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Spatial transcriptomics is an emerging stack of technologies, which adds spatial dimension
to conventional single-cell RNA-sequencing. New protocols, based on in situ sequencing or
multiplexed RNA fluorescent in situ hybridization register positions of single molecules in
fixed tissue slices. Analysis of such data at the level of individual cells, however, requires
accurate identification of cell boundaries. While many existing methods are able to approx-
imate cell center positions using nuclei stains, current protocols do not report robust signal
on the cell membranes, making accurate cell segmentation a key barrier for downstream
analysis and interpretation of the data. To address this challenge, we developed a tool for
Bayesian Segmentation of Spatial Transcriptomics Data (Baysor), which optimizes segmen-
tation considering the likelihood of transcriptional composition, size and shape of the cell.
The Bayesian approach can take into account nuclear or cytoplasm staining, however can
also perform segmentation based on the detected transcripts alone. We show that Baysor
segmentation can in some cases nearly double the number of the identified cells, while reduc-
ing contamination. Importantly, we demonstrate that Baysor performs well on data acquired
using five different spatially-resolved protocols, making it a useful general tool for analysis
of high-resolution spatial data.

During the last decade, single-cell transcriptomic technologies gained great popularity, with single-
cell RNA-sequencing (scRNA-seq) has become the preferred approach for characterizing the state
of complex tissues'™. These techniques are being gradually augmented by the spatially-resolved
transcriptomics measurements, based on in situ sequencing’®, multiplexed single-molecule fluo-
rescent in situ hybridization (sm-FISH)"~, or spatially-barcoded hybridization'*!'. The ability to
examine the physical positions of different transcripts and cells at genomic scales has potential
to bridge the molecular view of the cell with morphology, electrophysiology and other cellular
phenotypes'?. It can expose the impact of physical and biochemical interactions between cells,

and reveal how such processes influence tissue organization during development'® and disease'*.
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These protocols may eventually supplant sScCRNA-seq, as they also offer technical advantages, such
as the ability to bypass capricious tissue disassociation steps needed for scRNA-seq. At present,
however, most such assays are limited in the number of genes they can detect (30-300 genes), as

)3 15, Nevertheless, there

well as the number of molecules that can be detected per cell (50-500
has been steady progress on the optimization of these protocols, with some increasing the number
of detectable genes to thousands’-'°. Increasing scales and spatial resolution are already enabling
unbiased characterization of tissue organization’ and subcellular organization of cells’ .

The transcriptional data acquired by the in situ sequencing or smFISH protocols can be gen-
erally summarized as a collection of detected molecules, each corresponding to a particular gene or
transcript, along with the coordinates of that molecule within the field of view. While in principle
such data can yield cellular or even sub-cellular resolution, the effective spatial resolution depends
on the ability to distinguish features in the downstream analysis. Very sparse measurements, for
instance, may only allow for interpretation of regional differences, such as segmentation of corti-
cal layers. Achieving cellular resolution, however, even with high-density measurements, requires
accurate cell segmentation. Most current groups have relied on the auxiliary nuclei staining (e.g.
DAPI) to identify putative cell centers’”-*'°. Unfortunately, even such one-channel segmentation
is challenging, commonly requiring manual tuning and corrections'®, including compensation for
physical misalignment of molecular and auxiliary stains. The nuclei positions also do not inform on
the extent of the cell body. Some efforts have used additional poly-A staining to extend the initial
nuclei positions” '°. Similarly, pciSeq algorithm'” relies on the initial nuclei segmentation as a seed
to extend the boundaries of the cell based on a Poisson model of gene expression. Alternatively,
the spatial measurements can be analyzed without explicit cell segmentation (segmentation-free).
Such approaches can characterize cell type composition of the tissue or identify distinct regions,
but cannot be easily extended to many other kinds of downstream analyses'* .

In this manuscript we start by discussing the applications and limitations of the segmentation-
free approach. We suggest a new, simple method for segmentation-free analysis, which does not
require extensive hyperparameter tuning. We then describe a general framework, based on Markov
Random Fields, that can be used to solve a variety of molecule labeling problems. In partic-
ular, we follow this strategy to implement solutions for (i) separation of background noise, (ii)
de novo inference of cell populations without cell segmentation, and (iii) cell type annotation of
molecules based on the annotated scRNA-seq data. Finally, we introduce a method that performs
cell segmentation based on the observed molecules, and optional microscopy staining data. All
of the algorithms are implemented in an open-sourced command-line tool and a corresponding
Julia package called Baysor. We show that Baysor can segment data from most published proto-
cols with molecular resolution, yielding better segmentation accuracy, increasing the number of

detected cells, as well as the number of molecules associated with each cell.
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Results
Analysis of local expression patterns without segmentation. As illustrated by the scRNA-seq
studies, different cell types and many phenotypic states can be readily distinguished based on the
transcriptional composition of a cell. In spatial measurements, the cells of a distinct type will
give rise to small molecular neighborhoods with stereotypical transcriptional composition. This
patch-like structure of the spatial transcriptomics data can be used to interpret it without per-
forming explicit cell segmentation'”. To perform such neighborhood composition analysis, we
generated a neighbourhood composition vector (NCV) for each molecule by taking its k spatially
nearest neighbors and estimating the relative frequency of different genes among the neighbor-
ing molecules (Fig. 1a). These expression vectors can be treated as “pseudo-cells” and analyzed
using existing methods developed for scRNA-seq, including clustering, cell type annotation and
embedding (Fig. 1b,c). The NCVs can also be used to effectively visualize local transcriptional
composition. To do so, we embed the NCVs in 3D color space. Under such color encoding,
where the neighborhoods of similar transcriptional composition are represented by similar colors,
different types of cells as well as their boundaries become visually apparent (Fig. 1).

Unlike scRNA-seq datasets, spatial transcriptomics data can be analyzed at different scales.
In the NCV analysis, the spatial scale is determined by the neighborhood size parameter k, relative
to the average number of molecules measured per cell m. Small neighborhoods, with character-
istic size smaller than the scale of the cell (¢ < m), can provide information about intra-cellular
organization, driven for example, by the nucleus or other organelles. Most of the protocols pub-
lished to date, however, lack the resolution necessary to effectively distinguish such subcellular
features. The notable exceptions are the Seq-FISH+’ protocol and a high-resolution variant of
MERFISH”?". Large neighborhoods, with characteristic size greater than a cell (k > m), can
reveal microanatomical tissue and even organ-level organization, such as the layer structure of the
brain cortex (Supplementary Figs. 1 to 3).
General approach for statistical labeling of spatial data. A number of analyses in spatial tran-
scriptomics can be formulated as label-assignment problems. Cell segmentation, for instance,
assigns cell labels to the observed molecules. Similarly, separation of intercellular background is
a problem of labeling molecules as “signal” vs. “background”. The distinguishing characteristics
of these problems is that the labels tend to show strong spatial clustering: two nearby molecules,
for instance, are likely to belong to the same cell and therefore share a common label. Mathe-
matically, this spatial clustering tendency can be captured using Markov Random Field (MRF)

21,22 " The labels themselves can be modeled as latent variables, and inferred from the ob-

priors
served data using an Expectation-Maximization (EM) algorithm.
Different labeling problems can then be solved by choosing the appropriate label probability

model and the observable data (Supplementary Fig. 4a). For instance, by using gene identities of
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Fig. 1 | Segmentation-free analysis of spatial data using Neighbourhood Composition Vectors (NCVs).
a. NCVs are estimated by taking k spatially-nearest neighbours for each molecule, and tabulating the num-
ber of neighborhood molecules belonging to each gene. (left) The molecules measured in the 2D space are
shown as dots, colored by the gene identity. Based on the similarity of these vector profiles, NCVs can be
clustered or embedded into lower-dimensional space (b,c). (center, right) A 3D embedding can be translated
into a color encoding, so that similar colors correspond to similar neighbourhood compositions. Such color
encoding allows for effective visualization of individual cells as well as the overall tissue organization. A
part of the Allen smFISH dataset is shown as an example. b. The heatmap shows the expression patterns for
20000 NCVs, uniformly sampled across the physical space with rows corresponding to genes and columns
corresponding to NCVs. The color scale shows log; of total-count normalised expression, additionally nor-
malised by the maximum for each gene. The L1 and L2 column headers show the marker-based annotations
for the corresponding NCVs. ¢. NCVs can be analyzed using existing scRNA-seq pipelines, to generate
clustering, cell type annotation and embeddings. An 2D UMAP embedding is shown, labeled and colored
according to the published annotation of the corresponding cells.
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Fig. 2 | Application of Markov Random Field (MRF) framework for segmentation-free cell type in-
ference and background filtration. a,b. Individual molecules were clustered into major cell types by
modelling the tissue as a mixture of multinomial distributions with MRF prior. Cluster labels per molecule
are shown in (a), with expression vector for each of the clusters shown in (b). ¢. The MRF approach is
used to separate background from intracellular signal. For each molecule, the algorithm estimates the dis-
tance to its k-th nearest neighbour and models the distances as a mixture of two Normal distributions. The
distribution of physical distances to 16-th nearest neighbour (x-axis) is shown for the molecules in the Allen-
smFISH dataset as a histogram (blue). Fitted intracellular and background distributions are shown in red and
green, respectively. The vertical black line shows the optimal separation point. d. Molecules from a subset
of the Allen-smFISH dataset are shown as dots, coloured by their distance to the 16-th nearest neighbour,
with the colorkey shown on the bottom of (c). The black contours mark regions above 50% probability of

