustments in this model introduce some degree of regional heterogeneity, the firing rates 

are constrained to be uniform across regions so we consider this BEI model as a 

homogeneous benchmark against which we evaluate more sophisticated heterogeneous 

models that allow intrinsic dynamical properties to vary across regions (see (22) for a similar 

approach). More specifically, the activity levels of excitatory and inhibitory populations in 

each region, i, of the BEI model are given by independent sigmoid functions, regulated by a 

single gain parameter �". In our benchmark BEI model, this parameter is set to a fixed value 

for all regions, imposing uniform excitability across brain regions (Figure 1C).  

 

We compare the performance of this homogeneous BEI model to three different 

heterogeneous models. In the first, we use an approach similar to (22) and adjust �" 

according to variations in the regional mean T1w:T2w, which has been proposed as a proxy 

for cortical hierarchy (27). In the second heterogeneous model, we adjust �" according to the 

first principal component (PC1) of transcriptional activity for 1,926 brain-specific genes (27) 

that survived our quality control criteria, as quantified in the Allen Human Brain Atlas 

(AHBA) (26, 28, 29). The first PC of these genes correlates with the T1w:T2w ratio and 

other measures of cortical hierarchy (27). In the final model, we use a more hypothesis-driven 

approach and adjust Mi according to variations in the ratio of regional AHBA expression 

values for genes specifically coding for AMPA, NMDA, and GABA receptors (see Methods). 

We refer to this model as the E:I model. Cortical surface renderings displaying regional 

variations in T1w:T2, PC1, and E:I values are shown in Figure 1C.  

 

In all three heterogeneous models, we assume a linear scaling between the regional biological 

measures of heterogeneity, �", and the effective gain within a region (22), given by �" = 1 +
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� + ��", where the two unknown free parameters correspond to a bias, �, and a scaling 

factor, � (see Methods). Studying how these two free parameters affect the global dynamics 

of the model allows us to investigate the role of regional heterogeneity.  

 

For the homogeneous BEI and three (T1w:T2w, PC1, E:I) heterogeneous  models, we assume 

that all diffusion MRI-reconstructed streamline fibres have the same conductivity and thus 

the coupling between different brain areas is scaled by a single global parameter, G. We first 

tune the G parameter of the BEI model to adjust the strength of effective coupling in the 

model and identify the brain’s dynamic working-point by fitting the model to three empirical 

FC properties (Figure 1E): (1) the Pearson correlation between model and empirical estimates 

of static (i.e., time-averaged) FC estimated across all pairs of brain regions (more 

specifically, the correlation between the values in the upper triangles of the model and 

empirical FC matrices); (2) the Pearson correlation between model and empirical node-level 

estimates of average FC (22); and (3) similarity in functional connectivity dynamics (FCD), 

estimated as the distance between model and empirical distributions of frame-by-frame FC 

properties (as quantified using the Kolmogorov-Smirnov distance, �*+)(25).  

 

After finding the working point of each model, we evaluate its dynamical properties in two 

ways. First, we consider the ignition capacity of the model, quantified by examining how 

activity propagates through the network following a simulated focal perturbation (Figure F-

G). Second, we examine regional heterogeneity in intrinsic timescales, quantified by the 

signal decay rate of regional activity following a simulated focal perturbation (Figure F,H). 

Our approach thus allows us to determine the performance of each model in capturing diverse 

dynamical phenomena at a single working point.  
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Figure 1. Workflow for model fitting and evaluation. We use empirical diffusion and 

functional MRI data to generate sample-averaged structural connectivity (A) and functional 

connectivity (B) matrices, respectively. The structural connectivity matrix, and different 

forms of regional heterogeneity (C), are used to respectively define the coupling between, 

and modulate the gain of, neuronal populations within a large-scale balanced excitation-

inhibition (BEI) dynamical model (D). Panel C shows the different forms of regional 

heterogeneity used. The standard implementation of the BEI model assumes uniform gain 

across all regions (top). Empirical estimates of T1w:T2w, the primary mode (PC1) of gene 

expression, and the ratio of excitatory to inhibitory receptor expression (E:I), are used to 

modulate the population gain function in the heterogenous models. (E) For each model, the 

global coupling parameter, �, is tuned to optimize the fit to three empirical FC properties: 

static edge-level FC (left), static, node-averaged FC (middle), and FC dynamics (FC; right). 

Gain parameters � and � are then tuned to further improve fits to these properties. F: After 

finding the optimal working point for each model, we simulate a focal perturbation of activity 

in occipital cortex and measure two dynamical properties of the network: ignition and decay 

timescale. G: To measure ignition, we characterize the response of each area to focal 

stimulation as the product of two quantities: the maximum firing rate achieved at the highest 

stimulation intensity, �./0, and the concavity of the regional response function (i.e., the 

maximal second derivative), �./0. The ignition capacity of the model is taken as the average 

of these regional values. H: To measure the intrinsic timescale of each region, we fit an 

exponential curve to each region’s firing rate as it returns to baseline after termination of the 

maximal stimulation intensity (H).     
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Fitting the Homogeneous Model  

We first evaluate the performance of the homogeneous BEI model in reproducing empirical 

properties of resting-state FC data. We determine and fix the global coupling parameter, G, 

with all regional gain parameters, �" = 1 (i.e. heterogeneity is not considered). As done 

previously (11)(30), we examine how well the model fits, as a function of G, three different 

properties of empirical resting-state fMRI recordings: edge-level static FC, FCD, and node-

level FC (see Figure 1B and Methods for further details).  The results of this analysis are 

shown in Figure 2A-C. In all cases, we consider group-averaged values for both empirical 

data (across subjects) and the model (across an equivalent number of simulated trials with the 

same duration as the human experiments) (see Methods). Our results align with previous 

investigations to clearly show [40, 44] that fitting FCD, which captures the rich 

spatiotemporal structure of the fMRI data, is a stronger constraint on the model. Indeed, 

where static edge and node FC fits are consistently high across a broad range of �, FCD 

yields a clear global optimum at � = 2.1.  
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Figure 2. Model optimization and evaluation. The homogeneous BEI model is first fitted 

to the empirical data. A: The correlation between model and empirical static edge-level and 

node-level FC, as well as the �*+ between empirical and model FCD distributions, as a 

function of the global coupling parameter, �. Only the fit to FCD shows a clear optimum at 

� = 2.1 (note that lower FCD fit values indicate better fit). Panels B and C show the FC 

matrix, node-level average FC values, FCD matrices, and FCD distributions for the empirical 

data (B) and model (C). Using � = 2.1, we introduce regional heterogeneity (Figure 1C) and 

further optimize the two gain parameters � and �. Panels D, E, and F show the parameter 

landscapes for edge-level FC, node-level FC, and FCD, respectively, for the E:I model. 

