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Abstract
In this paper we present a new imputation algorjtAlphalmpute2, which performs fast

and accurate pedigree and population based impnutédr livestock populations of hundreds of
thousands of individuals. Genetic imputation isal tused in genetics to decrease the cost of
genotyping a population, by genotyping a small nemitif individuals at high-density and the
remaining individuals at low-density. Shared haglet segments between the high-density and
low-density individuals can then be used to fillthre missing genotypes of the low-density
individuals. As the size of genetics datasets lggeen, the computational cost of performing
imputation has increased, particularly in agric@tbreeding programs where there might be
hundreds of thousands of genotyped individuals.atdress this issue, we present a new
imputation algorithm, Alphalmpute2, which perforgpulation imputation by using a particle
based approximation to the Li and Stephens whighlogs the Positional Burrows Wheeler
Transform, and performs pedigree imputation usingagproximate version of multi-locus
iterative peeling. We tested Alphalmpute2 on founwated datasets designed to mimic the
pedigrees found in a real pig breeding program.cd&@pared Alphalmpute2 to Alphalmpute,
AlphaPeel, findhap version 4, and Beagle 5.1. Wendothat Alphalmpute2 had the highest
accuracy, with an accuracy of 0.993 for low-densityividuals on the pedigree with 107,000
individuals, compared to an accuracy of 0.942 feadle 5.1, 0.940 for Alphalmpute, and 0.801
for findhap. Alphalmpute2 was also the fastestvgarfé tested, with a runtime of 105 minutes a
pedigree of 107,000 individuals and 5,000 markeas W05 minutes, compared to 190 minutes
for Beagle 5.1, 395 minutes for findhap, and 7,88@utes Alphalmpute. We believe that
Alphalmpute2 will enable fast and accurate largdesonputation for agricultural populations as

they scale to hundreds of thousands or milliongesfotyped individuals.
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Alphalmpute2: Imputation in livestock populations 5
Introduction

In this paper we present a new imputation algorjtAlphalmpute2, which performs fast
and accurate pedigree and population based impnutédr livestock populations of hundreds of
thousands of individuals. Genetic imputation isenmonly used tool in agricultural and human
genetics. It can be used to decrease the costotygeng individuals by allowing only a small
number of individuals to be genotyped on a high-bagh-density genotyping platform, and the
remaining individuals to be genotyped on a lowestdower-density platform. Shared haplotype
segments between the low-density and the high-gensiividuals are then used to fill in
missing genotypes for the low-density individuals2]. Low cost genotypes are important for
increasing the rate of genetic gain in animal alagtpbreeding programs [3-5]. As genotyping
animals has become a routine part of breeding tpesa many agricultural datasets contain
hundreds of thousands, or even millions of genatypwlividuals [6,7] which means that
imputation algorithms must be to scale to ever egpa) datasets.

Genetic imputation algorithms use either (1) pesikgor family information to perform
imputation, which rely on long shared haplotypensegts between an individual and their
parents, (2) population information to perform irtgiion, which rely on haplotype sharing
between an individual and distant relatives, or {8)h sources of information in a combined
algorithm. Pedigree based imputation tends to bedad accurate, but requires the pedigree of
the population to be known, and many of the fousderbe genotyped at high density [8-11].
Population based imputation tend to be slower &sd bhccurate, particularly at low marker
densities, but can perform imputation on indivigualith unknown parents and no known
genotyped relatives [2,12]. Population and pedigbased imputation can be effectively

combined for livestock populations: pedigree infatibn is used to impute the genotypes of


https://doi.org/10.1101/2020.09.16.299677
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299677; this version posted September 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

available under aCC-BY-NC-ND 4.0 International license.

Alphalmpute2: Imputation in livestock populations 6
most individuals, and population information is dis® impute the remaining genotypes,
particularly those of founders or individuals withgenotyped parents [9,13,14]. When aiming
to improve the scaling of a combined imputatiorogathm, most of the runtime tends to occur in
the population imputation steps [13].

There have been a large number improvements inrtheme of population based
imputation algorithms, particularly those basedtwn “Li and Stephens” hidden Markov model
framework [2]. In this framework, an individual’®gotypes are modelled as a mosaic of pairs of
haplotypes from the reference library. The refeeeribrary represents possible ancestral
haplotypes in the population, and generally coasitall of the phased haplotypes of the high-
density individuals. By itself, this algorithm $es poorly, with a runtime that is quadratic with
the number of haplotypes in the reference libr&yntime can be improved by either using a
fixed subset of haplotypes from the reference tipf&5,16], or by using a phasing algorithm to
pre-phase the data and running haploid hidden ®&darkodel separately on each phased
chromosome [17,18]. Because the haploid hidden Markodel only needs to consider one
chromosome at a time, it scales linearly with thenher of haplotypes in the reference panel,
allowing it to scale to reference panels of tenthofisands of haplotypes.

For reference haplotypes with hundreds of thousasfdhaplotypes, scaling can be
improved by employing the Positional Burrows Whedleansform (PBWT; [19]). The PBWT
is an opportunistic data structure which lexicogreglly sorts the haplotypes at each loci. By
sorting the library in this way, it is possibledearch through the haplotype reference library for
a given haplotype segment in constant time (indégenof the size of the library). The creation
of the PBWT is linear in both the number of markersgl number of individuals, but once

created, it can be re-used for all of the individugenotyped with the same set of markers. There
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Alphalmpute2: Imputation in livestock populations 7
are a growing number of approaches for using th&/PBo speed up the runtime of imputation,
e.g., by using it to find a fixed-number of refererhaplotypes to use for haploid imputation
[20], find “maximally matching” haplotype segmerpi®], or implement a Viterbi algorithm by
using a branch and bound search [21].

