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ABSTRACT

Progress in cryo-electron microscopy (cryo-EM) has provided the potential for large-size protein structure determination.
However, the solution rate for multi-domain proteins remains low due to the difficulty in modeling inter-domain orientations.
We developed DEMO-EM, an automatic method to assemble multi-domain structures from cryo-EM maps through a
progressive structural refinement procedure combining rigid-body domain fitting and flexible assembly simulations with
deep neural network inter-domain distance profiles. The method was tested on a large-scale benchmark set of proteins
containing up to twelve continuous and discontinuous domains with medium-to-low-resolution density maps, where
DEMO-EM produced models with correct inter-domain orientations (TM-score >0.5) for 98% of cases and significantly
outperformed the state-of-the-art methods. DEMO-EM was applied to SARS-Cov-2 coronavirus genome and generated
models with average TM-score/RMSD of 0.97/1.4A to the deposited structures. These results demonstrated an efficient
pipeline that enables automated and reliable large-scale multi-domain protein structure modeling with atomic-level accuracy

from cryo-EM maps.
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INTRODUCTION

Single-particle cryo-electron microscopy (cryo-EM) has emerged as a powerful means in modeling macromolecular
structures at near-atomic resolution'?. High resolution density maps allow direct construction of atomic structures with
limited conformation sampling using software programs traditionally used for X-ray crystallography’”. However, the
performance of the programs is poor when the resolution of density map is relatively low (e.g., >3A)>°. For these
challenging cases, a common approach is to fit a homologous structure into the density map, followed by atom-level
structural refinement’”. However, the success of the approach highly depends on the quality of the starting models, while
many proteins have no previously solved structures of homologous proteins.

The difficulty is particularly crucial for multi-domain proteins consisting of multiple structurally autonomous subunits.
In fact, multi-domain proteins are common in nature and statistics has shown that more than two-thirds of prokaryote
proteins and four-fifths of eukaryote proteins are composed of two or more domains'’; but only one third of structures in the
PDB contain multiple domains (Supplementary Fig. 1a). Due to the lack of multi-domain templates and the difficulty for
ab initio domain orientation modeling, the field of computational structural biology has traditionally focused on the study of
individual domains, including the community-wide CASP experiments which assess the quality of protein structure
predictions mainly on the individual domains''. Therefore, although cryo-EM provides a strong potential for determining
large-size proteins® and there are considerably more multi-domain proteins in the Electron Microscopy Data Bank (EMDB)'
than that in the PDB (Supplementary Fig. 1b), it is usually difficult to use homology modeling to create appropriate
frameworks for the density-map fitting and structural refinements of multi-domain proteins. These factors impose a
significant challenge for cryo-EM based multi-domain structure modeling and are probably the important reasons that only
less than half of the cryo-EM density map in the EMDB have atomic structures (Supplementary Fig. 1c¢). An additional
barrier in large-scale cryo-EM structural modeling is that almost all structure fitting and refinement tools are not fully
automated even with given homologous models. For example, many approaches require human-interventions in initial
model-to-map fitting, a procedure that often significantly impacts quality of the final models'’. Hence, developing advanced
cryo-EM methods that can automatically and yet reliably assemble multi-domain structures becomes increasingly urgent
given the rapid progress of cryo-EM structural biology.

In this study, we proposed a novel automated approach (termed DEMO-EM, Fig. 1) to create accurate complex
structure models for multi-domain proteins from cryo-EM density maps. The pipeline can start from either experimentally
determined domain structures or amino acid sequences, where in the latter case the domain split and individual domain
structure modeling are performed with FUpred'* and I-TASSER", respectively. To systematically examine the strength and
weakness, DEMO-EM was tested on a large-scale benchmark dataset consisting of various numbers of continuous and
discontinuous domains over synthesized and experimental density maps. The results demonstrate significant advantages of
DEMO-EM for cryo-EM guided domain structure assembly and refinement compared to the start-of-the-art approaches in
the field. The source codes and datasets of DEMO-EM programs, together with an online server, are publicly available at

https://zhanglab.ccmb.med.umich.edu/DEMO-EM/.

RESULTS
Multi-domain structure construction from synthesized density maps

Benchmark data setting. To evaluate DEMO-EM, we collected a set of 357 non-homologous proteins from the PDB
with the domain boundary assigned by DomainParser”® (or SCOPe®' and CATH* when available). The length of these

proteins ranges from 99 to 1,693 residues with 2-12 domains. The density maps of these proteins are simulated according to
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the experimental structures by EMAN2%, with the resolution randomly selected from 2 to 10 A and a grid spacing of 1
A/voxel (Supplementary Fig. 2a). Two separate tests are performed to assemble experimental domain structures extracted
from the full-length target structures and domain models predicted by I-TASSER'. For experimental domain structure
assembly, all domains were randomly rotated and translated as rigid bodies before assembly. When using I-TASSER to
model the domain structures, all homologous templates of a sequence identity >30% to the query have been excluded; this
resulted in domain models with variable quality and the TM-score ranging from 0.19 to 0.97 (see Supplementary Fig. 2b
for a histogram of TM-score distribution). Since we focus mainly on examining the domain assembly ability of DEMO-EM,
we excluded the proteins with any domain of TM-score* below 0.5 in the second benchmark test, to eliminate the negative
impact from incorrect domain models. This resulted in 229 proteins and the average TM-score for them is 0.76.

