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Abstract

A fundamental question in neuroscience is how brain organisation gives rise to humans’ unique
cognitive abilities. Although complex cognition is widely assumed to rely on frontal and
parietal brain regions, the underlying mechanisms remain elusive: current approaches are
unable to disentangle different forms of information processing in the brain. Here, we introduce
a powerful framework to identify synergistic and redundant contributions to neural information
processing and cognition. Leveraging multimodal data including functional MRI, PET,
cytoarchitectonics and genetics, we reveal that synergistic interactions are the fundamental
drivers of complex human cognition. Whereas redundant information dominates sensorimotor
areas, synergistic activity is closely associated with the brain’s prefrontal-parietal and default
networks; furthermore, meta-analytic results demonstrate a close relationship between high-
level cognitive tasks and synergistic information. From an evolutionary perspective, the human
brain exhibits higher prevalence of synergistic information than non-human primates. At the
macroscale, we demonstrate that high-synergy regions underwent the highest degree of
evolutionary cortical expansion. At the microscale, human-accelerated genes promote
synergistic interactions by enhancing synaptic transmission. These convergent results provide
critical insights that synergistic neural interactions underlie the evolution and functioning of
humans’ sophisticated cognitive abilities, and demonstrate the power of our widely applicable

information decomposition framework.
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Synergistic and redundant interactions identify brain networks with distinct

neurocognitive profiles

In theoretical and cognitive neuroscience, considering the human brain as a distributed
information-processing system has proven to be a powerful framework to understand the neural
basis of cognition !. Crucially, a deeper understanding of any information-processing

architecture calls for a more nuanced account of the information that is being processed.

As an example, let us consider humans’ two main sources of information about the world: the
eyes. The information that we still have when we close either eye is called “redundant
information” — because it is information that can be conveyed by either source (for instance,
information about colour is largely redundant between the two eyes). Redundancy provides
robustness: we can still see with one eye closed. However, closing one eye also deprives us of
stereoscopic information about depth. This information does not come from either eye alone:
ones needs both, in order to perceive the third dimension. This is called the ‘“synergistic
information” between two sources - the extra advantage that we derive from combining them,

which makes them complementary 23,

Thus, in addition to their own unique information, when multiple sources are considered
together their information contribution can be identified as synergistic (only available when
both sources are considered together) or redundant (available from either source
independently). Every information-processing system — including the human brain — needs
to strike a balance between these mutually exclusive kinds of information, and the advantages
they provide: robustness and integration, respectively *”’. Being fundamentally different,
synergistic and redundant information cannot be adequately captured by traditional measures
of macroscale information exchange (“functional connectivity”) in the human brain, which

instead simply quantify the similarity between regional activity >®,

Here, we reveal the distinct contributions of synergistic and redundant interactions to human
cognition, and we delineate their large-scale organisation in the human brain. To this end, we
leveraged the partial information decomposition (PID) framework >*° to quantify synergistic
and redundant interactions between brain regions (Figure 1A,B), obtained from resting-state
functional MRI data from 100 Human Connectome Project subjects (Methods). We ranked
each brain region separately in terms of how synergistic and redundant its interactions with

other brain regions are; the difference between these ranks (synergy minus redundancy)
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68  determines the relative relevance of a given region for synergistic versus redundant processing,

69 thereby defining a redundancy-to-synergy gradient across brain regions (Figure 1C).
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72 Figure 1. Synergistic and redundant networks exhibit distinct anatomical and cognitive profiles. Group-
73 average matrices of redundant (A) and synergistic (B) interactions between regions of the 232-ROI augmented
74 Schaefer atlas. (C) Brain surface projections of regional redundancy-to-synergy gradient scores, obtained as the
75 difference between each region’s rank in terms of synergy and in terms of redundancy; positive scores (red)
76 indicate a bias towards synergy, and negative scores (blue) a bias towards redundancy. (D) Matrix of redundancy-
77 to-synergy gradient scores (synergy minus redundancy ranks) for each connection between brain regions. (E)
78 Results of the NeuroSynth term-based meta-analysis, relating the distribution of redundancy-to-synergy gradient
79 across the brain (discretised in 5% increments) to a gradient of cognitive domains, from lower-level sensorimotor
80 processing to higher-level cognitive tasks. These results are robust to the use of different parcellations (cortical -
81 only, having lower or higher number of nodes, and obtained from anatomical rather than functional considerations;
82 Figure S1A-C) and are also replicated without deconvolving the hemodynamic response function from the
83  functional data (Figure S1D).

84

85  Our results demonstrate that traditional FC mostly captures redundant, rather than synergistic,
86  information exchange in the human brain (Figure S2). Furthermore, they clearly show that
87 redundant and synergistic interactions delineate networks with distinct neuroanatomical
88 profiles (Figure 1A-D). In terms of Von Economo’s cytoarchitectonic classification '°,
89  redundant interactions are especially prominent in primary sensory, primary motor and insular

90 cortices (Figure S3), corresponding to the brain’s somatomotor and salience subnetworks

3
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91  (Figure S4). In contrast, regions with higher relative importance for synergy predominate in
92  higher-order association cortex, and are affiliated with the default mode (DMN) and fronto-
93  parietal executive control (FPN) subnetworks !! (Figures S3-4).

