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Abstract

SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, is evolving into
different genetic variants by accumulating mutations as it spreads globally. In addition to this
diversity of consensus genomes across patients, RNA viruses can also display genetic
diversity within individual hosts, and co-existing viral variants may affect disease progression
and the success of medical interventions. To systematically examine the intra-patient genetic
diversity of SARS-CoV-2, we processed a large cohort of 3939 publicly-available deeply
sequenced genomes with specialised bioinformatics software, along with 749 recently
sequenced samples from Switzerland. We found that the distribution of diversity across
patients and across genomic loci is very unbalanced with a minority of hosts and positions
accounting for much of the diversity. For example, the D614G variant in the Spike gene,
which is present in the consensus sequences of 67.4% of patients, is also highly diverse
within hosts, with 29.7% of the public cohort being affected by this coexistence and
exhibiting different variants. We also investigated the impact of several technical and
epidemiological parameters on genetic heterogeneity and found that age, which is known to
be correlated with poor disease outcomes, is a significant predictor of viral genetic diversity.
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Author Summary

Since it arose in late 2019, the new coronavirus (SARS-CoV-2) behind the COVID-19
pandemic has mutated and evolved during its global spread. Individual patients may host
different versions, or variants, of the virus, hallmarked by different mutations. We examine
the diversity of genetic variants coexisting within patients across a cohort of 3939 publicly
accessible samples and 749 recently sequenced samples from Switzerland. We find that a
small number of patients carry most of the diversity, and that patients with more diversity
tend to be older. We also find that most of the diversity is concentrated in certain regions and
positions of the virus genome. In particular, we find that a variant reported to increase
infectivity is among the most diverse positions. Our study provides a large-scale survey of
within-patient diversity of the SARS-CoV-2 genome.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19,
spread globally from its origins in Wuhan, China, toward the end of 2019, resulting in the
World Health Organisation declaring COVID-19 a pandemic in March 2020. Initially
diagnosed as a pneumonia of unknown origin, huge research efforts have drastically
developed our clinical knowledge of COVID-19 concerning its etiology [1], mode of
transmission [2], identification of individuals at risk [3] and potential treatment strategies [4].

COVID-19 is a respiratory disease marked by a variety of symptoms including a
persistent cough, fatigue and anosmia [5], however, a subpopulation of
SARS-CoV-2-infected individuals remains asymptomatic [6]. The large variation in the
severity of experienced symptoms, along with the virus incubation time ranging from 5-14
days [7,8], may have contributed to its rapid propagation. At the end of September 2020,
there have been more than 34 million confirmed cases with over a million deaths worldwide

9.

SARS-CoV-2 belongs to the family Coronaviridae and is the latest of three zoonotic
coronaviruses that have spilled over to infect humans in the past two decades following
SARS-CoV in 2003 and MERS-CoV in 2012 [10]. The SARS-CoV-2 single-stranded RNA
genome consists of at least 13 open reading frames (ORFs) spanning 29,903 nucleotides
[11]. ORF1ab codes for a polyprotein from which the non-structural proteins originate,
including the RNA-dependent RNA polymerase; this is then followed by the Spike (S) gene,
the Envelope (E) gene, the Matrix (M) gene, the Nucleocapsid (N) gene and a host of
accessory genes [12]. Much like the related SARS-CoV, the Spike protein present on the
surface of the SARS-CoV-2 virion is central for its access to the target host cell via binding of
the hACE2 receptor, S protein priming and finally fusion of the viral and target cell
membranes [12—14]. Zeigler et al. identified co-expression of hACE2 and TMPRSS2 (a host
protease required for viral entry) in lung type |l pneumocytes, nasal goblet secretory cells,
and ileal absorptive enterocytes; these are currently thought to be the target cells of
SARS-CoV-2 leading to COVID-19 [15].


https://doi.org/10.1101/2020.10.12.335919
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.335919; this version posted October 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

3

Viral isolation and sequencing efforts throughout the world have permitted the
interrogation of the SARS-CoV-2 genome, providing a deeper understanding of the evolution
of the virus, its proximal origin and revealing patterns of its global spread [16,17]. These
efforts are largely centered on reverse transcription of the viral RNA genome followed by
PCR amplicon and hybrid capture based sequencing using Oxford Nanopore and lllumina
sequencers [18]. The sequences generated are largely deposited in data repositories such
as the sequence read archive (SRA) and GISAID [19]. The availability of these sequences
has allowed for platforms such as Nextstrain [20] to continually update and track viral
evolution and spread, and to illuminate the viral genetic diversity among carriers [21-24].