being intracellular.
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the molecules as observables, and multinomial distributions to model the transcriptional composi-
tion associated with different labels, this MRF-based approach results in a meaningful clustering of
molecular neighborhoods (Fig. 2a,b). One can additionally use expression profiles of different cell
types obtained from scRNA-seq data as a prior for the multinomial distributions of different labels.
This enables the approach to efficiently transfer the cell annotations from scRNA-seq to the mea-
sured molecules without performing cell segmentation (Supplementary Fig. 5). The MRF-based
inference can be notably faster than traditional clustering (Supplementary Table 1), however, both
performance and robustness of such annotation transfer become poor when the number of cell types
increases beyond 10-20. Another example of the labeling problem is distinguishing background
molecules from cell bodies. In this setting, one can assume that the cells form dense regions, while
the background noise molecules appear in sparse regions. Taking the distance to the k-th nearest
neighbor as a measure of sparsity (observed data), we used the same EM algorithm to segment the
background (Fig. 2c-d and Supplementary Fig. 4a). Overall, MRF provides a general recipe for
solving a variety of spatial labeling problems, though each problem requires a custom formulation
of the EM algorithm.
Cell segmentation across various protocols. Despite the relative ease and effectiveness of the
NCV approach described above, many of the downstream analyses and interpretations of the
spatially-resolved data depend on the ability to resolve individual cells. These include analysis of
context-dependent cell expression states, physical interactions and spatial dependencies between
cell types, cell migration and formation of tissue architecture. We, therefore, set out to develop a
cell segmentation method that can take into account different facets of data that are informative of
cell boundaries. The increased spatial density of molecules within the cell somas is one such facet.
The transcriptional composition of local molecular neighborhoods is another. Further evidence can
be gained from stainings for nuclei (e.g. DAPI), cell bodies (e.g. poly-A primers), or cellular mem-
branes. To optimize cell segmentation based on multiple evidence sources, we have developed an
algorithm, called Baysor, which builds on the ideas of the MRF segmentation outlined above. The
method can be used to analyze data from various experimental protocols (Fig. 3), and can perform
cell segmentation using molecular positions alone, or by incorporating additional information. The
approach models each cell as a distribution, combining spatial positions and gene identity of each
molecule. Thus, the whole dataset is considered as a mixture of such cell-specific distributions.
Baysor then uses Bayesian Mixture Models to separate the mixture. The optimization relies on
MREF prior to ensure spatial separability of the cells and to encode additional information about the
spatial relations of molecules (Supplementary Fig. 4b).

Existing cell segmentation methods rely on nuclear (DAPI) or cytoplasmic (poly-A) staining®* %,
segmenting the images with watershed or other algorithms to obtain cell labels'®?*. While Baysor

can perform segmentation using only the information on the measured molecules (Fig. 2), the aux-
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Fig. 3 | Examples of Baysor cell segmentation over the published protocols. a, Baysor segmentation
is shown for a part of the MERFISH Mouse Hypothalamus’ dataset. The central panel shows positions
of the measured molecules, colored by their neighbourhood gene composition (see Fig. 1a). The inferred
boundaries of the segmented cells are shown as black contours. Zoom-in views are shown immediately to
the left and right of the central plot. The outer plots show DAPI signal within these regions. Additionally,
the DAPI signal is also shown as grayscale background within the zoom-in molecule plots. b-e, Additional
examples of Baysor segmentation are shown for the Allen sm-FISH Mouse VISp (b), ISS Hippocampus'’
(¢), STARmap Mouse VISp 1020'° (d), and osm-FISH somatosensory cortex® (e) datasets.
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iliary stains can provide valuable information in cases where the molecular signal is sparse or not
informative about cell boundaries (see Discussion). Baysor can take advantage of such informa-
tion by using a pre-calculated segmentation as a probabilistic prior. Computational segmentation of

nuclear and cytoplasmic stains, however, remains a challenge in itself'® !

, and the pre-calculated
segmentations will typically contain many errors (Fig. 4d). To account for this, Baysor defines a
“prior segmentation confidence” parameter which determines the weight of the prior. Setting this
parameter to 0 will cause Baysor to ignore the prior, while a maximum value of 1 will restrict
Baysor from changing segmentation of the molecules assigned to cells, leaving it to deal only with
non-assigned molecules (Supplementary Fig. 6). Prior segmentation is also taken into account
when determining the background to penalize removal of the molecules assigned to cells in the
prior segmentation (see Methods). In addition to segmentation priors, Baysor can also incorporate
information about background assignment probabilities per molecule. Finally, Baysor can use in-
formation about molecule clustering to penalize assignment of molecules from different clusters
to the same cell.

To evaluate the performance of our approach, we compared Baysor results with segmenta-
tions provided in the original publications (‘“Paper”). Additionally, a common base-line segmen-
tation was generated using a watershed segmentation of DAPI images (using ImageJ**, see Meth-
ods). Baysor was run in two configurations: a minimal configuration - using only the positions and
gene identity of the detected molecules (“Baysor”); and using enhanced configuration where the
originally published segmentations were used as a prior for Baysor segmentation (“Baysor with
Prior”). We first examined various summary statistics for different segmentations. Both Baysor
and the Paper segmentations have around the same number of molecules and area per cell (Sup-
plementary Fig. 7), which suggests that neither of them performs over- or under-segmentation. In
contrast, the Watershed segmentation has cells of smaller size, which can be explained by it cap-
turing only the nuclei information and discarding cytoplasmic molecules. Compared to published
(Paper) segmentations, Baysor reports a larger number of cells and a higher fraction of molecules
recognized as a part of a cell (Fig. 4a,b) with the largest difference of 2 folds for the osmFISH
data®. The Watershed underperforms other methods by these two criteria, as well. Additionally,
since the Baysor algorithm is stochastic in nature, we showed that the segmentations generated
based on different seeds of the random number generator showed highly similar (Supplementary
Fig. 8). Additionally, we profiled time and memory usage of the Baysor run with the longest run
taking 51 minutes for the MERFISH dataset with 3.7M molecules and the largest memory usage
of 40.4 GB for the STARmap dataset with 1020 genes (Supplementary Table 2).

We currently lack experimental methods to establish ground truth on cell segmentation, so
it is not possible to estimate a global quality metric which would show to what extent the results

differ from an ideal segmentation. Instead, we examined the differences between segmentations
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Fig. 4 | Comparison of the Baysor segmentation to the published results and Watershed DAPI segmen-
tation. a,b, Number of cells (a), and fraction of the molecules assigned to cells (b) by different segmentation
methods (color) are shown for different datasets (x-axis). ¢, Schematics for evaluating the differences be-
tween two segmentations based on gene composition of the results. Each cell from the source segmentation
c is matched to cells from the target segmentation ¢. For the source cells, which overlap multiple target cells,
the region with the largest (“main") overlap is used. Correlation of gene expression of the main overlap re-
gion against the expression of the rest of the cell in the source segmentation is then estimated. d, Examples
of the results where the published segmentation merged distinct cell types. The dots show the measured
molecules, colored by NCVs with contours showing cell boundaries for Baysor (black) and reported in the
original publications (purple). e, Comparison of Baysor results to the published segmentations, using the
correlation benchmark (¢). The violin plots show the distribution of overlap correlations with the rest of the
cell (y-axis), for different datasets (x-axis). The right part of each violin plot was calculated using Baysor
segmentation as a source and the published segmentation as a target, while the left parts were calculated by
swapping the source and target segmentations. The width of the violin plots is proportional to the number
of source cells that were matched to multiple target cells. The results show that Baysor segmentation (used
as a target) can be used to split multiple cells from the published segmentations into poorly-correlated parts,
while the reverse - using the published segmentation as a target - for the most part is not able to identify
flaws in the Baysor segmentation. f, Analogous to e, the plot compares performance of Baysor segmentation

with the segmentation obtained using Watershed algorithm.
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and evaluated which algorithm performs better in the cases where the segmentations disagree.
Specifically, in comparing any two segmentation results we identified all cases where a cell from
one segmentation matched multiple cells from the other segmentation. For each of these cases we
picked the largest part of the cell from the first segmentation that matched to a single cell from the
second segmentation. We then estimated the correlation of expression profiles between this match-
ing part and the rest of the cell (Fig. 4c). If the first segmentation was correct, then the matching
part should show similar transcriptional composition to the rest of the cell in the first segmentation,
and the resulting correlation measure will be high. In contrast, if the second segmentation was cor-
rect, the expression correlation will be low (Fig. 4d). Assessment of such expression correlation
between parts of the cell requires a relatively high number of molecules per cell, so we were not
able to apply this benchmark to the dataset generated using ISS protocol'” (Supplementary Fig. 7a).
On all other protocols, the overlapping regions showed on average higher expression correlation
with the corresponding Baysor assignments than with the alternative segmentations (Fig. 4e,f and
Supplementary Fig. 9), indicating higher accuracy of Baysor segmentation results.