Overall results of DEMO-EM modeling. Table 1 and Figure 2 present a summary of the DEMO-EM models on both
benchmark tests. When the experimentally determined domain structures are used, DEMO-EM was able to assemble nearly
perfect full-length models for almost all the targets, which resulted in an average TM-score=0.99 and RMSD=0.6 A (Figs.
2a and 2b). Importantly, the individual domain structures were well-folded in final full-length models with an average
TM-score=0.98 and average RMSD=0.6 A, despite the fact that atomic structure of full-length models are kept completely
flexible in the domain assembly simulations; suggesting that the combination of the inherent DEMO-EM force field and the
density-map data is capable to recognize and maintain correct folded domain structures.

When predicted domain models are used, the local structure errors from I-TASSER model can negatively impact the
full-length model assembly simulations. Nevertheless, DEMO-EM successfully assembles full-length models with a correct
global fold (i.e., TM-score>0.5)> for 97.4% of the test cases (blue histogram in Fig 2a). In Fig 2¢c, we presented a
head-to-head TM-score comparison between the initial model obtained by matching I-TASSER domains with the cryo-EM
maps and the final DEMO-EM model, where the TM-score of the final model was improved in nearly all test cases (with an
average TM-score increase from 0.68 to 0.85, corresponding to p-value=6.1E-34 in Student’s t-test). Because creating a high
TM-score model requests for correct modeling of both individual domains and inter-domain orientations, the data in Fig 2¢
indicates that DEMO-EM domain assembly simulations could significantly improve the inter-domain orientations. Since the
domain structures were kept flexible in DEMO-EM, part of the full-length model TM-score increase may also come from the
quality improvement of individual domain structures. To examine this, we presented in Fig 2d the TM-score comparison of
individual domains by I-TASSER and DEMO-EM, where the TM-score by DEMO-EM was improved in 516 out of the 571
individual domains. On average, the TM-score of individual domains increased from 0.76 to 0.83 with a p-value=8.5E-16 in
Student’s t-test, indicating the domain-level structural improvements brought by DEMO-EM are statistically significant.

Interestingly, although the degrees of freedom and searching space usually increases with the number of domains for
both domain assembly and full-length model refinement, the quality of the final models by DEMO-EM does not significantly
decrease with an increasing number of domains for both experimental and I-TASSER domain model assemblies
(Supplementary Table 1 and 2). In particular, the full-length models assembled using I-TASSER domain structures obtain
an average TM-score of 0.84 for proteins with 3 or more domains, 97% of which have a final model TM-score >0.5. This
data demonstrates the ability of DEMO-EM for handling large complex structures of multi-domain proteins. In addition,
proteins with discontinuous domains are usually difficult to model as they have several parts separated in sequence which
increases the difficulty in individual domain modeling and inter-domain distances prediction. However, DEMO-EM
correctly assembled nearly all the cases of discontinuous domains using experimental domain models, with an average
TM-score=0.99 identical to that of the continuous domain model assembly (Supplementary Table 1). This is probably due

to the constraints brought by the additional linkers which help guide the discontinuous domain structure assembly (see Eq. 4
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in Methods and Supplementary Fig. 13). When assembling I-TASSER domain models, however, DEMO-EM achieves an
average TM-score of 0.83 slightly lower than the continuous domain assembly results (TM-score=0.87, Supplementary
Table 2), due to the modeling errors of I-TASSER models in the tail and linker regions which affect the packing the segment
structures.

Control of DEMO-EM with other cryo-EM modeling methods. As a control, we listed in Table 1 the model results by
two widely used methods of MDFF® and Rosetta"* for cryo-EM density map guided modeling (Supplementary Text 1).
Since both methods need to start from full-length models, we built the initial full-length models by fitting each domain
model into density maps using Situs®®, one of the best publicly available structure-density map program. As shown in Table
1, Figs. 2a and 2b, and Supplementary Figs. 3a and 3b, DEMO-EM outperformed both control methods by a margin, with
the average TM-score of the full-length models with experimental domains 19.3% and 25.3% higher than that of MDFF and
Rosetta, respectively. The p-value in student’s t-test is 4.2E-38 and 4.5E-44, respectively, suggesting that the difference is
statistically significantly.

When I-TASSER domains were used, the TM-score improvement of DEMO-EM increases to 54.5% relative to MDFF
and 60.4% to Rosetta, which corresponds to a student’s t-test p-value of 1.6E-54 and 3.5E-44, respectively. DEMO-EM also
made more significant improvement in the domain-level structures. When starting from the I-TASSER domains, DEMO-EM
improves the TM-score of individual domains in 89.0% of cases (Fig. 2d), while MDFF and Rosetta did so only in 24.0%
and 22.1% of the cases respectively (Supplementary Figs. 3¢ and 3d).

Why does DEMO-EM outperform control methods? There are several reasons for the superior performance of
DEMO-EM over the control methods. First, the quick quasi-Newton searching process in combination with a space
enumeration algorithm as taken by DEMO-EM (see Methods) can correctly match individual domains into the density map
and thus generate optimal initial full-length models for the majority of proteins. As shown in Supplementary Fig. 4a, the
average TM-score of initial full-length models constructed by the quasi-Newton search were 0.97 and 0.69 (where 99.2%
and 80.3% had a TM-score >0.5) when starting with experimental and I-TASSER domains, respectively, which are 14.1%
and 21.0% higher than those by the start-of-the-art structure-map docking program Situs.

Second, DEMO-EM took a hierarchical process of rigid-body and flexible model assembly simulations to progressively
refine the multi-domain structures. In particular, the rigid-body domain assembly process can quickly adjust domain poses
based on density maps. When starting with the I-TASSER domains, for example, the average TM-scores of full-length
models were improved from 0.69 to 0.78 where the number of cases with TM-score >0.5 increases from 80.0% to 95.2%
after the rigid-body assembly step (Supplementary Fig. 4b). This domain model improvement helps the subsequent
DEMO-EM steps to detect unreasonably folded regions in initial full-length models for more efficient atomic-level structural
assembly and refinement simulations.