At this inter-host level, epidemiological studies often employ per-patient consensus
sequences, which summarize each patient’s virus population into a single sequence and
ignore minor variants. However, RNA viruses generally exhibit high mutation rates due to
error-prone viral RNA polymerases, which typically leads to the presence of various viral
variants within a single host [25]. The resulting intra-host diversity has been shown to affect
disease progression [26], tissue tropism [27], transmission risk [28], transmission
heterogeneity [29], and treatment outcome [30,31] in various RNA viruses. Recent findings
indicate that the mutation rate of SARS-CoV-2 is about as high as the one observed in the
SARS-CoV genome (0.80-2.38 x 107 nucleotide substitutions per site per year) [32,33].
Although coronaviruses have evolved a proofreading capability attributed to Nonstructural
protein 14 resulting in lower mutation rates than other positive-sense ssRNA viruses [34-36],
the study of the intra-host genetic diversity of the novel SARS-CoV-2 virus remains important
to gain a deeper understanding of its evolution and transmission dynamics and possible
implications on its pathology. Previous studies highlight that intra-host genetic diversity in
clinical samples is indeed prevalent, and some genomic regions that are susceptible to
alterations in the SARS-CoV-2 virus have been identified [37,38]. Accounting for intra-host
diversity can also improve the resolution of phylogenomic analyses of SARS-CoV-2 [39] and
our ability to detect selection pressure [40].

To assess the within-host genetic diversity of different viral variants, deep-coverage
sequencing is needed to access low-frequency subclonal mutations. However, calling
low-frequency mutations reliably from deep sequencing data remains challenging because of
various amplification and sequencing errors. Several computational methods have been
proposed for this task [41,42], and specialised bioinformatics pipelines have been developed
to streamline and automate the analysis from raw sequencing reads to consensus
sequences and single-nucleotide variants [43,44]. Here, we employ V-pipe [44], a workflow
that includes quality control, read mapping and mutation calling, to robustly identify genetic
diversity of viral genomes. We examine the intra-host diversity across a large cohort of 3939
public SARS-CoV-2 samples and, as an independent validation cohort, 749 additional
samples which have recently been sequenced to study the spread of SARS-CoV-2 in
Switzerland [45]. We analyze the distribution of genetic diversity across the genome,
including uncovering highly diverse bases and small regions, and we explore the diversity
across patient samples. By integrating technical and epidemiological covariates, we show
that within-patient viral genetic diversity increases with age of the infected patient.
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Figure 1: (a) Different viral variants may coexist in the same host such that the
sequencing reads contain a mixture of the different components and their SNVs. We
employ the bioinformatics pipeline V-pipe for automated end-to-end processing of the
raw sequencing data and calling of SNVs and their frequencies [44]. (b) An example
output of the workflow for a single sample (SRR11953858) displaying variations in the
coverage (blue histogram, right y-axis) and the frequencies of the different SNVs (black
lollipops, left y-axis) across the genome (x-axis). Along with clonal mutations with
frequencies near 100%, and many low-frequency variants, several other mutations have
frequencies of around 40% and 60% in this example.