In this paper we first present a new populationutapon algorithm which uses the
PBWT to perform a guided stochastic search thrahghhaplotype reference library. The idea
behind this algorithm is to focus on combinatiorfs haplotypes that have high posterior
probability. We do this by creating a series oftigles and having them explore the high
probability paths through the haplotype referenioeaty. Normally the number of particles we
would need to use would scale based on the siteedfaplotype reference library. We solve this
issue by having the particles represent all ofttaglotypes in a region with the same genotype
state. We then use the PBWT to update each of fregsieles in constant time, which allows this
approach to scale to large reference haplotyparlds.

We also present a refined version of multi-locieative peeling which has greatly
reduced runtime and memory requirements comparegrdeious versions [22]. Multi-locus
iterative peeling is a probabilistic method for fpeming pedigree based imputation, that has
high accuracy patrticularly in the presence of ggpiog errors [9,22,23]. However, multi-locus
iterative peeling has traditionally been too comapiohally intensive to use for routine
imputation, and most pedigree based imputationrifgns use heuristic methods to perform
population imputation [8,11]. We found that it wasssible to greatly increase the speed of
multi-locus iterative peeling by approximating floet genotype probabilities of an individual's

parents, and by calling the segregation and gerostptes when estimating an offspring’s
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Alphalmpute2: Imputation in livestock populations 8
contribution to their parent’s genotypes. Theseraxmations appear to have limited impact on
imputation accuracy.

Finally, we present a combined algorithm which gnétes the population and pedigree
imputation algorithm.

We have implemented the population, pedigree, antbted imputation algorithms in a
new software package, Alphalmpute2. We comparedpéréormance of Alphalmpute2 to
Alphalmpute [8], AlphaPeel [22], findhap versiof24] , Beagle 4.1 [25], and Beagle 5.1 [26]
on a series of simulated datasets designed to miouic real pig pedigrees. We find that
Alphalmpute2 has high accuracy and low runtimebjesing an average accuracy of .99 for
low-density individuals across all four pedigregle runtime for imputing a single chromosome
of a pedigree of 107,000 individuals with 5,000 keas was just over two hours. Compared to

the other software, Alphalmpute2 had higher acguaad lower run-times in most situations.

Materialsand Methods

Population imputation using particles

Alphalmpute2 performs population based imputatisimgian approximate version of the Li and
Stephens algorithm [2]. In the Li and Stephensritlym models an individual’'s genotype is
constructed as a mosaic of haplotypes from a hgmateference panel. This can be
implemented in a hidden Markov model where theessptice consists of pairs of haplotype
identifiers from the reference panel at each laed inference is done to find a high-likelihood
path, or sequence of haplotype identifiers, thraighspace. The path can then be used to

impute and phase missing genotypes by lookingatdiiate of each haplotype along the path.
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Alphalmpute2: Imputation in livestock populations 9
Because the state space grows quadratically wétisite of the reference panel, approximations
are needed to perform inference.

Lunter [21] published an algorithm to produce aaatxmaximum likelihood (Viterbi)
path for a diploid Li and Stephens algorithm in stamt time. This approaches uses the
Positional Burrows Wheeler Transform [19] as anarpmistic data structure that allows
searching across many similar haplotypes at the $emne. The approach we use here is loosely
based on the framework of Lunter [21]. Insteada&irtg the maximum likelihood path, we
instead generate samples from an approximate postigstribution over all possible paths
through the haplotype reference library. The Idggbind this choice is that there may be many
paths with similarly high likelihoods, and by cominig information from multiple samples it
may be possible to obtain more accurate genotyasftom any single sample.

To run the algorithm we construct a series ofeseof a particles. Each particle consists
of a pair of ranges of haplotypes at each Iap}, ;) whereg’ andiy;, give the set of
haplotypes at lodi, whose values at preceding loci are given by dugiences
X = {Xi_p) Xicmatr s Xi} OVY = {Vi_, Viens1 - Vi) PL gives the haplotypes for the paternal

chromosome, amﬁ;' gives the haplotypes for the maternal chromosd@heach loci we

probabilistically update the each particle to a lsmve(¢;’;3,¢;ti) using a guided stochastic
search algorithm.

To create the final imputed genotypes and haplatyywe use this approach to generate
between 40-100 particles, and then merge the [gwtic form a set of consensus haplotypes.

These haplotypes can be used to either phase biggitd individuals, or impute low-density

individuals.
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Updating a particle

At each loci, particles are updated by probabd#ly selecting a new genotype state, and
recombination state. We consider a 4x4 grid of iptessteps that the particle can take. In the
first dimension the particle can move to one offthe phased genotype states. In the second
dimension the particle can make the move by ha&irecombination on either none of their
haplotypes, on either their maternal, or pateragldtypes, or on both haplotypes. An example
of this update is given in Figure 1.

The probability of selecting to move to genotype, with recombination; is:

P(Gi+1 1|05 W) % F(Ghh [ dOF (gl [ w)p (7 )P (g:ld)#(D)
Wheref(gfmp,q_’),i) is a function which gives the probability of thet@rnal part of the genotype
state given the recombination state (for eitherpdternal or maternal haplotypes) and the
current set of haplotypes considerpdnip) is the probability of the paternal part of the
recombination state; and g;|d;) is the probability of the full genotype state cibiothal on the
data observedp(g;ld;) is the same as in multi-locus iterative peelind &ngiven later, in
Equation 8.