94 It is noteworthy that synergy, which quantifies the extra information gained by integrating

12

95  multiple sources *!? is most prevalent in regions belonging to the DMN and FPN. Functionally,

96 these regions are recruited by complex tasks that rely on multimodal information, decoupled
97  from immediate sensorimotor contingencies '*!4; anatomically, they receive multimodal inputs
98  from across the brain > . Therefore, it has been speculated that these networks are devoted to
99 the integration of information '*!°. Our findings about regional prevalence of synergy in DMN
100 and FPN provide formal information-theoretic evidence to confirm this long-standing
101 hypothesis. Furthermore, by considering a synergy-redundancy gradient in terms of
102  connections instead of regions, we show that the most synergy-dominated connections

103  correspond to links between DMN/FPN and other subnetworks, whereas redundancy-

104  dominated connections tend to occur within each subnetwork (Figure 1C).

105 The distinct cytoarchitectonic profiles and subnetwork affiliations further suggest that
106  redundant and synergistic interactions may be involved with radically different cognitive
107  domains. To empirically validate this hypothesis, we performed a term-based meta-analysis
108  using NeuroSynth. The redundancy-to-synergy gradient identified in terms of regional rank
109  differences was related to 24 terms pertaining to higher cognitive functions (e.g. attention,
110  working memory, social and numerical cognition) and lower sensorimotor functions (such as

111 eye movement, motion, visual and auditory perception) adopted by previous studies '*1°,

112 Supporting the inference from neuroanatomy to cognition, our results reveal that the regional
113  gradient from redundancy to synergy corresponds to a gradient from lower to higher cognitive
114 functions. Specifically, high-redundancy regions loaded strongly onto auditory, visual and
115 multisensory processing and motion. In contrast, high-synergy regions had the strongest
116  loadings onto social and numerical cognition, working memory and cognitive control (Figure

117 1E).
118

119
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120  Network organisation of synergy and redundancy support their distinct information-

121 processing roles

122  Sensorimotor and higher-order cognitive functions impose distinct and opposite demands on
123  cognitive architectures: specialised sensory processing benefits from segregation into modules,
124  whereas integration of information demands high levels of interconnectedness >!”. Contrasting
125  the properties of the networks delineated by synergistic and redundant interactions reveals how

126  the human brain resolves this tension.

127  Across individuals, the network of synergistic interactions is more highly interconnected and
128  globally efficient than the network of redundancy (Synergy: M=2.54, SD=0.06; Redundancy:
129 M=0.14, SD=0.04; t(99)=-330.04, p<0.001, Hedge’s g=-46.67) (Figure 2A). In contrast,
130  redundant interactions delineate a network characterised by a highly modular structure, which
131 is virtually absent in synergistic networks (Synergy: M=0.005, SD=0.001; Redundancy:
132 M=0.29, SD=0.06; t(99)=51.74, p<0.001, Hedge’s g=7.25) (Figure 2B). Thus, synergistic and
133  redundant interactions exhibit distinct network organisation, supporting integrated and

134  segregated processing, respectively - as demanded by the cognitive functions they support.

135 It is also known that only a subset of regions are directly connected by white matter tracts '%;
136  therefore, we reasoned that the more an organism’s survival depends on information exchange
137  between regions X and Y, the more one should expect X and Y to be directly connected. Thus,
138  direct physical connections in the brain reveal where the need for robust communication is
139  highest. Consequently, if redundant interdependencies are representative of robust information
140  exchange, they should be co-located with underlying direct anatomical connections - as
141 quantified using diffusion-weighted imaging (DWI). Our results support this hypothesis: across
142  subjects, the number of white matter streamlines was significantly more correlated with
143  redundant (M=0.16, SD=0.028) than synergistic interactions between regions (M=0.025,
144 SD=0.015;t(99)=39.85, p<0.001, Hedge’s g=6.29) (Figure 2C,D). These results are replicated
145  using alternative network measures and parcellations (Figures S5-7 and Supplementary Tables

146 1-3).

147  Thus, whereas synergistic interactions are poised to facilitate high-level cognition through
148  global integration, redundant interactions demarcate a structural-functional backbone in the
149  human brain, ensuring robust sensorimotor input-output channels - both critical functions for

150  successful information processing.
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152 Figure 2. Synergy is integrated, redundancy is segregated and supported by anatomical connections. (A)
153 The network organisation of synergistic interactions exhibits significantly higher integrative capacity (global
154 efficiency) than redundant interactions. (B) The network organisation of redundant interactions exhibits
155 significantly higher segregation (modularity) than synergistic interactions. (C) Structural connectivity of each
156 subject was estimated from diffusion MRI, measured as the number of white matter tracts between regions of the
157 232-ROI augmented Schaefer atlas, and Spearman correlation coefficient was used to assess the similarity of
158 redundancy and synergy matrices with structural connectivity, after thresholding to ensure equal numbers of
159 connections. (D) Networks of redundant interactions are significantly more correlated with underlying structural
160 connectivity than synergistic interactions. Violin plots represent the distribution of values across 100 HCP subjects
161 (colored circles). White circle: mean; blue line: median; grey box: interquartile range; *** p < 0.001.

