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Abstract

Intrinsic and extrinsic noise sources in gene expression, originating respectively from transcriptional
stochasticity and from differences between cells, complicate the determination of transcriptional
models. In particularly degenerate cases, the two noise sources are altogether impossible to dis-
tinguish. However, the incorporation of downstream processing, such as the mRNA splicing and
export implicated in gene expression buffering, recovers the ability to identify the relevant source of
noise. We report analytical copy-number distributions, discuss the noise sources’ qualitative effects
on lower moments, and provide simulation routines for both models.

1 Background

Recent improvements in single-cell transcriptomics, including increasingly sensitive fluorescence-
and sequencing-based methods, have begun to provide data useful for discriminating between com-
peting biophysical models. One immediate application of interest is that of intrinsic and extrinsic

cellular gene expression noise, which has already been studied directly from mRNA reporter statis-
tics [1, 2]. While experimental and statistical methods for measuring the relative contributions of
intrinsic and extrinsic noise are relatively advanced [3–6], microscopic models of cell-to-cell vari-
ability are less well developed. These models are necessary in light of recent methods for measuring
the molecular state of cells, which offer routes to better mechanistic understanding, but present a
number of new challenges in controlling noise sources.
While the introduction of single-cell RNA sequencing (scRNA-seq) data with unique molecular iden-
tifiers (UMIs) provides measurements of a substantial fraction of transcripts in individual cells [7],
the resulting copy-number data are discrete, and thus challenging to model with existing methods
that largely focus on continuous-valued fluorescence readouts. The biochemistry of scRNA-seq also
generally relies on the capture of polyadenylated sequences in fixed media [8], which limits the
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scope of assays, and is not directly compatible with in vivo experimental methods relying on the
integration of multiple fluorescent reporters to distinguish between the sources of noise [3]. Fur-
thermore, the analysis of lower moments of gene expression has been shown to be insufficient for
the identification of biophysical parameters even for purely intrinsic noise models [9], suggesting
that full copy-number distributions are necessary for modeling more complex systems with multiple
sources of noise.
Another challenge lies in theory; ideally, analytical results will be available to provide qualitative
interpretability and guide computational approaches, but many current methods are purely numeri-
cal. For example, while methods for the explicit description of extrinsic noise are formally available,
in the context of a transcriptional model, the incorporation of extrinsic noise typically corresponds
to the construction of a mixture model with parameter values drawn from a distribution [2, 3, 10].
Under this construction, full analytical solutions are only available in the simplest cases.

2 Two models for gene expression

It is well-known that the common two-state model of gene expression [11] gives rise to a negative
binomial (NB) distribution of mRNA counts in the short-burst limit [12]. However, a recent study
shows that constitutive transcription in a cell population with a gamma-distributed production rate
parameter also yields a negative binomial distribution of mRNA counts [13]. Although there are
both experimental and theoretical arguments favoring a bursting model for eukaryotic transcription
[14–17] – current theories posit that superstructure modifications are responsible for occlusion and
exposure of the gene locus [18,19] – a comprehensive model should account for all relevant sources
of noise, as well as provide both a quantitative and qualitative understanding of their effects.
A current limitation of existing models is that processes downstream of eukaryotic mRNA produc-
tion, such as export and/or splicing processes [20, 21], are generally ignored. However, promising
new technologies and experiments, based on fluorescence [22,23] and sequencing [24] methods, can
distinguish nascent from mature mRNA molecules based on spatial or intronic readouts, thus pro-
viding essential data for studying model of increasing complexity. In particular, the maturation of
these methods and the availability of resulting multimodal data naturally suggests the potential of
fitting otherwise poorly identifiable models [9].
As a first step, and to gain a qualitative understanding of the effects of intrinsic and extrinsic
noise in the context of downstream processing, we compare solutions of two simple two-stage
models of transcription that include downstream processing at steady state. Both models assume
that nascent mRNA (unspliced or pre-mRNA) is converted to mature mRNA (spliced mRNA)
after an exponentially-distributed delay, corresponding to splicing. This is followed by another
exponentially-distributed delay that models the mature mRNA being degraded. The splicing rate
β and degradation rate γ are deterministic. The gene locus dynamics are modeled by either
bursts, with stochastic burst size B ∼ Geom(b) and deterministic burst initiation frequency ki [20],
or constitutive, with stochastic but constant transcription rate K ∼ Gamma(α, η). The model
parametrizations are illustrated in Figure 1. We calculate lower moments and cross-moments, and
show how these can be used to differentiate between distributions and statistics resulting from the
two models.
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Figure 1: (a) Schema of the intrinsic noise model (ki: burst frequency; B: burst size drawn from a
geometric distribution; β: pre-mRNA splicing rate; γ: mRNA degradation rate. Uniform shade of
green indicates identical parameter values across all cells). (b) Schema of the extrinsic noise model
(K: transcription rate; β: pre-mRNA splicing rate; γ: mRNA degradation rate. Different shades
of green indicate different values of K across cells).