We further investigated the two datasets where the differences between Baysor and published
segmentations were most notable: osmFISH® (Fig. 5) and MERFISH’ (Supplementary Fig. 10)
datasets. In both cases, the segmentation differences preferentially impacted certain cell types.
In the case of osmFISH, the published segmentation omitted most of the cells of non-neuronal
subtypes: only 8% of Vascular and Astrocytic cells detected by Baysor are present in the original
segmentation (Fig. 5d). The disagreements on the MERFISH dataset were less biased, with the
largest difference observed for the Endothelial cells, with the published segmentation reporting
51% fewer cells (Supplementary Fig. 10c). There were two subtypes where Baysor distinguished
fewer cells: 10% less for Ependymal, and 15% for Microglia. The difference in Microglia, how-
ever, is likely caused by the set of Inhibitory neurons that express contradictory markers and were
mis-annotated as Microglia (Supplementary Fig. 10j).

Outstanding challenges. The Baysor model described above performed well on most existing
protocols, however some edge cases are not resolvable within the current model. These include
working with ultra-high resolution data, capturing 3D structure of the data, and segmenting sparse
homogeneous regions. An example of the ultra-high resolution data is the NIH3T3 fibroblast
dataset from the Seq-FISH+ protocol’. It captures 10,000 different genes with 35,622 molecules
and 6,700 unique genes per cell on average. Such resolution reveals prominent sub-cellular struc-
ture, resulting in heterogeneous gene composition within different parts of the cell body (Fig. 6a).
Furthermore, such data also highlights complex morphology of the cells (Fig. 6b). These features
go beyond the two critical assumptions of the current Baysor model: that the composition of the
cell body is homogeneous, and that the cell shape can be reasonably well approximated using a bi-

variate normal prior. The homogeneity assumption was also violated in the dataset generated using
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Fig. 5 | Examples of the segmentation differences on the osmFISH data. a, A joint UMAP embedding
of the cells generated by both Baysor and the published segmentations, labeling the annotated cell types
with color. b, The same embedding, colored by the segmentation method. ¢, A heatmap showing expression
patterns of marker genes (columns) for each of the cell types (rows). The colours show expression levels,
normalised by gene. d, The barplots showing the number of cells per cell type for the Baysor (brown) and
the published (green) segmentations, with the numbers on the top of the bars showing excess percentage
for the Baysor segmentation. e-f, Examples of Micro Hexb (e) and Astro Mfge8 (f) cells, which were
not segmented in the published segmentation, but were distinguished using Baysor. The dots correspond
to molecules, colored by gene (only five the most abundant genes are shown). The grayscale background

represents DAPI signal, and the black line shows the cell boundary determined by Baysor.
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STARmap protocol '

, however the reasons for that are likely technical: in the STARmap data, the
molecules belonging to the same gene were spatially clustered, with the size of such mono-genic
clusters reaching dozens of molecules (Fig. 6d,e and Supplementary Fig. 11). While Baysor was
still able to perform a reasonable segmentation of this data (Fig. 4a,b,e), such local clustering of
genes affected the convergence of the algorithm.

Another potential limitation is the presence of the 3D structure in the data. The existing
protocols can scan through the third dimension by generating sequential focal stacks (z stacks).
The distance between the sequential stacks, however, can vary. In some datasets, the distance
between stacks exceeds 10um, effectively capturing different cell layers. Other datasets show
much smaller distances, on the order of 1xm, in which case the stacks can be pooled together
reducing it to a 2D view. There are, however, some rare cases where the stacks capture real 3D
structure of the cells (Fig. 6¢). In such cases, segmentation needs to be performed in 3D. While
the Baysor model can be extended to 3D, the current implementation is limited to 2D data.

The third challenge involves separation of sparse homogeneous regions. If a region is com-
posed primarily of the same cell type, the segmentation would normally be driven by the local
density clustering of the detected molecules (e.g. Fig. 6b). However, if the molecular signal is
very sparse, such density patterns become challenging to detect. This situation can be observed in
the ISS dataset of the CA1 brain region'”. As there is little signal in the data, the resulting Baysor
segmentation does not correspond to the DAPI staining (Fig. 6f). It is worth noting, however, that
for the purposes of the downstream analyses, the uncertainty in the boundaries between cells of the
same type is likely to be less consequential than other types of errors.

The challenging situations described above can be addressed by specifying a segmentation
prior based on auxiliary stainings, and regulating its weight with the “prior segmentation confi-
dence” parameter. For accurate segmentation of complex cell shapes, stainings that register the
whole cell body are needed (e.g. poly-A or membrane staining). The choice of the staining seg-
mentation method is also important, to ensure that the prior segmentation traces the complex cell
shapes. When using such priors, the further the cell shapes are from simple ellipsoid approxima-
tions, the larger should be the value of the prior segmentation confidence parameter. Similarly,
having whole body stainings with high prior confidence can help to overcome problems aris-
ing from heterogeneous subcellular structure. For instance, incorporating a segmentation prior
for STARmap VISp 160 had a substantial effect on the segmentation (Supplementary Figs. 9, 12
and 13).

In contrast, segmentation of sparse datasets can be aided by the knowledge of cell centers
alone, obtained from DAPI or similar stainings. Specification of the approximate cell size (i.e.
global scale) is also useful in such cases. A lower prior confidence value will provide better results

in such cases, since even a small value should be sufficient to resolve homogeneous regions. Using
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Fig. 6 | Outstanding challenges. a, Seq-FISH+ Fibroblast’ data colored by NCVs with black contours
showing the published segmentation borders. b, The same data, segmented by Baysor with colors showing
cell assignment. ¢, Example of cells which are separable only in 3D in the Allen smFISH data. The two plots
show 2D projections on the physical x-y and x-z axes correspondingly. Each point represents a molecule,
coloured by its gene of origin. Gad2 and Pvalb are markers of inhibitory neurons, while Sv2c with Satb2

are markers of excitatory neurons. These markers are mutually exclusive, and there should be no cell that
expresses all four of these markers.
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Fig. 6 | d, Example of a cell from the STARmap VISp 160 dataset'®. The black lines show the published cell
boundaries. The plot shows colouring by gene for the 15 most expressed genes. e, Local grouping tendency
of the transcripts on STARmap data, is illustrated through distributions of neighbor gene entropy. (top) For
each molecule, & = 5 nearest neighbours were estimated. The entropy (left) of their gene count vector,
and the number of unique genes in the neighbourhood (right) and are shown on the “Observed” histogram.
The “Expected” histogram shows the distributions expected under gene randomization. (bottom) Analogous
plots for k = 10 neighborhoods. f, Example of a homogeneous CA1 region in the ISS data'>. The plot shows
Baysor segmentation, and it can be seen that cell boundaries do not match the grayscale DAPI signal from
the nuclei. Each dot represents a molecule, colored by NCVs, with black contours showing cell boundaries.
g, Different segmentations shown for the same region as f with the segmentation type specified in the top-
left corner. Black crosses on the plot show molecules, assigned to background. The bottom row shows
that after using DAPI segmentation (Watershed) prior, Baysor segmentation shows better correspondence
to the nuclei DAPI signal. h, Segmentation examples from the Allen smFISH dataset, showing Baysor
segmentation without (top) and with (bottom) DAPI-based Watershed prior. Here, using Watershed prior

does not change results visibly, as transcriptomic signal matches to DAPI.

larger prior confidence value, on the other hand, can distort the segmentation of heterogeneous
regions. Prior segmentations do not appear to help in overcoming 3D structure effects, as the

current 2D model can not properly account for such data.

Discussion
Realizing the potential of spatially-resolved transcriptomics will require continued improvements
on both the side of the protocols'?, as well as analytical methods for processing such data. Here we
focused on addressing an important pre-processing step of cell segmentation. Effective segmenta-
tion can increase the number of detected cells, and provide more informative profiles for each cell.
The accuracy of the segmentation is also critical for a number of valuable downstream inferences.
For instance, incorrectly drawn borders can create spurious correlation of expression state between
adjacent cell types, resulting in false-positive inference of cell interactions. Alternatively, shifted
borders may be interpreted as transient cell states, suggesting false transitions between cell types.
To avoid such potential issues, we described an approach that uses transcriptional composition to
optimize the placement of cell boundaries. Baysor can perform segmentation using only molecule
placement data or in combination with evidence from auxiliary stains, and yields improved seg-
mentation quality, increased number of cells and segmented molecules.