162
163  High-synergy brain regions are selectively potentiated by human evolution

164  The association between synergistic information processing and higher cognitive functions,
165 raises the intriguing possibility that the human brain may enable humans’ uniquely
166  sophisticated cognitive capacities in virtue of its highly synergistic nature. We pursued this

167  hypothesis through three convergent approaches.

168  First, we show that the human brain is especially successful at leveraging synergistic
169  information, compared with the brains of non-human primates. Synergistic interactions account
170  for a higher proportion of total information exchange in the human brain than in the macaque
171 (Macaca mulatta); whereas the two species’ brains are equal in terms of proportion of total

172  information exchange accounted for by redundancy (Synergy: Human M=0.478, SD=0.003;
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173  Macaque M=0.466, SD=0.005; t(117)=14.24, p<0.001, Hedge’s g=3.54; Figure 3A;
174  Redundancy: Human M=0.012, SD=0.005; Macaque M=0.011, SD=0.005; t(117)=0.90,
175  p=0.372, Hedge’s g=0.22; Figure 3B).

176  The patterns of synergy and redundancy in the macaque brain broadly resemble those observed
177  in humans (Figure S8 and Supplementary Table 7), demonstrating their evolutionary stability
178 - including the expected high redundancy in sensorimotor regions (Figure 3C). However,
179  redundancy is more prevalent than synergy in the prefrontal cortex (PFC) of macaques, despite
180  PFC being among the most synergy-dominated cortices in humans (Figure 3C). Intriguingly,

181  prefrontal cortex underwent substantial cortical expansion in the course of human evolution '°.

182  These findings suggest that the high synergy observed in human brains may be a specific
183  outcome of evolutionary cortical expansion. To explore this hypothesis, we analysed cortical
184  morphometry data from in vivo structural MRI, comparing humans and one of the closest
185  evolutionary relatives of Homo sapiens: chimpanzees (Pan troglodytes)®°. Supporting our
186  hypothesis, we identified a significant positive correlation between relative cortical expansion
187  in humans versus chimpanzees, and the gradient of regional prevalence of synergy previously
188  derived from functional MRI (p = 0.42, p = 0.001; Figure 3D). Thus, these findings suggest
189  that the additional cortical tissue gained through human evolution is primarily dedicated to

190  synergy, rather than redundancy.

191  To provide further support for the evolutionary relevance of synergistic interactions, we
192  capitalised on human adult brain microarray datasets across 57 regions of the left cortical
193  mantle ?°, made available by the Allen Institute for Brain Science (AIBS) 2!. We demonstrate
194  that regional dominance of synergy correlates with regional expression of genes that are both
195 (1) related to brain development and function, including intelligence and synaptic transmission
196 %% and (ii) selectively accelerated in humans versus non-human primates (“HAR-Brain genes”;
197  p=0.40, p=0.002; Figure 3E). Thus, the more important a brain region is in terms of synergy,

198  the more likely it is to express brain genes that are uniquely human.

199  Taken together, these findings provide converging evidence for the hypothesis that
200  evolutionary pressures selectively potentiated the role of synergistic interactions in the human
201  brain, both in terms of dedicated genes, (Fig. 3E) dedicated cortical real estate (Fig. 3D), and
202  the end result: higher prevalence of synergy in human brains than non-human primates (Fig.

203 3A,B).
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206  Figure 3. Human brain evolution favoured high synergy. (A) The proportion of synergistic information
207 exchange across the brain is significantly higher in humans (Homo sapiens) than macaques (Macaca mulatta). (B)
208 The proportion of redundant information exchange across the brain is equivalent in humans and macaques. (C)
209 Surface projection of regional redundancy-to-synergy gradient scores for the macaque brain. (D) Significant
210 correlation between human regional redundancy-to-synergy gradient scores and regional cortical expansion from
211 chimpanzee (Pan troglodytes) to human (both on left hemisphere of DK-114 cortical atlas). (E) Significant
212 correlation between human regional redundancy-to-synergy gradient scores and regional expression of brain-
213 related human-accelerated (HAR-Brain) genes (both on left hemisphere of DK-114 atlas). The results in (A) and
214 (B) cannot be solely attributed to either the choice of bandpass filter, or the difference in TR between datasets
215 (Figures S9-10). The results in (D) and (E) are also replicated using unadjusted scores (Figure S11).

216
217  Neurobiological origins of synergy in the human brain

218  These observations raise the question of how such high synergy in the human brain could have
219  been attained. To address this question from a neurobiological perspective, we explored the
220  association between the redundancy-to-synergy gradient and regional expression profiles of
221 20,674 genes from AIBS microarray data '®?2, Using partial least squares (PLS) regression, we
222  show that the first two PLS components explained 31% of the variance in the regional synergy-
223  redundancy values (Figure S12): significantly more than could be expected by chance
224  (permutation test, p=0.007). For both components, gene expression weights were positively
225  correlated with the redundancy-to-synergy regional gradient (PLS1: p =0.37, p<0.001; PLS2:
226  p =0.39, p<0.001; Figure 4A and Figure S13). These correlations indicate that a number of
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227  genes are overexpressed in regions where synergy dominates over redundancy -- including
228  significant overexpression of HAR-Brain genes, in line with the results presented above (PLS1:

229  p=0.022; PLS2: p<0.001; Figure S14).