3 Notation

3.1 Model parametrization

Model-independent quantities and statistics are defined in Table 1. The two models’ parameters are
defined in Tables 2 and 3. Finally, xz, where x is a statistic computed from data moments (e.g., µM ,
σ2
M , ρ, γ) and z ∈ {i, e} refers to the predicted value of that statistic based on either the intrinsic or

extrinsic noise model. For example, µM,i refers to the predicted mean mature mRNA copy number
under the intrinsic noise model, while ρe refers to the predicted nascent–mature correlation under
the extrinsic noise model.
A probability mass function (PMF) associated with a discrete-valued random variable X is equiv-
alently denoted by P (·; ·) or P (X = k; ·). A probability density function (PDF) associated with a
continuous-valued random variable is denoted by f(·; ·).

3.2 Probability distributions

The geometric distribution is defined as follows: if X ∼ Geom(p), P (X = k; p) = (1− p)kp, where
p ∈ (0, 1] and k ∈ N0. The geometric distribution is well-known to arise in the short-burst limit of
the two-state transcription model [25].
The negative binomial distribution is defined as follows: if X ∼ NegBin(r, p), P (X = k; r, p) =
Γ(r+k)
k!Γ(r) (1− p)rpk, where p ∈ [0, 1] and r > 0. We note that MATLAB and the NumPy library take
the opposite convention, with a p̃ parameter defined as 1− p.
The gamma distribution is defined as follows: if X ∼ Gamma(α, η), f(x;α, η) = ηα

Γ(α)x
α−1e−ηx.

This is the shape/rate parametrization. We note that MATLAB and the NumPy library take the
opposite shape/scale parametrization with parameter θ = η−1. Furthermore, the rate η is usually
given the variable name “β”; however, we use the current convention to preclude confusion with
the splicing rate parameter.
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Table 1: Observation variables

Parameter Definition

n Number of nascent mRNA
m Number of mature mRNA
N Random variable denoting number of nascent mRNA; N ∈ N0

M Random variable denoting number of mature mRNA; M ∈ N0

γ Degradation rate
µz, E[Z] Expectation of species Z ∈ {N,M}

µ Expectation of an arbitrary distribution
σ2
z Variance of species Z ∈ {N,M}

σ2 Variance of an arbitrary distribution Z ∈ {N,M}
Cov(N,M) Covariance nascent and mature copy numbers

ρ Pearson correlation coefficient

q Computed statistic
σ2

N

µN
− 1

P (n,m; ·) Joint PMF of nascent and mature mRNA, shorthand for P (N = n,M = m; ·)
P (·; ·) PMF of an arbitrary parametrized discrete random variable
f(·; ·) PDF of an arbitrary parametrized continuous random variable

Table 2: Intrinsic noise model parameters

Parameter Definition

ki Burst frequency
B Geometric random variable denoting burst size
b Mean of B
β Splicing rate
γ Degradation rate

f β
β+γ , non-dimensional splicing rate

Table 3: Extrinsic noise model parameters

Parameter Definition

K Gamma-distributed random variable denoting transcription rate
α Shape of gamma distribution
η Rate of gamma distribution
β Splicing rate
γ Degradation rate

f β
β+γ , non-dimensional splicing rate
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4 Preliminaries