The last important advantage of DEMO-EM comes from the flexible assembly and refinement stage, which showed a
superior ability to improve full-length models and individual domain models simultaneously with the assistance of
deep-learning based inter-domain distances predictions when coupled with density-map correlation and inherent DEMO-EM
force field. To examine the efficiency of the flexible assembly and refinement process, we feed the same full-length models
assembled by the DEMO-EM rigid-body assembly step on the -TASSER domains into MDFF and Rosetta. Although the
better starting model quality resulted in a considerable improved final model for both MDFF and Rosetta, which have the
average TM-score of 0.82 and 0.81 respectively, the overall quality is still worse than that of DEMO-EM with an average
TM-score 0.85 (Supplementary Table 3). Compared to the rigid-body assembled models, the last stage of DEMO-EM

simulations improved the TM-score by 9.0%, which is 75% higher than that by MDFF (5.1%) and 133% higher than that by
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Rosetta (3.8%), demonstrating the efficiency of the atomic-level domain structure refinement of DEMO-EM even starting
from the same full-length models.

Case studies. In Figure 3, we present two illustrative examples showing the construction process of DEMO-EM. For
human xanthine oxidoreductase mutant F3 (PDBID: 2e1qC), a complex protein with 8 continuous domains and 2
discontinuous domains (one of them has three discontinuous segments) using a simulated density map with a medium
resolution of 5.3 A (Fig. 3a), one of the domains was initially docked into an incorrect region in the quasi-Newton based
search, resulting in an suboptimal full-length TM-score of 0.89 and RMSD=5.4 A. After the second step of rigid-body
assembly, the domain was moved to the correct map space but still with some regions stretched outside the maps in several
domains and have the model with a TM-score to 0.95 and RMSD=3.8 A. At the last step, the flexible simulations refined the
overall quality including drawing the exposed loops into the density map, which resulted in a further improved model with
TM-score=0.98 and RMSD=2.7 A. In this case, model quality of the 10 individual domains is also improved with average
TM-score/RMSD improved from 0.84/3.2A to 0.95/1.6A, respectively.

Figure 3b shows another example from the cation-independent mannose 6-phosphate receptor (PDBID: 1q25A), a
protein with 3 domains using a simulated density map with a low resolution of 9.9 A. Two domains from N- and C-terminus
were initially assigned into the same map space as they shared a similar fold with TM-score of 0.88; this resulted in a low
TM-score=0.62 of full-length model. Guided by the global model-density correlation and particle movements implemented
in the rigid-body assembly step, the incorrect domain fit was corrected with the full-length TM-score improved to 0.86. After
the flexible assembly and refinement simulations, almost all wrong folding regions in the model were corrected which
resulted in a global TM-score=0.96 and RMSD=2.2 A. Again, the average TM-score/RMSD of the individual domains were
significantly improved in this example from 0.76/3.6A to 0.94/1.2A, respectively.

In Supplementary Figure 5, we also present the full-length models created by MDFF and Rosetta starting with Situs
for these two examples, which have a TM-score/RMSD equal to 0.17/34.5A and 0.09/83.2A for 2e1qC, and 0.36/22.2A and
0.36/21.2A for 1q25A, respectively; the low quality models are mainly due to the initial full-length models with incorrect
domain orientations. The results of these case studies reinforce the advantage of the DEMO-EM pipeline for assembling

multi-domain protein complex structures.

Assemble multi-domain structures from experimental density maps

Dataset collection. To further examine the use of DEMO-EM on practical density maps, we collected a set of 51
non-redundant multi-domain proteins from EMDB that have experimental density map with resolution ranging from 2.8 to
10 A (Supplementary Fig. 6a). The size of these proteins runs from 144 to 1,664 residues with the number of domains
ranging from 2 to 8. To emulate the common real-life scenarios where the domain structures of target proteins are unknown,
we predict the domain boundaries from sequence by a deep-learning contact-based program FUpred'*, with the individual
domain structures modelled by I-TASSER.

Overall benchmark results. As shown in Figure 4a, FUpred did an acceptable job in domain boundary prediction and
correctly predicted the number of domains in 37 out of the 51 test proteins. In 70.6% of cases, the domain overlap rate is >80%
compared to the DomainParser assignment on the target structure, resulting in an average normalized domain overlap (NDO)
score of 0.83. The average TM-score of these domain models by I-TASSER was 0.72, where 94.0% of them had a correct
fold with TM-score >0.5 (Supplementary Fig. 6b). After the DEMO-EM assembly, the full-length models have an average
TM-score of 0.81 (Fig. 4b), where 92.2% of the cases have a correct global fold (TM-score>0.5). Meanwhile, the average

TM-score of individual domains in the full-length models was increased from 0.72 to 0.77 with 85.9% domains improved
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(Fig. 4¢), demonstrating again the ability of DEMO-EM on both levels of domain and full-length structure refinements.

The average full-length TM-score (0.81) is slightly lower than that of the benchmark results on synthesized density
maps (0.85), which is probably due to the fact that this dataset contains all targets while the former benchmark excluded
targets with I-TASSER domains with incorrect folds. In fact, there are 10 out of 51 cases that have at least one [-TASSER
domain model with TM-score <0.5, where the incorrect domain structures can result in incorrect domain-map match and
misguide the subsequent domain assembly and refinement simulations. If we excluded the 10 cases with incorrect domain
model, the overall TM-score increases to 0.86, which is largely consistent with the former benchmark data; this result also
demonstrates the robustness of DEMO-EM whose performance does not depend on the source of density maps from
syntheses or experiments.