Not all of the downstream analyses require cell segmentation. For instance, region segmen-
tation or tissue cell type composition may be inferred directly from molecular data'”. We show that
a relatively simple segmentation-free approach based on the composition of local neighborhoods

(NCVs) can be used to assess the quality of the dataset, estimate the number and identity of the
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major cell types, and effectively visualize the organization of the tissue (Fig. 1a). This approach
is fast and does not require parameter tuning, making it a convenient option for preliminary anal-
ysis. Furthermore, the NCVs can be fed directly into existing scRNA-seq analyses methods for
integration with other datasets, annotation of cell types, etc. Many of these downstream problems,
however, can be formulated as labeling problems, in which local continuity can be effectively cap-
tured using Markov Random Field (MRF) priors. Such MRF-based approach is at the core of
Baysor cell segmentation method, but can also be used to solve other labeling problems, such as
separation of signal from background molecules or clustering of NCVs. It can also be used for
continuous labels, such as cellular response on an injury, for example modeling dependence on
the distance from the site of the injury. The strategy can also be applied on the level of cells, for
instance to identify larger tissue segments””.

Though Baysor algorithm performed well on most of the published protocols, a number of
potential improvements could be introduced. For instance, the implementation can be extended
to support segmentations in 3D space, without altering the logic of the underlying algorithm. A
more complex problem would be improving modeling of cell shapes”, for instance by replacing
current ellipsoid shape approximations by limiting the size and complexity of the cellular shapes.
Further improvements could be gained by extending the hierarchical Bayesian model to introduce
cell-type specific shape and composition characteristics. Finally, as we demonstrate, information
from auxiliary stainings can be extremely valuable in resolving difficult cases. Improved stain-
ings, such as those labeling cellular membranes, as well as improved methods for segmenting such
images will likely be key for improving the overall segmentation results. However, even with the
common DAPI images, manual processing is commonly required to perform initial nuclei segmen-
tation. As Baysor can take advantage of uncertain prior predictions, a probabilistic auxiliary image
segmentation method that could incorporate nuclei, cytoplasm and membrane stainings to predict
a cell center and boundary probability maps would provide a significant advantage. We hope that
the Baysor implementation and the MRF-based computational approach will further facilitate the

development and applications of high-resolution spatial transcriptomics methods.
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Methods

Neighborhood Composition Vector Analysis. To analyze the spatial expression patterns without
cell segmentation, we use neighbourhood composition vectors (NCVs) as a unit of analysis. NCV's
are constructed by identifying K spatially nearest neighbours (NNs) for each molecule, and then
characterizing its composition. That is, estimating the frequency of occurrences of different genes

among the neighbours:

)

vev - | .

lu: (gene, = q,u € adjg (1)) | }

qzlquenes7
where Ngcp.s 1s the total number of measured genes, gene,, is the gene that produced the molecule
u, K is the number of NNs and adj () are the indices of these NN for the molecule i. To estimate
the NN, a k-d tree structure implemented in the NearestNeighbors.jl julia package was used. 2D
Euclidean distance was used as a distance metric. As implemented in the Baysor package, the
default value of K was set to the expected minimal number of molecules per cell (a user-modifiable
parameter) or the total number of detectable genes divided by 10, whatever is larger.

To perform single-cell RNA-sequencing (scRNA-seq) analysis of NCVs we used Pagoda2
(https://github.com/kharchenkolab/pagoda?) R package to calculate UMAP
embedding® and CellAnnotatoR package (https://github.com/khodosevichlab/Ce
11AnnotatoR) to annotate the cell types.

To visualize the local gene composition, embedding of the NCVs into three dimensions was
performed, first by reducing the dimensions using Principal Component Analysis (PCA) to the
top 15 principal components, and then embedding the data into 3D space using UMAP with the
default parameters min_dist = 0.1 and spread = 2.0. As fitting UMAP embedding for many
NCVs is computationally intensive, to optimize performance we first fit the UMAP embedding
on a subset of NCVs and then applied the resulting transformation to all NCVs. First, PCA was
estimated on the whole dataset. Then, 10000 molecules were selected uniformly across the prin-

cipal components. After which UMAP was fitted only on the 10000 NCVs, corresponding to
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these components. Next, the fitted UMAP was used to embed all PCA-transformed NCVs to a 3D
space. Finally, these 3D coordinates were re-normalized and encoded into a perceptually uniform
CIELAB colorspace. Selecting molecules uniformly across multiple dimensions was done by tak-
ing sum over all PC coordinates for each of the molecules, ranking them by the obtained values,
and then selecting a subset from this array uniformly across indices. Such approach allows to have
a subset of molecules with density, similar to the original distribution while avoiding stochastic
sampling. If assignment of molecules to background noise or true signal is available for a given
dataset, only non-background molecules are used for fitting UMAP.
Markov Random Field segmentation. In many cases, spatial proximity of molecules is a sign of
their similarity by some other properties. Examples of such properties include cell assignment, cell
type that produced the molecules, or the distinction between "background" and true "intracellular"
molecules. To infer such labeling from molecules we formulate it as a segmentation problem,
which is solved using an Expectation-Maximization (EM) algorithm for separating a mixture of
distributions with Markov Random Field (MRF) prior’":?° to encode spatial relationships.

Such a model implies that each segment (which can be cell, cell type, or a background/signal

label) comes from its own distribution that is generated by
fs(obs; | U5, 2\, W)

220 fulobsi [y, 2, W)

fs(obs; | U5, 2, W) = farrr (2 = s | {25, wij }ieadiy) * fs (0bsi|T5) (3)

where fy/rr is the MRF density, f is the density of the component s, 1ncomps is the total number of
components, z; i$ the segment label for the molecule ¢, z\; is the vector of labels for all molecules
except i, obs; is the observed data from this molecule, W = {w; ;}: jemotecules 1 the matrix of
MREF edge weights between pairs of molecules 7 and j, and v is the vector of parameters for the

component s.

Building the Random Field. To establish the structure of the random field, Delaunay triangulation
over points in 2D space was built using the VoronoiDelaunay.jl package. It provides a connected
planar graph, matching the general structure of the space. Edge weights were set to the trimmed
inverse Euclidean distance, so they represent connectivity of the two molecules ¢ and j: w;; =
min(Qos(d)/d; j,1) , where d;; = /(z; — ;)% + (y; — y;)2, and Qo.3(d) is the 0.3 quantile of
the distance distribution d = {d; ;}. In principle, the weights could be additionally adjusted to

represent other kind of dependencies between molecules (see the "Cell Segmentation" section),
but they were not used during this step. It is worth noting that the Delaunay triangulation captures
only a small neighborhood of a molecule, which is necessary to keep the graph planar. However,
more neighbors could, in principle, be taken into account by adding edges to the nearest neighbors

that are not already connected.
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Separation of the intracellular molecules from the background. In the existing datasets, back-
ground regions are much sparser than the cellular somas. This difference can be quantified by
estimating distance to the k-th nearest neighbour (NN) for each molecule. The molecules in the
dense regions would have small distance, while for sparser regions the distance will be large (2¢,d).
To model distribution of such distances d; we used Gaussian Mixture Model with two components:
one for the intracellular and another for background molecules. The EM algorithm with the MRF
prior was then used to separate this components.

Initialization was performed using 10’th and 90’th percentile of the distance distribution for
the means of the intracellular (x.) and the background (y;,) components correspondingly. Both
standard deviations were initialized as o., 0, = 0.25 % (up — p.). The probability of a molecule

to be labelled as intracellular (later called "molecule confidence" for simplicity) was initialized as

o N(dilpesoe)
Pesi = N(diTpe,00)+N(diln,on)

the background with probabilities fixed to 1.0 and excluded from subsequent optimization. Finally,

The molecules from the right tail with d; > pu;, + 30 were assigned to

the total number of molecules per component was initialized as m, = Y """ p,,;.
On the Expectation step of the iteration ¢ the assignment probabilities were updated using

the following formulas with u € [c, b]:

Fure (2 = w | {zj, wi;j }icasj)) = €xp Z (wm *pfj}”)
j€ad;j(4)
- 4
fu(di|z\ia W, muaﬂu70u> = My * fMRF (Zz =Uu ’ {Zj>wi,j }andj(i)) *N(diwmau) “)
fu(dz|z\z7 VV; My y Has o-u)

Zse(c,b) fs(dllz\za VV; Mg, s, Us)

On the Maximization step parameters /i, o and m were re-estimated according to:

2 (Pui * di)

pﬂ(j)z = pu(di[Z\is W, My, pous, 00) =

Hu = Tomols
Zizll Pui
Mmols 2
i= Pui * dz — M
0-3 - Z ! <anlols<17 . ) ) (5)

Nmols

My = § DPuyi
i=1

The difference of the parameters ;z and o between iterations was used as the convergence
criteria, with the convergence threshold of 0.005. After the algorithm converged, the MRF prior
was discarded and only the densities of the normal distribution were used to estimate the cell

mc*N(di|HC7Uc)
N (@ilhowe) FeN @) That was done because the MRF
prior consistently push probabilities to be close to either 0.0 or 1.0, which corresponds to binary

assignment probabilities: p.(d;) =
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classification. In contrast, using only normal densities results in more gradual probability values,
which can be integrated better with the further probabilistic parts of the algorithm.