Below each 2D space we show the 1D graph of the level heterogeneity scaling (�) for the 

optimal bias parameter found as the one corresponding to the optimum FCD fitting (see 

Methods). This procedure is repeated for each heterogeneous model to find its optimal 

working point. Lower values indicate better fit in panel F. Panels G, H, I compare the 

performance of the homogeneous BEI model and heterogeneous T1w:T2w, PC1, E:I, and 

null expression models according to the edge-level FC, node-level FC, and FCD benchmarks, 

respectively. Distributions are for values obtained over multiple runs of the optimum models 

(see Methods). We harmonized the fit statistics so that higher numbers indicate better fit (i.e., 

for the case of FCD, where a low �*+ indicates better fit, we show 1 2 �*+). The E:I model 

shows the best performance in all cases. 

 

 

 

Introducing regional heterogeneity 

We now study how regional heterogeneity affects the fitting of static FC, GBC, and FCD. 

Spatial maps for each form of biological heterogeneity used in our modelling are shown in 

Figure 1C. The T1w:T2w and PC1 maps are strongly correlated (� = 0.82, �:;/<"/= < .001), 

as shown previously (27), whereas the PC1 and T1w:T2w maps show weaker correlations 

with the E:I map (� = 0.40, �:;/<"/= = .005	and	� = 0.39, �:;/<"/= < .011, respectively). 

This result indicates that each spatial map introduces a different form of biological 

heterogeneity to the benchmark BEI model. We introduce this heterogeneity by modulating 

the regional gain functions �", at the optimal working point of the homogeneous BEI model 

(� = 2.1), through the bias and scaling parameters introduced above, denoted, � and �, 

respectively. Critically, we exhaustively search a broad range of values for � and � to 
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comprehensively map the parameter landscape and select the corresponding optimal working 

point for the E:I model (� = 	20.3; 	�	 = 1.8), PC1 model (� = 20.75; 	� = 1.6), and 

T1w:T2 model (� = 20.7; 	� = 1.4), as shown in Figure 2D-F for the E:I model. This figure 

shows that, despite some degeneracy in the parameter landscapes, there is a clear regime in 

which all three empirical properties are fitted well by the model, particularly for � j 1.7.  

 

For these optimal values, we simulate each dynamical model 1000 times to account for the 

inherent stochasticity of the models and compute the respective measures of model fit. 

Figures 2G-I show the distributions of fit statistics across runs for the homogeneous and three 

heterogenous models. In addition, we show results for a null ensemble of models in which the 

regional E:I receptor gene expression values were spatially rotated (31, 32) to generate 

surrogates with the same spatial autocorrelation as the empirical data. Across all three 

benchmark properties to which the data were fitted––static FC, GBC, and FCD––the 

heterogeneous models perform better than the homogeneous model (all �LMNO < .05). We 

also find a consistent gradient of performance across all benchmarks, with the E:I model 

performing best, followed by the PC1 and T1w:T2w models, and the homogeneous model 

showing the poorest performance. For each benchmark metric, the performance of the E:I 

model was significantly better than all other models (all �LMNO < .05). 

 

Ignition capacity 

We now evaluate additional dynamical properties of each model that cannot be directly 

evaluated with respect to empirical fMRI data but which are thought to be essential features 

of complex neural dynamics. We first consider ignition capacity. Ignition refers to the 

capacity of a sensory input to trigger self-supporting, reverberating, temporary, metastable, 

and distributed network activity, and is thought to be a necessary condition for conscious 

perception of the stimulus (4, 33). This process is non-linearly related to stimulus intensity, 

such that evoked activity is confined to local sensory areas for low levels of stimulation 

(which supports subliminal perception) and then leads to explosive activation of distributed 

cortical systems once an appropriate threshold is reached.  

 

Figure 1F-G shows the strategy that we follow to quantify ignition capacity. For a given 

specific working point of the whole-brain model, we compute how the brain broadcasts 

information after artificially stimulating regions of occipital cortex (namely, the cuneus, 
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lateral occipital, lingual gyrus, and pericalcarine regions in the Desikan-Killiany atlas (34)). 

We measure the evoked responses at the level of population firing rates rather than simulated 

BOLD signal changes to have direct access to the millisecond timescale. To quantify the 

effect of occipital stimulation on activity in each of the other 67 brain regions, we plot, for 

each non-stimulated region, how its population firing rate changes as a function of occipital 

stimulation intensity. Two quantities are relevant here: (1) the maximum firing rate achieved 

at the highest stimulation intensity, �./0; and (2) the speed with which the firing rate 

increases beyond a given intensity threshold, �./0, which we quantify as the concavity of the 

regional response function (i.e., the maximal second derivative). We then summarize the 

ignition capacity of each non-stimulated region � as �(�) = �./0(�)×�./0(�), and estimate 

the global ignition capacity of the brain as the mean across all regions, � =
T

UVT
�(�). 

 

Figure 3A shows cortical surface renderings of regional �(�) values obtained following 

occipital stimulation over 30 runs of the homogeneous BEI and heterogenous E:I models. The 

occipital stimulation in the E:I model triggers stronger and more widespread ignition than in 

the BEI model. This observation is confirmed quantitatively in Figure 3B. The E:I model 

shows higher ignition capacity than all other models (all	�LMNO <	 .05), suggesting that this 

model is able to rapidly propagate focal perturbations with higher fidelity than in the other 

models. The PC1 and T1w:T2w models also show significantly greater ignition capacity than 

both the BEI model and spatial null model, with the BEI model showing significantly lower 

ignition capacity than the spatial null (all	�LMNO <	 .05). These results indicate that some form 

of regional heterogeneity is important for ignition-driven dynamics and that the most potent 

ignition is observed when heterogeneity is constrained by biological measures, particularly 

regional variations in the transcriptional activity of E:I receptor genes.  
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Figure 3. Evaluating the ignition capacity of each dynamical model. A: Cortical flat maps 

of average regional ignition values following stimulation of four regions of occipital cortex 

(dark grey), observed for the E:I model (left) and BEI model (right). The E:I model shows 

strong ignition of distributed areas whereas the BEI model shows negligible ignition of non-

stimulated regions. B: Distributions of global ignition values obtained for different runs of 

the optimal E:I, PC1, T1w:T2w, BEI, and spatial null models.  

 

 

Decay timescales 

To characterize temporal hierarchies in the model, we use the same virtual stimulation 

approach as deployed in our analysis of ignition capacity. Specifically, we virtually stimulate 

bilateral pericalcarine cortex and quantify the temporal decay of activity in each non-

stimulated target area by fitting an exponential curve to its firing rate as it returns to 

spontaneous conditions after termination of the maximal stimulation intensity (Figure 1H). 