As a control, we also listed in Table 1 the modeling results by MDFF and Rosetta starting from the same set of
I-TASSER domain models with the initial conformation assembled with Situs. The data shows again that DEMO-EM
outperformed the control methods, with the average TM-score of the full-length models 76.1% and 102.5% higher than that
of MDFF and Rosetta. The results are further confirmed by head-to-head TM-score comparison in Supplementary Fig. 7,
where DEMO-EM has a higher TM-score for nearly all the targets.

Case studies showing DEMO-EM models are likely closer to native than deposited models. In Figures 4d-g, we
present two representative examples with density maps taken from EMDB, in which the models generated by DEMO-EM
are likely better than the structural models deposited in the databases. First, Figure 4d shows the deposited model of human
PLC editing module in the PDB (PDBID: 6enyD with density map from EMD-3906 in EMDB), which was created by fitting
of a homology model (from PDBID 3f8uC) with the cryo-EM density map at a resolution of 5.8 A?” using FlexEM® and
Chimera®. Although the deposited model has a close similarity to the DEMO-EM model (Fig. 4¢) with TM-score=0.96 and
RMSD=1.4A, many regions of the deposited model are exposed to the outside of the density map (e.g., the helix pointed by
the arrow in Fig. 4d), which resulted in an overall density-model correlation coefficient (CC) of 0.82. Almost all these wrong
regions were corrected in the model constructed by DEMO-EM with the CC value improved to 0.85 where the fitting of the
entirce DEMO-EM model is shown in Supplementary Fig. 8a.

Figure 4f shows the deposited model of another example from the P2 polymerase inside in vitro assembled
bacteriophage phi6 polymerase complex (PDB 5fj6A with density map from EMD-3186), which contains 2 continuous
domains mediated with a discontinuous domain. The deposited model was produced by the fitting of a homology structure
(PDB 1hhsA) with the density map at a resolution of 7.9 A** using Chimera®® and Phenix*’. As there are many significant
noisy grid points in the density map, some regions of the deposited model (e.g. loops point by arrows in Fig. 4f) were
incorrectly modelled because they were not wrapped in the density map with an overall CC of 0.83. The model created by
DEMO-EM (Fig. 4g) on the same density map data fixed all these local errors and resulted in an improved CC score (=0.86).
Again, while the overall structure of deposited and DEMO-EM models is largely consistent (TM-score=0.95 and RMSD=1.9
A), the DEMO-EM model is likely closer to the target structure, based on the CC values and the better structure packing with
the experimental density maps (see the overall fitting of the DEMO-EM model in Supplementary Fig. 8b).

Despite the favorable CC score values and better local structure packing, it is important to note that in the absence of
other experimental information, it is still difficult to objectively assess if the DEMO-EM models are indeed closer to the
native than that by other methods. For further examination, we made publicly available the DEMO-EM models for all the
test proteins at https://zhanglab.ccmb.med.umich.edu/DEMO-EM/data_set/model_benchmark51.tar.gz.

Application to structural modeling of the SARS-CoV-2 genome
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Given the on-going COVID-19 pandemic, considerable effort has been made on structural determination of critical
proteins in the SARS-CoV-2, a pathogen coronavirus having caused the pandemic®'. In Figure 5, we present the full-length
structural models constructed by DEMO-EM for all six SAR-CoV-2 proteins which have the cryo-EM data deposited in
EMDB. Based on FUpred' prediction, five proteins contain multiple domains and two of them include discontinuous
domains (Supplementary Table 4). Compared to the deposited models, many of which contained missed residues due to the
loss of density data, the DEMO-EM models have an average TM-score/RMSD of 0.97/1.4A on the regions where the
deposited models have structure. Compared to the original density maps, DEMO-EM models achieved a slightly higher
average CC (0.82) than the deposited models (0.80).

The X-ray structure of the receptor binding domain (RBD) of the spike protein. which SARS-CoV-2 uses to bind the
angiotensin-converting enzyme 2 (ACE2) to invade the host cells, was recently released (PDB 7bz5A)*. In Fig 5g, we show
a comparison of the structural model built by the DEMO-EM with the released X-ray structure, where the DEMO-EM model
has a TM-score of 0.97 and RMSD of 0.92 A which are slightly better than that of the deposited model (TM-score=0.96 and
RMSD =0.97 A). The DEMO-EM models for all the six SARS-CoV-2 proteins are downloadable at
https://zhanglab.ccmb.med.umich.edu/DEMO-EM/data set/model sarscov?2.tar.gz.

DISCUSSION

Due to the scarcity of multi-domain template structures in the PDB, automated determination of multi-domain protein
structures from cryo-EM density becomes a significant challenge as most approaches in the community rely on fitting and
refinement of homology models. To address this issue, we developed a new method, DEMO-EM, dedicated to structure
assembly of multi-domain proteins from cryo-EM density maps. Without relying on global homologous templates, the
method integrates cutting-edge single-domain modeling and deep residual network learning techniques with progressive
rigid-body and flexible Monte Carlo simulations into a hierarchical pipeline that is ready for automated and large-scale
multi-domain protein structure prediction.