Results

We downloaded sequencing data from the SRA from a total of 5934 SARS-CoV-2
samples, which had undergone deep sequencing with lllumina technology. Samples with low
(median below 1000) or highly variable (lower quartile below 100 or upper quartile above
10,000) coverage were removed (Figure S1). The remaining 3940 samples were processed
using V-pipe [44] (Figure 1a). For each sample, we obtained the coverage across the
genome and all mutated positions, including all variant bases and their frequencies (Figure
1b). A single sample with no detected mutations at all was removed to leave a final public
cohort of 3939 SARS-CoV-2 samples. In addition, we analyze a new set of 749 sequences
derived from samples collected in Switzerland. These sequences were generated as part of
our sequencing effort described in [45]. While [45] uses only the consensus sequences for a
phylodynamic analysis, here we directly analyse the entire set of raw deep-sequencing
reads to assess intra-host diversity. This uniformly produced set of sequences, which we
make public on the SRA, serves as a validation cohort.


https://doi.org/10.1101/2020.10.12.335919
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.335919; this version posted October 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

5

= .. entropy
= : 1.6
0.8

04
0

a
gene
[ orF1ab
s
[ oRF3a
E
i M
| i ORF6
‘ ‘ ‘ : s : = ORF7a
gene | . Bl ore
LNOOTDONMULTTATDOIOILNANLOTOWLNOD =N AN~ 4
TOOMOONMONDNMNONMNMULIINULDLOODOT-INNDO MO
NANNNNNNNNNANNNANNNANN

[l orF10

sample
[

entropy
1.6

i
e |

1.2
0.8
0.4
0

F) gene
M oRF1ab

Ms
[l oRF3a

E

M
d ORF6
- = — ORF7a
. B o
TRROONNMNANNDST WSO — A .

COoOOMMMT I I O W WO WO WD

NN NN NN NONNNANNNNNONN

I orF10

sample

Figure 2: Intra-host diversity measured as entropy of the nucleotide distribution across
genome and samples. Only positions with diversity in at least 4% of the samples are
selected for each cohort, with the union of positions displayed for comparison. (a) the
public cohort, (b) the data from Switzerland.

As a measure of intra-host genetic diversity, we computed the entropy of the
nucleotide distribution for each sample and each genomic locus (Materials and Methods).
Low entropy indicates a highly conserved site in the patient’s virus population, while high
entropy is indicative of variation among nucleotides.

The quartiles of the coverage over the public samples (Figure S2) display typical
coverages of over a thousand reads at each genomic site (in line with the coverage filters)
meaning that we can detect low-frequency SNVs down to 1-2% [46] (or using estimates from
the Lander-Waterman model [47]). However, there are regular dips at the primer locations
[48], and noticeable wider dips between genomic positions around 19 to 23 kb. This region
covers the end of gene ORF7ab encoding the endoribonuclease and 2'-O-methyltransferase,
as well as much of the S gene producing the S1 subunit, needed for the initial attachment of
the virus to the target cell.
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We observe a wide spectrum of diversity both across the genome and across
samples (Figure 2, focussing on the positions across the genome mutated in at least 4% of
the samples). In particular there are subclonal regions visible (as darker contiguous bars in
Figure 2) at the start of ORF1ab, in the Spike S gene and across much of the Matrix M gene.
There are also highly diverse individual bases and small regions (Tables S1-S4), particularly
in the public data.

Next, we summarize genetic diversity per gene by computing the average entropy
across all positions of the gene. We observe roughly similar diversity for each gene in the
public cohort, except for gene M which is much more diverse, and ORF7b displays hardly
any diversity (Figure 3a), while we observe the same trends, but larger differences across
genes in the Swiss cohort (Figure 3b).

The most diverse site in the public data (Table S1 and Figure 3a), which has clonal
or subclonal mutations in nearly half the samples, is at position 11075 in the region of the
ORF1ab gene coding for non-structural protein 6, a transmembrane protein containing 7
transmembrane helices. Most of the diversity at this position is derived from low-frequency
deletions, which would alter downstream amino acids and introduce a premature stop codon.
Among the mutated samples, deletions occur at an average rate of 2.62%. 12.5% of mutated
samples include variants with a T>C substitution, which occurs with an average frequency of
1.75% among those samples (corresponding to an overall average rate of 0.22% among all
mutated samples). In the reference genome, the codon incorporates a Phenylalanine amino
acid (Phe35 of nsp6), however, any variation here will lead to a change in the inserted amino
acid; for example, a T>C mutation results in the incorporation of a Leucine.