The value of the exponent can be used to index the intrinsic activity time scale of each brain 

region and can thus be used to evaluate temporal hierarchies in the brain (15) (see Methods).  

 

We first confirm that this measure yields a sensible spatial patterning of regional timescale 

variations. Figure 4A shows the stimulation responses for the stimulated area and eight non-

stimulated regions, approximately ordered according to assumed position in the cortical 

hierarchy. A clear trend is evident, in which responses are prolonged for higher-order 

association areas compared to sensory regions, as shown previously (15, 20, 35). Figure 4B 

shows that the activity decay time courses following the termination of stimulation are faster 

for areas that assume a lower position in the hierarchy. Accordingly, we find a significant 

positive correlation between regional decay values and an independent measure of cortical 

hierarchy, T1w:T2w (� = 0.39, �:;/<"/= = 0.03; Figure 4C), such that higher T1w:T2w is 

associated with more rapid activity timescales (higher decay exponents).  

 

We define the richness of regional timescales in the model as the standard deviation of decay 

rates across target areas, such that high values reflect a greater diversity of timescales across 

the brain, which implies a broader dynamic range for information processing. We term this 

measure regional decay variability. Figure 4D shows that regional decay variability is 

significantly higher for all biologically constrained heterogeneous models compared to the 
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BEI and spatial null model, with the BEI model showing lower decay variability than the 

spatial null (all �LMNO <	 .05). The T1w:T2w model showed greater variability than the E:I 

and PC1 models, which did not significantly differ from each other (�LMNO = .07). These 

results suggest that heterogeneity in regional population gain plays an important role in 

generating a hierarchy of regional timescales. Transcriptionally constrained models show 

higher variability than spatially rotated null models, but the highest variability is seen in the 

T1w:T2w model. Thus, variations in myeloarchitecture may help to broaden the dynamic 

range of information processing beyond regional differences in E:I receptor gene expression.  

 

 

Figure 4. Decay timescales of regional dynamics. A: Response time courses for different 

regions in the E:I model during focal stimulation of pericalcarine cortex. Top plot shows the 

stimulation time course. The remaining plots show responses in different regions moving 

through the cortical hierarchy from sensory (near top) to association (near bottom) areas. The 

�-axis in each plot presents the excitatory firing rate (note in pericalcarine the max is 107.4) 

in Hz, denoted �X. B: Decay curves for each of the regions depicted in panel A, showing how 

regional activity returns to baseline following focal stimulation of visual cortex. Surface 

renderings show the anatomical locations of each region. C: Spatial correlation between 

regional decay rates (in �VT) and T1w:T2w. Regions with more rapid decay, and thus faster 

timescales, show higher T1w:T2w. D: Distributions of regional variability in decay rates 

obtained for 1000 runs of each model.  
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Discussion 

It has long been recognized that cortical areas vary along multiple dimensions, including 

cytoarchitecture, myeloarchitecture, chemoarchitecture, and inter-regional connectivity (8–

10, 36). The specific dynamical consequences of each of these variations remain a mystery, 

but they are likely to have an ultimate influence on the local ratio of excitatory to inhibitory 

cell activity, resulting in a variable E:I balance across different brain regions. Incorporating 

such heterogeneity into large-scale models of neuronal dynamics has proven challenging, but 

the recent availability of diverse data that can be used to index different forms of cellular, 

molecular, and anatomical variability across brain areas has provided a new means for 

imposing regional heterogeneity in such models, thus offering an opportunity to understand 

in detail the dynamical effects of different forms of regional heterogeneity.  

 

To this end, we compared models in which regional heterogeneity was constrained by 

transcriptional measures of E:I receptor gene expression, the dominant mode of brain-specific 

gene expression, and T1w:T2w, which is sensitive to variations in myeloarchitecture and 

which closely tracks regional position in the cortical hierarchy (27). We show that the 

transcriptional E:I model more faithfully reproduces empirical properties of static and 

dynamic FC while also showing the highest ignition capacity and a broad range of regional 

activity timescales. Our findings thus highlight a central role for regional variations in E:I 

balance in generating ignition-like dynamics and timescale hierarchies, and suggest that 

transcriptional atlas data provide a viable means for constraining heterogeneity in large-scale 

models of brain activity. 

 

Evaluating different forms of regional heterogeneity 

The starting point for our analysis was an evaluation of how each model captured diverse 

empirical properties of FC. Early work focused on reproducing the correlation between 

model and empirical static FC matrices at the edge-level (11, 30). Subsequent studies 

introduced additional constraints, such as evaluating the fit to dynamic FC properties (25) or 

regional variations in average FC (22). To our knowledge, no prior study has evaluated all 

three properties simultaneously. Our analysis shows that edge- and node-level measures of 

static FC offer loose constraints for model optimization, showing comparably high fit 

statistics across a broad range of values of the global coupling parameter, �. In contrast, fits 

to FCD show a clear optimum (at � = 2.1), mirroring similar results reported previously 
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(25). Fitting models to both static and dynamic properties of FC is thus important for 

identifying an appropriate working point for each model. 

 

Across all three FC properties, heterogeneous models provide a better match to the data than 

the nominally homogeneous BEI model. This result suggests that regional heterogeneity 

plays a role in shaping the empirical FC architecture of spontaneous BOLD-dynamics. 

Critically, the E:I model was the best-performing model across all three benchmarks, 

indicating that constraining regional heterogeneity by transcriptional markers of E:I balance 

yields a more faithful replication of empirical FC. However, the differences in fit statistics 

between models are small. For example, the median static edge-level FC correlation between 

model and data was r=0.71 for the E:I model, r=0.69 for the T1w:T2w and PC1 models, and 

r=0.67 for the BEI model. Moreover, the fits to FCD ranged between �*+ = 0.08 (E:I model) 

and �*+ = 0.1 (BEI model). These results suggest that these empirical fit statistics have only 

a limited capacity to tease apart dynamical differences between the models. 

 

The model-based evaluations of ignition capacity and decay variability provide a more 

complete picture. In both cases, the differences between the homogeneous BEI model and the 

three heterogeneous models were marked: there is a 154% difference in median global 

ignition capacity values for the E:I and BEI models and a 26% difference in median decay 

variability values. All heterogeneous models showed notable ignition capacity and decay 

variability, being higher, on average, than the spatially rotated null model. In contrast, the 

BEI model showed lower ignition and decay variability than the null model. This result 

indicates that both ignition and decay depend on some degree of regional heterogeneity, and 

that biologically plausible forms of heterogeneity increase these properties beyond the 

expectations of a generic spatial gradient (as represented by the spatially constrained null 

ensemble).  

