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Abstract 
SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, is evolving into            
different genetic variants by accumulating mutations as it spreads globally. In addition to this              
diversity of consensus genomes across patients, RNA viruses can also display genetic            
diversity within individual hosts, and co-existing viral variants may affect disease progression            
and the success of medical interventions. To systematically examine the intra-patient genetic            
diversity of SARS-CoV-2, we processed a large cohort of 3939 publicly-available deeply            
sequenced genomes with specialised bioinformatics software, along with 749 recently          
sequenced samples from Switzerland. We found that the distribution of diversity across            
patients and across genomic loci is very unbalanced with a minority of hosts and positions               
accounting for much of the diversity. For example, the D614G variant in the Spike gene,               
which is present in the consensus sequences of 67.4% of patients, is also highly diverse               
within hosts, with 29.7% of the public cohort being affected by this coexistence and              
exhibiting different variants. We also investigated the impact of several technical and            
epidemiological parameters on genetic heterogeneity and found that age, which is known to             
be correlated with poor disease outcomes, is a significant predictor of viral genetic diversity. 
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Author Summary 
Since it arose in late 2019, the new coronavirus (SARS-CoV-2) behind the COVID-19             
pandemic has mutated and evolved during its global spread. Individual patients may host             
different versions, or variants, of the virus, hallmarked by different mutations. We examine             
the diversity of genetic variants coexisting within patients across a cohort of 3939 publicly              
accessible samples and 749 recently sequenced samples from Switzerland. We find that a             
small number of patients carry most of the diversity, and that patients with more diversity               
tend to be older. We also find that most of the diversity is concentrated in certain regions and                  
positions of the virus genome. In particular, we find that a variant reported to increase               
infectivity is among the most diverse positions. Our study provides a large-scale survey of              
within-patient diversity of the SARS-CoV-2 genome. 

Introduction 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19,           
spread globally from its origins in Wuhan, China, toward the end of 2019, resulting in the                
World Health Organisation declaring COVID-19 a pandemic in March 2020. Initially           
diagnosed as a pneumonia of unknown origin​, huge research efforts have drastically            
developed our clinical knowledge of COVID-19 concerning its etiology ​[1]​, mode of            
transmission ​[2]​, identification of individuals at risk ​[3]​ and potential treatment strategies ​[4]​. 

COVID-19 is a respiratory disease marked by a variety of symptoms including a             
persistent cough, fatigue and anosmia ​[5]​, however, a subpopulation of          
SARS-CoV-2-infected individuals remains asymptomatic ​[6]​. The large variation in the          
severity of experienced symptoms, along with the virus incubation time ranging from 5-14             
days ​[7,8]​, may have contributed to its rapid propagation. At the end of September 2020,               
there have been more than 34 million confirmed cases with over a million deaths worldwide               
[9]​. 

SARS-CoV-2 belongs to the family ​Coronaviridae and is the latest of three zoonotic             
coronaviruses that have spilled over to infect humans in the past two decades following              
SARS-CoV in 2003 and MERS-CoV in 2012 ​[10]​. The SARS-CoV-2 single-stranded RNA            
genome consists of at least 13 open reading frames (ORFs) spanning 29,903 nucleotides             
[11]​. ORF1ab codes for a polyprotein from which the non-structural proteins originate,            
including the RNA-dependent RNA polymerase; this is then followed by the Spike (S) gene,              
the Envelope (E) gene, the Matrix (M) gene, the Nucleocapsid (N) gene and a host of                
accessory genes ​[12]​. Much like the related SARS-CoV, the Spike protein present on the              
surface of the SARS-CoV-2 virion is central for its access to the target host cell via binding of                  
the hACE2 receptor, S protein priming and finally fusion of the viral and target cell               
membranes ​[12–14]​. Zeigler et al. identified co-expression of hACE2 and TMPRSS2 (a host             
protease required for viral entry) in lung type II pneumocytes, nasal goblet secretory cells,              
and ileal absorptive enterocytes; these are currently thought to be the target cells of              
SARS-CoV-2 leading to COVID-19 ​[15]​. 
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Viral isolation and sequencing efforts throughout the world have permitted the           
interrogation of the SARS-CoV-2 genome, providing a deeper understanding of the evolution            
of the virus, its proximal origin and revealing patterns of its global spread ​[16,17]​. These               
efforts are largely centered on reverse transcription of the viral RNA genome followed by              
PCR amplicon and hybrid capture based sequencing using Oxford Nanopore and Illumina            
sequencers ​[18]​. The sequences generated are largely deposited in data repositories such            
as the sequence read archive (SRA) and GISAID ​[19]​. The availability of these sequences              
has allowed for platforms such as Nextstrain ​[20] to continually update and track viral              
evolution and spread, and to illuminate the viral genetic diversity among carriers ​[21–24]​. 