4.1 Intrinsic noise model

4.1.1 Probability mass function

The full joint distribution for the burst model requires numerical integration and Fourier transfor-
mation [20]. To our knowledge, no analytical solution exists, although approximations in terms of
hypergeometric functions are available [26].
The nascent marginal is distributed per NegBin(kiβ ,

b
1+b). The mature marginal is NB-distributed

in the limit of low β and Poisson-distributed in the limit of high β. Although the distribution
in the intermediate region is qualitatively similar to NB, it does not appear to be exactly repre-
sentable as NB. Furthermore, even the determination of the closest NB approximation according
to some divergence metric is an open problem, although method of moments approximations may
be satisfactory for some purposes.

4.1.2 Moments

Per the results from Singh and Bokes [20]:

µN =
kib

β

µM =
kib

γ

σ2
N = µN (1 + b) =

kib

β
(1 + b)

σ2
M = µM

(

1 +
bβ

β + γ

)

=
kib

γ

(

1 +
bβ

β + γ

)

Cov(N,M) =
µNbβ

β + γ
=

kib

β

bβ

β + γ
=

kib
2

β + γ
,

yielding the following Pearson correlation coefficient:

ρ :=
Cov(N,M)

σNσM

=

kib
2

β+γ
√

kib
β (1 + b)kibγ

(

1 + bβ
β+γ

)

= b

√

f(1− f)

(1 + b)(1 + bf)
,

where f controls the relationship between the splicing and degradation timescales.
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4.2 Extrinsic noise model

4.2.1 Probability mass function

The full time-dependent copy-number probability distribution under constitutive production is well-
known and represents one of the most valuable and general results in chemical master equation
(CME) analysis [27]. In the relevant steady-state regime, the solution P̃ (n,m) giving the probability
of a state with a given number of nascent and mature molecules is the product of independent
Poisson distributions. Given a production rate K, splicing rate β, and degradation rate γ,

P̃ (n,m;K/β,K/γ) =

(

(K/β)ne−K/β

n!

)(

(K/γ)me−K/γ

m!

)

Therefore, marginalizing over the gamma-distributed production rate K:

P (n,m;α, η) =

∫ ∞

0
P (n,m;x)f(x;α, η)dx

=

∫ ∞

0

(

(x/β)ne−x/β

n!

)(

(x/γ)me−x/γ

m!

)

ηα

Γ(α)
xα−1e−ηxdx

=
ηα

Γ(α)n!m!βnγm

∫ ∞

0
xn+m−α−1e

−x
(

η+ 1

β
+ 1

γ

)

dx

=
Γ(α+ n+m)

Γ(α)n!m!

(

η

η + 1
β + 1

γ

)α( 1

β
(

η + 1
β + 1

γ

)

)n( 1

γ
(

η + 1
β + 1

γ

)

)m

=
Γ(α+ n+m)

Γ(α)n!m!

(

1

C

)α( 1
ηβ

C

)n( 1
ηγ

C

)m

,

where C := 1 + 1
η

(

1
β + 1

γ

)

. This is the multivariate negative binomial (MVNB) distribution [28].
For the sake of completeness, we show that the marginal distributions take the expected negative
binomial form:
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P (n;α, η) =

∫ ∞

0
P (n;x)f(x;α, η)dx

=

∫ ∞

0

(

(x/β)ne−x/β

n!

)

ηα

Γ(α)
xα−1e−ηxdx

=
ηα

Γ(α)n!βn

∫ ∞

0
xn−α−1e

−x
(

η+ 1

β

)

dx

=
Γ(α+ n)

Γ(α)n!

(

η

η + 1
β

)α( 1

β
(

η + 1
β

)

)n

=
Γ(α+ n)

Γ(α)n!