Another residue in close proximity to Phe35, namely Leu37 of nsp6, has often been
found to be replaced by a Phenylalanine residue in recent sequences from Europe, Asia and
America [49]. Here, we also identify a high entropy at position 11083 inside the codon of
Leu37 (Table S1), which is affected in around a quarter of samples. Any alteration from the
reference base G to either a T or C results in a Phenylalanine residue as opposed to a
Leucine. Here we observe a large average frequency of Thymine bases (44.65%) and
common deletions (4.93%) which also lead to a Phenylalanine residue and a premature stop
codon.

Genomic position 23403 is the site at which an A>G mutation causes the well-known
D614G amino acid alteration in the Spike region. Studies suggest that this alteration
provides a fitness advantage and becomes the more prevalent variant in the population over
time [50], and it is also the dominant variant in our public cohort. We find that it is among the
100 most diverse positions in the SARS-CoV-2 genome (rank 95 in our cohort) with 36.0% of
our samples having mutations there relative to our cohort consensus G, and 29.7% having
diversity of different variants coexisting. Among the mutations, there is an average frequency
of 90.4% A, 9.5% G and 0.1% deletions. In the Swiss cohort, position 23403 has the second
highest diversity among all individual bases (Table S2).
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Figure 3: The average entropy per gene (boxes), log transformed, along with the 10 most
diverse (in terms of cumulative entropy over samples) positions (triangles) and the 10
most diverse consecutive regions (dots) from Tables S1 and S3 for the public data in (a)
and Tables S2 and S4 for the data from Switzerland in (b).

We also assessed genetic diversity over consecutive genomic regions (Materials and
Methods). The most diverse regions in both the public and Swiss data (Tables S3 and S4,
adjacent sites all with a log entropy above 3.0 for the public data and above 2.0 for the Swiss
data) include a span of 16 bases at the start of the ORF7ab gene (Figure 3). This region
forms part of the nsp1 protein which shuts down host mRNA translation and protein
production via interactions with the 40S and 80S ribosomal subunits. A notable consequence
of this nsp1 induced inhibition of translation and protein production is the reduction in innate
immune response activity, specifically interferon signalling [51].

The next most diverse genomic region (Tables S3 and S4) consists of two adjacent
positions at 29187 and 29188 within a single codon in the N gene forming the nucleoprotein.
The reference bases at those two positions are C and A, respectively, which results in the
incorporation of an Alanine residue at position 305 of the nucleoprotein (Ala305). However,
due to the redundancy of the genetic code, alterations in position 29188 alone do not lead to
an alteration on the protein level.

The remaining regions in Table S3 with a length greater than two lie within the M and
S genes, and are similarly present in the Swiss cohort (Table S4). The 41 nucleotides from
26780 to 26820 lead to the incorporation of 15 amino acids from Cys86 to Phe100 forming a
section of the matrix protein’s transmembrane region. The matrix protein is known to be
central in viral assembly with several interacting partners including itself, the envelope
protein, the nucleoprotein and the spike protein [52,53]. The spike protein, when primed, is
divided into the S1 and S2 subunits with S1 being essential for hACE2 recognition and S2
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mediating viral entry into the host cell. Another region of high entropy comprises 30
nucleotides within the Spike gene which incorporates 11 amino acids to the S1 subunit of
SARS-Cov-2 ranging from lle664 to Tyr674. These amino acids lie between the receptor
binding domain and Furin cleavage site needed for S protein priming [54,55].

The distribution of total entropy per base has a long tail (Figure 4a) resulting in
locations with extremely high diversity, such as the examples discussed above, while the
majority of the genome is relatively conserved. Taking a logarithmic transform of the entropy
we can observe much more detail in the distribution, with a roughly normal distribution and a
slight negative skew in the public data (Figure 4a inset). Considering the entropy per sample
instead provides a picture of how diversity is distributed among samples. We again find a
long tail (Figure 4b) with certain individuals having vastly more internal diversity than the
majority of samples dominated by clonal variants and low-frequency mutations. Detecting
diversity in each sample is heavily dependent on the sequencing technology, sample
processing, and sequencing depth. For example, all the most diverse samples (Table S5)
come from one SRA study (SRP253798) which makes up 29% of the entire cohort. The
samples with the highest detected diversity had between 10% and 30% of the genome
affected, with the vast majority of their mutations (over 99.8%) being subclonal and the
coexistence of more than one character (base or deletion) in the mapped reads.