We calculatef (g7 |7, ¢1) as

|#Ge0) .
|¢E+$)| n |¢E+i) if rl+1does not indicate a recombination
14 _ X, X
f(gi+1 | z+1' l) - |¢l+1| #(2)
0

. if v’ indicates a recombination
1 1 l+1
6@y | + 86

where|¢(i b, | gives the number of haplotypesdg# that have @ at locusi + 1. Similarly
|¢é;})| gives the number of haplotypesgh that have d at locusi + 1. ¢p5** represents the set

of all haplotypes that have a 0 at lo¢us 1. Using the Positional Burrows Wheeler Transform
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we can calculat{a;b,"jﬂ in constant time, independent of the size of tyadtype reference
library or the number of haplotypesdi} [21].

We calculate the probability of the maternal anttpel recombinatiop(r;”) as either:

p) _ 1-y if riﬁldoes not indicate a recombination#(g)

p(r; o e
y  if ry,, indicates a recombination

Wherey is a recombination rate which, we estimate-as This value underestimates of the

Nioci

effective recombination rate since individuals iafeeriting haplotypes from distant relatives
[16], however the accuracy of this algorithm seémisrgely insensitive to the recombination
rate given, and this serves as a good approximation

In order to determine how well a particle matchesdata at a particular locus, we assign

a score to each patrticle at each locus:

score; = log (p(r¥ )p(™p(dilg)) ) #(4)
, Which gives a higher score to particles that dioblrave a recombination and fit the observed

genotype data. We use the score to combine pariitie a single consensus haplotype.

Combining particles
We create a consensus haplotype and genotypeostadé multiple particles by using a two-
stage approach. In the first stage we call consegsnotypes for each locus. In the second stage
we phase the loci that are called as heterozygous.

To create a consensus genotype, we score eaatigpatteach locus by taking the sum of
the scores of each particle (given by Equation ifhiwva 50 marker window. We then select the
genotype state of the particle with the best saerthe called genotype. If multiple particles have

the highest score, we use the most frequent geaastygbe of those particles the called genotype.
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In the second stage we phase heterozygous Idobking at transitions between
neighbouring heterozygous states. We track wheltieealternative alleles are on the same or
different haplotypes, e.g., whether the phasedtgpeatate transitions froaA to aA where the
alternative allele is on the maternal haplotypdram aA to Aa where the alternative allele
transitions between the maternal to the paternabhgpes. We pick the transition that is most

frequent in all of the particles that are heteranygat both loci.

Backward information

In a traditional hidden Markov model, inferencel@e by combining information from a

forward pass (information from the first locus be tcurrent locus) with a backward pass
(information from the last locus to the currentust The search algorithm we present only takes
into account information in the forward pass, andsinot make selections based on genotype
data from loci after the current locus. Informatfoom backward pass can be useful for
imputation by filling in spontaneous missing magend phasing genotype states. To
incorporate backwards information, we first rureaes of particles in reverse, i.e., from the end
of the chromosome to the beginning of the chrom@sa@nd then run a forward pass of particles

where we replacev(g;|d;) in Equation 1 with:

p(gildin, ,¥) = p(g;ld) Z fla |t o) (g |r™ v (P )p (™) #(5)

In this equation we project each of the reverségdes forward by one locus to see what
genotype state they are likely to carry at the tads. When multiple particles are run on the

backward passi(g;|d;.., ¢, ) is averaged across all particles in the backwass p

Imputation
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This algorithm can also be used to impute missiagkers. To perform imputation, we evaluate
particles on the non-missing markers. We trackdbiewhere recombination occurs, and what

the set of haplotypes are for each particle ateth@s. This creates an ordered pair of haplotype
regions {(start, stop), (¢;E"p,lp;i°p)}. For each locus, we select the interval that d¢ostine

locus, and fill in missing markers on the correspng haplotypes from the middle haplotype in

¢,-" on the paternal side, anfi;:""on the maternal side.

Creating the haplotype library
In many animal populations pre-phased haplotyparies are not available and so the haplotype
used for population imputation neds to be constdicthis is done by iteratively (1)
constructing a haplotype library from the high-dgnimdividuals, (2) phasing those individuals
with that haplotype library, and (3) re-buildingethbrary using the phased haplotypes from the
previous iteration. To initialize the haplotyperéby, we randomly phase heterozygous loci and
fill in spontaneous missing genotypes. We thenrsounds of phasing and imputation,
rebuilding the haplotype library at the end of esmimd. Running more rounds of phasing and
imputation can increase the quality of the hapletiprary, but we found that unds was
sufficient in pilot simulations for accurate imptiba.

During this process we keep track of location diick haplotypes the individual
contributes to the haplotype library, and removesé&haplotypes as options for the particle

steps. This is done by modifyifgL’| to be either

| it if pLi contains none of the individual’ shaplotypes
|pt = || — 1 if @1 contains one of the individual'shaplotypes #(6)
|l — 2 if Lt contains both of the individual'shaplotypes
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Array Clustering

In order to run this algorithm, we wap€g;|d;) to be as informative as possible for each locus.
Having an informative value for(g;|d;) allows us to have more confidence in taking edep.s
If the individual does not have genotype datalatas, therp(g;|d;) will be relatively
uninformative at that locus. One solution woulddenly evaluate the individual’'s genotypes at
non-missing loci. This would require re-calculatihg Positional Burrows Wheeler Transform
on an individual-by-individual basis to take intmcaunt each individual's pattern of missing
genotypes, which would be prohibitively computadiliy expensive. Instead we cluster
individuals based on the SNP array they are geedtgn, and build the Positional Burrows
Wheeler Transform on an array-by-array basis. grestly reduces the number of times the
Positional Burrows Wheeler Transform needs to beutated, and backwards information is

used to guide decisions on any remaining spontanedssing markers.