(

1

CN

)α( 1
ηβ

CN

)n

;

P (m;α, η) =

∫ ∞

0
P (m;x)f(x;α, η)dx

=

∫ ∞

0

(

(x/γ)me−x/γ

m!

)

ηα

Γ(α)
xα−1e−ηxdx

=
ηα

Γ(α)m!γm

∫ ∞

0
xm−α−1e

−x
(

η+ 1

γ

)

dx

=
Γ(α+ n)

Γ(α)m!

(

η

η + 1
γ

)α( 1

γ
(

η + 1
γ

)

)m

=
Γ(α+m)

Γ(α)m!

(

1

CM

)α( 1
ηγ

CM

)m

where CN := 1+ 1
ηβ and CM := 1+ 1

ηγ . The two marginals’ NB parameters are r = α, pN = 1
ηβ+1 ,

and pM = 1
ηγ+1 .

We note that the Poissonian framework due to Jahnke and Huisinga [27] yields the solutions for
arbitrary graphs representing sources, sinks, and reaction channels. This is sufficient, for example,
to construct a directed acyclic graph representing alternative splicing of a constitutively expressed
gene. Adding extrinsic noise to these graphs is trivial and immediately follows from the definitions
of the corresponding Poisson rate constants.

4.2.2 Moments

The moments and variances of the marginals follow immediately from standard identities for the
NB distribution:
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µ =
rp

(1− p)

µN =
α 1

ηβ+1

ηβ
ηβ+1

=
α

ηβ

µM =
α 1

ηγ+1
ηγ

ηγ+1

=
α

ηγ

σ2 =
µ

1− p

σ2
N =

µN

1− pN
=

α

ηβ

ηβ + 1

ηβ
=

α(ηβ + 1)

(ηβ)2

σ2
M =

µM

1− pM
=

α

ηγ

ηγ + 1

ηγ
=

α(ηγ + 1)

(ηγ)2

The moment-generating function (MGF) of the MVNB distribution is φ(x, y) =
(

C − ex

ηβ − ey

ηγ

)−α

[28]. Differentiating the expression with respect to x and y yields α(α+1)
η2βγ

(

C − ex

ηβ − ey

ηγ

)−α−2
.

Evaluating at x = y = 1 yields the cross moment E[NM ] = α2+α
η2βγ

. Therefore, the covariance is

Cov(N,M) = E[NM ] − µNµM = α2+α
η2βγ

− α2

η2βγ
= α

η2βγ
. This result yields the following Pearson

correlation coefficient:

ρ :=
Cov(N,M)

σNσM

=

α
η2βγ

√

α(ηβ+1)
(ηβ)2

α(ηγ+1)
(ηγ)2

=
1

√

(ηγ + 1)(ηβ + 1)

5 Discriminating between intrinsic and extrinsic noise models

Using the above computations, we can show that steady-state information about the nascent and
mature distributions is sufficient to distinguish between the two models. We start from an a pri-

ori non-identifiable negative binomial nascent mRNA distribution, and demonstrate disagreement
between statistics predicted for the mature mRNA. For the purposes of illustration, we assume data-
based constraints upon µM and upon σ2

M , motivated by the existence of experimental methods for
determining these quantities [1,29]. However, we restrict our analysis to analytical distributions to
avoid the details of any particular observation or statistical inference method.
The intrinsic and extrinsic noise models are respectively parametrized by {b, ki, β, γ} and {α, η, β, γ}.
However, at steady state, the time variable is not independently identifiable. Therefore, the abso-
lute scaling of the rate variables {ki, η, β, γ} is not feasible to determine. This non-identifiability is
self-evident from the functional forms of the distributions, e.g. the moment dependence on ki

β and
ki
γ in the intrinsic noise model and on ηβ and ηγ in the extrinsic noise model. Therefore, we set β
to 1 with no loss of generality.
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Further, the nascent marginal is governed by the two-parameter NB distribution. In the context of
model fitting, this implies that two of the parameters of the joint distribution are fully determined
by the nascent distribution, and only one degree of freedom remains to be determined by the mature
mRNA data.
Crucially, given a negative binomial distribution of nascent mRNA, with mean µN and variance
σ2
N , the intrinsic and extrinsic noise models are not distinguishable. Using the intrinsic noise model

uniquely identifies b =
σ2

N

µN
− 1 and ki =

µN

b . Conversely, using the extrinsic noise model uniquely

identifies η =
(σ2

N

µN
− 1

)−1
and α = µNη.

