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Abstract

COVID-19 CG is an open resource for tracking SARS-CoV-2 single-nucleotide variations
(SNVs) and lineages while filtering by location, date, gene, and mutation of interest. COVID-19
CG provides significant time, labor, and cost-saving utility to diverse projects on SARS-CoV-2
transmission, evolution, emergence, immune interactions, diagnostics, therapeutics, vaccines,
and intervention tracking. Here, we describe case studies in which users can interrogate (1)
SNVs in the SARS-CoV-2 Spike receptor binding domain (RBD) across different geographic
regions to inform the design and testing of therapeutics, (2) SNVs that may impact the
sensitivity of commonly used diagnostic primers, and (3) the recent emergence of a dominant
lineage harboring an S477N RBD mutation in Australia. To accelerate COVID-19 research and
public health efforts, COVID-19 CG will be continually upgraded with new features for users to
quickly and reliably pinpoint mutations as the virus evolves throughout the pandemic and in

response to therapeutic and public health interventions.
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Introduction

Since the beginning of the pandemic, SARS-CoV-2 genomic data has been accumulating at an
unprecedented rate (90,000+ virus genomes as of September, 2020 on the GISAID database)
(Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017). Numerous countries have
mobilized to sequence thousands of SARS-CoV-2 genomes upon the occurrence of local
outbreaks, collectively and consistently contributing more than 10,000 genomes per month
(Figure S1A, B). It is important to note that, despite the slow accumulation of potentially
functional (nonsynonymous) mutations, there has been a steady increase in the number of
variants with more than 6 nonsynonymous mutations compared to the WIV04 reference, an
early isolate of SARS-CoV-2 that was collected in Wuhan in December, 2019 (Figure S1C). To
evaluate the outcomes of anti-COVID-19 measures and detect keystone events of virus
evolution, it is important to track changes in SARS-CoV-2 mutation and population dynamics in
a location and date-specific manner. Indeed, several countries and the National Institutes of
Health (NIH) have recognized how critical it is to collect SARS-CoV-2 genomic data to support
contact tracing efforts and to inform public health decisions — these are paramount to the re-
opening of countries and inter-regional travel (Collins 2020; Rockett et al. 2020; Oude Munnink,
et al. 2020; Gudbjartsson et al. 2020; Pybus et al. 2020). Yet, the quantity and complexity of
SARS-CoV-2 genomic data (and metadata) make it challenging and costly for the majority of
scientists to stay abreast of SARS-CoV-2 mutations in a way that is meaningful to their specific
research goals. Currently, each group or organization has to independently expend labor,
computing costs, and, most importantly, time to curate and analyze the genomic data from
GISAID before they can generate specific hypotheses about SARS-CoV-2 lineages and

mutations in their population(s) of interest.


https://paperpile.com/c/JHuAaw/ObNgD+S216s
https://paperpile.com/c/JHuAaw/RitB+vChb+NctN+28pz+yRMdG
https://paperpile.com/c/JHuAaw/RitB+vChb+NctN+28pz+yRMdG
https://doi.org/10.1101/2020.09.23.310565
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310565; this version posted September 28, 2020. The copyright holder for this preprint

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Results

To address this challenge, we built COVID-19 CoV Genetics (COVID-19 CG, covidcg.org), a
performant, interactive, and fully-scalable web application that tracks SARS-CoV-2 single-
nucleotide variants (SNVs) and lineages without sub-sampling. COVID-19 CG is a free, open
access interface that allows users to adapt analyses according to their dates and locations of
interest (Figure 1A,B; data processing workflow in Figure S2). Users can also select and
compare trends in SARS-CoV-2 lineage or SNV frequency across multiple locations (Figure
1C) as we will demonstrate using case studies. COVID-19 CG provides functionalities that, to
the best of our knowledge, cannot be found in other existing public browsers, and was designed

to empower these specific user groups:

Vaccine and therapeutics developers can inform the design and testing of their vaccine,
antibody, or small molecule by using COVID-19 CG to rapidly identify all of the variants in their
targeted SARS-CoV-2 protein or antigen, alongside the frequency of each variant in their
geographic location(s) of interest. Scientists can use COVID-19 CG to generate hypotheses and
experimentally determine whether the variants present in the location of vaccine/therapeutic

implementation may impact their product-specific interaction interface or antigen.