DEMO-EM was carefully tested over a comprehensive benchmark set of 357 non-homologous proteins containing
various numbers and types of domain structures using synthesized maps and 51 cases with experimental density data. The
results showed that DEMO-EM vyielded accurate full-length models for more than 91% cases with TM-score >0.8 using
density maps ranging from 2-10 A. Meanwhile, the accuracy of individual domains in the final full-length model was
significantly improved with the average TM-score increased by 8.9%. DEMO-EM was controlled with two widely used
cryo-EM based structure modeling methods (MDFF® and Rosetta'®). Starting from the same cryo-EM data and individually
predicted domain models, the TM-score of the full-length models constructed by DEMO-EM is 32.5% and 39.5% higher
than the control methods, corresponding to a p-value of 2.1E-98 and 1.1E-104 in Student’s t-test, respectively. As an
application, DEMO-EM was used to model six proteins from the SARS-CoV-2 with cryo-EM data available and generated
correct fold for all the targets, with some cases being likely closer to the native than the deposited models in the EMDB.

The superior performance of DEMO-EM stems partly from its ability for quick and reliably framework construction,
which is enabled by the unique single-domain structure modeling from I-TASSER and the coarse-grained density-map space
enumeration driven by the quasi-Newton searching process. Next, the domain-level rigid-body assembly simulation is
capable of correcting domain positions and inter-domain orientations by combining density map restraints with inter-domain
potentials, even when domain poses are occasionally incorrectly assigned in the initial frameworks. Finally, the atomic-level
flexible structural assembly simulations couple density-map correlations with deep learning-based inter-domain distance

profiles, which helps to simultaneously fine-tune local structural packing and inter-domain orientations and resulted in
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consistent improvement of both local and global structures.

Despite the promising domain assembly results, the applicability and accuracy of DEMO-EM could be further
improved in several aspects. First, most of the density maps in our tests are segmented from the full density map by UCSF
Chimera®. Although manual segmentation is often straightforward, the automatic map segmentation techniques (e.g. the
method in Phenix®) can be introduced into DEMO-EM. Second, all individual domain models are directly produced by
I-TASSER without using guidance from density data. An incorrect initial domain model may lead to a poor final model since
it affects the algorithm to identify correct poses for initial framework constructions. Therefore, combining the restraints of
density data with [-TASSER potentials for individual domain model generation will be helpful to improve the accuracy of
final models. In addition, recent studies have shown the deep-learning based contact and distance maps can significantly

improve the tertiary protein structure prediction accuracy’=*

, an updated I-TASSER program combining the new
neural-network based contact and distance restraints will further improve the quality of the DEMO-EM. Studies along these

lines are under progress.
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METHODS

DEMO-EM is hierarchical approach to cryo-EM based multi-domain protein structure determination, which consists of four
consecutive steps: (i) determining domain boundaries and modeling individual domains, (ii) matching domain models with
density map for initial framework generation, (iii) rigid-body domain structure assembly for domain position and orientation

optimization, and (iv) flexible structure assembly and refinement simulation of full-length structural models (Fig. 1).

Domain parsing and individual domain structure folding. Starting from the query amino acid sequence, inter-residue
contact maps are predicted by a deep-learning based neural network program, ResPRE*®. The domain boundaries are then
predicted using FUpred'* by maximizing the number of intra-domain contacts and minimizes the number of inter-domain
contacts. Next, the structural model of each domain is generated using I-TASSER' by assembling continuous fragments
excised from threading templates identified from the PDB?. For discontinuous domains that contain 2 or more segments
from separate regions of the query sequence, the domain models are obtained by sequentially connecting the sequences of all

segments.

Deep neural network-based inter-domain distance prediction. To help guide domain orientation assembly, an
inter-domain distance map was predicted by a deep residual neural-network algorithm, DomainDist, whose architecture is
outlined in Supplementary Fig. 9. DomainDist is an extension of the TripletRes®® that was originally developed to predict
inter-residue contact maps based on a triplet of coevolutionary matrices but was extended here for predicting the probability
of inter-residue distance within 36 bins in [2, 20] A. The DomainDist program was trained on a non-redundant dataset of
26,151 proteins collected from the PDB, where the multiple sequence alignment (MSA) for each protein was constructed
using HHDlits® searching against the Uniclust30 sequence database®. In addition to the 2D coevolutionary features
employed in TripletRes, three 1D features, including Hidden Markov Model (HMM), one-hot representation of sequence and
field parameters of Potts model, were adopted and tiled to two-dimension and concatenated with the 2D coevolutionary
features. The neural network structure was designed following convolutional strategies, using ResNet basic blocks*'. The
neural network model was trained by Adam optimization algorithm to marginally minimize cross-entropy loss. Both
intra-domain and inter-domain distance information was considered during the training, although only inter-domain distance

information was considered by DEMO-EM.

Quasi-Newton based domain and cryo-EM density-map matching. For each individual domain model from I-TASSER,
we used Limited-memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS), a quasi-Newton optimization algorithm with 6D
translation-rotation degrees of freedom, to identify the best location and orientation of the domain with the highest
correlation with the density map (Supplementary Fig. 10a). Since L-BEGS is a local optimization method whose results
depend on its initial solutions, we started L-BEGS simulation from multiple initial positions (translation vector) and
orientations (rotation angle) by enumerating all combinations of Euler angles (@, 6, and 1) with a step size of 30° across the

density-map space (Supplementary Fig. 10b). For a given domain pose, a density correlation score (DCS) calculated by
1 Z?]:Vfl(pEM(vi) — pem) (Pmo (Vi) — Pmo)
JZ?JfI(PEM(Vi) — Pem)? Z;V:Vfl(PMo (v:) — Pmo)?

is used to guide the L-BEGS simulations. Here, Ny, is the number of voxels (grid points) in the density map and pgy(v;)

Eqes =

(D

is the experimental density of the i-th voxel v;. The density probed from the decoy structure is calculated by ppo(v;) =
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3 2 2 2 . " . . ..
Z§=1 m ’(m) exp (— (2 4+n0 BR) |vi - x]-| ), where x; is the position of the j-th atom in the decoy, m is its mass,

and R is the resolution of the density map. To speed up the matching process, a density map with voxel size of 2A
interpolated from the original density map is employed. After the L-BEGS simulation, all poses for each domain with DCS
<0.5 (or the top 10 poses when more than 10 poses with DCS<0.5) are pooled and combined with the top poses of other
domains to form initial models of full-length models. The combination is made by permutating initial poses of all domains
and allows for domain overlaps, where top 30 full-length models with the lowest DCS are selected for the next step of

rigid-body domain match and assembly.