 

The E:I model showed the greatest ignition capacity, indicating that regional differences in 

E:I receptor gene expression may shape local dynamics in a way that promotes rapid and 

high-fidelity communication. The E:I model also showed a wide range of decay timescales, 

although the T1w:T2w model showed the highest decay variability, implying that regional 

variations in myeloarchitecture may additionally enhance the dynamic range of regional 

processing. Whether increased decay variability in a model provides a more faithful 

representation of neural dynamics remains unclear. Further work could aim to validate model 
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results against either invasive recordings, which allow precise estimation of decay timescales 

to focal perturbations, or through specifically designed functional MRI experiments (35, 37). 

Critically, we evaluated the dynamical properties of each model at their empirically optimal 

working points, meaning that the models show these properties in a parameter regime that 

closely matches actual data. This is an important constraint, given that prior modelling work 

evaluating ignition dynamics and timescale hierarchies in Macaque did not fit empirical FC 

data (3, 15). It is thus difficult to ascertain the biological plausibility of the dynamical regime 

that was studied. The E:I model considered here not only showed the best fit to empirical 

data, but it also showed the highest ignition capacity and a broad range of decay timescales, 

suggesting that it offers a parsimonious account of these various dynamical phenomena. 

 

How does heterogeneity shape neuronal dynamics? 

In our models, we introduced heterogeneity by modifying the regional excitability of local 

population activity. We achieved this by modifying each region’s gain response function. 

Different approaches have been used to incorporate regional heterogeneity in past work. For 

example, (15) used a hierarchical ordering of cortical areas in macaque based on laminar 

patterning of inter-regional connectivity to linearly scale the excitatory input strength of each 

population. In (22), T1w:T2w was used to linearly scale the strengths of local excitatory-to-

excitatory and inhibitory-to-inhibitory populations when modelling cortical BOLD FC in 

Human. More complicated approaches are also possible (e.g., (23)). We chose to impose 

heterogeneity by modulating population gain response functions, since local variations in E:I 

balance will affect the net excitability of the population, which is captured by the gain 

function parameter, �". We thus assume that changes in regional gain are the final common 

effect of different ways in which heterogeneity might influence a specific population or 

interaction between populations. Critically, regional variations of �" are modulated by just 

two terms––the bias, �, and the scaling factor, �. This leads to a marked improvement in 

computational efficiency when compared to more highly parameterized models (e.g., (22, 

23)), which require the use of heuristic optimization algorithms that can make it difficult to 

guarantee a globally optimum solution and can shift some parameter values from empirically-

constrained ranges. Nonetheless, we expect that further refinement of optimization algorithms 

capable of robustly and effectively searching high-dimensional parameter spaces will allow 

greater precision for evaluating different forms of model heterogeneity.  
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Implications for understanding ignition-like dynamics 

Ignition-like dynamics are thought to be a necessary pre-condition of conscious experience 

(4, 33). As the intensity of a focal sensory stimulus increases, the ignition model predicts that 

a threshold is reached beyond which widespread activation of other areas is rapidly triggered. 

Stimuli that do not reach this threshold may only be perceived subconsciously.  

 

Our results indicate that regional heterogeneity is essential for producing ignition-like 

dynamics, with the E:I model showing the highest ignition capacity. To the extent that our 

transcriptional E:I measures can be taken as a proxy for receptor abundance (see below), this 

result suggests that regional variations specifically in E:I receptor activity may play an 

especially critical role in supporting rapid, high-fidelity broadcasting of sensory stimuli 

throughout the network.  

 

Recent work using a dynamical model simulated on the Macaque connectome also showed 

evidence of ignition-like dynamics (3). Critically, the authors showed that removal of 

feedback projections and randomization of the connectivity weights of the SC matrix were 

each sufficient to abolish this dynamical behaviour, suggesting that feedback connectivity 

and heterogeneity in SC connection strength give rise to ignition-like activity. In our analysis, 

the SC matrix is derived from diffusion MRI data and thus cannot distinguish feedforward 

from feedback connections, although we did incorporate empirical variability in connection 

strengths. Thus, the fact that we only observe ignition-like dynamics with heterogeneous but 

not homogeneous models suggests that feedback connectivity is not necessary for ignition, 

heterogeneity of inter-regional connection weights alone is not sufficient, and that 

heterogeneity of connection weights and regional population dynamics may represent 

minimal requirements for the emergence of ignition-like propagation through the network. 

One caveat to this view is that while the focal perturbation in our analysis did propagate 

across different levels of the hierarchy, we did not observe widespread activation of 

frontoparietal systems, which is thought to be a cornerstone of global ignition and which was 

observed in the macaque model (3). This discrepancy could reflect the necessity of feedback 

connections for generating truly global ignition, or it may reflect a distinct working point of 

the macaque model, given that it was not constrained by empirical FC data. Further work 

could specifically try to isolate which model elements represent both necessary and sufficient 

conditions for cortical ignition. 
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Implications for understanding timescale hierarchies 

Our analysis indicates that any form of heterogeneity enhances the dynamic range of regional 

decay timescales compared to the homogeneous BEI model, given that even the spatially 

rotated null model displayed greater decay variability. Transcriptionally constrained E:I and 

PC1 models displayed comparable variability, both being greater than the BEI and null 

models, but the T1w:T2w model showed the highest variability. This result implies that 

regional myeloarchitecture may play an important role in shaping timescale differences 

between regions. We note however that part of this additional variability may have been 

driven by data considerations. We had T1w:T2w measures for both right and left 

hemispheres, but only gene expression data for the left hemisphere. To generate whole-brain 

simulations, we thus reflected the left hemisphere expression values to constrain right 

hemisphere dynamics. Although this may be justified given the previously-noted lack of 

statistical differences between hemispheres in regional gene expression within the Allen 

Atlas (26), our approach may still have reduced the degree of regional heterogeneity 

incorporated into the transcriptional models relative to the T1w:T2w model.  

 

Past work has shown that several other properties correlate with various measures of regional 

activity timescales. In a comprehensive survey of 6390 different regional time series 

properties estimated for fMRI recordings in the mouse brain, Sethi et al. (19) found that 

timescale-related measures such as relative high-frequency signal power, correlate with 

structural measures of in-degree, such that the time series of regions with many incoming 

connections showed greater low-frequency power. Similar results were later reported in 

human (18). Other work in humans has also shown that regional variations in autocorrelation 

and other time series properties track the cortical hierarchy (20, 38). These additional 

measures could be used to provide additional constraints on model fitting, although the 

temporal resolution of functional fMRI may be too limited to provide a detailed 

understanding of regional variations in activity timescales. 

 

Limitations 

We relied on a single coarse scale parcellation of the brain to allow exhaustive parameter 

sweeps over several different models. This choice was essential to reduce computational 

burden, and it ensures that our results are directly comparable with other studies using the 

same parcellation (e.g., (11)). Nonetheless, parcellation type and scale can have an effect on 
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empirical connectome properties (39, 40), and further evaluation of the degree to which our 

results generalize to other parcellations is required. 