5.1 Case of constrained γ or µM

Constraining γ is equivalent to fixing the mature mRNA means:

µM,i =
kib

γ
=

µN

γ

µM,e =
α

ηγ
=

µN

γ
µM,i

µM,e
= 1

However, the higher moments disagree. Defining the statistic q :=
σ2

N

µN
− 1 > 0 and recalling that

f = 1
1+γ for β = 1:

σ2
M,i = µM

(

1 +
b

1 + γ

)

=
µN

γ

(

1 +
q

1 + γ

)

=
µN

γ

(

1 + γ + q

1 + γ

)

σ2
M,e = µM

ηγ + 1

ηγ
=

µN

γ

q−1γ + 1

q−1γ

σ2
M,i

σ2
M,e

=
1 + γ + q

1 + γ

q−1γ

q−1γ + 1
=

(1 + γ)q−1γ + γ

(1 + γ)q−1γ + γ + 1
< 1

ρ2i = b2
f(1− f)

(1 + b)(1 + bf)
= q2

f(1− f)

(1 + q)(1 + qf)

ρ2e =
1

(ηγ + 1)(η + 1)
=

1

(q−1γ + 1)(q−1 + 1)

ρ2i
ρ2e

= q2
f(1− f)(q−1γ + 1)(q−1 + 1)

(1 + q)(1 + qf)
=

f(1− f)(γ + q)(1 + q)

(1 + q)(1 + qf)
=

γ

(1 + γ)2
γ + q

1 + q
1+γ

=
γ(γ + q)

(1 + γ)(1 + γ + q)
<

(1 + γ)(1 + γ + q)

(1 + γ)(1 + γ + q)
= 1

Therefore, the extrinsic noise model is overdispersed with respect to the intrinsic noise model, but
its nascent and mature copy numbers are more highly correlated.

5.2 Case of constrained σ
2
M

Using these expressions, it is straightforward to extend the analysis to the scenario of fixing σ2
M :
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σ2
M,i =

µN

γi

(

1 +
q

1 + γi

)

σ2
M,e =

µN

γe

(

1 +
1

q−1γe

)

=
µN

γe

(

1 +
q

γe

)

The physical solutions for γi and γe are given by positive roots of quadratic equations. For the
intrinsic noise model:

σ2
M,i =

µN

γi

(

1 +
q

1 + γi

)

γi(1 + γi)σ
2
M,i = µN (1 + γi) + µNq

σ2
M,iγ

2
i + (σ2

M,i − µN )γi − µN (q + 1) = 0

γi =
1

2σ2
M,i

[

(µN − σ2
M,i)±

√

(µN − σ2
M,i)

2 + 4σ2
M,iµN (q + 1)

]

Since 4σ2
M,iµN (q + 1) > 0, the physical solution (γi > 0) is given by:

γi =
1

2σ2
M,i

[

(µN − σ2
M,i) +

√

(µN − σ2
M,i)

2 + 4σ2
M,iµN (q + 1)

]

Further, for the extrinsic noise model:

σ2
M,e =

µN

γe

(

1 +
q

γe

)

γ2eσ
2
M,e − µNγe − µNq = 0

γe =
1

2σ2
M,e

[

µN ±
√

µ2
N + 4σ2

M,eµNq

]

Again, since 4σ2
M,eµNq > 0, the physical solution (γe > 0) is given by:

γe =
1

2σ2
M,e

[

µN +
√

µ2
N + 4σ2

M,eµNq

]

Imposing equal variances:

σ2
M,e = σ2

M,i = σ2
M =⇒

γi =
1

2σ2
M

[

(µN − σ2
M ) +

√

(µN − σ2
M )2 + 4σ2

MµN (q + 1)