Rigid-body domain assembly. Two rounds of rigid-body domain assembly simulations are performed to optimize domain
positions and orientations. In the first round, domains are treated as particles where a quick replica-exchange Monte Carlo
(REMC) simulation is made to quickly adjust the individual domain positions based on the global model-density correlations.
In this step, the energy function contains only DCS (Eq. 1), where movements include rigid-body translation and rotation
around each domain’s center of mass (Supplementary Figs. 11a and b). It is noted that here DCS is calculated for the full
chain model which should lead to more optimal model result from the last step whose optimization was based on DCS from
individual domains. The density map with a voxel size of 3A interpolated from the original map is applied to reduce the
computational cost. 30 replicas are sampled in parallel with the temperature ranging from 0.1 to 15, and a global swap
movement between two neighboring replicas is performed for every 200 MC movements. The simulation is terminated when
the number of swaps reaches 20 * Ngopm, Where Ngopm, is the number of domains. The top 30 models are selected according
to the DCS for the next round.

The second round of rigid-body REMC simulation is to fine-tune the domain poses with a more detailed energy force
field as defined in Egs. (2-5), where a more elaborate density map with a voxel size of 2 A is interpolated from the original
density map for the assembly. Besides the translation and rotation movements used in the first round, three new movements
are added (Supplementary Figs. 11c-e), including self-rotation around the N-to-C axis of each domain, the translation along
the neighboring domains in sequence, and the pose exchange between two domains with similar structures (i.e., TM-score
> 0.75) according to TM-align*?, which is designed to reduce the case where domains with similar topology are swapped in
the initial positions. The similar parameter setting with the first round is employed for REMC simulation, but the top 40

models are selected according to DCS for the next step.

Energy function for rigid-body simulation. Conformations in the rigid-body assembly are assessed by an energy function

with four terms:

Ngom—1 Ndom Ndom
Erigid = WdcsEdcs + WrgErg + Whe Ebc(mrm + 1) + Wsc Z z Esc(m: Tl) (2)
m=1 m=1 n=m+1

where the first term density correlation score is the same as defined in Eq. (1) but here it is used for full-length model.
The second term is radius of gyration restraint, defined as
(Rgmax - Rgdecoy)2: if Rgdecoy > Rgmax

Erg = (Rgdecoy - Rgmin)z' if Rgmin < Rgdecoy (3)
0, otherwise

where Rggecoy 18 the radius of gyration of the decoy structure, Rgmax and Rgpi, are the maximum and minimum
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’
Nyl

(Vi — Veenter)?) /N,.;» which is calculated from the Ny,

estimated radius of gyration, respectively, i.e., Rgmax = \/ 0

N/ .
voly; is the

voxels with density >0.05 after normalizing density values to the range of 0 and 1, where Vcenter = sz=1

Nyol
center point of these voxels. Rgmin = 2.849L%31% (L is the query sequence length) is the statistical radius of gyration based
on the known multi-domain protein models in the PDB, which has a Pearson correlation coefficient of 0.995 with real values
(Supplementary Fig. 12).

The third term domain boundary connectivity is designed to constrain the connectivity of two neighboring domains
along sequence (m < n), which is calculated by
Epc(m,n) = (byn — bo)* 4)
where b,,, is the C, atom distance between the C-terminal residue of the m-th domain and the N-terminal of the n-th
domain. For the case including discontinuous domains, b,,, = (d; +d,)/2 is the average of two linker distances
connecting the continuous domain with the discontinuous segments (see Supplementary Fig. 13). b, = 3.84 is the
standard distance between neighboring Co atoms.

The last term steric clashes penalizes domain pairs occupying the same space, which is defined as

1 .
if A7 < dey

Eg(m,n) = Zym ¥om ™’ ©)

0, otherwise

where Ly, and L, represent the sequence length of the m-th and n-th domain, respectively. d;i" is the distance between
the i-th C, atom of the m-th domain and the j-th C, atom of the n-th domain in the decoy structure. dg,, = 3.75 A is the
cutoff of distance to define a clash.

The weighting factors in Eigiq is optimized based on a training set of 425 proteins that has sequence identity <30% to
the test proteins, by maximizing the correlation between total energy and RMSD of the decoy models to the native using the

differential evolution algorithm***. This resulted in wqcs = 300, Wrg = 1.13, wy,e = 0.55, and wy. = 0.91.