Case study of SNVs in the receptor binding domain (RBD) of the SARS-CoV-2 Spike:
Analyzing SNVs by geography and time is critical as the frequency of each SNV may vary
significantly across different regions over time. For instance, an S477N mutation in the RBD has
become dominant in Oceania (57.5% of Oceanian genotypes, all time) although it constitutes
only 4.36% of SARS-CoV-2 genotypes globally and has not been detected in Africa, Asia, or
South America (Figure 2A). SNV frequency in a given region can also shift over time, e.g., an
RBD N439K mutation not found in Ireland prior to July is now present in 79.5% of the genomes

collected mid-July through August (Figure 2B). Another rare RBD S477N mutation, which was
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found in only 1.05% of the Australian SARS-CoV-2 sequences before June, now constitutes
more than 90% of the sequenced June through August isolates (Figure 2C). This geographical
and temporal variation is important to incorporate into the design and testing of therapeutic
antibodies (such as those under development as therapeutics by Regeneron that specifically
target the SARS-CoV-2 Spike RBD), as well as mRNA or recombinant protein-based vaccines.
This will help to assure developers of the efficacy of their therapeutics and vaccines against the

SARS-CoV-2 variants that are present in the intended location of implementation.

In addition, COVID-19 CG can be harnessed to track changes in SARS-CoV-2 evolution post-
implementation of therapeutics and vaccines. It will be crucial to watch for rare escape variants
that could resist drug- or immune-based interventions to eventually become the dominant
SARS-CoV-2 variant in the community. This need was particularly emphasized by a Regeneron
study that demonstrated that single amino acid variants could evolve rapidly in the SARS-CoV-2
Spike to ablate binding to antibodies that had been previously selected for their ability to
neutralize all known RBD variants; these amino acid variations were found either inside or
outside of the targeted RBD region, and some are already present at low frequency among
human isolates globally (Baum et al., 2020). The authors, Baum et al., suggested that these
rare escape variants could be selected under the pressure of single antibody treatment, and,
therefore, advocated for the application of cocktails of antibodies that bind to different epitopes
to minimize SARS-CoV-2 mutational escape. A recent study by Greaney et al. generated high-
resolution ‘escape maps’ delineating RBD mutations that could potentially result in virus escape
from neutralization by ten different human antibodies (Greaney et al., 2020). Based on lessons
learnt from the rise of multidrug resistant bacteria and cancer cells, it will be of the utmost
importance to continue tracking SARS-CoV-2 evolution even when multiple vaccines and

therapeutics are implemented in a given human population.
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Diagnostics developers can evaluate their probe, primer, or point-of-care diagnostic according
to user-defined regional and temporal SARS-CoV-2 genomic variation. More than 665
established primers/probes are built into COVID-19 CG, and new diagnostics will be continually
incorporated into the browser. Users can also input custom coordinates or sequences to

evaluate their own target sequences and design new diagnostics.

Case study of SNVs that could impact the sensitivity of diagnostic primers: A recent
preprint alerted us to the finding that a common G29140T SNV, found in 22.3% of the study’s
samples from Madera County, California, was adversely affecting SARS-CoV-2 detection by the
NIID_2019-nCoV_N_F2 diagnostic primer used at their sequencing center; the single SNV
caused a ~30-fold drop in the quantity of amplicon produced by the NIID_2019-nCov_N_F2/R2
primer pair (Vanaerschot et al., 2020). We used COVID-19 CG to detect other SNVs that could
impact the use of this primer pair, discovering that there are SARS-CoV-2 variants in several
countries with a different C29144T mutation at the very 3’ end of the same NIID_2019-
nCoV_N_F2 primer (Figure 3A). As the authors of the preprint, Vanaerschot et al., noted, SNVs
could impact assay accuracy if diagnostic primers and probes are also being used to quantify
viral loads in patients. We found that at least ten other primer pairs could potentially be at risk in
different geographical regions due to SNVs that appear proximal to the 3’ ends of primers
(Figure 3B-K): China-CDC-N-F and R; NIH, Thailand, WH-NIC N-F; US CDC 2019-nCoV-N1-R;
US CDC 2019-nCoV-N2-F; ARTIC-V3_nCoV-2019_11_RIGHT; ARTIC-V3_nCoV-
2019_13_LEFT; ARTIC-V3_nCoV-2019_34_LEFT; ARTIC-V3_nCoV-2019_39 LEFT (note that
the ARTIC primers are used for nanopore sequencing) (Tyson et al., 2020); WHO
N_Sarbarco_R1; and Institut Pasteur, Paris 12759Rv. We advocate that labs and clinics use