Pedigree based imputation using approximate multi-locus iterative peeling
Alphalmpute2 performs pedigree based imputationguan approximate version of multi-locus
iterative peeling [9,22]. In an iterative peelimgrhework the probability of an individual's
genotypes is based on three sources of informf2Rjn

p(g;) = anterior(g;)posterior(g;)penetrance(g;) #(7)
, Where the anterior term represents informatlwouéan individual’s genotypes based on
information from the ancestors of the individudtkefied through their parents, the posterior

represents information about an individual’'s gepet/based on the decedents of the individual
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filtered through their offspring, and the peneteterm represents information about an
individual's genotypes based on their own genaditadi.e., SNP array or sequence data).

In order to take linkage information into accountjlti-locus iterative peeling builds on
the normal iterative peeling framework by having #mterior terms and the posterior terms
depend on the segregation state of the individia),which pair of parental haplotypes that
individual inherited at each loci [22].

Performing exact inference in a peeling framewsr&hallenging because the anterior
and posterior terms for an individual, depend angbnotypes of their parents and offspring,
which themselves need to be estimated. BecaubéspRAlphalmpute2 takes an iterative
approach to update the anterior and posterior terraseries of passes up and down the
pedigree. This is summarized in the following aitjon:

1. Downward pass: Starting from individuals in thetfigeneration to the last generation

a. Re-estimate the segregation probabilities for éadividual.

b. Re-estimate the anterior terms for each individhaasled on their parent’s

genotypes.
2. Upward pass: starting from the last generatiomédfirst generation

a. Re-estimate the segregation probabilities for eadividual.

b. Re-estimate the posterior terms for each individaasled on their offspring’s

genotypes.
In order to enable these passes, we sort the pedigicording to an individual’'s generation. The
generation of each individual is the minimum of gemeration of their sire and dam plus one.

The peeling algorithm needs to be run in a sefigasses. We have found that 5 passes

of peeling is often enough to obtain high-qualigngtype probabilities. The purpose of running
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multiple passes is primarily to transmit informatioorizontally across the pedigree, i.e.,
between children of a shared parent. The amounfaimation that is passed horizontal quickly
decays as individuals become more genetically mlista
In order to perform peeling we need to specify wasvcalculate the penetrance term, and

how we update the anterior, posterior, and segaygptobabilities.

Calculating the penetrance term

The penetrance term give the probability of theeolsd genetic data, conditional on the
individual's genotype state. We consider four pdagenotype states, aa, aA, Aa, AA, where the
first allele is the paternal allele, and the secaltgle is the maternal allele. We assume that the
observed genotype data is the number of obsertechative alleles for SNP data.

1—e if g;isconsistent withd,
pentrance(g;) = p(d;|g;) . therwise (8)

Wheree represents the genotyping error rate with a defeallie of 0.01.

Updating the anterior term
In each downward pass the anterior term is updategach individual. To perform this update
we re-estimate which genotypes the individual itbdrfrom their parents using the current

estimate of their parents’ genotypes. We calculsenterior term for individual at locus as:

anterior(go) = > " P(GoildsGaw 5e90P" (900" (9 )P (s56901) #(9)

5€d0,i 9s,i9d,i
wherep(g,,:|gs,:, 9a: seg;) is a transmission function which gives the proliigithat the
offspring inherits a genotype conditional on thispfing’s segregation states and the genotypes

of their sire and dam. This value will be eithesrQL depending on if an inherited genotype is
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consistent with the individual's segregation staid the genotypes of their parents. The term
p*(gs,i) gives the probability of the genotype state ofdine, based on the information from the
last pass of peeling.

This formulation of the anterior term is an appnoation to the term used in previous
papers [22,23]. In the traditional peeling framettre parents genotypes are given by
P-0(9si» 9a ;) Which gives the joint genotype probabilities af fparents ignoring information
from the offspringp. By not excluding the offspring’s genotypes we effectively double
counting the offspring’s genotypes: first infornaattion the offspring’s genotypes is used in the
penetrance function, and second information froenatfispring’s genotypes will be used to
calculate the posterior term of the parent, whidhthhen be used to estimate the anterior term of
the offspring. In practice, we find that the posteterm from a single offspring only provides a
small amount of information to their parent, anakttthe double counting of information here

does not lead to a substantial loss in accuracyaéeassume that the genotype probabilities of

the parents are independent, i€g; ;, 9a;) = P(gs)P( ga,)-

Updating the posterior term
In each upward pass the posterior term is updatsedion the genotypes of the offspring. This
update is performed on a family-by-family basis #melresult is combined across families. For a

sire,s, with matesM = {m,,m,, ...} the posterior term is:

posterior(gs;) « 1_[ posteriory,(gs;) #(10)
meM
where posterior term for each mate is given by

pOSteriOTm(gs,i) X Z 1_[ z 2 p(go,i|gs,i1 gd,il Segi)piparents(go,i)p*(Sego,i)p*(go,i) #(11)

dm,i O S€do,i Go,
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Where the product is on all of the shared offsphatyveernm ands. Similar terms are used to
generate the posterior estimate for each dam.

In order to avoid double counting the genotypethefparents, we exclude the anterior
term from the calculation of the genotypes of tflepming iNp_,4rents (go,i). As when
calculating the anterior term, we do not excludedbantribution of the offspring when

calculating the genotypes of the matg,,, ;).

Calculating the probability of each segregation state

The probability of each segregation state are tatlet by using a hidden Markov model
to determine which segregation state the individaalties at different loci across the genome.
We consider four segregation statesn( pm, mp, pp) where the first letter gives whether the
individual inherits their sire’s maternal or pata@rhaplotype, and the second letter gives whether
the individual inherits their dam’s maternal orgratl haplotype.