 

Our E:I model used regional measures of excitatory and inhibitory receptor gene expression 

as a proxy for the relative abundance of each receptor type in each region, which in turn is 

assumed to be related to the relative activity levels of inhibitory and excitatory cells. Gene 

expression in the AHBA was assayed using microarray, which quantifies messenger RNA 

(mRNA) abundance. The correspondence between mRNA levels and protein abundance can 

be complex and may vary across different tissues or brain regions (41). Moreover, the precise 

correspondence between receptor densities and cell-specific activity levels remains unclear. 

The increasing availability of single-cell RNAseq data will provide more precise estimates of 

regional cell-type abundances (42). Any imprecision in our estimates should limit the ability 

of the E:I model to yield physiologically-plausible dynamics. Our results may therefore 

represent a lower bound on the accuracy that such a model may achieve.  

 

Conclusions 

We show that regional heterogeneity improves model fits to empirical FC properties, 

particularly when models are constrained by transcriptomic estimates of E:I receptor gene 

expression. Critically, at the same working point, this model also shows the highest ignition 

capacity and a broad range of regional activity timescales, suggesting that regional variations 

in the activity levels of excitatory and inhibitory receptors may play an important role in the 

emergence of these dynamical properties. Our analysis indicates that recently constructed 

transcriptional atlas data provide a fruitful and biologically principled means for imposing 

regional heterogeneity in large-scale dynamical models. 

 

 

 

Methods 

Empirical MRI data 

Image acquisition 

Eyes-closed resting-state fMRI data were acquired in 389 healthy individuals (170 males; 

mean age = 24 years; SD = 4.2 years) using a Siemens Skyra 3 Tesla scanner with a 32-

channel head coil located Monash Biomedical Imaging in Clayton, Victoria, Australia using 

the following parameters: time-to-repetition (TR), 754 ms; time-to-echo (TE), 21 ms; flip 
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angle 50Z; multiband acceleration factor, 3; field-of-view, 190 mm; voxel size, 3 mm
3
 

isotropic. A total of 620 volumes were acquired. T1-weighted structural images were also 

acquired using 1mm
3
 isotropic voxels; TR = 2300 ms; TE = 2.07 ms; FOV=256 x 256 mm. 

Diffusion MRI data were available for a subset of 289 individuals, acquired using the 

following parameters: 2.5mm3 voxel size, TR = 8800 ms, TE = 110 ms, FOV of 240 x 240 

mm, 60 directions with b = 3000 s/mm2 and seven b = 0 volumes. A single b = 0 s/mm2 

volume was obtained with the reverse-phase encoding for use in distortion correction.  

 

DWI processing and Connectome construction 

The diffusion data were processed using MRtrix3 version 3.0 

(https://www.mrtrix.org/) and FSL version 5.0.11 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), as 

detailed in Oldham et al. (43). Briefly, the diffusion images for each individual were 

corrected for eddy-induced current distortions, susceptibility-induced distortions, inter-

volume head motion, outliers in the diffusion signal (44), within-volume motion (45), and B1 

field inhomogeneities (46). Tractography was conducted using the Fibre Orientation 

Distributions (iFOD2) algorithm, as implemented in MRtrix3 (47), which utilises fibre 

orientation distributions estimated for each voxel using constrained spherical deconvolution, 

which can improve the reconstruction of tracts in highly curved and crossing fibre regions 

(48, 49). Streamline seeds were preferentially selected from areas where streamline density 

was under-estimated with respect to fibre density estimates from the diffusion model (50). 

We used Anatomically Constrained Tractography to further improve the biological accuracy 

of streamlines (51). To create a structural connectivity matrix, streamlines were assigned to 

each of the closest regions in the parcellation within a 5mm radius of the streamline 

endpoints (52), yielding an undirected 82×82 connectivity matrix. A group-representative 

connectome was generated by selecting 30% of edges showing the lowest coefficient of 

variation (based on the streamline count) across participants (53).  

 

fMRI processing and FC estimation 

The functional MRI data were processed as detailed in (54). Briefly, the functional images 

were initially preprocessed in FSL FEAT following a basic pipeline, which included removal 

of the first four volumes, rigid-body head motion correction, 3mm spatial smoothing to 

improve signal-to-noise ratio, and high pass temporal filter of 75s to remove slow drifts (55). 

The data were then denoised using FSL-FIX, an independent component analysis (ICA)-

based denoising method that uses an automated classifier to identify noise-related 
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components for removal from the data (56). The algorithm was trained on a manually 

labelled held-out set of 25 individuals scanned with identical imaging parameters. Time 

courses for noise-labelled components, along with 24 head motion parameters (6 rigid-body 

parameters, their backwards derivatives, and squared values of the 12 regressors), were then 

removed from the voxelwise functional MRI time series using ordinary least squares 

regression.  

 

Denoised functional data were spatially normalized to the International Consortium for Brain 

Mapping 152 template in Montreal Neurological Institute (MNI) space using ANTs (version 

2.2.0) (57), via a three-step method: 1) registration of the mean realigned functional scan to 

the skull-stripped high resolution anatomical scan via rigid-body registration; 2) spatial 

normalization of the anatomical scan to the MNI template via a nonlinear registration; and 3) 

normalization of functional scan to the MNI template using a single transformation matrix 

that concatenates the transforms generated in steps 1 and 2. Mean time series for each 

parcellated region were then extracted and Pearson correlations between each pair of regional 

time series were used to estimate inter-regional FC matrices. Functional connectivity 

dynamics (FCD) were also calculated for the empirical data, as outlined below. 

 

The Balanced Excitation-Inhibition (BEI) Dynamic Mean Field Model 

We simulated spontaneous neuronal activity using a whole-brain model that couples the local 

population dynamics of different brain areas through an anatomical inter-regional 

connectivity matrix derived from diffusion-weighted MRI data. The local population 

dynamics of each area are described by a dynamic mean field model, as proposed by (11). 