COVID-19 CG (https://covidcg.org) to check their most commonly used primers and probes

against the SARS-CoV-2 sequences that are prevalent in their geographic regions.
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Researchers and public health professionals can use COVID-19 CG to gain insights as to
how the virus is evolving in a given population over time (e.g., in which genes are mutations
occurring, and do these lead to structural or phenotypic changes?). For example, users can
track D614G distributions across any region of interest over time. Figure 4 shows a variety of
different D614G population dynamics in different areas. Nonetheless, we strongly caution
against inferring (i) chains or directionality of transmission and (ii) changes in the transmissibility
of any SARS-CoV-2 SNV based on population dynamics alone. Inconsistent sampling, sampling
biases, differences in founder host population traits (even median patient age), superspreading
events, regionally and temporally differential travel restrictions, and numerous other factors
instead of virus biological differences can influence the global distribution of SNVs (Grubaugh et

al., 2020).

Case study of Australia’s new dominant SARS-CoV-2 variant: We discovered that the
SARS-CoV-2 Spike S477N mutation has become more prevalent in Australia (Figure 5A).
Globally, the S477N mutation was first detected in a single sample of lineage B.1.1.25 that was
collected on January 26, 2020 in Victoria, Australia; this is now the dominant SARS-CoV-2
variant in the region (Figure 5B, C). In particular, the set of SNVs that co-occur with the S477N
mutation in Australia (all time, as well as prior to May, 2020 before the most recent outbreak)
are different from the set of co-occurring SNVs in the United Kingdom (Figure 5C) —
suggesting that the S477N mutation occurred separately in the Australian and the UK lineages.
However, COVID-19 CG only reflects data contributed to GISAID. Variants of interest could be
present in other countries, but not yet known to the public because the sequencing centers in
those countries have not collected or deposited their data in GISAID. Furthermore, in instances
where only a singular, sporadic variant is detected (no sustained transmission), there is also the
possibility of sequencing error resulting in incorrect lineage assignment. Due to these caveats,

the genetic data must be used in combination with other types of data, such as from contact
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tracing efforts, before it is possible to draw conclusions about the international transmission of
SARS-CoV-2 variants. In the case of the S477N variant that is now dominating in Australia, the
sequencing data alone indicate that the local transmission of this variant since January, 2020 in

Australia cannot be ruled out.

Discussion

COVID-19 CG (https://covidcg.org) was designed to be modular in order to continually integrate

datasets from other COVID-19 initiatives. We anticipate building modules for users to (1) map
emerging mutations onto structural interaction interfaces of interest (e.g., between virus protein
and therapeutic antibodies or host proteins) using existing and future structures on the Protein
Data Bank (PDB), (2) visualize mutations in isolates of interest in the context of different virus
protein phenotypes or mutational constraints of antibody epitopes according to emerging
genotype-to-phenotype maps (Greaney et al., 2020; Starr et al., 2020), (3) compare SARS-CoV-
2 mutations in different host species (e.g., humans versus minks) (Oude Munnink et al., 2020b),
(4) rapidly determine when and where each lineage or SNV has been detected around the
world, and (5) overlay important policy events or travel restrictions over time on the lineage or
SNV tracker to help guide user date range selection. In addition, as more detailed metadata is
generated by COVID-19 studies and initiatives, we will update the application to enable filtering
according to patient traits such as gender, age, ethnicity, and medical condition (e.g.,

symptoms, hospitalization).