Hidden Markov models are defined by a series oksioin probabilities which give the
likelihood of the observations given a hidden statel transmission probabilities, which give
the probability of transitioning between hidderteta The emission probabilities of this model

are:

p(sego,i) X z Z p(go,ilgs,ii gd,ii Segi)p*(gs,i)p*(gd,i)piparents(go) #(12)
Yo,i 9d,irGo,i
Which uses Bayes' rule to estimate the probabilitgach segregation state conditional on the
estimated genotypes of the individual and theiepts. The transmission function is given by

(Whalen 2018):
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p(seg; = slseg; =s") = (1 —y)* 4y #(13)

whered is the number of recombinations required to maetevbens ands’, i.e.,

p(seg;; = pp|seg;;_1 = pm) = (1 — y)y, andy is the recombination rate. We found that

accuracy was largely insensitive to the recombomatate and so set it a default value-bf

Nioci

wheren,,; is the number of loci on the chromosome. This m&sumarkers are evenly spaced
(in genetic map distance) across an 100 cM chromesdhe assumed total chromosome
genetic map length can be changed using a comnrandgtion.

We use the forward-backward algorithm [27] tacoddte segregation probabilities across
each loci. To simplify the amount of informatioisd at each loci, we assume the segregation

probabilities for the maternal and paternal hagplesyare independent and set e.g.,

p(segopar; = m) = p(seg,; = mp) + p(seg,; = mm).

Calling genotype probabilities for the posterior term
In order to reduce runtime we call the offspringregation and genotype probability values
when calculating the posterior terms for their pgseWe use calling threshold of 0.99 for
calling the segregation values, and a calling tiolesof 0.99 for the genotypes on the first round
of peeling, and a threshold of 0.95 for subsequmnids of peeling. For genotype or segregation
probabilities that do not reach the threshold,géeotypes or segregation values are set with
each state being equally likely.

By calling the segregation values and genotypeeglwe are able to store part of the

posterior update,

Z Zp(go,iLgs,i!gd,b Segi)p—parents(go,i)p(sego,i) #(14)

S€edo,i Jo,i
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, in a look-up table, which substantially reduagstime. In addition, we do not consider the
dependency between the uncertainty of segregaibessat nearby loci. The un-modelled linked
uncertainty between segregation states can leadtdrs in imputing the parental genotypes. By
calling the segregation probabilities we mitigdtte impact of this simplification by only
considering non-equal segregation probabilitiesretigere is minimal uncertainty in the
segregation state.

After running the final round of peeling we alsadl¢he genotype probabilities of all

individuals in the population to get best-guessofygres for each individual.

I ntegrating population and pedigr ee based imputation

Past work has found that combing pedigree and ptipalimputation algorithms can increase
accuracy in populations where pedigree informaiaavailable [13,14]. The goal of this
combination is to use the population-based impaortatigorithms to phase and impute the
individuals at the top of the pedigree. These ggrest can then be dropped through the rest of
the pedigree using the pedigree based imputatgoriim. To combine the pedigree and
population algorithms in Alphalmpute2, we perfommputation using a three step approach
where we first perform an initial run of pedigreeputation, we then perform population
imputation on a limited set of “pseudo-foundersidave finish with a final run of pedigree

imputation to fill in the remaining missing genoég

Sep 1: Initial pedigree imputation
In Step 1, 5 rounds of multi-locus iterative peglare run on the population. After the final

round all of the genotypes in the population atkedavith a genotype calling threshold of 0.9.
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Alphalmpute2: Imputation in livestock populations 12
We then split the population to three parts: (ghhaensity individuals that have fewer than 10%
missing markers, (2) low-density individuals whe gpseudo-founders” (see below) and (3)
low-density individuals who are not “pseudo fourgleAfter splitting the population, the
genotypes of individuals in group (3) are resehtar original genotype values before pedigree
based imputation.

Pseudo-founders are individuals who genotypedhédleer density than their parents
(accounting for the fact that their parents mayniyguted to a higher density using pedigree
based imputation). To detect pseudo-founders whmgugh the pedigree from the start to the
end and calculate the effective genotyping dermsign individual:

min(scoregi ., SCOTe44y) (@) if missing;,q * 0.9 < min(scoreg; ., SCOTe34m)
missingng (b) otherwise

SCOT€ipna —
wheremissing;,41S the percentage of non-missing markers the iddadihas. The value 0.9 is
used to give a slight preference to using the ggreodf the parents if the individuals are at a

similar marker density. Individuals in group (bgdhe “pseudo-founders” of the population.

Sep 2: Population imputation

In Step 2, we use the population imputation algamito phase the high-density individuals
detected in Step 1, and use the haplotype consttdicim their phased haplotypes as the
reference library to impute the low-density “pseddonders”. We perform an initial 5 rounds of
phasing to iteratively build the reference hapletiiprary using 40 particles to phase each
individual. For imputation we use 100 particlesnpute each individual. At the end of this step,
we reset the genotypes and haplotypes of high-yensiividuals that are not “pseudo-founders”

to their original genotype states at the starttep3. The number of particles selected for
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phasing and imputation were chosen based on mitetigtions. Larger numbers of particles may

yield more accurate results, but the improvememtcituracy will likely be small.

Sep 3: Final pedigree imputation

In Step 3, we re-run 5 rounds of multi-locus iter@apeeling, using the new phased genotypes
for the “pseudo-founder” generated in Step 2. tteoto reduce the negative impact of switch
errors, we perform peeling on a lesioned pedigrieera/ithe link between a “pseudo-founder”
and both of their parents is removed. After runnimgti-locus iterative peeling, the genotypes

are set to the best-guess genotypes.