When a prior segmentation L,,.;,, was available (e.g. DAPI), it was used as a constraint for
the optimization. Given the prior segmentation confidence ¢, € 0.0, 1.0], the Expectation step

was restricted p.(d;) to be greater or equal than c?

rior 10T all molecules, assigned to cells in the

prior segmentation:

fu(dz|z\za Wa My, P, Uu)
ZsE(c,b) fs(di|2\i’ VV, Mg, [bs, Js)

At the limit of ¢, — 0, this approach converges to the case without a prior segmentation,

Vi: Lyior(i) >0 (6)

_ 2 2
Pei = Cprior + (]‘ - Cpm'or) *

whereas cp,i,r — 1 will ensure that the molecules assigned to cells in the prior segmentation will

be necessarily recognized as intracellular.

Segmentation of cell types. The same MRF formalism can be applied to perform de-novo clustering
of molecules by cell type of origin. Moreover, when the scRNA-seq data is available, the approach
can match the transcriptional identifies of the clusters identified in the spatial data to those ob-
served in the provided scRNA-seq. To perform the segmentation, we considered gene identity of
a transcript as observable data, and modeled the whole dataset as a mixture of Categorical distri-
butions representing different cell types. The number of components 72.o,,s 1S an input algorithm
parameter that must be specified at the start. Then, the basic Expectation step on the iteration ¢

works as the following:

p(u € adj(i)) =1~ H (1 —pq(f,j_‘l))

J€adj(i)
fymrr (Zz =u |{Zj, W; 5, Pe,j }andj(z’)) = exp Z (wi,j * pq(j,;l) * pc,j>
jeadi(s) 9
FulgiIW, 05,2\, Do) = furr (20 = w {25, Wi g, pej }jeadiy) * Cat(gi|va) % p(u € adj(i))

) (t) [ — fu(g2|W7 m7 E\Zap_C)
Pui = Dy (gl|VV7‘/7'ZupC)_ Neomps P ——
7 ) 25:1 P fs(gl|W7 Usaz\hpC)

These formulas differ from the previous case (4) in several aspects. First, given that gene

identities are categorical, and not continuous variables, the two Normal distributions were replaced
with 7.0,mps Categorical ones to describe this kind of data. The parameter T, = {v,, 4 }ge1:noenes here
defines expression probabilities per gene for component u. Second, they remove dependency of the
density on the segment size m,,, as its presence forced the algorithm to prefer components of larger
size, and without strong signal from data, the MRF prior tended to eliminate all but the largest com-

ponent. Such problems did not arise in the previous application, because there two Normal distri-
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butions described the observed data much better than one, ensuring that both components (back-
ground and signal) were maintained. In contrast, here the whole dataset can be described as a single
Categorical distribution with a high quality of fit, pushing the algorithm to converge towards one
component. Next, the molecule confidence p, j, obtained from the background estimation step, is
used here for estimation of fj;zr. This step is very important, because only intracellular molecules
are expected to be clustered over cell types, while background molecules can be arranged in arbi-
trary patterns. Finally, the updated formulas introduce p(u € adj (z)), which ensures continuity of
the resulting segmentation: without it, a molecule can be assigned to some cluster even if none of
its neighbors belong to that cluster, as fi/rr (zi =u {2, w;j,pe; =0 }jeadj(i)) = exp(0) = 1.
Indeed, such ability to re-assign molecules globally can be desirable, as the EM algorithm can get
trapped in local minima and is generally sensitive to initialization. And the assignments to the com-
ponents distant from the local neighborhood can help to reach convergence to a global optimum.
However, the probability of assigning a molecule to a cluster that is not connected to it cannot be
inferred solely from the density fy;rr(2; = u) = 1; it also depends on the scale of the other terms.
So, in addition to p(u € adj(i)) the formulas introduce an additional term, pgiopa = 0.05, which
defines the probability of assigning the molecule to a component regardless of the connectivity.
Then, the Expectation step can be adjusted as:
R fu(9il W, 0, 2i, Pe) Cat(g;|[v,

pq(f) (9:|W,V,2\i,Pe) = (1 — Dgiobat) * S £ (W, ;_s, i 00) + Dglobal * ST éat(giv_s&))

The downside of the global assignment is the reduced continuity of clusters. To correct for that

effect, after the algorithm converged, pgope; Was set to 0, which reduces to the basic version of
the Expectation step, and the EM iterations were carried out further until convergence to the final
result.

The Maximization step fit the parameters for C'at(g;|v,) using the assignment p,,; from the

Expectation step:

S Zz gi=q (Peji * Pui) +1 o
o ?ielms Zj: gi=t (pc,z' * pu,j) +1

It is important to note here that the vector v, is a non-normalized probability density, due to the

way pseudo-counts were incorporated: instead of adding 74cp., to the denominator, 1 was added
as it allowed to preserve spiking structure of the sparse distribution.

When prior information about transcriptional composition of cell clusters is available (e.g
scRNA-seq cell types), the Maximization step is changed to take it into account. Given prior

expression fraction f, , from the cluster u and the gene ¢ and its standard deviation o, 4, the
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estimate was adjusted based on the Z-score value ¢, , = “=2F%4 ag:

Tu,q

Vg if [l < 1
Vg = g + 5ign(Gug) * (52 +0.75) 0, 1<l <3, (10)
tiug + 5191(Cug) * (Gl +1.5 = V3) 0ug, i [Gugl >3

This function corresponds to no penalty for all deviation from the mean within one o, linear penalty
for deviations less than 30, and a super-linear penalty otherwise (Supplementary Fig. 14a). If the
standard deviation was not available, it was set to the mean value by default: o, , = fi,4. It s
important to note here that for a given prior clustering reasonable results can often be obtained
by running only the Expectation step without the Maximization, which corresponds to setting
ouq = 0, Yu, q. Particularly, the results shown on the Supplementary Fig. 5 were obtained with
only iterating over the Expectation step.

The algorithm was initialized using a vector of gene frequencies, estimated over the whole
dataset, multiplied by uniform noise in [0.95;1.05]: pinit = 1{Egi=a}<Unif095.1.05) = Njext  these

u,q Nmols

init
Yu,q
S rgenes init *
t=1 u,t

values were normalized by the sum over all genes: v, , = The initial assignment

i Cat(gi|vw)
227 Cat(gi|vs))

maximal change in p,, ; between iterations, weighted by p. ;: max 1<i<n,, s <| pg )Z — pgi_l)| * Pc,i>-
1SuSncomps ’ ’

probabilities were estimated as p,, ; =

. Convergence was determined based on the

The default threshold for the convergence was set to 0.01.

Cell segmentation. Assignment of molecules to a cell of origin is another case of the MRF seg-
mentation. In the most basic form, a cell can be modeled as a Multivariate Normal distribution over
positions of molecules within a cell and a Categorical distribution over the cell gene composition.
Thus, the density of a cell £ in the molecule ¢ is:

Fr(0bsi| W, Pe, 2\i) = faurr(zi = KW, Be, 2u) * pb ™ % MuNormaly () * Caty(gi),  (11)

where p!"**" is the prior probability of the component &, which is proportional to the number of

molecules, assigned to this component, fy/rr(2; = k|W, Pe, Z\;) is the MRF term, and MvNormal()
is the multivariate Normal distribution (bivariate for the 2D implementation). However, fitting this
model by the EM algorithm does not work well for several reasons. First, the number of com-
ponents cannot be defined beforehand and has to be inferred by the algorithm. To perform such
inference, the algorithm we use a Dirichlet prior over the number of components (the approach
called Bayesian Mixture Modeling or BMM). Second, not all of the molecules belong to cells,
and filtration of the background molecules by a hard threshold over p.; does not always work

well. So the algorithm was adjusted to deal with raw probabilities p. ;, and a separate background
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component f;, was added to the mixture. Finally, dense homogeneous regions within a tissue do
not have sufficient information to be segmented based on their transcritpional composition, so the
model (11) will segment the whole region into a single component. Such situations, however, can
be resolved much better by utilizing information about the expected physical size of a cell. This
was done by introducing a global scale parameter sy, that was used as a prior for estimating the
covariance matrices of the bivariate Normal distribution. If a prior segmentation is provided, sgpq;

is inferred based on this data, and otherwise it has to be specified by the user.