At this inter-host level, ​epidemiological studies often employ per-patient ​consensus          
sequences, which summarize each patient’s virus population into a single sequence and            
ignore minor variants. ​However, RNA viruses generally exhibit high mutation rates due to             
error-prone viral RNA polymerases, which typically leads to the presence of various viral             
variants within a single host ​[25]​. The resulting intra-host diversity has been shown to affect               
disease progression ​[26]​, tissue tropism ​[27]​, transmission risk ​[28]​, transmission          
heterogeneity ​[29]​, and treatment outcome ​[30,31] in various RNA viruses. Recent findings            
indicate that the mutation rate of SARS-CoV-2 is about as high as the one observed in the                 
SARS-CoV genome (0.80–2.38 × 10​–3 nucleotide substitutions per site per year) ​[32,33]​.            
Although coronaviruses have evolved a proofreading capability attributed to Nonstructural          
protein 14 resulting in lower mutation rates than other positive-sense ssRNA viruses ​[34–36]​,             
the study of the intra-host genetic diversity of the novel SARS-CoV-2 virus remains important              
to gain a deeper understanding of its evolution and transmission dynamics and possible             
implications on its pathology. Previous studies highlight that intra-host genetic diversity in            
clinical samples is indeed prevalent, and some genomic regions that are susceptible to             
alterations in the SARS-CoV-2 virus have been identified ​[37,38]​. Accounting for intra-host            
diversity can also improve the resolution of phylogenomic analyses of SARS-CoV-2 ​[39] and             
our ability to detect selection pressure ​[40]​.  

To assess the within-host genetic diversity of different viral variants, deep-coverage           
sequencing is needed to access low-frequency subclonal mutations. However, calling          
low-frequency mutations reliably from deep sequencing data remains challenging because of           
various amplification and sequencing errors. S​everal computational methods have been          
proposed for this task ​[41,42]​, and specialised bioinformatics pipelines have been developed            
to streamline and automate the analysis from raw sequencing reads to consensus            
sequences and single-nucleotide variants ​[43,44]​. Here, we employ V-pipe ​[44]​, a workflow            
that includes quality control, read mapping and mutation calling, to robustly identify genetic             
diversity of viral genomes. We ​examine the intra-host diversity across a large cohort of 3939               
public SARS-CoV-2 samples and, as an independent validation cohort, 749 additional           
samples which have recently been sequenced to study the spread of ​SARS-CoV-2 in             
Switzerland ​[45]​. We analyze the distribution of genetic diversity across the genome,            
including uncovering highly diverse bases and small regions, and we explore the diversity             
across patient samples. By integrating technical and epidemiological covariates, we show           
that within-patient viral genetic diversity increases with age of the infected patient. 
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a) 

b) 

Figure 1: (a) Different viral variants may coexist in the same host such that the               
sequencing reads contain a mixture of the different components and their SNVs. We             
employ the bioinformatics pipeline V-pipe for automated end-to-end processing of the           
raw sequencing data and calling of SNVs and their frequencies ​[44]​. (b) An example              
output of the workflow for a single sample (SRR11953858) displaying variations in the             
coverage (blue histogram, right y-axis) and the frequencies of the different SNVs (black             
lollipops, left y-axis) across the genome (x-axis). Along with clonal mutations with            
frequencies near 100%, and many low-frequency variants, several other mutations have           
frequencies of around 40% and 60% in this example. 