Testing the algorithm
We tested the performance of Alphalmpute2 on fouukated datasets based on pedigrees taken
from a commercial pig breeding program. The pestigrhad either 18,3498K), 34,425 84Kk),
63,872 63k), or 107,815 107k) individuals and were genotyped on four SNP arnaisch
ranged from 350very low density), 10,000 (ow density), 33000 tnedium density), and 46,000
(high density) markers. Although these marker densities are la¥van highest density SNP
arrays available for humans and livestock, theyesgnt commonly used marker densities for
performing genomic selection in many animal breggirograms [28—30].

We compared the performance of Alphalmpute2 to tifaBeagle 4.1, Beagle 5.1,
Alphalmpute, AlphaPeel, and findhap. We evaluatechesoftware on their accuracy, runtime,

and memory requirements.
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Simulated genetic data
We simulated the four pedigrees by generating afs&iunder haplotypes using a Markovian
Coalescent Simulator [31], and then dropped theoutth each pedigrees.

The founder haplotypes were generated by assuntiege twere 18 100-cM long
chromosomes that were simulated using a per sit@tion rate of 2.5x7110-8, and an
effective population size (Ne) that changed oveetbased on estimates for the Holstein cattle
population [32]. Ne was set to 100 in the final gation of simulation and to 1256, 4350, and
43,500 at 1000, 10,000, and 100000 generations &b, linear changes in between. The
number of markers per chromosome varied betweeBllghd 4690 based on the marker
densities on each chromosome in the real genotyfze d

The founder haplotypes were then dropped througtpédigree using AlphaSimR [33].
The genotypes of each individual were then maskedftect the pattern of missingness for that

individual in the real genotype data.

Comparison with other software

We evaluated the performance of Alphalmpute2 whangueither the population only
algorithm, the pedigree only algitrm, or the combined algorithm.

We compared the performance of Alphalmpute2 with gerformance Beagle 4.1,
Beagle 5.1, AlphaPeel, findhap, and Alphalmputeadbe 4.1 and Beagle 5.1 were run using
default parameters except the effective populasiae which was set to 200. Alphalmpute and
AlphaPeel were run with default parameters. ForhAlmpute we rounded the genotype

probabilities that it outputs before calculatingc@acy to make it consistent with the other
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software packages. findhap was run with the recamahparameters of maxlen = 600, minlen =
75, and errate = .004.

Our goal in running a large number of other sofevpackages was to evaluate the
performance of both the population only, and pesigonly algorithms separately, and to
evaluate the performance of the combined algorithm.

Beagle 4.1 and Beagle 5.1 were chosen to servebaacmark for the population only
algorithm. Both software packages are commonly usethe human and animal imputation
literature, and Beagle 5.1 has incorporated a nuwib@s of yet unpublished) improvements for
phasing.

AlphaPeel was chosen to serve as a benchmark ®rp#digree only algorithm.
AlphaPeel implements a version of multi-locus itee peeling, which is approximated by the
pedigree only algorithm in Alphalmpute2. Our gaalnnaking this comparison was to see how
much accuracy was sacrifice to increase runtindphalmpute2.

findhap and Alphalmpute were chosen to serve lasnahmark for a combined pedigree
and population imputation algorithm. Both prograams currently in use in commercial breeding

programs, and Alphalmpute2 could serve as a pess#@rididate to replace them.

Perfor mance measurements
Imputation accuracy was measured as the correléivween an individual's imputed
genotype and their true genotype, corrected foptpmlation minor allele frequency [34]:
accuracy = cor(Gimpute=— 2 Maf, Gepye — 2 maf)

Accuracy was averaged across all of the 18 sindilztteomosomes.
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We also measured the runtime and memory usagecbf magram. All programs were
run on the Edinburgh Compute and Data Facilitytelussing 4 cores. Programs were given at
most eight days to impute each chromosome. Thdtseate given only for programs that

successfully finished on all of the chromosomes.

Results

We found that Alphalmpute2 had high accuracy amd Hon-times across all four pedigrees.
Imputation accuracy for the 107k pedigree was .888high-density individuals, .988 for
medium density individuals, .993 for low-densitydividuals, and .81 for very-low-density
individuals. Imputation took 105 minutes and 14.B & memory for Chromosome 1 (4,600
Markers and 107,000 individuals). Alphalmpute2 Hadher accuracy than the alternative
algorithms and comparable run times to findhap Bedgle 5.1, both of which are significantly
faster than Beagle 4.1. The accuracy, runtime,raachory usage of each algorithm is given in

Table 1.

Accuracy of thefull Alphalmpute2 algorithm

The accuracy of Alphalmpute2 depended primarilytib@ genotyping density of the
individuals and their relative position in the pgrele. We found similar accuracies across all four
pedigrees and so focus on the 18k pedigree to emaphparisons to Beagle 4.1 which did not
finish on all pedigrees.

On the 18k pedigree the accuracy of the full Alpi@aute2 algorithm was .998 for high-
density individuals, .944 for medium-density indiwvals, .990 for low-density individuals, and

.827 for very-low-density individuals. The lower cacacy for medium-density individuals
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compared to low-density individuals was likely dnivby their relative position in the pedigree.
All of the medium-density individuals appeared lve first quarter of the pedigree compared to
only 3% of the low-density individuals and 0.2%tloé high-density individuals.