Initialization. The algorithm is initialized with a large number of components uniformly dis-
tributed over 2D space. Setting the initial number of cells to be much larger than the expected
number greatly improved the convergence of the algorithm. The initial cell centers were selected
uniformly across 2D space, and each molecule was assigned to the nearest center. The center
selection was done using a strategy similar the one used for subsampling of the neighbourhood
composition vectors (NCVs): the molecules are ranked by the sum over the x and y coordinates,
and then the algorithm selects a subset from this array uniformly across indices. When molecule
background confidences were available, only molecules with true signal confidence greater than
0.25 are used. The MRF was initialized using Delaunay triangulation in the same way as described
above. However, given that the triangulation uses only the information about spatial positions, the
MRF was then further adjusted to reflect the neighbourhood composition similarities, based on
NCVs. Specifically, NCVs were estimated for each molecule, and the resulting matrix of NCVs
was transformed using PCA. Pairwise Pearson linear correlation of the PC vectors, p; ;, was esti-
mated for any two molecules ¢ and j that were connected by an edge in the Delaunay graph, and

the MRF edge weight was then multiplied by max(p; ;,0.01).

Fitting Bayesian Mixture Model. Fitting of the Bayesian Mixture Model was performed by incor-
porating Stick-breaking process into the Stochastic EM algorithm. The algorithm iterates over the
four steps over a pre-defined number of iterations N*" (500 by default, which was enough for

convergence on all of the tests):

1. Maximize parameters of the distributions given existing assignment of molecules by cells

(Maximization step)
2. Sample empty components from the Dirichlet prior (Distribution Sampling step)

3. Stochastically assign molecules to components given the exiting components (Stochastic

Expectation step)

4. Remove all components that have less than two molecules assigned to them
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After finishing the iterations, the algorithm re-estimates molecule assignment by averaging it over
the last N iterations (N" /10 by default).

Maximization. The Maximization step fits the parameters of the Normal and Categorical distri-
butions based on the current assignment of molecules to components. For the Categorical dis-
tribution of the component %, non-normalized probability v , of the gene ¢ being expressed was
estimated as a fraction of the gene ¢ across the observed molecules (smoothed with pseudo-counts),

weighted by the molecule confidence p,. ;. To avoid numerical problems, all confidences were re-
(Zi: (giiq)&(ielk)p;,i)'H. This
. . o s (35 jerpe )+

procedure is similar to the one employed in estimation of probabilities for the cell type segmen-

stricted with 0.01 from the bottom: p[; = max(pc;,0.01), vy, =

tation. However, here hard assignment of cell labels was used for the sake of performance. For
the Multivariate Normal distribution, the mean fi; was estimated as the weighted average over
i kmlu*p/cz 3
m, where u € {1,2}. The weighted
i iek(Ti*TiT*Pé,i)

i ick p/c,i
After estimating the covariance matrix, it was adjusted based on the global scale 5,044 The most

the positions of the assigned molecules: py,,, =

Maximal Likelihood Estimator was also used for the covariance matrix: S, =

popular solution for such adjustment uses the Wishart prior over the covariance matrix, as this
prior is conjugate for the Normal distribution. However, the Wishart prior is parametrized with
the expected covariance matrix and the number of degrees of freedom, and thus does not allow
to explicitly control the magnitude of deviation from the expected covarate matrix. Therefore
we instead relied on the non-conjugate Normal-like prior on the eigenvalues of the covariance
matrix. This prior was parametrized with the expected size of the eigenvalues 5014, and their
standard deviation o404, Which can be specified by the user, or set to 0.25 * 544, by default.
Then, the adjustment starts by performing eigen decomposition over Sy to calculate its eigen-
values )\;, and the eigenvector matrix (). Next, the eigenvalues are adjusted using the formula

e = Mo TGN (Aku — Sgiobal) * 4 /‘)““’;g_l#b“” % Oglobal, Where w € [1,2] . This transformation
corresponds to quadratic penalty over deviation Z-scores Z ,,, reducing the deviation Zj, ,, * 0 giopal

t0 \/ Ziu * Ogiovar- NEXt, to account for the components with low number of samples, it is further
MAO global TN,

adjusted as Ay, = , where m is the expected minimal number of molecules per cell

m4ng
and ny, is the number of molecules assigned to the component k. Finally, the adjusted covariance
L Ap)? 0 o
matrix is estimated as S;, = Q) * ( ]Bl) ) * Q,;l. When the distribution parameters
k,2

10T

are estimated, the component prior probabilities p},*”" are sampled from the Dirichlet distribution,
proportionally to the number of molecules per component ny: pPi" ~ Dirichlet (max(, o)),
where « is the Dirichlet Process parameter, set to 0.2 by default. Density of the background com-
ponent was also estimated during this step, as it is constant and depends only on the parameters of

the cell components:

25


https://doi.org/10.1101/2020.10.05.326777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326777; this version posted October 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

fbg — fé?gosition * éqgene (12)

osition 52 oba 0
ffg fon — NMuNormal [3S giobats 3Sgiobar] |1t = [0,0], X = glob ! 2 (13)

global
Ncomps
1 1

gene _ __— - - Cat 14
Jog Neoms ; lexpressed;| qeem;essed ate(2) (1

where expressed; is a set of all genes, expressed in the component ¢. The position part of this
density corresponds to the level of three expected standard deviations (i.e. 3 * Sgiopq1) from the cell
center. And the composition part estimates the average expression probability across all cells and

all genes expressed in them.

Distribution sampling. After the Maximization step, Nyew comps = Bnew * Neomps NEW compo-
nents were sampled from the prior distributions. The parameter [3,,.,, was set to 0.3 by default.

For the Normal distribution, centers were sampled from all molecule positions with the weights,

proportional to the molecule confidences: yp* = [z;,4;];9 ~ Cat(p.). The diagonal covariance
20

matrix was sampled from the global scale prior: S* = 01 2 s ~ N (sglobal, Uzlobal)' Sam-
2

pling gene composition parameters requires proper modeling of sparsity of the expression vectors,
which varies greatly between protocols and cell types. It is therefore unclear how to capture this
with a parametric prior distribution. Instead, the algorithm sampled gene composition parameters

uniformly from the existing components: v* = vg; k ~ Uniform(1 : Neomps)-

Stochastic Expectation. During the Expectation step, the algorithm iterates over all the molecules
and stochastically re-estimates their component assignment. The algorithm starts by determin-
ing candidate components for each molecule, as well as their MRF prior densities. First, if a
component k already has some molecules {i},.—; assigned to it, it is included as a candidate
for all molecules j that are connected to the assigned molecules {i},,—x: (z; = k) = (k €
candidates;, Vj € adj(i)). The MRF prior densities are defined as the weighted sum over
all edges coming from the molecules that are assigned to this component: f(z; = k|W,p.) =
Z(jéadj(z’))&zj:k (pe,j * w; ;). For every component k that was just sampled from the prior and still
has no assigned molecules, the algorithms found the molecule 7, closest to the component center
7 and included component £ as a candidate for all molecules j that are connected to i:

(@' = argmin(|T; — m\)) = (k € candidates;, V5 € U(adj(i),1))
l€1L:Npois

In this case, the edge weight was set to 1, which is the maximal possible weight given the scaling

procedure. The background component was included as a candidate to all molecules, and its MRF
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prior probability was set to

fyure(zi = bg|W, De, 2i) = max Z (1 = pej) *xwiy),1
j€adi(i) &
zj=bg
It’s important to note that the exponent was not used for the MRF densities here, as it gave visibly
worse results on the tests. After the MRF weights are estimated, the full formula for the component

density is:

Je(0bsi|W,De, 2\i) = pei * farrr(zi = kIW, Pe, Z\;) * pimr « MvNormaly(7;) * Catg(g;)
Jog(0b5i|W. D, 2\i) = (1 = pei)) * faurrr (2 = bg|W, De, 2\i) * 5;Sition * fgene
(15)

Finally, assignment for the molecule : is sampled from the estimated densities.

Using molecule cell type segmentation information. To improve gene composition purity of the cell
segmentation, results from the cell type segmentation can be utilised here by penalizing assignment
of molecules from different clusters to the same cell. For that, the cell type segmentation is ran prior
to the cell segmentation, and each molecule has a cluster label assigned to it. By default, number of
clusters is set to 4, as almost every dataset has 4 cell types, while having larger number of clusters
could lead to over-segmentation. Given a cluster label per molecule, on the maximization step the
algorithm estimates the most represented cluster per cell. Then, on the expectation step, densities
of the cell components are penalized in case the cluster of the molecule c/; does not match to the
cluster clj, of the cell: f}(0bs;|W, e, 2\;) = fr(0bs;|W,De, 2\;) * y/=<il where ~ is the penalty
term (0.25 by default) and / is the indicator function.