230  We next sought to identify the role played by overexpressed genes related to brain synergy, for
231  each PLS component. Analysis of gene ontology revealed that the transcriptional signature of
232  PLS2 was significantly enriched in genes involved in learning or memory (in line with our
233  meta-analytic results from NeuroSynth), as well as synapses, synapse components and synaptic

234  transmission (all p<10™ for significant enrichment).
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237 Figure 4. Neurobiological underpinnings of synergy in the human brain. (A) Second principal component of
238 PLS (PLS2) relating the redundancy-to-synergy regional gradient to 20,647 genes from the Allen Institute for
239 Brain Science, for the 308-ROI subdivision of the Desikan-Killiany cortical parcellation. (B) Dimensionality-
240 reduced gene ontology terms pertaining to biological processes that are significantly enriched in PLS2 (red ovals
241 highlight psychologically- or neurobiologically-relevant terms). (C) Dimensionality-reduced gene ontology terms
242 pertaining to cellular components that are significantly enriched in PLS2 (red ovals highlight psychologically- or
243 neurobiologically-relevant terms). Note that semantic space axes indicate the relative distance between terms in
244 multi-dimensional space, but have no intrinsic meaning. Corresponding gene ontology terms for PLS1 are shown
245 in Figure S15. (D) Significant correlation between regional redundancy-to-synergy gradient scores and an
246  anterior-posterior principal component of synaptic density from [''CJUCB-J PET, for the DK-66 cortical
247  parcellation. Corresponding results for the first principal component of [''C]UCB-J binding potential are shown
248  in Figure S16.

249

250  Synapses are the key structures by which neurons exchange information; therefore they
251  constitute a prime candidate for the neurobiological underpinning of synergistic interactions in
252  the human brain, as suggested by our genetic analysis. To provide a more direct link between
253  synaptic density and regional prevalence of synergy, we used positron emission tomography

254  (PET) to estimate in vivo regional synaptic density based on the binding potential of the

9
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255  synapse-specific radioligand ['!CJUCB-J ?*. This radioligand has high affinity for the synaptic
256  vesicle glycoprotein 2A (SV2A) ?*, which is ubiquitously expressed in all synapses throughout
257  the brain %°. Supporting the notion that regional brain synergy is related to underlying synaptic
258  density, we found that an anterior-posterior principal component of synaptic density derived
259  from ['C]JUCB-J PET is significantly correlated with the regional gradient from redundancy
260  to synergy (p = 0.26, p = 0.033; Figure 4D).

261  Therefore, genetic and molecular evidence converge to indicate synapses and synaptic
262  transmission as key neurobiological underpinnings of synergy in the brain - in line with the
263 notion that synergy quantifies information integration, and its role in supporting higher

264  cognition.

265  Decomposing interactions between brain regions into synergistic and redundant components
266  illuminates how the brain addresses the inherent trade-off between robustness and integration,
267  providing powerful insights that are beyond traditional methods of studying brain interactions
268  (e.g. FC). Having demonstrated the crucial role of synergistic interactions in human cognitive
269  architecture via meta-analytic and graph-theoretical approaches, we proceeded to identify their
270  neurobiological underpinnings by combining genetic, molecular and neuroanatomical

271 evidence.

272  Taken together, our findings reveal that basic sensorimotor functions are supported by a
273  modular backbone of redundant interactions (Fig 1D, 2B). As the brain’s input-output systems,
274  reliable sensorimotor channels are vital for survival, warranting the additional robustness
275  provided by redundant interactions — as indicated by our structural-functional analysis (Fig.
276  2D). In contrast, synergistic interactions are ideally poised to act as a global workspace,
277  allowing the integration of complementary information from across the brain in the service of
278  higher cognitive functions (Fig 1D): they bridge across different modules (Fig 1C), form a
279  globally efficient network (Fig 2A), and their neuroanatomical organisation coincides with

280  synapse-rich association cortex (Fig 4D and Supplementary Fig 3).

281  We further discovered that synergistic interactions were specifically enhanced in humans as a
282  result of evolutionary pressures, with dedicated cortical real estate and dedicated genes,
283  including those promoting synaptic transmission. This process resulted in a neural architecture
284  that is capable of leveraging synergistic information to a greater extent than other primates.

285  Our findings suggest that regions of the default mode and executive control (sub)networks may

10
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286  be able to support human higher cognition precisely thanks to their extensive involvement with

287  synergistic processing.