The model expresses the activity of large ensembles of interconnected excitatory and 

inhibitory spiking neurons as a reduced set of dynamical equations describing the population 

rate activity of coupled excitatory (E) and inhibitory (I) pools of neurons, following the 

original derivation of Wong and Wang (58). At the local neuronal population level, the 

excitatory synaptic currents, I
(E)

, are mediated by NMDA receptors and the inhibitory 

currents, I
(I)

, are mediated by GABAA receptors. Within each brain area, the E and I neuronal 

pools are mutually connected. The inter-area coupling between local neuronal population 

dynamics corresponding to two different brain areas i and j is mediated only at the E-to-E 

level and defined by the scaled structural connectivity matrix C. The elements of this matrix, 

Cij, define the inter-regional anatomical connectivity with connection weights estimated using 

tractography of diffusion-weighted MRI data, as described above. 
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The balanced dynamic mean-field whole-brain model is mathematically described by the 

following system of coupled differential equations: 
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In the last equations, for each excitatory (E) or inhibitory (I) pool of neurons in each brain 

area i, ri
(E,I)

 
(in Hz) indicates the firing rate, Ii

(E,I)
 (in nA)  denotes the total input current, and 

Si
(E,I)

 
represents the  synaptic gating variable. The total input current received by the E and I 

pools is transformed into firing rates, ri
(E,I)

, by H
(E,I)

, which corresponds to the sigmoidal 

neuronal response functions defined in (59). In the excitatory (E) and inhibitory (I) neuronal 

response functions, gE = 310 nC
-1

 and gI  = 615 nC
-1

 define the gain factors determining the 

slope of H, Ithr
(E) 

= 0.403 nA, and Ithr
(I)

= 0.288 nA are the threshold currents above which the 

firing rates increase linearly with the input currents, and dE =0.16 and dI =0.087 are constants 

determining the shape of the curvature of H around Ithr, respectively. The synaptic gating 

variable of excitatory pools, Si
(E)

, is mediated by NMDA receptors with a decay time constant 

ÇNMDA = 0.1 s and ³ = 0.641, whereas the average synaptic gating in inhibitory pools is 

mediated by GABA receptors with a decay time constant ÇGABA = 0.01s. The local external 

input impinging in each population is I0 = 0.382 nA and is weighted with WE =1 for the 

excitatory pools and with WI=0.7 for the inhibitory pools. The parameter I
i

ext
 captures 

external stimulation to the excitatory population. In all cases, we set I
i
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 =0 for all regions, 
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except when assessing the ignition capacity and response decay profiles of the model, in 

which case we set �"
[0< > 0, as detailed below. The local recurrent excitation in each 

excitatory pool is weighted by w+=1.4. All excitatory synaptic couplings are weighted by 

JNMDA=0.15 nA. In equations (5) and (6) Çn denotes uncorrelated standard Gaussian noise with 

an amplitude of Ã=0.01 nA. All parameters were set as in (11). 

 

One method for introducing heterogeneity to this model is to define the parameters such that 

each isolated brain area shows asynchronous spontaneous activity with low firing rate 

(r
(E)

~3Hz and r
 (I)

~9Hz), as shown in in electrophysiological experiments (12–14). In this 

regime, the whole-brain model is balanced. The balance is obtained by adjusting each local 

feedback inhibition weight, �", for each brain area i such that the firing rate of the excitatory 

pools ri
(E)

 remains clamped at 3Hz even when receiving excitatory input from connected 

areas. This regulation for achieving balance is known as Feedback Inhibition Control (FIC) 

and is obtained numerically by the method described in (11). Indeed, this work demonstrated 

that FIC improves the fitting of empirical resting-state FC and more crucially, achieves more 

realistic evoked activity. We refer to this model as the balanced excitation-inhibition (BEI) 

model. Despite the regional heterogeneity introduced by local tuning of the FIC parameter, 

we use this model as our homogeneous benchmark for comparing to other models, since the 

FIC adjustments ensure uniform firing rates across all regions and all regional gain 

parameters are fixed (as detailed below).  

 

The BEI model is fitted to empirical fMRI data by finding the optimal global coupling factor 

G, which uniformly scales all inter-area E-to-E connections. The parameter G is the only 

control parameter that is adjusted to move the homogeneous model to its optimal working 

point, where the simulated activity maximally fits the empirically-observed resting-state FC 

architecture. In particular, we fit static edge-level FC, node-level FC, and FCD, by choosing 

the coupling factor G such that the correlation between the empirical and simulated FC is 

high and the distance between the data and model FCD distributions is minimal (i.e., the 

minimal �*+ between empirical and simulated FCD; see below). 
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Simulations were run for a range of � between 0 and 3 with an increment of 0.01 and with a 

time step of 0.1 ms. For each value of �, we averaged 389 simulations of 464.464 seconds 

each, which were then put through a BOLD forward model (see below) in order to emulate the 

empirical resting-state data, which comprised haemodynamic recordings in 616 volumes 

acquired in each of 389 human subjects. We optimized the coupling factor � before introducing 

regional heterogeneity to the model using the gain and scale parameters (i.e., B=0 and Z=0 

during this fitting procedure; see below). 

 

Simulating BOLD signals 

Regional BOLD signals are simulated in the model using the generalized hemodynamic 

model of (60). We calculate the BOLD signal in each brain area i from the simulated firing 

rate of the excitatory pools ri
(E)

. In this hemodynamic model, an increase in the firing rate 

causes an increase in a vasodilatory signal, si, that is subject to auto-regulatory feedback. 

Blood inflow, fi, responds in proportion to this signal, inducing changes in blood volume, vi, 

and deoxyhemoglobin content, qi. The differential equations describing the hemodynamic 

model coupling these biophysical variables are: 

 

^:_(<)

^<
= 0.5�"` + 3 2 �"�" 2 �"(�" 2 1),     (7) 

 i
i s
dt

tdf
=

)(
,           (8) 

 ,      (9) 

 .

     

(10) 

 

In these equations, Ã denotes the resting oxygen extraction fraction, Ç is a time constant and 

³ represents the resistance of the veins. In order to compute in each area �, the BOLD signal, 

Bi, we calculate a volume-weighted sum of extra- and intravascular signals, which comprises 

a static nonlinear function of volume, vi, and deoxyhemoglobin content, qi, and is expressed 

as follows: 
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We adopted the biophysical parameters recommended by (60). To focus on the most 

functionally relevant frequency range in resting-state conditions, we bandpass filtered both 

empirical and simulated BOLD signals (0.08 > f > 0.008 Hz). 

 

Introducing regional heterogeneity 

One of the key drivers of local population activity in the dynamical model is the balance 

between excitatory and inhibitory activity. E:I balances across brain regions are thought to 

play a critical role in synchronized dynamics and their disruptions have been implicated in 

diverse diseases (61, 62). In the absence of accurate density estimates for each cell type in 

different regions of the human brain, regional variations in E:I balance could, in principle, be 

parameterized in many different ways. Here, we use data on regional expression levels of 

excitatory and inhibitory receptors to constrain our model of E:I heterogeneity across the 

brain. To this end, we use data from the Allen Institute Human Brain Atlas (AHBA), which 

comprises microarray data quantifying the transcriptional activity of >20,000 genes in >4,000 

different tissue samples distributed throughout the brain, taken from six post-mortem samples 

(26, 29).  