Results 
We downloaded sequencing data from the SRA from a total of 5934 SARS-CoV-2             

samples, which had undergone deep sequencing with Illumina technology. Samples with low            
(median below 1000) or highly variable (lower quartile below 100 or upper quartile above              
10,000) coverage were removed (Figure S1). The remaining 3940 samples were processed            
using V-pipe ​[44] (Figure 1a). For each sample, we obtained the coverage across the              
genome and all mutated positions, including all variant bases and their frequencies (Figure             
1b). A single sample with no detected mutations at all was removed to leave a final public                 
cohort of 3939 SARS-CoV-2 samples. In addition, we analyze a new set of 749 sequences               
derived from samples collected in Switzerland. These sequences were generated as part of             
our sequencing effort described in ​[45]​. While ​[45] uses only the consensus sequences for a               
phylodynamic analysis, here we directly analyse the entire set of raw deep-sequencing            
reads to assess intra-host diversity. This uniformly produced set of sequences, which we             
make public on the SRA, serves as a validation cohort. 
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a) 

b) 

Figure 2: Intra-host diversity measured as entropy of the nucleotide distribution across            
genome and samples. Only positions with diversity in at least 4% of the samples are               
selected for each cohort, with the union of positions displayed for comparison. (a) the              
public cohort, (b) the data from Switzerland. 

 
As a measure of intra-host genetic diversity, we computed the entropy of the             

nucleotide distribution for each sample and each genomic locus (Materials and Methods).            
Low entropy indicates a highly conserved site in the patient’s virus population, while high              
entropy is indicative of variation among nucleotides. 
 

The quartiles of the coverage over the public samples (Figure S2) display typical             
coverages of over a thousand reads at each genomic site (in line with the coverage filters)                
meaning that we can detect low-frequency SNVs down to 1-2% ​[46] (or using estimates from               
the Lander-Waterman model ​[47]​). However, there are regular dips at the primer locations             
[48]​, and noticeable wider dips between genomic positions around 19 to 23 kb. This region               
covers the end of gene ​ORF1ab encoding the endoribonuclease and 2'-O-methyltransferase,           
as well as much of the ​S gene producing the S1 subunit, needed for the initial attachment of                  
the virus to the target cell. 
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We observe a wide spectrum of diversity both across the genome and across             
samples (Figure 2, focussing on the positions across the genome mutated in at least 4% of                
the samples). In particular there are subclonal regions visible (as darker contiguous bars in              
Figure 2) at the start of ​ORF1ab​, in the Spike ​S gene and across much of the Matrix ​M gene.                    
There are also highly diverse individual bases and small regions (Tables S1-S4), particularly             
in the public data.  

 
Next, we summarize genetic diversity per gene by computing the average entropy            

across all positions of the gene. We observe roughly similar diversity for each gene in the                
public cohort, except for gene ​M which is much more diverse, and ​ORF7b displays hardly               
any diversity (Figure 3a), while we observe the same trends, but larger differences across              
genes in the Swiss cohort (Figure 3b). 

 
The most diverse site in the public data (Table S1 and Figure 3a), which has clonal                

or subclonal mutations in nearly half the samples, is at position 11075 in the region of the                 
ORF1ab gene coding for non-structural protein 6, a transmembrane protein containing 7            
transmembrane helices. Most of the diversity at this position is derived from low-frequency             
deletions, which would alter downstream amino acids and introduce a premature stop codon.             
Among the mutated samples, deletions occur at an average rate of 2.62%. 12.5% of mutated               
samples include variants with a T>C substitution, which occurs with an average frequency of              
1.75% among those samples (corresponding to an overall average rate of 0.22% among all              
mutated samples). In the reference genome, the codon incorporates a Phenylalanine amino            
acid (Phe35 of nsp6), however, any variation here will lead to a change in the inserted amino                 
acid; for example, a T>C mutation results in the incorporation of a Leucine.  
 

Another residue in close proximity to Phe35, namely Leu37 of nsp6, has often been              
found to be replaced by a Phenylalanine residue in recent sequences from Europe, Asia and               
America ​[49]​. Here, we also identify a high entropy at position 11083 inside the codon of                
Leu37 (Table S1), which is affected in around a quarter of samples. Any alteration from the                
reference base G to either a T or C results in a Phenylalanine residue as opposed to a                  
Leucine. Here we observe a large average frequency of ​Thymine ​bases (44.65%) and             
common deletions (4.93%) which also lead to a Phenylalanine residue and a premature stop              
codon. 