2627 and it

288  Intriguingly, the high-synergy DMN is involved in self-related cognitive processes
289 s also especially disrupted by loss of consciousness, whether caused by anaesthesia or severe
290  brain injury 2. Indeed, the global workspace theory of consciousness posits that integration of

2

291  information within a global workspace is necessary for consciousness *° - and a formal link has

292  also been established between synergy and the measure of consciousness known as integrated
293  information 33°. Therefore, decomposition of information exchange into synergy and
294  redundancy may also shed light on the emergence of consciousness in the human brain —
295  providing a framework to discover the information-processing principles that govern how

296  mental phenomena emerge from neurobiology.
297
298
299

300
301 MATERIALS AND METHODS

302

303
304 Synergy and Redundancy calculation

305  Shannon’s Mutual information (MI) quantifies the interdependence between two random

306  variables X and Y. It is calculated as

307 1(X;¥) =H(X)-H(X]Y) = HOO+H(Y)-H(X,V) .

308  where H(X) stands for the Shannon entropy of a variable X. Above, the first equality states that
309  the mutual information is equal to the reduction in entropy (i.e. uncertainty) about X after ¥
310  becomes accessible. Put simply, the mutual information quantifies the information that one

311  variable provides about another 3!.
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312  Crucially, Williams and Beer (2010) 2 observed that the information that two source variables
313 X and Y give about a third target variable Z, I(X,Y ; Z), should be decomposable in terms of
314  different fypes of information: information provided by one source but not the other (unique
315 information), or by both sources separately (redundant information), or jointly by their
316  combination (synergistic information). Following this intuition, they developed the Partial
317  Information Decomposition (PID ?) framework, which leads to the following fundamental

318  decomposition:
319  I(X.Y;Z) =Red(X,Y;Z) + Un(X;Z]Y) + Un(Y;Z|X) + Syn(X,Y;2).

320 Above, Un corresponds to the unique information one source but the other doesn’t, Red is the
321  redundancy between both sources, and Syn is their synergy: information that neither X nor Y
322  alone can provide, but that can be obtained by considering X and Y together. It is worth noticing
323  that the unique information is fully determined after synergistic and redundant comments have

324  been accounted for; hence, we focus our analyses on the two latter components.

325  The simplest example of a purely synergistic system is one in which X and Y are independent
326  fair coins, and Z is determined by the exclusive-OR function Z = XOR(X,Y): i.e., Z=0
327  whenever X and Y have the same value, and Z=1 otherwise. It can be shown that X and Y are
328  both statistically independent of Z, which implies that neither of them provide - by themselves
329 - information about Z . However, X and Y together fully determine Z: hence, the relationship

330 between Z with X and Y is purely synergistic.

331 While PID provides a formal framework, it does not enforce how the corresponding parts ought
332  to be calculated. While there is ongoing research on the advantages of different decompositions
333  for discrete data, most decompositions converge into the same simple form for the case of
334  continuous Gaussian variables **. Known as minimum mutual information PID (MMI-PID),
335 this decomposition quantifies redundancy in terms of the minimum mutual information of each
336 individual source with the target; synergy, then, becomes identified with the additional
337  information provided by the weaker source once the stronger source is known. Since linear-
338  Gaussian models are sufficiently good descriptors of functional MRI timeseries (and more
339 complex, non-linear models offer no advantage **), here we adopt the MMI-PID

340  decomposition, following previous applications of PID to neuroscientific data **.

341  In a dynamical system such as the brain, one can calculate the amount of information flowing

342 from the system’s past to its future, known as time-delayed mutual information
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343 (TDMI). Specifically, by denoting the past of variables as X;.. and Y. and treating them as
344  sources, and their joint future state (X;, Y7), as target, one can apply the PID framework and

345  decompose the information flowing from past to future as

346 (X, Vi X, Ye)
347 = Red(Xi—o, Vo Xo, Ve ) + Un(Xe—o; X0, Ve |Yi—o)
348 + Un(Ye—o; Xo, Vel Xe—o) + Syn(Xe—r, Yers X0, Y2 )

349  Recently, this equation has been refined to also distinguish between redundant, unique, and
350  synergistic information shared with respect to the future variables X;, Y:. Importantly, this
351  framework, known as Integrated Information Decomposition (PhilD) 3, has identified
352  Syn(Xi— Yi—z; Xi, Yy ) with the capacity of the system to exhibit emergent behaviour ** [CITE
353 emergence]. Furthermore, PhilD introduced a stronger notion of redundancy, in which
354  information is shared by X and Y in both past and future. Accordingly, using the MMI-PhilD

355  decomposition for Gaussian variables, we use

356 Red(X,Y) = min{I(X;—s; Xe), I Xi—zs YO, I Yers X) I(Ye—rs V) )

357 Syn(X,Y) = I(Xe—p, Yir; X6, YVe) — max{I(Xe—r; X&, Ve ), I(Ye—y; X6, Ye )}
358

359

360  Here, we used the Gaussian solver implemented in the JIDT toolbox *° to obtain TDMI, synergy
361 and redundancy between each pair of brain regions, based on their HRF-deconvolved BOLD

362  signal timeseries (Supplementary Methods).