Like the entropy, the number of clonally or subclonally mutated positions per sample
also has a long tail (Figure S3) with, in the public data, for example, quartiles at 119, 211
and 378.5 positions being mutated (corresponding to 0.40%, 0.71% and 1.27% of the
genome) but a maximum of 8705 positions (29.11% of the genome).

Finally, we tested the hypothesis that epidemiological parameters are related to viral
genetic diversity. Specifically, to determine whether the host's age, sex or geographical
location predict the diversity of their virus population, we performed regression modelling on
the subset of samples for which we have such information. This resulted in 1043 samples
from Australia which were sequenced with paired-end amplicon sequencing with PCR
amplification. We also adjusted for technical parameters of the sequencing to avoid
confounding (Materials and Methods). We found that sex is not a significant predictor of
diversity (p = 0.50). By contrast, age is significantly associated with intra-host viral genetic
diversity (p = 4 x 10™*) with each decade increasing the total entropy by 8.6% on average
(Table 1, Figure S5).

Clinical covariates were not available for the Swiss cohort, but sequencing date was
utilized as a proxy for decreasing age, since testing expanded to younger populations over
time (Figure S6). The significant decrease in diversity over time (p < 10™"; Table 2, Figure
S7) in the Swiss cohort therefore corroborates the association of increased diversity with age
uncovered in the public cohort.
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Figure 4: The distributions of the total entropy in the public and Swiss cohorts per position
(a) and per sample (b). Insets: Under a logarithmic transformation, the distribution per
position (a) and per sample (b).

Discussion

We processed a large cohort of 3939 deeply sequenced public SARS-CoV-2
genomes, and 749 samples from Switzerland, with the bioinformatics software V-pipe [44] to
uncover within-patient genetic diversity. We observe a heavy tail distribution in diversity per
sample and per position indicating that much of the diversity is concentrated in small
numbers of sites and patients. The most diverse small regions were consistent between the
public and Swiss data, though the individual bases were more varied.

Detecting and quantifying intra-patient genetic diversity from deep sequencing data is
technically challenging. It may be heavily influenced by the sample preparation and how it is
sequenced, along with possible artifacts arising from the process, so that extremely diverse
patients may not be comparable across cohorts. Accounting for such technical parameters of
the sequencing process and coverage, which affects the detection limit of diversity, we find
that age is a significant predictor of diversity in the public data. The model predicts that on
average genetic diversity increases by 8.6% every ten years. The increase in diversity with
host age is corroborated in the Swiss data. Age has previously been associated strongly with
worse disease outcome and higher death rates [56], along with concomitant comorbidities
[57]. With high-quality clinical and genetic data, it will be highly relevant to see whether
diversity is a cause or a consequence of disease progression. Likewise, with future
transmission network data it will be interesting to uncover whether diversity increases
infectiousness, as for influenza [28].

The detection of subclonal mutations is affected by the sequencing depth at each
position, and across the genome depending on the amplification and capture of RNA for
sequencing some regions may be more poorly resolved. The coverage distribution therefore
affects our ability to detect highly diverse bases. With this caveat, the most diverse gene is
the Matrix M gene while highly diverse positions include a mix of low-frequency variants
common to a quarter of the cohort or more, and rarer high-frequency subclonal mutations in
around 5% of the cohort. The observation of common low-frequency and less common
high-frequency genetic variants is in line with previous research on both intra- and inter-host
genetic diversity of SARS-CoV-2 [21,39]. The D614G variant, which appears to increase
infectivity and is becoming more dominant over time [50] is the dominant variant in our public
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cohort. It also exhibits high intra-host diversity with 29.7% of the cohort experiencing
subclonal mutations with the different variants coexisting. This diversity is mimicked in the
data from Switzerland, where the D614G variant is actually encoded by the second most
diverse genomic position.