 
Genomic position 23403 is the site at which an A>G mutation causes the well-known              

D614G amino acid alteration in the Spike region. Studies suggest that this alteration             
provides a fitness advantage and becomes the more prevalent variant in the population over              
time ​[50]​, and it is also the dominant variant in our public cohort. We find that it is among the                    
100 most diverse positions in the SARS-CoV-2 genome (rank 95 in our cohort) with 36.0% of                
our samples having mutations there relative to our cohort consensus G, and 29.7% having              
diversity of different variants coexisting. Among the mutations, there is an average frequency             
of 90.4% A, 9.5% G and 0.1% deletions. In the Swiss cohort, position 23403 has the second                 
highest diversity among all individual bases (Table S2). 
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a) 

b) 

Figure 3: The average entropy per gene (boxes), log transformed, along with the 10 most               
diverse (in terms of cumulative entropy over samples) positions (triangles) and the 10             
most diverse consecutive regions (dots) from Tables S1 and S3 for the public data in (a)                
and Tables S2 and S4 for the data from Switzerland in (b). 

 
We also assessed genetic diversity over consecutive genomic regions (Materials and           

Methods). The most diverse regions in both the public and Swiss data (Tables S3 and S4,                
adjacent sites all with a log entropy above 3.0 for the public data and above 2.0 for the Swiss                   
data) include a span of 16 bases at the start of the ​ORF1ab gene (Figure 3). This region                  
forms part of the nsp1 protein which shuts down host mRNA translation and protein              
production via interactions with the 40S and 80S ribosomal subunits. A notable consequence             
of this nsp1 induced inhibition of translation and protein production is the reduction in innate               
immune response activity, specifically interferon signalling ​[51]​. 
 

The next most diverse genomic region (Tables S3 and S4) consists of two adjacent              
positions at 29187 and 29188 within a single codon in the ​N gene forming the nucleoprotein.                
The reference bases at those two positions are C and A, respectively, which results in the                
incorporation of an Alanine residue at position 305 of the nucleoprotein (Ala305). However,             
due to the redundancy of the genetic code, alterations in position 29188 alone do not lead to                 
an alteration on the protein level.  

 
The remaining regions in Table S3 with a length greater than two lie within the ​M and                 

S genes, and are similarly present in the Swiss cohort (Table S4). The 41 nucleotides from                
26780 to 26820 lead to the incorporation of 15 amino acids from Cys86 to Phe100 forming a                 
section of the matrix protein’s transmembrane region. The matrix protein is known to be              
central in viral assembly with several interacting partners including itself, the envelope            
protein, the nucleoprotein and the spike protein ​[52,53]​. The spike protein, when primed, is              
divided into the S1 and S2 subunits with S1 being essential for hACE2 recognition and S2                
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mediating viral entry into the host cell. Another region of high entropy comprises 30              
nucleotides within the Spike gene which incorporates 11 amino acids to the S1 subunit of               
SARS-Cov-2 ranging from Ile664 to Tyr674. These amino acids lie between the receptor             
binding domain and Furin cleavage site needed for S protein priming ​[54,55]​. 
 

The distribution of total entropy per base has a long tail (Figure 4a) resulting in               
locations with extremely high diversity, such as the examples discussed above, while the             
majority of the genome is relatively conserved. Taking a logarithmic transform of the entropy              
we can observe much more detail in the distribution, with a roughly normal distribution and a                
slight negative skew in the public data (Figure 4a inset). Considering the entropy per sample               
instead provides a picture of how diversity is distributed among samples. We again find a               
long tail (Figure 4b) with certain individuals having vastly more internal diversity than the              
majority of samples dominated by clonal variants and low-frequency mutations. Detecting           
diversity in each sample is heavily dependent on the sequencing technology, sample            
processing, and sequencing depth. For example, all the most diverse samples (Table S5)             
come from one SRA study (SRP253798) which makes up 29% of the entire cohort. The               
samples with the highest detected diversity had between 10% and 30% of the genome              
affected, with the vast majority of their mutations (over 99.8%) being subclonal and the              
coexistence of more than one character (base or deletion) in the mapped reads. 
 

Like the entropy, the number of clonally or subclonally mutated positions per sample             
also has a long tail (Figure S3) with, in the public data, for example, quartiles at 119, 211                  
and 378.5 positions being mutated (corresponding to 0.40%, 0.71% and 1.27% of the             
genome) but a maximum of 8705 positions (29.11% of the genome). 
 