363

364  Gradient of redundancy-to-synergy relative importance

365  After building networks of synergistic and redundant interactions between each pair of regions
366  of interest (ROIs), we determined the role of each ROI in terms of its relative engagement in
367  synergistic or redundant interactions. We first calculated the nodal strength of each brain region
368 asthe sum of all its connections in the group-averaged matrix. Then, we ranked all 232 regions

369 based on their nodal strength (with higher-strength regions having higher ranks). This
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370  procedure was done separately for networks of synergy and redundancy. Subtracting each
371  region’s redundancy rank from its synergy rank yielded a gradient from negative (i.e. ranking
372  higher in terms of redundancy than synergy) to positive (i.e. having a synergy rank higher than

373  the corresponding redundancy rank); note that the sign is arbitrary.

374 It is important to note that the gradient is based on relative - rather than absolute - differences
375  between regional synergy and redundancy. Consequently, a positive rank difference does not
376  necessarily mean that the region’s synergy is greater than its redundancy; rather, it indicates
377  that the balance between its synergy and redundancy relative to the rest of the brain is in favour

378  of synergy - and vice versa for a negative gradient.

379  The same procedure was also repeated for network edges (instead of nodes), using their weights
380 to rank them separately in terms of synergy and redundancy and then calculating their
381  difference. This produced a single connectivity matrix where each edge’s weight represents its

382  relative importance, being higher for synergy (positive edges) or redundancy (negative edges).

383

384  NeuroSynth term-based meta-analysis of redundancy-to-synergy gradient

385  The regional redundancy-to-synergy gradient identified in terms of nodal rank differences was
386  related to specific words using NeuroSynth, an online platform for large-scale, automated
387  synthesis of fMRI data [https://neurosynth.org/]. For our analyses we employ 24 topic terms

388 used by previous studies !>

, which range from lower sensorimotor functions (such as eye
389 movement, motion, visual and auditory perception) to higher cognitive functions (e.g.

390 attention, working memory, social and numerical cognition).

13,16 \as conducted to

391 A meta-analysis analogous to the one implemented by previous studies
392 identify topic terms associated with the redundancy-to-synergy gradient. Twenty binary brain
393 masks were obtained by splitting the values of the redundancy-to-synergy gradient into five-
394  percentile increments. These brain masks served as input for the meta-analysis, based on the
395  chosen 24 topic terms. For visualisation, terms were ordered according to the weighted mean
396 of the resulting Z-statistics. Note that the term “visual semantics” was excluded from
397  visualisation, because it failed to reach the significance threshold of Z > 3.1, leaving 23 terms

398  (Figure 1). The analyses were carried out using modified code made freely available at

399  [https://www.github.com/gpreti/GSP_StructuralDecouplingIndex].
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400 Measures of network integration and segregation

401

402  We quantified global integration in the networks of synergistic and redundant connections
403  computing the networks global efficiency, a well-known measure that quantifies the ease of
404  parallel information transfer in the network. More precisely, the global efficiency of a network
405  corresponds to the average of the inverse of the shortest path length between each pair of nodes
406 7

407

n

-1

1 n (d;;
408 Ge = = ZZ—"”( )

n L n—1

L

409  Following Cruzat et al (2018) ¥, segregation of brain networks was quantified by means of
410  network modularity. Put simply, the modularity function quantifies the extent to which a
411  network can be partitioned such that the number of within-group edges is maximised and the
412  density of between-group edges is minimised. We employed an implementation of Newman’s

413  spectral modularity algorithm *° available in the Brain Connectivity Toolbox (BCT; 3",

414

415  Structural-Functional Similarity

416  Matrices of synergy and redundancy were thresholded proportionally using the same network
417  density as the structural connectivity matrix of the same subject. This procedure was selected
418  1in order to ensure that the same number of edges would be present in both matrices, so that the
419  two matrices can be compared. Then, the upper triangular portion of each connectivity matrix
420  (structural and synergy/redundancy) was flattened into a vector, and the Spearman correlation
421  coefficient between these two vectors was computed. We use this correlation as a measure of

422  similarity between synergy or redundancy and structural connectivity.
423 HAR-BRAIN genes.

424  The maps of regional expression of human-accelerated genes for the DK-114 atlas were made
425  available by Wei et al (2019), where the reader can find detailed information about how these
426  data were generated. Briefly, genes located in a total of 2737 human accelerated regions

427  (HARs) of the genome were taken as presented by comparative genome analysis representing
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428  genomic loci with accelerated divergence in humans *!. Out of 2143 HAR-associated genes
429  identified from this procedure, 1711 were described in the Allen Human Brain Atlas (AHBA)

430  microarray dataset (human.brain-map.org) » and were used in the analyses by Wei and

431  colleagues, referred to as HAR genes.