 

The AHBA data were processed according to the pipeline developed in Arnatkevicuite et al. 

(28). Briefly, probe-to-gene annotations were updated using the Re-Annotator toolbox (63), 

resulting in the selection of 45,821 probes corresponding to a total of 20,232 genes. Tissue 

samples derived from brainstem and cerebellum were removed. Then, probes that did not 

exceed background noise in more than 50% of remining samples were removed, excluding 

13,844 probes corresponding to 4,486 genes. A representative probe for each gene was 

selected based on the highest mean intensity across regions (64). To increase the anatomical 

accuracy of sample-to-region matching, samples were first divided into four separate groups 

based on their location: hemisphere (left/right) and structure assignment (cortex/subcortex) 

and then assigned to the corresponding parcellation-defined regions of interest separately for 

each of the four groups. Donor-specific grey matter parcellations were generated and samples 

located within 2 mm of the parcellation voxels were mapped to the closest voxel assigning 

almost 90% of all tissue samples. We retained only data for the left cortex, as anatomical 

coverage in the AHBA is more complete for this hemisphere. Finally, gene-expression 

measures within a given brain were normalized using a scaled robust sigmoid normalization 
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for every gene across samples. Normalized expression measures in samples assigned to the 

same region were averaged and aggregated into a region ×	gene matrix consisting of 

expression measures for 15,745 genes over 34 left hemisphere regions. Given the lack of 

notable inter-hemispheric differences in regional gene expression identified in the AHBA 

(26), the left hemisphere values were reflected on to the right hemisphere to enable whole-

brain model simulations. 

 

To capture regional heterogeneity in E:I balance, we extracted expression measures 

specifically for genes coding for the excitatory AMPA and NMDA receptors and inhibitory 

GABA-A receptor isoforms and subunits. More specifically, the genes selected for AMPA 

were GRIA1, GRIA2, GRIA3, GRIA4; the genes for NMDA were GRIN1, GRIN2A, 

GRIN2B, GRIN2C; and the genes for GABA-A were GABRA1, GABRA2, GABRA3, 

GABRA4, GABRA5, GABRB1, GABRB2, GABRB3, GABRG1, GABRG2, GABRG3. In 

order to increase the accuracy of gene expression measures, probes representing the 

expression of individual genes were selected based on the highest correlation to RNA 

sequencing data in two of the six donor brains (64). In our implementation, we quantify 

regional E:I balance simply by summing all expression values for AMPA and NMDA, 

summing all values for GABA, and dividing the former by the latter, resulting in an E:I 

ratio normalized to the [0,1] interval. For each brain region i, we denote this normalized gene 

expression-based excitation/inhibition ratio by �". We note that estimating E:I balance from 

gene expression data is challenging given that each receptor is a heteromer, consisting of 

differing subunit compositions (AMPAR: heterotetrameric assembly from 4 different 

subunits; NMDAR: heterotetrameric assembly from 7 different subunits; GABA-AR: homo- 

and heteropentameric assembly from 19 subunits)(65–68). The exact combination of these 

subunits can alter receptor properties, including biophysical, pharmacological and signalling 

attributes. For example, the GluN2 subunit is essential for determining the gating properties 

of NMDA receptors, with different subunit compositions impacting excitatory postsynaptic 

decay times (68). Here we have adopted a pragmatic approach and chosen genes encoding the 

major subunit types present in the human adult cortex for each receptor, assuming the relative 

expression levels provide an adequate estimate of the E:I ratio within a given cortical region.   

 

We used the transcriptomically-constrained local E:I ratio �" to modulate the gain of the local 

neuronal response functions
 
of the corresponding excitatory and inhibitory pools of each 
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brain region, i, following a number of experimental and theoretical studies (69, 70). 

Specifically, we consider that �" modulates the gain of the neuronal response function H
(E,I)

 

in each brain area according to the modified equations (3) and (4): 

 

�"
(X)

= � X �"
X =

k_(/`l_
`
VL`)

TV[0;(V^`k_ /`l_
`
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,    (12) 
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(m)
VLm )

.    (13) 

 

Similar to (22), we assume that the heterogeneity factors (in our case, the transcriptomically-

defined local excitation/inhibition ratios �"), are linearly transformed by two unknown free 

parameters corresponding to a bias B and a scaling factor Z. Thus, in equations (12) and (13), 

�" = 1 + � + ��". In other words, the effect of the transcriptomically-constrained E:I ratio 

�" 	is to modulate locally the slope of the corresponding excitatory and inhibitory neuronal 

response functions, H. We studied exhaustively the two free parameters B and Z regulating 

the influence of transcriptional heterogeneity. Homogeneous conditions correspond to cases 

where Z=0. Note that the balancing FIC procedure is applied after fixing the gain scaling, i.e. 

for a specific bias B and a specific scaling factor Z. Also note that we although constrained 

the model using a transcriptional index of E:I balance, we used this constraint to modify the 

gain of each population model. We did this under the assumption that the population gain 

function, capturing net regional excitability, will be sensitive to regional variations in E:I 

balance, and in order to limit the number of fitted parameters in the model. More specifically, 

we fitted only two parameters—� and �—to model regional heterogeneity whereas other 

approaches have fitted four or more (22, 23). We adopted this strategy to enable a more 

comprehensive search of parameter space, which is important to identify a unified working 

point for all outcome properties of the model. A more direct modulation of E:I weights might 

yield different results. 

 

We additionally evaluated two additional forms of biologically-constrained heterogeneity: the 

PC1 and T1w:T2w models. The PC1 model was also informed by AHBA data. In this case, 

we identified the dominant mode of spatial variation in gene expression as the first principal 

component (PC1) of 1,926 genes that overlapped between our final quality-controlled gene 
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list and those previously deemed to be brain-specific in (27), where it was shown that this 

mode correlates with T1w:T2w. 

 

The T1w:T2w model incorporated heterogeneity by directly relying on empirical estimates of 

the T1w:T2w ratio, which is sensitive to myelin content (71). Prior work has shown that this 

measure can also be used to map cortical hierarchies (27), and that large-scale heterogeneous 

biophysical models constrained by T1w:T2w more accurately reproduce empirical FC 

properties than homogeneous models (22). Regional T1w:T2w values were obtained from the 

Human Connectome Project dataset, averaged over 1200 subjects following 2 mm FHWM 

Gaussian smoothing in grayordinates space (https://balsa.wustl.edu/study/show/RVVG), and 

then parcellated using the Desikan-Killany atlas (34). 