Using a prior segmentation. For many datasets, the auxiliary microscopy stains, such as DAPI,
can be used to generate a prior segmentation. Such a segmentation can be used to resolve the
cases where molecules do not provide sufficient information. The complexities of segmenting and
aligning the auxiliary stains, however, mean that the quality of such segmentations can vary. To in-
corporate this optional information, Baysor can accept prior cell segmentation labels per molecule,
as well as the prior segmentation confidence parameter ¢, € [0;1]. At ¢prior = 0, the prior
segmentation would be ignored, whereas c,,;,, = 1 forces the Baysor segmentation not to violate
the prior segmentation assignments. Increasing c,;,» from 0 to 1 gradually increases importance
of the prior segmentation. The prior segmentation penalty is evaluated only for the molecules
that are assigned to some cell (but not to background) in both Baysor and the prior segmenta-
tions. This accounts for the fact that the imaging-based segmentations may miss some cells or
portions of cells that can still be deduced from the spatial transcriptomics data. The most obvious

example of such situation are the DAPI-based segmentations, which cover only molecules within
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the cell nuclei, leaving most of the cytoplasm molecules unannotated. Baysor algorithm, there-
fore, treats background labels (i.e. not within segmented region) within the prior segmentations
as "unknown", instead of explicitly assigning these molecules to the background component. The
situation in which some non-background molecules from the prior segmentation are recognized
as background by Baysor is dealt with during the Background segmentation step. Specifically, if
a molecule i is recognized as intracellular in the prior, its confidence can not be less than cfmmn:
Pei 2 Copiors Vi - 2P oL background. As a result, there are two possible types of contradic-
tions between the two segmentations: (i) multiple Baysor components are present within one prior
segment, and (ii) one Baysor cell component touches multiple prior segment.

The penalties are applied during the stage at which the densities of components are estimated
for a given molecule, by multiplying f(obs;|W, D¢, Z\;) by the penalty term ;. If this molecule
has a prior assignment to some segment, all but the component with the largest intersection with
this prior segment are penalized. This is done using the following procedure. After the Distribution
Sampling step, the algorithm estimates number of molecules ang per segment ¢ for each of the cell
components k. Then, based on these numbers it estimates the main prior segment per component
- This main segment label is used to separate the cases where two Baysor components are present
within one prior segment (in this case they would have the same main segment id) from the cases
where a Baysor component touches multiple segments (it would have one main segment, but would
get penalized for touching all other segments). During the Expectation step for the molecule 7, the
algorithm finds the component «*, which has the largest intersection with the segment 2" = ¢
across all candidate components for any molecule ¢ that has this segment as their main assignment

or do not have a main segment at all: u* = argmin (nzeg ) If any two components have the same
ks €(q,9) ’
number of molecules for this segment, the component with larger total number of molecules is

chosen as the main component. The main component per segment incurs no penalty (3,-; = 1),

while the others are penalized as the following:

nze-q Cprior .
A/ 1 - Cp'rio'r (#) lf gk e (q7 ®>
5k,i = n:eéq Cprior*exp(3*Cprior) (16)
V1 — Crior (ﬁ) otherwise
q
seq ;
where 1?1 is the total number of molecules per segment ¢. The first type of penalty prevents two
cells from existing in the same prior segment (over-segmentation problem), while the second type
prevents one cell from taking over a big part of a segment assigned to a different cell (overlapping
problem). The second penalty type also solves the under-segmentation problem: if a Baysor cell
overlaps two prior segments, then as soon as a new component is sampled inside one of these seg-
ments, the existing "doublet" cell incurs very large penalty for all other molecules of this segment.

These functional form of the penalties, while somewhat arbitrary, has allowed to express a desired
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curve shape for the penalties (see Supplementary Fig. 14b,c). The penalties are also scaled in [0; 1],
which allows to keep the Distribution Sampling step without changes. Freshly sampled cells have

no penalty, which corresponds to 3, ; = 1.

Complete Baysor workflow. Below is the description of the full Baysor workflow, as implemented

by the command-line interface:

1. Read the data frame with information about molecules. Filter out the genes with total number

of molecules below threshold if it was specified.

2. If provided, load the prior segmentation mask. Filter out any prior segments that have less

than mP " molecules. Estimate the global scale s9/°** based on this data.
3. Estimate confidence p.; per molecule

4. If the specified number of cell clusters (4 by default) is greater than 1, run the cell type
segmentation using the confidences, estimated above. Otherwise, assign all molecules to the

same cluster.
5. Initialize the Bayesian Mixture Model algorithm
6. Optionally, split data by frames to enable parallel processing
7. Run the BMM algorithm
8. Re-estimate assignment by averaging over the last N iterations
9. If the data was split by frames, merge them back into one

10. Save the segmentation results

Inferring the algorithm parameters. Baysor implementation derives most of the parameter esti-
mates based on the minimal expected number of molecules per cell m, which must be specified by

the user, as well as the number of genes measured by the assay (14enes):

e The initial number of cells is set to N = N, ccutes/m> Where Nyoiecues is the total

ells

number of molecules.

e The number of principal components for the PCA transformation of NCVs for adjusting the
MREF is estimated as min (max (ngenes/3, 30) , 100, genes)

e The nearest neighbor index for estimating distances d; during the Background Segmentation
is set to max (m/2 + 1, 2)
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e The number of nearest neighbors for NCV coloring is set to max(nenes/10), m, 3)

e Ifa segmentation mask was provided, it is used to infer the global scale s4,,,; and its standard
deviation o gpq- To do so, Baysor first approximates cell radii from the number of pixels

iz
i

per prior segment n?* as r; = n** /m. Then, Syepe; = median(r;) and ogppa = 1.4826 *
K

MAD(r;), which are the median and the adjusted median absolute deviation over the radii.

e Without a segmentation mask, the global scale 5,044 15 @ required input parameter, and the

deviation o g,pq; 18 set t0 0.25 * Sgpq by default.

e The minimal number of molecules per prior segment m*™°" = max(m/4, 2).

Segmentation parameters. Parameters of the segmentation runs for different datasets are shown in
the Supplementary Table 3.

Benchmarks. To evaluate Baysor, we have shown its performance in separating distinct cell types,
using Pearson Correlation benchmarks. We have also shown stability of its convergence for differ-

ent random number generator seeds, as well as runtime profiling.

Correlation benchmarks. As we currently lack independent techniques to establish ground truth on
cell segmentations, we developed a benchmark to evaluate the differences between two segmen-
tations. For each source cell ¢ in the segmentation Z,,. the benchmark finds a target cell ¢* from
the segmentation Z,, 4 that has the largest overlap with ¢ (Fig. 4c). Then it splits the molecules
from c over the part that overlaps with ¢* from the molecules in the non-overlapping part. Mea-
suring similarities of gene compositions of these two parts as a Pearson linear correlation (p.), the
benchmark evaluates the distribution of such similarities over all cells from the source segmenta-
tion: p = {p.}eez—- Taking two segmentations Z7 and Z; as the input, the benchmark returns two
distributions p; and p; for the cases where Zg,.c = 71, Ztarger = 72 and Zyc = 22, Ztarget = 21 COI-
respondingly. Based on these two distribution, the segmentation is said to be better if it has higher
pi values. More formally, given two segmentations Zs,. and Ziq,4et, the benchmark procedure does

the following:

1. All cells  with the total number of molecules below the threshold (n**"* < m) are removed

from both segmentations.

2. Among the remaining cells, a contingency matrix between the two segmentation assignments

is estimated.

3. Based on the contingency matrix, for each cell c of the segmentation Z,. and cell ¢ from the

segmentation Z,,¢¢;, the overlap fraction f27°" is estimated.
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4. For each cell ¢ € Z,,, the target cell t* € Zi4¢¢ 15 determined as the cell with the highest

: over __ ‘{i:(zsv'c,i:c) & (Ztarget,i:t*)}iel:Nmols‘
molecule overlap fraction f27" = :

mols
e

5. Only cells from Zc with the overlap fZ}<" € (25%, 75%) are selected for further analysis.

6. For each cell ¢ € Z,,.., the molecules from this cell are partitioned into (i) the main over-
lap l?@‘im = {i : (Zsrci = ¢) & (Ztarget; = t*)}, and (ii) the rest l;"etff = {i : (Zspeq =
C) & (Ztm*get,i 7& t*)}

7. Expression vectors v/ and v.5:" are estimated over the molecules from /%™ and l,’;iﬁt

correspondingly.

8. Pearson linear correlation coefficients p. between the vectors vﬁ%m and 75" are estimated.
If these two sets of molecules were produced by different cell types, the correlation p, is
expected to be low, suggesting that the segmentation z,. was erroneous for the cell c. How-

ever, similarly to the classical hypothesis testing framework, a high correlation p. does not

mean that the segmentation z,. is correct: it only suggests that the molecules were obtained

from the same cell type, and it is still possible that they originated from different cells.

Stability benchmarks. To assess the stability of the algorithm convergence, Baysor was run 10 times
with different random number generator seeds on the MERFISH dataset. Each run used 400 iter-
ations each, with parameters "scale=6.16" and "min_molecules_per_cell=30". The final assign-
ment was obtained by averaging over the last 100 iterations ("assignment_history_depth=100").
The molecule confidences and clusters were pre-estimated only once, as these procedures are de-
terministic. Pairwise Adjusted Rand Index and Mutual Information between results of different

runs were calculated as stability metrics.