432 HAR genes were subsequently subdivided into HAR-BRAIN and HAR-NonBRAIN genes.
433 BRAIN genes were selected as the set of genes commonly expressed in human brain tissue
434  using the Genotype-Tissue Expression (GTEx) database (data source: GTEx Analysis Release
435  Vo6p; https://www.gtexportal.org/), which includes 56,238 gene expression profiles in 53 body

436  sites collected from 7333 postmortem samples in 449 individuals. From these 56,238 genes, a
437  total number of 2823 genes were identified as BRAIN genes showing significantly higher
438  expressions in brain sites than non-brain sites (one-sided t-test and an FDR corrected q < 0.05
439  were used). HAR-BRAIN genes were identified as the 405 genes that overlapped between the
440 2823 BRAIN genes and the 1711 HAR genes, whereas the remaining HAR genes were labelled
441  as HAR-NonBRAIN genes. Finally, the HAR gene expression data were mapped to the 114-
442  region subdivision of the Desikan-Killiany atlas [DK-114]***. Since only two of the six AHBA
443  donors have data for the right hemisphere, Wei et al (2019) only considered HAR gene expression
444  patterns for the left hemisphere.

445
446  Cortical expansion

447  The maps of evolutionary cortical expansion were made available by Wei et al (2019), 2° who
448  describe in detail how these data were generated. Briefly, Wei and colleagues analysed in-vivo
449  MRI data from 29 adult chimpanzees, as well as 30 adult human subjects from the Human
450  Connectome Project. Pial surface reconstructions of chimpanzee and human T1-weighted MRI

451 scans (processed with FreeSurefer v5.3.0; https://surfer.nmr.mgh.harvard.edu/) were used for

452  both vertex-to-vertex mapping across chimpanzee and humans and also for subsequent
453  computation of region-wise expansion for cortical morphometry. A regional-level cortical
454  surface area (Si) was computed by summing up face areas within each cortical region, for all
455  regions of the DK-114 atlas ***. Normalized cortical area was obtained by dividing the
456 regional area by the area of the whole cortex. Cortical expansion between every pair of
457  chimpanzee and human subjects was calculated based on both the raw (“unadjusted”) and

458  normalized (“adjusted”) cortical surface area by
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Shuman,i - Schimp,j

459 E,; =
v Schimp, j

460  with E;j denoting the expansion from chimpanzee j to human i. A group-level region-wise
461  cortical expansion map was calculated by taking averages over the 870 chimpanzee-to-human

462  comparisons.
463
464  AIBS gene expression analysis

465  Regional gene expression levels for 20,647 human genes were obtained from transcriptomic
466  measurements in six post-mortem adult brains (age: 24-57 years), made available by the AIBS
467  (human.brain-map.org) >!. We used code made freely available by Morgan et al (2019) '°
468  https://github.com/SarahMorgan/Morphometric_Similarity S7) to obtain a 308 x 20,647 regional

469 transcription matrix, matching gene expression data to each cortical region of the DK-308 atlas
470 10224445 (Qupplementary Methods). Each tissue sample was assigned to a cortical region using the

471  AIBS MRI data for each donor, pooling samples between bilaterally homologous regions ',

472
473  Partial Least Squares

474  To explore the association between the redundancy-to-synergy regional gradient and all 20,647
475  genes measured in the AHBA microarrays, at each of 308 regions, we used partial least squares
476  (PLS) as a dimensionality reduction technique '“***6_ PLS finds components from the predictor
477  variables (308 x 20,647 matrix of regional gene expression scores) that have maximum covariance
478  with the response variables (308 x 1 matrix of regional redundancy-to-synergy gradient). The PLS
479  components (i.e. linear combinations of the weighted gene expression scores) are ranked by
480  covariance between predictor and response variables, so that the first few PLS components provide

481  alow-dimensional representation of the covariance between the higher dimensional data matrices.

482  Goodness of fit of low-dimensional PLS components was tested non-parametrically by repeating
483  the analysis 1000 times after shuffling the regional labels. The error on the PLS weights associated
484  with each gene were tested by resampling with replacement of 308 ROIs (bootstrapping); the ratio
485  of the weight of each gene to its bootstrap standard error was used to Z-score the genes and rank

486 their contributions to each PLS component !02244,
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487
488 Gene ontology and enrichment analysis

489  We used GOrilla for enrichment analysis of the first two PLS components 2’ GOrilla identifies
490 enriched gene ontology (GO) terms in ranked gene list, leveraging a large online database of gene
491  annotations corresponding to ‘biological processes’ and ‘cellular components’ *’ We identified GO
492  terms that were over-represented among the genes with the strongest positive weightings on each
493  PLS component (i.e. those most strongly associated with dominance of synergy over redundancy).
494  For our analyses on the online GOrilla platform (http://cbl-gorilla.cs.technion.ac.il) we unchecked
495  the “Run GOrilla in fast mode” option and used the “P-value threshold 10-4” setting in order to

496  best approximate FDR correction with o = 0.05 %2,

497  We then used the online tool REViGO (http://revigo.irb.hr) to summarize the list of significant GO
498  terms and visualize the results of whole-genome enrichment analysis. First, REViGO employs
499  measures of semantic similarity between terms *® to identify representative clusters of genes. Then,
500 REViGO plots significant GO terms in semantic space, where semantically similar GO terms are

501  represented clustered near one another and labelled in a representative manner.