Atom-level flexible domain assembly and refinement. The process of flexible domain assembly and refinement contains
two stages of simulations with progressive voxel resolutions and sampling focuses. In the first stage, six different movements
are implemented (Supplementary Fig. 14): (i) LMProt* perturbation; (ii) segment rotation around the axis connecting two
terminus; (iii) conformational shift of segments along the sequence; (iv) rigid-body segment translation; (v) rigid-body tail
rotation; (vi) rigid-body domain-level translation and rotation. To enhance the efficiency, a nine-residue sliding window is
used to determine which region needs more aggressive conformation sampling, where a local score (LC;) for the sliding
window of the center residue (i) is computed as the average correlation coefficient between the nine-residue fragment and
the entire density map. The probability for the i-th residue to be selected for movement is set as
1, if LC; < 0.05
Pi=10.95 (1 - komin ) i 1, > 0,05 ©)

LCmax—LCmin

where LC.x and LC;,(= 0.05) represent the maximum and minimum local scores, respectively. As illustrated in
Supplementary Fig. 15, the setting in Eq. (6) helps ensure that the residues poorly correlated with the density map can
receive more sampling than others. An atomic-level force field (see Eqs. 7-13 below) is designed to guide the REMC
simulation at this stage, where a density map with a voxel size of 3A interpolated from the original density map is applied to

reduce the computation cost and the DCS is calculated based on backbone atoms. Similarly, 40 replicas with the temperature
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ranging from 0.01 to 15 are sampled in parallel. The global swap movement between two neighboring replicas is performed
for every 10v/L movements, where the simulation stops when the number of swaps reaches 200. All accepted decoys in the
simulation are clustered by SPICKER'’, and the centroid model in the first cluster is selected as a reference model for the
second stage.

In the second stage, a finer density map with a voxel size of 2 A is implemented with the DCS computed on all atoms.
In addition, all residues have the equal probability to be selected for the movement and sampling. The REMC simulation is
guided by the same force field defined in Egs. (7-13) but the reference model in Eq. (10) is replaced by the centroid structure
of the first cluster determined by SPICKER in the first stage. The simulation is terminated when the number of swaps
reaches to 100. The lowest-energy decoy is selected to construct the final model, with the side-chain atoms repacked by

FASPR'" followed by the FG-MD"? refinement.

DEMO-EM force field for flexible assembly simulation

The flexible domain assemble simulations are implemented at a semi-atomic level, with each residue represented by N, C,,
C, O, Cg, H, and side-chain center of mass (SC). Among the seven modeling units, only the three backbone atoms (N, Cg,
and C) have coordinates directly determined in conformation sampling, while the other four are determined based on their
relative positions to the three backbone atoms with parameters listed in Supplementary Table 5. The simulations are guided
a composite force field consisting of seven energy terms:

Ndgom Ndom
Efiexible = WdcsEdes T Wat Z Z Egqc(m,n) + W By + werEgr

m=1 n=m+1

L L
+ Z Z [WevEev(i'j) + thEhb(i'j: Tk) + WgscEgsc(i'j)] (7)
i=1 j=i+1

The first term counts for the density correlation, which is in the same form as Eq. (1) but calculated for full-length model.
The second term is the inter-domain Cg distance map as predicted by DomainDist:

Lm

Ly
Eg(m,n) = — 2 Z log (P (i.j, k(dj™)) + ) (8)

i=1 j=1

where dj7" is the distance between the i-th (g (C, for Glycine) atom in the m-th domain and j-th Cz atom in the n-th
domain, P (i, j, k(d{?” ) is the predicted probability of the distance d;j" located in the k-th distance bin, and & = 1E — 4

is the pseudo count to offset low-probability bins. In the calculation, we only consider atom pairs with probability peak
located in [2A, 20A], and these atom pairs with predicted probabilities >0.5 in the last bin [>20 A], which represents a low
prediction confidence in [2A, 20A], are excluded.

The third term counts for torsion angle variations by

a = — 2izs log(P (¢, ¥il4;, ) ©)

where ¢; and ; represent the torsion angle pair of the i-th residue; A; and S; are the residue type and secondary structure
type of the i-th residue, respectively; P(¢;,¥;|A;,S;) is the conditional probability calculated based on the Ramachandran
map of 6,023 high-resolution protein structures from the PDB*.

The fourth term domain structure restraint is to prevent topologies of individual domains deviating too far away from

the initial structures generated by I-TASSER:
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Ndom

Ear= ) lexlm il (10)

m=1

where L,, is the sequence length of the m-th domain; x;,, represents the i-th C, atom in the m-th domain of the decoy
after superposing the domain to the reference model by I-TASSER, and x;,, is the corresponding atom in the reference
model.

The fifth term excluded volume interaction is defined as
df; — af, ifd;; < oy
0, otherwise

Fev(if) = {07 an

where d;; is the distance between the i-th and j-th atoms from different residues and o;; is the sum of the van der Waals
radius of the atom pairs taken from CHARMM?’ (Supplementary Table 6).

The sixth term is the hydrogen bonding extended from QUARK™. As shown in Supplementary Fig. 16, only backbone
H-bonds between residues (i and j) are considered, where four geometric features, including the distance between O; and
H; (D(O;H;)); the inner angel between C;, O;, and H; (A(C; O;Hy)); the inner angle between O;, H;, and N;
(A(0O;,Hj,N;)); and the torsion angle between C;, O;, H;, and N; (T(C;, O;, Hj, N;)), are selected to evaluate the bonding.
We consider four types of Hydrogen bonds (T;: helix, j =i+ 4; T,: helix, j =i+ 3; Ts: parallel B-sheets; and T,:
antiparallel B-sheets). The energy term of a single backbone hydrogen bond is thus calculated by

(Z(fl(u) md® 1,

26
Enp(6,),Ti) = { 12)
Z (i@)) = pa)” otherwise
DT

where Tj, represents the kth type of hydrogen bond, f;(i,j) denotes the Ith feature of the decoy structure; u; and &y, are
the mean and standard deviation of the Ith feature in the kth type hydrogen bond, which were pre-calculated from the
high-resolution PDB structures and listed in Supplementary Table 7.