The accuracy of the pedigree only algorithm was$ .8 high-density individuals, .661
for medium-density individuals, .987 for the lowrdéy individuals, and .862 for the very-low-
density individuals. Compared to the full algorithitme pedigree only algorithm had much lower
accuracy on the medium-density individuals (.66fnpared to .944), and similar accuracies on
the high-density, low-density, and very-low-densitgtividuals.

The accuracy of the population only algorithm wa&y7. for the high-density individuals,
.929 for the medium-density individuals, .973 foe low-density individuals, and .257 for the
very-low-density individuals. Compared to the failjorithm, the population only algorithm had
much lower accuracy on the very-low-density indiats (0.257 compared to 0.827), and
between 1-2% lower accuracies on the high-densigdium-density, and low-density
individuals.

The full Alphalmpute2 algorithm had higher accyraélsan both the population only or
pedigree only algorithms except in the case of d@nwdensity individuals where the pedigree

only algorithm had a slightly higher accuracy (.&&2npared to .827).

Pedigree only imputation accuracy compared to AlphaPeel
The pedigree only algorithm in Alphalmpute2 uses agproximate version of multi-locus
iterative peeling that is implemented in AlphaPégie accuracy of the two algorithms are

similar, with the accuracy of AlphaPeel on the 1@8digree being .997 for high-density


https://doi.org/10.1101/2020.09.16.299677
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299677; this version posted September 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

available under aCC-BY-NC-ND 4.0 International license.

Alphalmpute2: Imputation in livestock populations 72
individuals, .733 for medium-density individual884 for low-density individuals, .855 for very-
low-density individuals.

The correlation between the genotypes imputed by pledigree-only imputation
algorithm and AlphaPeel was high. On Chromosomerltie 18k pedigree, the correlation
between the genotypes imputed between the two ilgm was on average .973, with a
correlation of .999 for high-density individual®960 for medium-density individuals, .994 for
low-density individuals, and .804 for very-low-dégsndividuals. The lower correlation for the
medium-density and very-low-density individualsdise to the lack of high-density parents for
these individuals. In AlphaPeel, the observed mailtale frequency is used as a prior for the
genotypes of the founder individuals, whereas somatiele frequency of 0.5 is used as a prior

for founder individuals in Alphalmpute2. We retumthis difference in the Discussion.

Alphal mpute2 accuracy compar ed to Beagle 4.1 and Beagle 5.1

For the 18k pedigree, the accuracy of Beagle 4.5 v@®5 for the high-density
individuals, .944 for the medium-density individsial969 for the low-density individuals, and
.327 for the very-low-density individuals. The ammy of Beagle 5.1 was .626 for the high-
density individuals, .909 for the medium-densitydiudduals, .939 for the low-density
individuals, and .219 for the very-low-density ividuals.

The accuracy of Beagle 4.1 was slightly higher ttieat of Beagle 5.1 in all cases, with
the largest difference being on filing spontaneaugssing markers in the high-density

individuals, where the accuracy of Beagle 4.1 W85 but the accuracy of Beagle 5.1 was .626.
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The accuracy of the population only algorithm irp#dimpute2 was similar to Beagle
4.1 with lower accuracies on the medium-densityviddals (.929 compared to .944), and very-

low-density individuals (.257 compared to .327).

Combined algorithms: findhap and Alphal mpute2

For the 18k pedigree, the accuracy of findhap wa9 for the high-density individuals,
.627 for the medium-density individuals, .774 foe tlow-density individuals, and .445 for the
very-low-density individuals. The accuracy of firsgh was between 20-40% lower than
combined algorithm in Alphalmpute2 in all caseshéal).

The accuracy of Alphalmpute2 was .940 for the highsity individuals, .875 for the
medium-density individuals, .931 for the low-depsidividuals, and .641 for the very-low-
density individuals. The accuracy of the combinkgbiathm in Alphalmpute2 was higher than
Alphalmpute in all cases, with the largest differes for medium density individuals (.944

compared to .857) and very-low-density individua®27 compared with .641).

Runtime

Alphalmpute2 was faster than all of the other safsvpackages tested. For the pedigree
of 18k individuals, Alphalmpute2 took 15 minuteslldwed by findhap which took 17 minutes,
Beagle 5.1 which took 28.1 minutes, Alphalmpute cehtook 348 minutes, and Beagle 4.1
which took 2,250 minutes.

For the pedigree of 107k individuals, Alphalmpute@k 105 minutes, Beagle 5.1 took
190 minutes, findhap took 395 minutes, and Alphaltagook 7,859. Beagle 4.1 did not finish

on the 107k pedigree within eight days of run time.
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Discussion

In this paper we present a new population andgpeelibased imputation algorithm,
Alphalmpute2, and demonstrate its performance andonulated datasets based on real
livestock pedigrees. We find that it is able tofpen fast and accurate imputation in a range of
scenarios, and preforms competitively with othestaxg imputation software. In the remainder
of the discussion we discuss the advantages of ioamglpedigree and population based
imputation information for imputation, ways to fuer decrease the runtime of Alphalmpute2,
the performance of the approximate iterative pgdiiamework, compare the population
imputation algorithm to already existing populatiorputation algorithms, and the particle based

approach for approximating the Li and Stephensrdlgu.

Combining pedigree and population imputation increases accur acy

In line with previous research, we find that conibg population and pedigree
imputation can increase accuracy compared to rgngither the population or pedigree
imputation algorithms alone [13].