]

γe =
1

2σ2
M

[

µN +
√

µ2
N + 4σ2

MµNq

]
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Consider χ :=
σ2

M

µN
. This definition yields:

γi =
1

2χ
(1− χ+

√

(1− χ)2 + 4χ(q + 1))

γe =
1

2χ
(1 +

√

1 + 4χq)

γi
γe

=
1− χ+

√

(1− χ)2 + 4χ(q + 1)

1 +
√
1 + 4χq

=
1− χ+

√

1 + χ2 − 2χ+ 4χ+ 4χq

1 +
√
1 + 4χq

=
1− χ+

√

(1 + χ)2 + 4χq

1 +
√
1 + 4χq

We may investigate the case where this quantity is equal to 1:

1 +
√

1 + 4χq = 1− χ+
√

(1 + χ)2 + 4χq
√

1 + 4χq =
√

(1 + χ)2 + 4χq − χ

No values of q, χ > 0 yield this equality. This is straightforward because even the more general
equation

√
1 + C =

√

(1 + x)2 + C − x is nowhere satisfied for x,C > 0. Therefore, γi
γe

is never 1.
From the quadratic equation solution, we know that γe and γi are both constrained to be positive;

therefore, γi
γe

> 0. Using the test case χ = q = 1, we yield γi
γe

=
√
4+4

1+
√
1+4

≈ 0.87 < 1. Since γe is

nonzero and γi(χ, q) is continuous with respect to both variables, γi
γe
(χ, q) is continuous. Finally,

we conclude that γi
γe
(χ, q) is always constrained to (0, 1) and γe > γi whenever σ2

M is fixed. This

result matches the intuition of the provided by the finding that σ2
M,e > σ2

M,i whenever γ is fixed:
to compensate for increased dispersion in the extrinsic noise model, the degradation rate must be
increased. It trivially follows that µM,i > µM,e.

6 Experimental opportunities and limitations

Multiple experimental approaches are available for the collection of nascent and mature mRNA
data. We focus on the most prevalent technologies and their relevance to the modeling question at
hand.
Fluorescence microscopy methods are broadly divided between spatial transcriptomics and intron
counting. Spatial transcriptomics leverages relative positions of fluorescently-labeled mRNA and
DNA to identify DNA-localized nascent mRNA [22, 29]. Intron counting directly detects intron-
targeted fluorescent probes [23]. These methods are rather complex and impractical to perform on a
genome-wide scale. Furthermore, we are unaware of any studies combining them with dual-reporter
assays to directly estimate intrinsic and extrinsic noise. Finally, the discrimination of nascent and
mature mRNA aside, dual-reporter assays are in general impractical to scale to large numbers of
genes.
Sequencing methods are are broadly divided between labeling and bioinformatics. Labeling refers
to spiking the live media with a nucleoside analogue and distinguishing older and newer mRNA
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molecules based on characteristic mutations [30–33]. Purely computational methods do not require
labeling, but identify nascent mRNA based on intron-aligned reads [24, 34]. These methods yield
genome-wide information; however, they are not amenable to reporter duplication on the same scale.
Commercially-available short-read methods present the problem of isoform indistinguishability if
introns interest are outside the read region [24]. Finally, both short- and long-read methods tend
to rely on the capture of polyadenylated tails [7, 35, 36], which are not present in nascent mRNA,
introducing the potential of technical bias against the nascent molecules of interest. Off-target
priming at intronic polyadenine sites [24,37] and experimental methods including poly(A) ligation
[31] facilitate the capture and identification of nascent transcripts, but the magnitude of technical
biases is as of yet uncharacterized.
Parenthetically, we note that the motivating study by Ham et al. [13] describes a purely data-based
approach to the identification of extrinsic effects, based upon the identification of heavy distribution
tails. This approach appears to be quite powerful based on the provided demonstration. However,
certain aspects are potentially problematic. The validation compares the tail behavior of the
telegraph model to the compound telegraph model. However, even relatively simple telegraph
models suffer from parameter non-identifiability issues [38, 39], so the robustness of the method is
unclear. The specific fit method and metric are not reported; it is not clear that the conventional
choices are appropriate when tail behavior is significant. Recent work in extreme value theory
proposes several Rényi divergence alternatives. [40]. Finally, we note that the underlying data is
from Zheng et al. [7], which is the earliest version of the 10X Genomics single-cell RNA sequencing
platform. Since the underlying mammalian physiology has export and splicing processes [41], but
10X sequencing explicitly focuses on exonic reads [7], it is unclear that the choice of a one-stage
model is justified. More problematically, raw count data are rarely used in scRNA-seq analyses [42],
with substantial debate and disagreement regarding the appropriate approach to normalization
[43–46]. Therefore, it is conceivable that technical biases may, in part, explain the 15-25 cells with
extremely high expression that control the kernel density in the tail region, used to support the
hypothesis of extrinsic noise.