Materials and Methods

Public data

We retrieved data from the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) on June 10, 2020. Samples with the term "Severe acute
respiratory syndrome coronavirus 2"[Organism] OR “Sars-Cov-2[All Fields]™ were filtered
and only one copy of duplicates with the same BioSample ID was retained. We used the
meta file to further filter the samples by lllumina technology. This resulted in 5934 samples
which were associated with downloadable data.

Subsequent to downloading the selected sample set, we trimmed all read files using
PRINSEQ ([58] version 0.20.4, parameters: -ns_max_n 4 -min_qual_mean 30 -trim_qual_left
30 -trim_qual_right 30 -trim_qual_window 10 -min_len <80% of average read length>),
mapped them to NC_045512.2 using bwa ([59] version 0.7.17-r1188, subcommand: mem).
Coverage quartiles for each sample are displayed in Figure S1.

Data from samples collected in Switzerland

Sample collection and sequencing are detailed in [45]. Briefly, we obtained RNA
samples extracted from nasal swab tests which had previously tested positive on RT-gPCR
from Viollier AG laboratory and sequenced them at the Genomics Facility Basel. We
performed reverse transcription using random hexamers and PCR amplified the resulting
DNA with primers from the artic-ncov2019 protocol
[https://github.com/artic-network/artic-ncov2019/tree/master/primer_schemes/nCoV-2019/V3
]. We prepared libraries from these 4000 bp-long amplicons using lllumina TruSeq adapter
sequences and sequenced them on an lllumina MiSeq System (Paired-end sequencing, 2x
251 cycle). The phylogenetic relationship between the consensus sequence of 681 samples
from this collection has been previously analyzed as part of the subset of GISAID data
available for Switzerland until July 10, 2020 in [24] and results based on the consensus
sequences of the full dataset are presented in [45]. Here we focus on the raw reads directly
and analyse the deep sequencing data to uncover within host diversity. The collection of
swabs analysed here spans a time period from Mar 4, 2020 to August 13, 2020, with
samples from across Switzerland. The analysed reads are available in the SRA (see Data
Availability below).

Data on the age distribution of COVID-19 cases in Switzerland was downloaded from
[https://www.bag.admin.ch/dam/bag/de/dokumente/mt/k-und-i/aktuelle-ausbrueche-pandemi
en/2019-nCoV/covid-19-basisdaten-fallzahlen.xlsx.download.xlsx/Dashboards_1&2_COVID
19 _swiss_data_pv.xlsx] on September 21, 2020.

Filtering

Samples were subset by applying a coverage filter (minimum lower quartile: 100,
minimum median: 1000, maximum upper quartile: 10000). After this filtering, 3940 public
samples and 749 samples from Switzerland were retained for later analyses.
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Data processing

We used V-pipe ([44]; sars-cov2 branch of https://github.com/cbg-ethz/V-pipe) to call
variants for each sample using ShoRAH [60] and default settings, including discarding
deletions with a frequency below 0.5%. One sample had no remaining variants detected and
was excluded giving a final cohort size of 3939. For each called variant per sample, we
computed the relative frequency f, of each character k (nucleotide A, C, G, T, or deletion)
among the mapped reads at that position. The entropy is then computed as

5
H = = % fi logfy)

summarising the five frequencies in a single measure of diversity. The entropy is zero
whenever one character has a frequency of 100%, and is maximised when all the characters
have equal frequency 1/5, giving a maximum value of log(5) = 1.61. We denote the entropy
of sample i at base ; by H; and compute the total entropy per position in the genome by

summing over samples H, = Y H; (Table S1 and S2). For the data from Switzerland we

additionally multiply by the ratio of cohort sizes (3939/749) to make the total entropy values

per position comparable across the cohorts. We compute the average entropy over a

consecutive genomic region Jas \71| > H;, and take the logarithm to obtain the log
j&J -

average entropy (Table S3 and S4). We compute the total entropy per sample by summing

over bases H, = } H; (Table S5).
J

Regression modelling

To evaluate which covariates are predictive of diversity, we build a regression model
on the public data of log total entropy on age, sex, and country of origin. To adjust for the
possible effects of coverage and sequencing technology on the diversity, we include factors
for paired-end or single-end sequencing, the assay type, the library selection and the SRA
study. We also include the logarithm of the median coverage. Since not only the average
coverage, but its variability may affect the ability to detect SNVs, we further include the IQR
of the coverage, divided by the median m, and again log transformed:

log(entropy) ~ age + sex + country + sequencing factors + log(median coverage) + log(IQR/m)