Finally, we tested the hypothesis that epidemiological parameters are related to viral            
genetic diversity. Specifically, to determine whether the host's age, sex or geographical            
location predict the diversity of their virus population, we performed regression modelling on             
the subset of samples for which we have such information. This resulted in 1043 samples               
from Australia which were sequenced with paired-end amplicon sequencing with PCR           
amplification. We also adjusted for technical parameters of the sequencing to avoid            
confounding (Materials and Methods). We found that sex is not a significant predictor of              
diversity (​p = 0.50). By contrast, age is significantly associated with intra-host viral genetic              
diversity (​p = ​4 × 10​–4​) with each decade increasing the total entropy by 8.6% on average                 
(Table 1, Figure S5). 
 

Clinical covariates were not available for the Swiss cohort, but sequencing date was             
utilized as a proxy for decreasing age, since testing expanded to younger populations over              
time (Figure S6). The significant decrease in diversity over time ( ​p < ​10​–7​; ​Table 2, Figure                
S7) in the Swiss cohort therefore corroborates the association of increased diversity with age              
uncovered in the public cohort. 
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a) b) 

Figure 4: The distributions of the total entropy in the public and Swiss cohorts per position                
(a) and per sample (b). Insets: Under a logarithmic transformation, the distribution per             
position (a) and per sample (b). 

Discussion 
We processed a large cohort of 3939 deeply sequenced public SARS-CoV-2           

genomes, and 749 samples from Switzerland, with the bioinformatics software V-pipe ​[44] to             
uncover within-patient genetic diversity. We observe a heavy tail distribution in diversity per             
sample and per position indicating that much of the diversity is concentrated in small              
numbers of sites and patients. The most diverse small regions were consistent between the              
public and Swiss data, though the individual bases were more varied. 
 

Detecting and quantifying intra-patient genetic diversity from deep sequencing data is           
technically challenging. It may be heavily influenced by the sample preparation and how it is               
sequenced, along with possible artifacts arising from the process, so that extremely diverse             
patients may not be comparable across cohorts. Accounting for such technical parameters of             
the sequencing process and coverage, which affects the detection limit of diversity, we find              
that age is a significant predictor of diversity in the public data. The model predicts that on                 
average genetic diversity increases by 8.6% every ten years. The increase in diversity with              
host age is corroborated in the Swiss data. Age has previously been associated strongly with               
worse disease outcome and higher death rates ​[56]​, along with concomitant comorbidities            
[57]​. With high-quality clinical and genetic data, it will be highly relevant to see whether               
diversity is a cause or a consequence of disease progression. Likewise, with future             
transmission network data it will be interesting to uncover whether diversity increases            
infectiousness, as for influenza ​[28]​. 
 

The detection of subclonal mutations is affected by the sequencing depth at each             
position, and across the genome depending on the amplification and capture of RNA for              
sequencing some regions may be more poorly resolved. The coverage distribution therefore            
affects our ability to detect highly diverse bases. With this caveat, the most diverse gene is                
the Matrix ​M gene while highly diverse positions include a mix of low-frequency variants              
common to a quarter of the cohort or more, and rarer high-frequency subclonal mutations in               
around 5% of the cohort. The observation of ​common low-frequency and less common             
high-frequency genetic variants is in line with previous research on both intra- and inter-host              
genetic diversity of SARS-CoV-2 ​[21,39]​. The D614G variant, which appears to increase            
infectivity and is becoming more dominant over time ​[50] is the dominant variant in our public                
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cohort. It also exhibits high intra-host diversity with 29.7% of the cohort experiencing             
subclonal mutations with the different variants coexisting. This diversity is mimicked in the             
data from Switzerland, where the D614G variant is actually encoded by the second most              
diverse genomic position. 

Materials and Methods 
Public data 

We retrieved data from the Sequence Read Archive        
(​https://www.ncbi.nlm.nih.gov/sra​) on June 10, 2020. Samples with the term '"Severe acute           
respiratory syndrome coronavirus 2"[Organism] OR <Sars-Cov-2[All Fields]=' were filtered         
and only one copy of duplicates with the same BioSample ID was retained. We used the                
meta file to further filter the samples by Illumina technology. This resulted in 5934 samples               
which were associated with downloadable data. 