7 Discussion

In spite of the indistinguishability of negative binomial distributions produced by intrinsic and
extrinsic noise, the behavior of downstream processed gene products is substantially divergent.
Specifically, we report inequality between the two models’ lower moments. Even given identical
nascent marginals, it is impossible to produce identical mature marginals, and by extension full
joint distributions, using the two models. More dramatically, it is impossible for the solutions’
mature marginals even to share more than one low-order moment.
In practice, if experimental joint or marginal copy-number distributions are available, it is possible
to use relative likelihood testing to choose the better-fitting model. The relevant test statistic

is λ = Li(Θ̂i)

Le(Θ̂e)
, where Lz(Θ̂z), z ∈ {i, e} is the value of the likelihood function of the intrinsic

or extrinsic model at the maximum likelihood joint parameter estimate. No closed-form joint
maximum likelihood estimators are available for either model; however, estimation by numerical
optimization is straightforward, especially starting at the moment-based estimates reported above.
The two models’ qualitative behaviors are illustrated in Figure 2. We use the Gillespie algorithm [47]
to simulate both systems given identical nascent distributions (r = 1.8, p = 12

13) and downstream
processing rates (β = 0.5, γ = 0.4). The solutions are dramatically different. As expected from
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Figure 2: (a-c) Distributions for the intrinsic noise model with b = 12, ki = 0.9, β = 0.5, and γ =
0.4, generated using 104 simulations. (a) Nascent marginal (gray region: copy-number histogram;
orange line: analytical solution). (b) Mature marginal (gray region: copy-number histogram; orange
line: analytical solution). (c) Joint distribution (points: cells; color: log10 analytical solution,
lighter color corresponds to higher probability mass). (d-f) Distributions for the extrinsic noise
model with α = kiβ

−1, η = (bβ)−1, β = 0.5, and γ = 0.4, generated using 104 simulations.
(d) Nascent marginal (gray region: copy-number histogram ; orange line: analytical solution).
(e) Mature marginal (gray region: copy-number histogram; orange line: analytical solution). (f)
Joint distribution (points: cells; color: log10 analytical solution, lighter color corresponds to higher
probability mass).

the analytical moments, the extrinsic noise model gives a much more correlated joint distribu-
tion. However, despite identical marginal mature expectations, the extrinsic model has a longer
tail, yielding a higher variance for that species. This drastic disagreement between distributions
confirms that multimodal data is sufficient to distinguish between the two hypothesized sources of
stochasticity. In addition to the theoretical and qualitative results, we provide simulation routines
for both noise models. Furthermore, to facilitate comparison with discrete copy-number data, we
report analytical marginal and joint distributions implied by the formulation of the system with
extrinsic noise; their agreement with the simulation is shown in Figure 2. These distributions, along
with moment-based initial parameter estimates, can be directly used for inference and hypothesis
testing against other models.
Given the modeling-based insight into model identifiability, we suggest that multimodal data col-
lection presents a valuable route to the identification of noise models. Specifically, we anticipate
increased relevance for single-cell RNA sequencing, which has been challenging to integrate with
experimental controls for the noise sources. Therefore, we suggest that experimental improvements
in the detection of the nascent transcriptome, as well as theoretical improvements in the modeling
of technical noise, would allow identification of sources of biological stochasticity on a genome-wide
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scale. Finally, the discrete modeling framework we discuss is immediately interpretable in terms of
biophysical parameters.