Performance benchmarks. For runtime performance profiling of the molecule clustering (Supple-
mentary Table 1), MERFISH dataset was used with the molecules subset to those with coordinates
r < —3300 and y < —3300 (338023 molecules in total). Then, molecule confidence was esti-
mated, using confidence_nn_id=26 parameter setting. The MRF clustering was then ran five times
for each value of k € {2,4,6,8,10}, with parameters max_iters=5000 and n_iters_without_up-
date=100.

To evaluate the performance of the NCV Leiden clustering, Pagoda2 package was used. For
each run, the NCV matrix was estimated using 50 nearest neighbors, normalized by the total count
of each NCV, and reduced to projections on the top 50 principal components. A k-NN graph was
then built using 30 nearest neighbors (using the default cosine similarity distance metric) and leiden
community detection algorithm was applied with the default resolution=1.0. For the profiling, the

same parameters as specified in the Supplementary Table 3 (Prior=No) were used. Each dataset
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was segmented 5 times using a single thread. All benchmarks were ran on Lenovo Thinkpad X1
laptop with Intel(R) Core(TM) i7-8850H @ 2.60GHz CPU and 64GB RAM.
Quality metrics. After finishing the segmentation, Baysor extracts the following summary metrics

per cell:
e Cell area: area of the convex hull around the cell molecules
e Density: cell area divided by the number of molecules in cell
e Elongation: ratio of the two eigenvalues of the cell covariance matrix

e Average confidence: average confidence of the cell molecules

scRNA-seq processing. Analyzing NCVs using scRNA-seq tools. To generate clustering and em-
bedding of NCVs (Figure 1b,c) Pagoda2 package (https://github.com/kharchenkolab
/pagodaZ2 /) was used. The data was pre-processed using the total count normalization, and then
building 50-NN graph over the normalized counts using the default cosine distance metric. Leiden
clustering with parameters "resolution=8" and "n.iterations=15" was used for annotation expansion
(see below). Visualization of the MERFISH and the osm-FISH datasets was done by building a
joint matrix over the paper and the Baysor segmentations, reducing its dimensionality with PCA to
10 top PCs (MultivariateStats.jl package) and then running UMAP embedding (UMAP.j1 package)
using Euclidean distance and parameters "spread=2.0" and "min_dist=0.1" over the joint matrix.
Hierarchical clustering with the Ward linkage method and 70 clusters (Clustering.jl package) was

used for the annotation expansion.

scRNA-seq Annotation. The annotation for Allen smFISH data was generated using CellAnnotatoR
package. The cell type markers were inferred from Mouse VISp scRNA-seq data produced for the
SpaceTx consortium by the Allen Brain Institute (personal communication), and then applied it to
the corresponding FISH data. For inference, the "merged_cluster_smFISH" annotation shared with
the dataset was used. First, the cell type hierarchy was built using "broad_class" as the first level,
class prefix from "merged_cluster_smFISH" as the second and the full "merged_cluster_smFISH"
labels as the third level of the hierarchy. Second, cell types "CR", "Astro", "Endo", "Macrophage",
"Oligo" and "SMC" were removed, as they could not be distinguished by the genes, measured in
the Allen smFISH dataset. Next, CellAnnotatoR marker inference procedure was utilized to obtain
the markers using this hierarchy, and the resulting marker list was adjusted by hands to improve
the quality of the annotation. Finally, CellAnnotatoR was used to apply the identified markers to
the NCV data. To annotate MERSISH and osm-FISH data, the marker list was compiled manually

using the information published by the protocol authors, and then CellAnnotatoR was applied in
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the same manner. In all three cases, the resulting annotation was expanded over the clusters found
in the previous step (see "Analyzing NCVs using scRNA-seq tools").

Polygon visualization. To visualize the boundaries of the cells, a Kernel Density Estimation
(KDE) based algorithm was used. The algorithm builds a grid over 2D space, assigns each grid
node to the cell with the highest density of molecules around this node and draws a polygon around

this labels on the grid. More formally:

1. A uniform 4-connected grid was created over the 2D space, with the grid step specified as

an input parameter.

2. The density of molecules for each cell was estimated over the grid nodes using the KDE
implementation in the KernelDensity.jl package. KDE bandwidth - a parameter of the algo-
rithm - was set to the 0.5 * "grid step" by default. To improve runtime performance, only the

nodes within three bandwidths of the cell molecules were taken into account.

3. Each node was assigned to the cell with the maximal density in this node. If the maximal

density was below threshold (10~° by default), the node was assigned to the background.

4. For each cell, the graph of boundary nodes were determined as the grid nodes of the cell that
were adjacent to the nodes from the other cells or from the background. The edges between

these boundary nodes were accepted into the boundary graph.

5. For each cell, a minimal spanning tree was built over its boundary graph using the Kruskal

algorithm.

6. For each cell, the longest path in this tree was extracted using the Dijkstra algorithm, and the

resulting path was transformed into a polygon by connecting its beginning and its end.

DAPI watershed segmentation with ImageJ. To generate prior segmentations using DAPI stains,
the Watershed segmentation was performed using ImageJ** software. Each staining was segmented

by the following procedure:
1. The image was converted to 8-bit format ("Image" / "Type" / "8-bit").
2. Median filter with one pixel radius was applied ("Process" / "Filters" / "Median...").

3. Auto Threshold with the "Default" method and "Ignore black" option was applied for image
binarization ("Image" / "Adjust" / "Auto Threshold")

4. Watershed segmentation was applied ("Process" / "Binary" / "Watershed").
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VISP multiplexed smFISH data generation. Multiplexed smFISH data of mouse primary visual
cortex (VISp) was generated as part of the SpaceTx consortium. Tissue processing was carried out
as previously described”’, with some modifications. The description is taken from'”.

Silanizationof coverslips (#1.5, Thorlabs CG15KH) was performed by plasma cleaning for
30 min in a Plasma-Prep III (SPI 11050-AB), followed by vapor deposition of 3-aminopropyltriethoxysilane
(APES, Sigma A3648) in a vacuum for 10 minutes. Coverslips were then washedin 100% methanol
for 2 x 5 minutes, allowed to dry, and stored in a dust-free environment until use.

Fresh-frozen mouse brain tissue was sectioned at 10 m onto silanized coverslips, let dry for
20 min at -20°C, then fixed for 15 min at 4°C in 4% PFA inPBS. Sections were washed 3 x 10 min
in PBS, then permeabilized and dehydrated with chilled 100% methanol at -20°C for 10 min and
allowed to dry. Sections were stored at -80 °C until use. Frozen sections were rehydrated in 2X
SSC (Sigma 20XSSC, 15557036) for 5 min, then treated 10 min with 8% SDS (Sigma 724255) in
PBS at room temperature. Sections were washed 5 times in 2X SSC. Sections were then incubated
in hybridization buffer (10% Formamide (v/v, Sigma 4650), 10% dextran sulfate (w/v, Sigma
D8906), 200ug/mL BSA (ThermoFisher AM2616), 2 mM ribonucleoside vanadyl complex (New
England Biolabs S1402S), 1 mg/ml tRNA (Sigma 10109541001) in 2X SSC) for 5 min at 37°C.
Probes were diluted in hybridization buffer at a concentration of 250 nM and hybridized at 37°C
for 2 h. Following hybridization, sections were washed 2 x 10 min at 37°C in wash buffer (2X
SSC, 20% Formamide), and 1 x 10 min in wash buffer with 5 pg/ml DAPI (Sigma 32670), then
washed 3 times with 2X SSC. Sections were then imaged in Imaging buffer(20 mM Tris-HCI pH 8,
50 mM NacCl, 0.8% glucose (Sigma G8270), 30 U/ml pyranose oxidase (Sigma P4234), 50 pg/ml
catalase (Abcam ab219092). Following imaging, sections were incubated 3 x 10 min in stripping
buffer (65% formamide, 2X SSC) at 30°C to remove hybridization probes from the first round.
Sections were then washed in 2X SSC for 3 X 5 min at room temperature before repeating the
hybridization procedure.

The multiplexed smFISH image data was collected and processed using methods previously

described”’, except that the images from different rounds of hybridization were registered in (x,y)
based on the DAPI signal. The spot locations and raw data are available on request.
Code availability. Baysor package is available at https://github.com/kharchenkol
ab/Baysor. Baysor parameters for different datasets are reported in the Supplementary Table 3.
The code to reproduce the results is available at ht tps://github.com/kharchenkolab
/BaysorAnalysis/.

34


https://github.com/kharchenkolab/Baysor
https://github.com/kharchenkolab/Baysor
https://github.com/kharchenkolab/BaysorAnalysis/
https://github.com/kharchenkolab/BaysorAnalysis/
https://doi.org/10.1101/2020.10.05.326777
http://creativecommons.org/licenses/by/4.0/

	Results
	Discussion
	Acknowledgements
	Competing interests
	References
	Methods