Subsequent to downloading the selected sample set, we trimmed all read files using             
PRINSEQ (​[58] version 0.20.4, parameters: -ns_max_n 4 -min_qual_mean 30 -trim_qual_left          
30 -trim_qual_right 30 -trim_qual_window 10 -min_len <80% of average read length>),           
mapped them to NC_045512.2 using bwa (​[59] version 0.7.17-r1188, subcommand: mem).           
Coverage quartiles for each sample are displayed in Figure S1. 

 
Data from samples collected in Switzerland 

Sample collection and sequencing are detailed in ​[45]​. Briefly, we obtained RNA            
samples extracted from nasal swab tests which had previously tested positive on RT-qPCR             
from Viollier AG laboratory and sequenced them at the Genomics Facility Basel. We             
performed reverse transcription using random hexamers and PCR amplified the resulting           
DNA with primers from the artic-ncov2019 protocol       
[​https://github.com/artic-network/artic-ncov2019/tree/master/primer_schemes/nCoV-2019/V3
]. We prepared libraries from these 4000 bp-long amplicons using Illumina TruSeq adapter             
sequences and sequenced them on an Illumina MiSeq System (Paired-end sequencing, 2x            
251 cycle). The phylogenetic relationship between the consensus sequence of 681 samples            
from this collection has been previously analyzed as part of the subset of GISAID data               
available for Switzerland until July 10, 2020 in [24] and results based on the consensus               
sequences of the full dataset are presented in ​[45]​. Here we focus on the raw reads directly                 
and analyse the deep sequencing data to uncover within host diversity. The collection of              
swabs analysed here spans a time period from Mar 4, 2020 to August 13, 2020, with                
samples from across Switzerland. The analysed reads are available in the SRA (see Data              
Availability below). 

Data on the age distribution of COVID-19 cases in Switzerland was downloaded from             
[​https://www.bag.admin.ch/dam/bag/de/dokumente/mt/k-und-i/aktuelle-ausbrueche-pandemi
en/2019-nCoV/covid-19-basisdaten-fallzahlen.xlsx.download.xlsx/Dashboards_1&2_COVID
19_swiss_data_pv.xlsx​] on September 21, 2020. 
 
Filtering 

Samples were subset by applying a coverage filter (minimum lower quartile: 100,            
minimum median: 1000, maximum upper quartile: 10000). After this filtering, 3940 public            
samples and 749 samples from Switzerland were retained for later analyses. 
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Data processing 
We used V-pipe (​[44]​; sars-cov2 branch of ​https://github.com/cbg-ethz/V-pipe​) to call          

variants for each sample using ShoRAH ​[60] and default settings, including discarding            
deletions with a frequency below 0.5%. One sample had no remaining variants detected and              
was excluded giving a final cohort size of 3939. For each called variant per sample, we                
computed the relative frequency ​f​k of each character ​k (nucleotide A, C, G, T, or deletion)                
among the mapped reads at that position. The entropy is then computed as 

  (f )H =  − ∑
5

k = 1
f k log k    

summarising the five frequencies in a single measure of diversity. The entropy is zero              
whenever one character has a frequency of 100%, and is maximised when all the characters               
have equal frequency 1/5, giving a maximum value of log(5) ≈ 1.61. We denote the entropy                
of sample at base by and compute the total entropy per position in the genome by  i    j   H ij             

summing over samples (Table S1 and S2). For the data from Switzerland we   H j =  ∑
 

i
H ij            

additionally multiply by the ratio of cohort sizes (3939/749) to make the total entropy values               
per position comparable across the cohorts. We compute the average entropy over a             

consecutive genomic region as , and take the logarithm to obtain the log   J    1
J| | ∑

 

j∈J
H j          

average entropy (Table S3 and S4). We compute the total entropy per sample by summing               

over bases  (Table S5).H i =  ∑
 

j
H ij  

 
Regression modelling 

To evaluate which covariates are predictive of diversity, we build a regression model             
on the public data of log total entropy on age, sex, and country of origin. To adjust for the                   
possible effects of coverage and sequencing technology on the diversity, we include factors             
for paired-end or single-end sequencing, the assay type, the library selection and the SRA              
study. We also include the logarithm of the median coverage. Since not only the average               
coverage, but its variability may affect the ability to detect SNVs, we further include the IQR                
of the coverage, divided by the median ​m ​, and again log transformed: 

 
        log(entropy)  ~  age + sex + country + sequencing factors + log(median coverage) + log(IQR/​m​)  