8 Code Availability

MATLAB and Python code that can be used to reproduce Figure 2, including the simulation and
plotting routines, is available at https://github.com/pachterlab/GP_2020_2.

9 Acknowledgments

The DNA, pre-mRNA, and mature mRNA illustrations used in Figure 1, modified from [26], are
derivatives of the DNA Twemoji by Twitter, Inc., used under CC-BY 4.0. G.G. and L.P. are
partially funded by NIH U19MH114830.

References

[1] Michael B Elowitz, Arnold J Levine, Eric D Siggia, and Peter S Swain. Stochastic Gene
Expression in a Single Cell. Science, 297(5584):1183–1186, 2002.

[2] P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic contributions to stochastic-
ity in gene expression. Proceedings of the National Academy of Sciences, 99(20):12795–12800,
October 2002.

[3] A. Hilfinger and J. Paulsson. Separating intrinsic from extrinsic fluctuations in dynamic bio-
logical systems. Proceedings of the National Academy of Sciences, 108(29):12167–12172, July
2011.

[4] Marc S. Sherman, Kim Lorenz, M. Hunter Lanier, and Barak A. Cohen. Cell-to-cell variability
in the propensity to transcribe explains correlated fluctuations in gene expression. Cell systems,
1(5):315–325, November 2015.

[5] Erik van Nimwegen. Inferring intrinsic and extrinsic noise from a dual fluorescent reporter.
Preprint, bioRxiv: 049486, April 2016.

[6] Audrey Qiuyan Fu and Lior Pachter. Estimating intrinsic and extrinsic noise from single-cell
gene expression measurements. Statistical Applications in Genetics and Molecular Biology,
15(6), January 2016.

[7] Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, Ryan
Wilson, Solongo B. Ziraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie Zhu, Mark T.
Gregory, Joe Shuga, Luz Montesclaros, Jason G. Underwood, Donald A. Masquelier, Ste-
fanie Y. Nishimura, Michael Schnall-Levin, Paul W. Wyatt, Christopher M. Hindson, Rajiv
Bharadwaj, Alexander Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg, Christopher
McFarland, Keith R. Loeb, William J. Valente, Nolan G. Ericson, Emily A. Stevens, Jerald P.
Radich, Tarjei S. Mikkelsen, Benjamin J. Hindson, and Jason H. Bielas. Massively parallel
digital transcriptional profiling of single cells. Nature Communications, 8(1):14049, April 2017.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.25.312868doi: bioRxiv preprint 

https://github.com/pachterlab/GP_2020_2
https://doi.org/10.1101/2020.09.25.312868
http://creativecommons.org/licenses/by/4.0/


[8] Christoph Ziegenhain, Beate Vieth, Swati Parekh, Björn Reinius, Amy Guillaumet-Adkins,
Martha Smets, Heinrich Leonhardt, Holger Heyn, Ines Hellmann, and Wolfgang Enard. Com-
parative Analysis of Single-Cell RNA Sequencing Methods. Molecular Cell, 65(4):631–643.e4,
February 2017.

[9] Brian Munsky, Guoliang Li, Zachary R. Fox, Douglas P. Shepherd, and Gregor Neuert. Dis-
tribution shapes govern the discovery of predictive models for gene regulation. Proceedings of

the National Academy of Sciences, 115(29):7533–7538, 2018.

[10] Christoph Zechner and Heinz Koeppl. Uncoupled Analysis of Stochastic Reaction Networks in
Fluctuating Environments. PLoS Computational Biology, 10(12):e1003942, December 2014.

[11] V. Shahrezaei and P. S. Swain. Analytical distributions for stochastic gene expression. Pro-

ceedings of the National Academy of Sciences, 105(45):17256–17261, November 2008.
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