 

Finally, to further ensure that any results obtained for the E:I model cannot be explained by a 

generic spatial gradient, we also evaluated model performance after permuting the 

assignment of E:I values to regions. A total of 10,000 permutations were performed by 

spatially rotating the expression values using the approach described in (72). Critically, this 

approach preserves the spatial autocorrelation of the expression values, which is essential for 

ensuring that any resulting effects are not driven by low-order spatial gradients (see also 

(31)). In all cases, we normalized the corresponding heterogeneity factor to the [0,1] interval, 

and treat it similarly to the ratio �". 

 

Evaluating model performance 

Models were fitted to three empirical properties of the FC data, as detailed in the following. To 

compare model performance, we simulated 1000 runs of each model at its own optimal 

parameters to obtain a distribution of fit statistics that captures the inherent stochasticity of the 

model. 

 

Static edge-level FC 

The static edge-level FC is defined as the �×� matrix of BOLD signal correlations between 

brain areas computed over the entire recording period (see Figure 1B). We computed the 

empirical FC for each human participant and for each simulated trial (the total number of 

trials matched the number of participants). The group-averaged empirical and simulated FC 
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matrices were compared by computing the Pearson correlation between their upper triangular 

elements (given that the FC matrices are symmetric). 

 

Static node-level FC  

Node-level FC, or node strength, is another static spatial measure that characterizes the 

average FC strength for each area (see Figure 1E) (73). It has also been called global brain 

connectivity in previous work (22). Thus, node-level functional connectivity strength is 

defined as  

 

   

 ���" =
T

U
��"r

U
rsT .   

 (14) 

 

We computed the empirical strength vectors for each human participant and for each 

simulated trial (total number of trials matched the number of participants). The node FC fit is 

quantified by computing the Pearson correlation between the group averaged empirical and 

simulated strength vectors. 

 

Functional Connectivity Dynamics (FCD) 

The spatiotemporal dynamics of resting-state activity are captured by the statistics of how FC 

computed over sliding windows evolves across time (see Figure 1E). Here, we computed the 

FC over a sliding window of 80 TRs (corresponding approximately to 1 minute) with 

incremental shifts of 18 TRs. In order to quantify the spatiotemporal statistics of time-

evolving FC, we calculated a time-versus-time matrix, called Functional Connectivity 

Dynamics (FCD) (25). This FCD matrix is defined so that each entry, ���(�0 , �u), 

corresponds to the correlation between the FC centred at times �0 and the FC centred at �u. 

The statistical distribution of FCD values captures the spatiotemporal architecture of the 

recording session. In order to compare quantitatively the spatiotemporal dynamical 

characteristics between empirical data and model simulations, we generate the distributions 

of the upper triangular elements of the FCD matrices over all participants as well as of the 

FCD matrices obtained from all simulated trials for a given parameter setting. The similarity 

between the empirical and model FCD distributions is then compared using the Kolmogorov-

Smirnov distance, �*+, allowing for a meaningful evaluation of model performance in 

predicting the changes observed in dynamic resting-state FC. 
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Ignition capacity  

The ignition capacity of each model was quantified by examining how regional dynamics 

respond to a simulated focal perturbation. First, for a given working point, we run the whole-

brain model for 3000 ms under spontaneous conditions in order to eliminate transients. 

Second, from 3000 to 4000 ms, we apply a stimulation of strength I
i

ext
 to one of four 

occipital regions, i, bilaterally in both hemispheres (these regions were the lateral occipital, 

pericalcarine, cuneus, and lingual brain areas in the Desikan-Killiany atlas). Third, from 4000 

ms to 7000 ms we reset the external stimulation to zero again, and let the system relax again 

to the spontaneous state. For each condition, i.e., for each parameter setting, and each 

particular stimulation I
i

ext
, we run 30 trials and compute the average, across trials, of the 

elicited activity as a function of time on all brain areas, in order to smooth the resulting 

neuronal whole-brain activity. 

 

To compare ignition capacity across the whole cortex, we fix the location i where the 

stimulation is applied (and also stimulate the region’s contralateral homologue). Then, we 

simulate the averaged neuronal response elicited in a given brain area as a consequence of the 

applied artificial stimulation and as a function of the strength I
i

ext
 (we modify I

i

ext
 from 0 to 

0.2 in steps of 0.001). For each brain region, we perform a sigmoidal fitting of the elicited 

averaged rate activity in the period from 3500 to 4000 ms as a function of the applied 

strength I
i

ext
 in the stimulated specific site i. The ignition elicited for a given target brain area 

after the application of the artificial stimulation in the specific region i is defined by the 

product between the level of concavity of the neuronal response function elicited on that 

target area and the maximal rate elicited when the maximal strength of stimulation is applied 

(as fitted by the sigmoidal function). The level of concavity is defined by the maximal value 

of the second derivative of the fitted sigmoidal function. Figure 1F-G shows graphically the 

key concept. For a given stimulation site i, the global ignition is the average ignition across 

all brain areas. Finally, the ignition is defined by averaging the global ignition over all 

stimulated sites i. We stimulated lower-order occipital regions to study the capacity of the 

system to propagate a sensory perturbation to the rest of the brain (3). The ignition measure is 

basically describing two effects, namely the fidelity (captured by the maximal elicited rate in 
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the target area) and explosiveness (captured by the level of concavity) of ignition-like 

activity. 

 

Decay timescales  

Regional decay timescales were estimated using the same stimulation paradigm as used for 

quantifying ignition. More specifically, we compute the temporal decay of each target brain 

region following simulation of the pericalcarine region in both hemispheres. The decay rate 

was calculated by fitting an exponential curve to the regional firing rates post-stimulation, 

averaged over 1000 simulations (the length of total simulation as described above). The 

functional form of the exponential curve was �"
X = �(exp 2�� + �), where �"

X is the firing 

rate (Hz) post-stimulation, � is the time post-stimulation (in seconds) and the free parameters 

of decay rate, �, scaling constant, �, and offset, �, were fitted using nonlinear least squares 

(implemented in Matlab). We characterized time hierarchy, following (15), as the standard 

deviation of the decays across brain areas (see Figure 1G). A large standard deviation implies 

greater variability in intrinsic timescales across brain regions, which is consistent with a 

broader dynamic range of activity and a more pronounced hierarchical ordering of brain 

areas. The final decays are computed, as before, by averaging over all site stimulations. Note 

that due to the large number of model iterations in the heterogeneity analysis, the time decay 

was approximated using a linear fit of the signal decay in log-space for computational 

efficiency.  

 

Statistical analyses 

Differences in model fits to empirical properties, as well as in ignition capacity and decay 

variability, were assessed using pair-wise Wilcoxon ranksum tests, Bonferroni-corrected for 

10 possible comparisons (corrected �-values are denoted �LMNO). Spatial correlations between 

regional maps were assessed with reference to empirical null distributions generated by 

rotating one of the spatial maps using the same procedure as used when generating the spatial 

null models (74). The corresponding �-values are denoted �:;/<"/=.   
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