502  For our hypothesis-driven analysis, testing for enrichment of HAR-Brain genes, we also used non-
503  parametric permutation testing. Specifically, we randomly drew 1000 samples of the same number
504  of genes and estimated their PLS weighting, and compared the PLS weights of the HAR-Brain
505  genes to this permutation distribution. This provided an estimate of the probability of HAR-Brain
506  gene enrichment of each PLS component under the null hypothesis '®?>. We note that this
507  permutation procedure does not take into account the correlation between HAR-Brain genes; more
508  sophisticated null models for permutation testing that controlled for these or other characteristics

509 of candidate genes will be important to develop for computational inference in future studies.
510

511

512  Synaptic Density from Positron Emission Tomography

518 In-vivo estimates of regional synaptic density in the human brain were obtained from positron
514  emission tomography (PET) with the radioligand [!!CJUCB-J ((R)-1-((3-(methyl-''C)pyridin-
515  4-yl)methyl)-4- (3,4,5-trifluorophenyl)pyr-rolidin-2-one) #°. This ligand quantifies synaptic
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516  density > based on its affinity for the presynaptic vesicle glycoprotein 2A (SV2A) ?* which is

517  ubiquitously expressed in all brain synapses %°.

518
519 PET/MR imaging protocol

520 The research protocol was approved by an NHS Research Ethics Committee (REC:
521  18/EE/0059) and the Administration of Radioactive Substances Advisory Committee
522  (ARSAC), and all participants provided written informed consent in accordance with the
523  Declaration of Helsinki. Participant recruitment and exclusion criteria are described in detail
524  in the original publication *°. Here, we included data from the healthy volunteers (N=15, 8

525 females; age: 68 + 7 years).

526  The radioligand [''CJUCB-J was synthesised at the Radiopharmacy Unit, Wolfson Brain
527  Imaging Centre, Cambridge University, using the methodology previously described **. All
528  participants underwent simultaneous 3T MRI and [!!C]JUCB-J PET on a GE SIGNA PET/MR
529  (GE Healthcare, Waukesha, USA). Dynamic PET data acquisition was performed for 90
530  minutes starting immediately after [!!C]JUCB-J injection (median (range) injected activity: 408
531  (192-523) MBq, injected UCB-J mass < 10 ug). Attenuation correction included the use of a
532  multi-subject atlas method *° and improvements to the MRI brain coil component °!. Each
533  emission image series was aligned using SPM 12 (www.fil.ion.ucl.ac.uk/spm/software/spm12/)
534  then rigidly registered to a T1-weighted MRI acquired during PET data acquisition (TR = 3.6
535 msec, TE = 9.2 msec, 192 sagittal slices, in plane resolution 0.55 x 0.55 mm (subsequently
536 interpolated to 1.0 x 1.0 mm); slice thickness 1.0 mm). Regional time-activity curves were
537  extracted following the application of geometric transfer matrix partial volume correction ! to
538 each of the dynamic PET images. To quantify SV2A density (and therefore synaptic density),
539  regional [!'CJUCB-J non-displaceable binding potential (BPxp) was determined for a 66-ROI
540  subdivision of the Desikan-Killiany cortical atlas (DK-66), using a basis function

152

541  implementation of the simplified reference tissue model °*, with the reference tissue defined in

542  the centrum semiovale 3%,

543
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544  Principal components of synaptic density

545  Principal Components Analysis (PCA) was subsequently employed to derive the principal
546  components that explain most of the variance in regional ['!{CJUCB-J BPnp across volunteers.
547  Components were selected if their associated eigenvalue was greater than unity; two principal

548  components satisfied this criterion, explaining 45% and 16% of the variance, respectively.

549
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606

607 The PET data that support the findings of this study are available from author NH

608 (nda26 @medschl.cam.ac.uk), upon reasonable request for academic (non-commercial)
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614  Cortical gene expression patterns were taken from the transcriptomic data of the Allen Human

615  Brain Atlas (AHBA, http://human.brain- map.org/static/download).

616  Region-wise maps of chimpanzee-to-human cortical expansion and HAR gene expression are
617  available as Supplementary Materials from Wei et al (2019) %°.
618  The NMT anatomical volume and associated probabilistic tissue segmentation maps (GM,

619 WM and CSF) are freely available online: https://afni.nimh.nih.gov/pub/
620  dist/atlases/macaque/nmt and http://github.com/ims290/NMT.
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624 Code Availability

625

626 The Java  Information Dynamics Toolbox is freely available  online:

627  (https://github.com/jlizier/jidt).

628 The CONN toolbox is freely available online (http://www.nitrc.org/projects/conn).

629  DSI Studio is freely available online (www.dsi-studio.labsolver.org).

630  The Brain Connectivity Toolbox code used for graph-theoretical analyses is freely available

631 online (https://sites.google.com/site/bctnet/).

632 The «code wused for NeuroSynth meta-analysis is freely available online:

633 (https://www.github.com/gpreti/GSP_StructuralDecouplinglndex).

634 The HRF deconvolution toolbox 1s freely available online:

635  (https://www.nitrc.org/projects/rshrf).

636  The Pypreclin pipeline code is freely available at GitHub

637  (https://github.com/neurospin/pypreclin).

638  The code for PLS analysis of gene expression profiles is freely available online:

639  https://github.com/SarahMorgan/Morphometric_Similarity SZ.
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