COVID-19 CG (https://covidcg.org) was built to help scientists and professionals worldwide, with

varying levels of bioinformatics expertise, in their real-time analysis of SARS-CoV-2 genetic
data. We hope that COVID-19 CG will also motivate decision makers to sustain or accelerate
their sequencing of virus isolates in their geographical area for the purposes of informing

vaccine, therapeutics, and policy development. Collecting virus genomic data is particularly


https://covidcg.org/
https://paperpile.com/c/JHuAaw/8rBc+Ev45C
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relevant to regions that are experiencing increases in COVID-19 cases. If only sparse genomic
data are sampled, we risk the late detection of SARS-CoV-2 variants that exhibit enhanced
virulence or resistance against therapeutics or vaccination programs in these pandemic
hotspots. Furthermore, the widespread implementation of vaccines and antibody therapies
could stimulate the emergence and selection of new escape variants (Baum et al., 2020). To
compound these risks, SARS-CoV-2 transmission from humans to minks (and back into
humans) has already been detected at farms across the Netherlands, Denmark, Spain, and the
United States (Oude Munnink et al., 2020b). This process of species crossing, if left unchecked,

can result in the emergence of diverse SARS-CoV-2 variants.

Coordinated sequencing and contact tracing efforts (e.g., in the UK, Singapore, the
Netherlands, Italy, California, and Australia) emphasize the urgency of establishing open access
platforms to evaluate trends in virus introduction into each country or region in real time. Local
policymakers, public health researchers, and scientists can use global SARS-CoV-2 genetic
data, in complementation with contact tracing data, to better understand which lineages were
imported into their region (from which potential international locations), whether these were
introduced multiple times, and if particular lineages are dying out or persisting. Labs in
numerous countries are already making incredible efforts to sequence the SARS-CoV-2 variants
circulating in their local populations (Figure 6). When each country actively contributes to the
database of SARS-CoV-2 genomes, this protects against sampling biases that can impact the
ability to perform phylogenetic analysis and interpret global SARS-CoV-2 data. Towards this
goal that affects all of humanity, we advocate for the increased sequencing of SARS-CoV-2
isolates from patients (and infected animals) around the world, and for these data to be shared

in as timely a manner as possible.
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Experimental procedures

Data Pipeline

Our data processing pipeline is written with the Snakemake scalable bioinformatics workflow
engine (Koster and Rahmann, 2012), which modularizes our workflow and enables
reproducibility and compatibility with cloud-computing. All code and relevant documentation are

hosted on an open-source, publicly available GitHub repository (https://github.com/vector-

engineering/COVID19-CG), providing example data for users to validate our pipeline.

Data Acquisition
SARS-CoV-2 sequences and metadata are downloaded daily from the GISAID EpiCov™

database (https://epicov.org/epi3/start), by navigating to the “Browse” tab and selecting

sequences by “Submission Date”. As of 2020-09-04, only 10,000 sequences can be
downloaded from this selection at a time, so the selection is adjusted to include no more than

10,000 sequences. “Sequences”, “Patient status metadata”, and “Sequencing technology
metadata” are downloaded separately, stored in separate folders, and renamed for ingestion

into the data processing pipeline (see below).

Sequence Preprocessing
Based on best practices, we filter out sequences meeting any of the following criteria: (1)
Present on the NextStrain’s exclusion list

(https://github.com/nextstrain/ncov/blob/master/defaults/exclude.txt), (2) Isolates from non-

humans (animals, environmental samples, etc), (3) genome length less than 29,700 nt, or (4)
>5% ambiguous base calls. Sequences which pass all preprocessing filters are carried onto the

next steps.


https://paperpile.com/c/JHuAaw/JQ2uH
https://github.com/vector-engineering/COVID19-CG
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238 Metadata Cleaning

239  We clean metadata with the aim of preserving the original intent of the authors and data

240  submitters while presenting simpler and unified versions to end users. Sequencing metadata is
241  cleaned to remove obvious typos, and to unify labels with the same meaning, e.g., "MinlON"
242  and "Nanopore MinlON". Location metadata is cleaned with the goal of simplifying the location
243  selector in the sidebar. Locations with excessive children are collapsed to the nearest upper
244  hierarchical grouping. E.g., if a state has individual data for 200+ towns, these towns will be
245  collapsed to the county level in order to facilitate easier data browsing. Typos and clear

246 identities are also unified to prevent the display of duplicate locations in the application.

247

248 SNV Assignments

249  SNVs and insertions/deletions (indels) at the nucleotide and amino acid level are determined by
250 aligning each sequence to the WIV04 reference sequence (WIV04 is a high quality December,
251 2019 isolate that is 100% identical to the first publicly available SARS-CoV-2 genome reference
252  Wuhan-Hu-1/NC_045512.2, excepting the sequences at the end of the genomes) using

253  bowtie2. Spurious SNVs and probable sequencing errors, defined as less than 3 global

254  occurrences, are filtered out prior to downstream analysis. SNVs involving ambiguous base
255 calls (“N” in the original sequences) are ignored. Indels resulting in frameshifts are ignored, and
256  SNVs/indels occurring in non-protein-coding regions are ignored when determining SNVs/indels
257  on the AA level.