  
Filtering the samples which have age and sex information left 1060 samples, of             

which all but 17 were from Australia. We therefore retained just those 1043 from Australia,               
and removed the country dependence from the regression. All remaining samples were            
paired-end amplicon sequencing with PCR amplification from the study SRP253798, so           
those factors were also removed to provide the final regression: 

 
log(entropy)  ~  age + sex + log(median coverage) + log(IQR/​m​)  
 

Of the 1043 samples, 480 (46.0%) were female and 563 (54.0%) were male, while the               
distribution of ages (Figure S4) has a median value of 46 and lower and upper quartiles at                 
29 and 60. The results of the regression are listed in Table 1. 
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Predictor Coefficient Standard error t-statistic p-value 

sex (male) -0.0563 0.0839 -0.671 0.50 

age (decade) 0.0822 0.0231 3.56 0.00038 

log(median coverage) 0.190 0.125 1.51 0.13 

log(IQR/​m​) 1.48 0.122 12.1 0< 2 · 1 −16  

Table 1: regression coefficients of log entropy against the above predictors for the 1043              
public samples with covariate information. 

 
For the data from Switzerland, we do not have clinical covariates, only the date of               

sequencing. However, we can use the sequencing date as a proxy for age, because over               
time, the age distribution has progressively reduced in Switzerland as a whole (Figure S6).              
All samples were processed in the same way, so for the regression we model 

 
log(entropy)  ~  date + log(median coverage) + log(IQR/​m​)  

 
with the results in Table 2. 
 

Predictor Coefficient Standard error t-statistic p-value 

date (30 days) -0.108 0.019 -5.68 .95 01 · 1 −8  

log(median coverage) 0.196 0.107 1.83 0.068 

log(IQR/m) 1.41 0.131 10.8 0< 2 · 1 −16  

Table 2: regression coefficients of log entropy against the above predictors for the 749              
Swiss samples. 

 
For visualisation purposes, we regress patient age on sample date from data            

collected about positive tests in Switzerland as a whole (Figure S6). The model is then used                
to predict the age of our 749 deeply sequenced samples based on the sequencing date.               
Against the predicted age, we plot the log total entropy, adjusted for the coverage              
covariates, to show how the negative correlation with date (Table 2) corroborates an             
increase in entropy with age (Figure S7).  
 
Code availability 

The source code to process the samples and perform and reproduce the analyses is              
available on GitHub (​https://github.com/cbg-ethz/SARS-CoV-2_Analysis​) in the form of        
multiple Snakemake ​[61]​ workflows. 

 
Data availability 

The public data is available from the SRA, as described in the Methods and Materials               
section. The Swiss data has been added to the SRA with accession number PRJEB38472,              
scheduled to be publicly available from November 1, 2020. 
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Supplementary Figures and Tables 

 

Figure S1. The median coverage, along with the lower and upper quartiles for the 5934               
samples downloaded from the Sequence Read Archive. The dashed grey lines           
correspond to the coverage filters used to subset the samples before further processing             
(minimum lower quartile: 100, minimum median: 1000, maximum upper quartile: 10000). 

 

 

Figure S2: The lower and upper quartiles of the coverage per genomic position, along with               
the median coverage, among the 3940 coverage-filtered public sample sequences. The           
locations of typical primers are indicated along the bottom row (solid at the start of left                
primers and dashed at the end of right primers). 
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position gene log 
entropy 

mutated 
samples (%) 

ref. 
base 

A 
(%) 

C 
(%) 

G 
(%) 

T 
(%) 

del. 
(%) 

11075 ORF1ab 5.51 49.30 T 0.00 0.22 0.00 97.16 2.62 
11083 ORF1ab 5.37 24.37 G 0.01 0.01 50.40 44.65 4.93 
24933 S 4.62 6.93 G 0.02 0.92 78.08 20.54 0.44 
15965 ORF1ab 4.55 28.21 G 0.00 0.00 98.31 1.35 0.34 
558 ORF1ab 4.47 5.97 G 0.04 0.41 82.82 16.37 0.36 
3564 ORF1ab 4.44 4.32 G 0.08 0.34 64.54 34.63 0.42 
1730 ORF1ab 4.40 24.45 G 1.84 0.00 98.16 0.00 0.00 
10986 ORF1ab 4.36 5.69 G 0.91 0.27 88.20 9.19 1.43 
6696 ORF1ab 4.30 22.34 C 0.01 96.92 0.00 2.97 0.10 
28079 ORF8 4.30 4.72 G 0.00 0.13 83.48 14.62 1.76 