The last term generic sidechain-atom contact potential is used to evaluate the contacts between SC in one residue (i) and
N, Cq, C, O, Cg and SC atoms in another residue (j):

Egsc (i) = Upio(Ais A, My, Mj, diy) (13)
where A; (or Aj)is amino acid type of residue i (or j), M; (or M;) represents the atom type of the i (or j)-th residue, d;; is
the distance between the SC of the i-th residue and M; atom of the j-th residue, and Uy, (A4; 4, M;, M;,d;;) is the
corresponding polarity potential pre-calculated from 6,500 non-redundant high-resolution PDB structures (see

https://zhanglab.ccmb.med.umich.edu/DEMO-EM/potential.html).

Similarly, the weighting parameters in Eq. (7) are determined by maximizing the correlation between the total energy
and RMSD of the structure decoys of the 425 training proteins. This results in wycs = 320, wy, = 0.3, wg, = 1.5,
Wwge = 0.15, wey = 0.1, wyy, = 0.05, and wye = 0.1.
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Table 1. Summary of cryo-EM based domain structure assembly results by different methods.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

357 proteins with synthesized maps 51 proteins with experimental maps
Method Experimental domain I-TASSER domain P P P
TM-score| RMSD | TM-score | RMSD | [M5¢0re | RMSD Hpyy e | RMsp [T M-seore) RMSD
(domain)® | (domain) (domain) | (domain)
MDFF 0.83 7.7 0.55 17.2 0.65 6.2 0.46 22.7 0.52 9.0
Rosetta 0.79 8.1 0.53 17.5 0.57 8.1 0.40 25.6 0.44 12.9
DEMO-EM 0.99 0.6 0.85 6.0 0.83 4.1 0.81 7.3 0.77 44

* TM-score of individual domain models in full-length models. > RMSD of individual domains models in full-length models.
Bold font highlights the best result in each category.
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Figure 1 Flowchart of DEMO-EM illustrated with a 3-domain protein from the iron-dependent regulator of mycobacterium
tuberculosis (PDBID: 1fx7A). Starting from the query sequence, domain boundaries and models of each domain are first
predicted by FUpred'* and I-TASSER", respectively. Meanwhile, inter-domain distances are predicted with a deep
convolutional neural-network predictor DomainDist. Second, each of the domain models is independently fit into the density
map by quasi-Newton searching. Third, the initial full-length models are optimized by a two-step rigid-body REMC
simulation to minimize the DCS between the density map and full-length model (Eq. 1). Fourth, the lowest DCS model
selected from the rigid-body assembly simulations undergoes flexible assembly with atom-, segment-, and domain-level
refinements using REMC simulation guided by the DCS and inter-domain distance profiles coupled with a knowledge-based
force field, with the resulting decoy conformations clustered by SPICKER'” to obtain a centroid model. Finally, the flexible
assembly simulation is performed again for the full-atomic model with constraints from centroid models adding to the energy,
and the final model is created from the lowest energy model after side-chain repacking with FASPR'® and FG-MD".
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Figure 2. Summary of full-length structural models constructed by different approaches on 357 multi-domain proteins using
synthesized density maps. (a) Mean and distribution of TM-score for models by DEMO-EM, MDFF and Rosetta,
respectively. (b) Boxplot and distribution for RMSD of models by DEMO-EM, MDFF, and Rosetta, respectively. (c)
Head-to-head comparison between TM-score of initial models by domain matching and that of final models after rigid-body
assembly, flexible assembly and refinement. (d) Comparison between TM-score of individual domain models by I-TASSER
and that in final full-length models by DEMO-EM.
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Model from domain-density match
(TM-score=0.89, RMSD=5.4A)

Model from rigid-body domain assembly

Final model after flexible refinement
(TM-score=0.95, RMSD=3.8A)

(TM-score=0.98, RMSD=2.7A)

Model from domain-density match
(TM-score=0.62, RMSD=17.6A)

Model from rigid-body domain assembly

Final model after flexible refinement
(TM-score=0.86, RMSD=3.8A)

(TM-score=0.96, RMSD=2.2A)
Figure 3 Representative examples showing the process of DEMO-EM. Density maps are shown in gray shadow where
cartoons are DEMO-EM models with different colors indicating different domains. (a) 2e1qC, a protein with 10 domains (8

continuous domains and 2 discontinuous domains) using a simulated density map with a resolution of 5.3 A. (b) 1q25A, a
protein with 3 domains using a simulated density map with a resolution of 9.9A.
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Figure 4. Summary of structures constructed by different approaches using experimental density map. (a) Distribution of
NDO score of domain boundaries predicted by FUpred. (b) TM-score of full-length models constructed by DEMO-EM,
MDFF, and Rosetta. (¢) Head-to-head TM-score comparison of the initial individual models by I-TASSER and that in final
full-length models by DEMO-EM. (d, e) The deposited model in PDB (PDBID: 6eny) (d) and reconstructed model (¢) by
DEMO-EM for human PLC editing module, where different color represents different domains. (f, g) The deposited model in
PDB (PDBID: 5fj6) (f) and reproduced model (g) by DEMO-EM for the P2 polymerase inside in vitro assembled

bacteriophage phi6 polymerase complex.
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Figure 5. Overlay of structural models by DEMO-EM on the cryo-EM density maps for the six proteins in SARS-CoV-2
genome. (a) Spike protein (density map from EMD-21375). (b) NSP8 (EMD-11007). (¢) Helicase/NSP13 (EMD-22160). (d)
ORF3a (EMD-22136). (e) NSP7 (EMD-11007). (f) RNA-directed RNA polymerase/NSP12 (EMD-11007). (g) Comparison
of the Spike RBD domain by DEMO-EM (cyan) with the X-ray structure (red, PDB 7bz5A).
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