Filtering the samples which have age and sex information left 1060 samples, of
which all but 17 were from Australia. We therefore retained just those 1043 from Australia,
and removed the country dependence from the regression. All remaining samples were
paired-end amplicon sequencing with PCR amplification from the study SRP253798, so
those factors were also removed to provide the final regression:

log(entropy) ~ age + sex + log(median coverage) + log(IQR/m)
Of the 1043 samples, 480 (46.0%) were female and 563 (54.0%) were male, while the

distribution of ages (Figure S4) has a median value of 46 and lower and upper quartiles at
29 and 60. The results of the regression are listed in Table 1.
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Predictor Coefficient Standard error t-statistic p-value
sex (male) -0.0563 0.0839 -0.671 0.50

age (decade) 0.0822 0.0231 3.56 0.00038
log(median coverage) 0.190 0.125 1.51 0.13
log(IQR/m) 1.48 0.122 12.1 <2-107"

Table 1: regression coefficients of log entropy against the above predictors for the 1043
public samples with covariate information.

For the data from Switzerland, we do not have clinical covariates, only the date of
sequencing. However, we can use the sequencing date as a proxy for age, because over
time, the age distribution has progressively reduced in Switzerland as a whole (Figure S6).
All samples were processed in the same way, so for the regression we model

log(entropy) ~ date + log(median coverage) + log(IQR/m)

with the results in Table 2.

Predictor Coefficient Standard error t-statistic p-value
date (30 days) -0.108 0.019 -5.68 1.95-107°
log(median coverage) 0.196 0.107 1.83 0.068
log(IQR/m) 1.41 0.131 10.8 <2107

Table 2: regression coefficients of log entropy against the above predictors for the 749
Swiss samples.

For visualisation purposes, we regress patient age on sample date from data
collected about positive tests in Switzerland as a whole (Figure S6). The model is then used
to predict the age of our 749 deeply sequenced samples based on the sequencing date.
Against the predicted age, we plot the log total entropy, adjusted for the coverage
covariates, to show how the negative correlation with date (Table 2) corroborates an
increase in entropy with age (Figure S7).

Code availability

The source code to process the samples and perform and reproduce the analyses is
available on GitHub (https:/github.com/cbg-ethz/SARS-CoV-2_Analysis) in the form of
multiple Snakemake [61] workflows.

Data availability

The public data is available from the SRA, as described in the Methods and Materials
section. The Swiss data has been added to the SRA with accession number PRJEB38472,
scheduled to be publicly available from November 1, 2020.
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Figure S1. The median coverage, along with the lower and upper quartiles for the 5934
samples downloaded from the Sequence Read Archive. The dashed grey lines
correspond to the coverage filters used to subset the samples before further processing
(minimum lower quartile: 100, minimum median: 1000, maximum upper quartile: 10000).
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Figure S2: The lower and upper quartiles of the coverage per genomic position, along with
the median coverage, among the 3940 coverage-filtered public sample sequences. The
locations of typical primers are indicated along the bottom row (solid at the start of left
primers and dashed at the end of right primers).
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position gene log mutated ref. A Cc G T del.
entropy samples (%) base (%) (%) (%) (%) (%)

11075 ORF1ab 5.51 49.30 T 0.00 0.22 0.00 97.16 2.62
11083 ORF1ab 5.37 24.37 G 0.01 0.01 50.40 44.65 4.93
24933 S 4.62 6.93 G 0.02 092 78.08 20.54 0.44
15965 ORF1ab 4.55 28.21 G 0.00 0.00 9831 135 0.34
558 ORF1ab 4.47 5.97 G 0.04 041 8282 16.37 0.36
3564 ORF1ab 4.44 4.32 G 0.08 0.34 6454 34.63 042
1730 ORF1ab 4.40 24 .45 G 1.84 0.00 98.16 0.00 0.00
10986  ORF1ab 4.36 5.69 G 091 0.27 8820 919 143
6696 ORF1ab 4.30 22.34 C 0.01 96.92 0.00 297 0.10
28079 ORF8 4.30 4.72 G 0.00 0.13 8348 14.62 1.76