Table S1: The 10 most diverse positions in the genome in the public data ranked by their                 
entropy, along with the fraction of samples exhibiting any mutation, and, for those samples,              
the distribution of average mutation frequencies across the different bases or deletion. 

 
position gene log 

entropy 
mutated 

samples (%) 
ref. 

base 
A 

(%) 
C 

(%) 
G 

(%) 
T 

(%) 
del. 
(%) 

3037 ORF1ab 3.25 21.50 C 0 5.25 0 94.61 0.14 
23403 S 3.18 43.39 A 3.47 0 96.46 0.04 0.02 
13225 ORF1ab 3.00 7.61 C 0 94.10 0 5.89 0.01 
10265 ORF1ab 2.98 10.68 G 91.02 0 8.83 0 0.14 
27040 M 2.86 25.77 C 0.25 99.75 0 0 0 
26465 E 2.8 8.81 T 0 0 0 99.17 0.83 
19718 ORF1ab 2.79 10.01 C 0 2.49 0 97.49 0.02 
27033 M 2.77 24.97 G 0 0 99.76 0.24 0 
25521 ORF3a 2.76 1.74 C 0 85.74 0 14.26 0 
26434 E 2.66 21.9 A 99.76 0 0.24 0 0 

Table S2: The 10 most diverse positions in the genome in the Swiss data ranked by their                 
entropy, along mutation patterns for those positions across the cohort. 

 
start end length gene log average 

entropy 
508 523 16 ORF1ab 5.4 

29187 29188 2 N 5.32 
26780 26820 41 M 4.66 
23553 23582 30 S 4.35 
12140 12141 2 ORF1ab 4.16 
25134 25135 2 S 3.93 
15768 15769 2 ORF1ab 3.9 
13570 13571 2 ORF1ab 3.89 
13239 13240 2 ORF1ab 3.79 
24911 24912 2 S 3.65 

Table S3: The 10 most diverse consecutive regions in the genome in the public data,               
ranked by their average entropy. 
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start end length gene log average 
entropy 

508 523 16 ORF1ab 5.46 
29187 29188 2 N 5.05 
26775 26800 26 M 5.02 
23550 23583 34 S 4.62 
4529 4536 8 ORF1ab 3.56 
24013 24028 16 S 3.51 
28253 28254 2 ORF8 3.37 
4542 4556 15 ORF1ab 3.25 
13454 13494 41 ORF1ab 3.03 
28881 28883 3 N 2.98 

Table S4: The 10 most diverse consecutive regions in the genome in the Swiss data,               
ranked by their average entropy. 

 
sample ID log 

entropy 
mutated 

positions (%) 
   sample ID log 

entropy 
mutated 

positions (%) 
SRR11577862 7.08 17.41    SRR11578392 6.82 18.40 
SRR11578151 7.03 29.11    SRR11578356 6.76 19.23 
SRR11577865 6.97 19.92    SRR11578031 6.67 11.54 
SRR11578029 6.90 14.60    SRR11577858 6.61 17.94 
SRR11578028 6.88 20.05    SRR11578137 6.54 19.26 

Table S5: The 10 samples with the highest measured diversity, ranked by their entropy,              
and the fraction of their positions affected by mutations. 

 

 

Figure S3: The distributions of the number of mutated positions per sample. Inset: the              
distribution under a logarithmic transform. 
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Figure S4: The distributions of ages of the 1043 public samples in the regression              
modelling. 

 
 
 

 

Figure S5: The dependence of log total entropy on age for the 1043 public samples, after                
adjustment for sex and sequencing coverage covariates in the regression modelling. 
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Figure S6: The distribution of ages of positive Covid-19 tests in Switzerland as a whole,               
covering the period where our cohort of deeply sequenced samples was collected. 

 
 
 
 

 

Figure S7: The dependence of log total entropy on predicted age for the 749 Swiss               
samples, after adjustment for sequencing coverage covariates in the regression modelling.           
The predicted age is constructed from a linear model of age on date built with the data                 
displayed in Figure S6. 
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