258

259 Lineage/Clade Analysis

260 Viral lineages, as defined by the pangolin tool (Rambaut et al., 2020), and clades (Tang et al.,
261  2020) are provided by GISAID. In accordance with pangolin, SNVs present in >90% of

262  sequences within each lineage/clade will be assigned as lineage/clade-defining SNVs.

263
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Application Compilation

The web application is written in Javascript, and primarily uses the libraries React.js, MobX, and
Vega. The code is compiled into javascript bundles by webpack. All sequence data is
compressed and injected inline as JSON into the javascript bundle — no server is needed to

serve data to end users. The compiled application files can then be hosted on any static server.

Application Deployment

COVID CG (https://covidcg.org) is hosted by Google Cloud Run. The application code is

assembled into a Docker image (see Dockerfile), with a build environment (node.js) and

deployment environment (NGINX).
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383  Figure 1. The COVID-19 CG (https://covidcg.org) browser interface. (A) Users can select
384  SARS-CoV-2 genomes according to lineage, clade, or SNV, virus gene or protein, and

385 location(s). Genomes can also be filtered by metadata, and specifically analyzed at genomic
386  coordinates of interest, such as the target sites of 665 commonly used diagnostic primers and
387  probes. (B) In the “Compare lineages or SNVs” tab, users can visualize SARS-CoV-2 lineages
388  or SNVs by location, define their date range of interest, and see the corresponding SNVs at the
389  nucleotide or amino acid level. (C) In the “Compare locations” tab, users can compare the

390 frequencies of specific lineages or SNVs in multiple locations over time.
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391  Figure 2. Mutational frequencies in the SARS-CoV-2 Spike receptor binding domain

392 (RBD) across geographical location and time. Screen captures from the Compare AA SNVs
393 tab are shown. (A) The top 10 RBD SNVs alongside the number of high quality sequences

394  available on GISAID are shown for each region. (B) The top RBD SNVs for Ireland between mid
395  July and August, 2020 are shown. The S439N mutant had not been previously detected in

396 Ireland. (C) The top RBD SNVs for Australia between June and August, 2020 are shown. The
397  S477N mutant constituted only 1.05% of the Australian SARS-CoV-2 genomes on GISAID prior

398 to June.
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Figure 3. Investigating diagnostic-targeted regions of the SARS-CoV-2 genome for SNVs
that could impact primer/probe sensitivity. Images were downloaded from the Compare NT
SNVs tab. Labels for specific mutations were added. Primer pairs that contain at least one
primer with potentially impactful SNVs near the 3’ end are shown. None of the 11 primer pairs
shown here were designed with degenerate bases. (A) The G29140T has been demonstrated
to impact the NIID_2019-nCOV_N_F2 primer sensitivity. (B-K) Primer pairs affected by SNVs
with a global frequency of more than 80 instances are shown. (B) As an example, majors SNVs

are colored accordingly in the China-CDC-N-F and R (forward and reverse) primers.
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407  Figure 4. Population dynamics of Spike D614G in different regions. Images were

408 downloaded from the Compare Lineages tab of covidcg.org: The Spike D614 variants are

409 shown in grey, and the G614 variants are shown in green. Plots displaying different population
410 dynamics were deliberately selected. Time is shown on the horizontal axis and the number of

411  sequences is shown on the vertical axis; these differ per country depending on when and how
412  many samples were collected and whether the sequences were deposited onto GISAID by

413  August 31, 2020.
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Figure 5. Frequency of the Spike S477N mutation in Australia over time. (A) Image
downloaded from the Compare NT SNVs tab of covidcg.org: SARS-CoV-2 variants bearing the
Spike S477N mutation (also known as the G22992A SNV; depicted in pink), the majority of
which lie in the B.1.1.25 lineage, have become the most prevalent form of SARS-CoV-2 in
Australia. (B) Image downloaded from the Compare Locations tab of covidcg.org: the
cumulative percent of sequences carrying the S477N mutation in Australia. (C) Images
downloaded from the Compare NT SNVs tab of covidcg.org: Co-occurring SNVs of G22992A