Table S1: The 10 most diverse positions in the genome in the public data ranked by their
entropy, along with the fraction of samples exhibiting any mutation, and, for those samples,
the distribution of average mutation frequencies across the different bases or deletion.

position gene log mutated ref. A C G T del.
entropy samples (%) base (%) (%) (%) (%) (%)

3037 ORF1ab 3.25 21.50 C 0 5.25 0 94.61 0.14
23403 S 3.18 43.39 A 3.47 0 96.46 0.04 0.02
13225 ORF1ab 3.00 7.61 C 0 94.10 0 5.89 0.01
10265 ORF1ab 2.98 10.68 G 91.02 0 8.83 0 0.14
27040 M 2.86 25.77 C 025 9975 O 0 0
26465 E 2.8 8.81 T 0 0 0 99.17 0.83
19718 ORF1ab 2.79 10.01 C 0 2.49 0 97.49 0.02
27033 M 2.77 24.97 G 0 0 99.76 0.24 0
25521 ORF3a 2.76 1.74 C 0 85.74 0 1426 O
26434 E 2.66 21.9 A 99.76 0 0.24 0 0

Table S2: The 10 most diverse positions in the genome in the Swiss data ranked by their
entropy, along mutation patterns for those positions across the cohort.

start end length gene log average
entropy

508 523 16 ORF1ab 5.4
29187 29188 2 N 5.32
26780 26820 41 M 4.66
23553 23582 30 S 4.35
12140 12141 2 ORF1ab 4.16
25134 25135 2 S 3.93
15768 15769 2 ORF1ab 3.9
13570 13571 2 ORF1ab 3.89
13239 13240 2 ORF1ab S
24911 24912 2 S 3.65

Table S3: The 10 most diverse consecutive regions in the genome in the public data,
ranked by their average entropy.
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start end length gene log average
entropy

508 523 16 ORF1ab 5.46
29187 29188 2 N 5.05
26775 26800 26 M 5.02
23550 23583 34 S 4.62
4529 4536 8 ORF1ab 3.56
24013 24028 16 S 3.51
28253 28254 2 ORF8 S
4542 4556 15 ORF1ab 3.25
13454 13494 41 ORF1ab 3.03
28881 28883 3 N 2.98

Table S4: The 10 most diverse consecutive regions in the genome in the Swiss data,
ranked by their average entropy.

sample ID log mutated sample ID log mutated
entropy positions (%) entropy positions (%)
SRR11577862 7.08 17.41 SRR11578392 6.82 18.40
SRR11578151 7.03 29.11 SRR11578356 6.76 19.23
SRR11577865 6.97 19.92 SRR11578031 6.67 11.54
SRR11578029 6.90 14.60 SRR11577858 6.61 17.94
SRR11578028 6.88 20.05 SRR11578137 6.54 19.26

Table S5: The 10 samples with the highest measured diversity, ranked by their entropy,
and the fraction of their positions affected by mutations.

cohort | ] Public [ ] Swiss
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Figure S3: The distributions of the number of mutated positions per sample. Inset: the
distribution under a logarithmic transform.
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Figure S4: The distributions of ages of the 1043 public samples in the regression
modelling.
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Figure S5: The dependence of log total entropy on age for the 1043 public samples, after
adjustment for sex and sequencing coverage covariates in the regression modelling.
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Figure S6: The distribution of ages of positive Covid-19 tests in Switzerland as a whole,
covering the period where our cohort of deeply sequenced samples was collected.
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Figure S7: The dependence of log total entropy on predicted age for the 749 Swiss
samples, after adjustment for sequencing coverage covariates in the regression modelling.
The predicted age is constructed from a linear model of age on date built with the data

displayed in Figure S6.
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