(Spike S477N) in Australia, all time versus prior to May, 2020, versus in the United Kingdom.
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423  Figure 6. Global statistics of SARS-CoV-2 genomes contribution to GISAID. Interactive and
424  more comprehensive versions of the figure panels are displayed on the Global Sequencing

425  Coverage tab of covidcg.org. (A) A world map of countries labeled by the number of SARS-

426  CoV-2 sequences contributed per 1000 cases. (B) A bar graph showing the sequences per

427 1000 cases for the top five countries and the USA. Countries with less than 500 cases were
428  excluded from this plot. (C) A world map of countries labeled by median days between sample
429  collection and sequence deposition. (D) A bar graph showing the median days from collection to
430 deposition for the top five countries and the USA. These interactive displays are generated

431  using sequencing data from the GISAID EpiCov™ database (nextmeta file) and case data from
432 the JHU CSSE COVID-19 Data (Dong et al., 2020). Only samples that were collected between
433  March and May, 2020 were included to avoid biases from samples that have been collected in

434  the previous three months but not yet deposited onto GISAID.
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436  Figure S1. The number of global SARS-CoV-2 genome sequences and mutations is

437  accumulating. Data shown as of September 9, 2020. (A) Sequence deposition in GISAID

438 continues at a steady pace, albeit there is a lag between collection (red line) and submission
439 date (blue line). The rate of sequence submission is steady at >10,000 genomes per month. (B)
440  More than 100 countries have deposited SARS-CoV-2 genomes in GISAID. (C) The number of

441  SARS-CoV-2 variants with more than six nonsynonymous (NS) mutations continues to increase.


https://doi.org/10.1101/2020.09.23.310565
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310565; this version posted September 28, 2020. The copyright holder for this preprint

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Completed Planned / In Development (6) COVID-19 CG |—> Data export,
. P . Web Application Further user analysis
Snakemake Reproducible Workflow
3 o
SI'SCI;M \[;TM (5) DataFrame |4
piCo
For each - -
Database T p sequence: <« g)qual\i%gﬁlcs
cl Ay|p» (f) SNVbAgsgignments \ —¥| - Accession ID Detection primers
- Align with bowtie: . .
- Filter out sequencing error, Location -
spurious mutations - Sample Date - Compare lineages/SNPs <4— | (10) Vaccine
- Catalog SNVs on NT and AA level . pangclin - Compare locations development
\_ Build NT and AA variants lineage - Compare metadata values mRNA and
recombinant proteins
(1) Automated +v - NT SNVs Y
Data Ingestion s M Li Analvsi - AA SNVs
via. GISAID API (4) Lineage Analysis —*| - NT Variant <4 | (7) Built-in Analyses
Update data daily Associate SNVs with lineages . AA Variant
(>90% agreement)
- S
. S/

Figure S2. COVID-19 CG computational workflow. (1) Starting from the GISAID database,
sequences are continuously updated, manually for now, but ultimately via automated data
ingestion. (2) Based on best practices, we filter out sequences on NextStrain’s exclusion list,
non-human isolates, <29,700 nt, or with >5% ambiguous base calls (van Dorp et al., 2020). (3)
SNVs at the nucleotide and amino acid level are determined by aligning (via bowtie2) each
sequence to the WIV04 reference, a high quality December, 2019 isolate recommended by
GISAID; NextStrain uses the 100% identical Wuhan-Hu-1 (Langmead et al., 2009). Importantly,
spurious SNVs and probable sequencing errors are filtered out prior to downstream analysis. (4)
Viral lineages, defined by the pangolin tool, are provided by GISAID. In accordance with
pangolin, SNVs present in >90% of sequences within each lineage are assigned as lineage-
defining SNVs. (5) The curated data and metadata, SNVs, and lineage-assigned SNVs are
associated with their respective sequence identifier and compiled into a compact data set. (6)
These data are uploaded onto the COVID-19 CG web application. (7) New analyses will be built
into the COVID-19 CG application throughout the course of the pandemic. (8-10) Features and
modules that integrate knowledge from other COVID-19 initiatives are continuously incorporated

into COVID-19 CG.
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