Compared to the pedigree only algorithm, the comdbialgorithm delivers high-
accuracy phasing and imputation for the individadlghe top of the pedigree. These phased
genotypes can then be used to impute individualedudown in the pedigree. This improves
the imputation accuracy for both the “pseudo-foustief the pedigree, but also other
descendants who may be genotyped at lower dengkigsilar effect was seen in LDMIP
which used a population based imputation algorithmmpute and phase the founders of the

pedigree before running multi-locus iterative pegli9].
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Compared to the population only algorithm, the corad algorithm delivers higher-
accuracy imputation across the board, particufaryery-low-density individuals. For these
individuals imputation accuracy is improved by gspedigree information to decrease the
number of haplotypes that need to be considerée four parental haplotypes in the case of
pedigree based imputation, compared to tens oftrals for population imputation — which
makes it easier to find the correct haplotypes witimited number of low-density markers.

The only place where accuracy of the combined dlgarwas lower than that of the
pedigree only algorithm, was for very-low-densitgdividuals, particularly those at the
beginning of the pedigree. The lower accuracy og-i@v-density individuals is likely due to a
lack of high-density or medium-density ancestorstiese individuals. In AlphaPeel, the minor
allele frequency is used as a prior for missingoggres of founders in the population. This
allows AlphaPeel to take the uncertainty in theaggpes of these individuals into account. In
contrast, in the combined algorithm the foundeid ‘@seudo founders” are imputed with the
population imputation algorithm, and the resultjanotypes are treated as observed genotypes
(with a default 1% error rate). The population irgtion algorithm tends to have low error rates
for high, medium, and low-density individuals, miggh error rates for very-low-density
individuals. Treating these imputed genotypes ased in the final round of population
imputation may be the cause of the lower imputasiocuracy. A solution to this problem may
be to include a minimum genotyping density requiggdpopulation imputation (e.g., 10-50 non-
missing markers per chromosome), and using themaifele frequency as a prior for the

genotypes of “pseudo founders” who do not reachdkensity.

Decreasing the runtime of Alphal mpute2
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We found that the combined imputation algorithm hwager runtime than the population
only algorithm, but a higher runtime than the pegkgonly algorithm. The lower runtime
compared to the population only algorithm is likdlye to the fact that in the combined
algorithm imputation is only run on a small setpdeudo founders”. This does not lead to a
large reduction in runtime since all the of thehhagensity individuals are still need to be phased
to build the haplotype reference library.

One option to decrease runtime would be to byphasipg completely by using the
high-density individuals who have been fully phasidpedigree imputation to construct the
haplotype reference library. We tested this in alsrmumber of pilot simulations and found that
this approach reduced run time by 50%, but alsoedsed accuracy by 1-2%. The lower
accuracy is likely driven by having a less relevsettof haplotypes included in the reference
library, particularly from those individuals at ttp of the pedigree.

Another option to decrease runtime of the popufaitiputation algorithm would be to
decrease the number of particles that are run.Mysec40 particles for phasing the haplotype
reference panel, and 100 for imputing low-densitgividuals since those values seemed to give
good accuracies in pilot simulations. The numbegrasticles used for phasing the haplotype
reference panel was lower than that for imputatsimge errors in the haplotype reference panel
can be corrected in imputation, and the cost dfi @alclitional particle is higher for phasing since

phasing is run five times on the high-density imndiinals to refine the haplotype reference library.

Approximate iter ative peeling
One of the goals in this paper was to improve tadirsg of multi-locus iterative peeling. We

have previously found that multi-locus iterativeelieg is a robust imputation algorithm for
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performing imputation in large livestock pedigrd22], but has suffered from long run-times
that make it impractical for regular use. We fouhdt by approximating the full multi-locus
iterative peeling algorithm we were able to redboth runtime and memory by 80% by a factor
while maintaining the similar accuracies. The speggrovements in Alphalmpute2, exploit the
fact that offspring provide relatively little inforation on their parent’'s genotype, and in many
cases it is possible to call the segregation vahtemost loci. This allows us to re-use the
parent’'s genotype probabilities in the peel-dowepstfor all of their offspring instead of re-
calculating these probabilities on an offspringdffspring basis, and to use lookup tables to
calculate the summations in the peeling-up stegi@odarly Equation 11).

In terms of accuracy the AlphaPeel and the pedignéealgorithm in Alphalmpute2 had
similar accuracies in both datasets. This sugdleatshe use of the approximations lead minimal
decreases in accuracy on these datasets. The ypuiiff@rence between algorithms was on how
the founders of the population were imputed. Fa@sinig genotypes in the founders, AlphaPeel
imputes the individuals based on the minor alleégjdiency in the population. Alphalmpute2
imputes these individuals assuming a minor alledgudency of 0.5. We used a neutral minor
allele frequency in Alphalmpute2, to prevent thgoathm from incorrectly calling genotypes
with a low minor allele frequency for the combiradorithm, and assume that the genotypes of
these individuals will eventually be imputed usithg population imputation algorithm. This
means that when run alone, the pedigree only dlgorin Alphalmpute2 may give lower
accuracies than AlphaPeel, but we find that thesoed algorithm in Alphalmpute2 gives

higher accuracies than AlphaPeel in most cases.

Comparison of population imputation algorithms
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Compared to the other imputation algorithms tesédghalmpute2 obtained generally
higher imputation accuracies at lower runtimes lbfoar simulated datasets.

In terms of speed, we found that Alphalmpute2 aaddde 5.1 scaled the best out of the
software packages tested. findhap had initially-tantimes on the 18k pedigree, but the
performance substantially decreased as the nunfilbefeoence haplotypes grew larger. The
runtime of findhap increased from 15 minutes to B88utes between the 18k pedigree and the
107k pedigree, where the runtime of Alphalmputel orcreased from 15 minutes to 105
minutes. The poorer scaling of findhap is likelyedua it searching through the haplotype
reference library for each individual, a task thets harder as more high-density individuals are
genotyped. Alphalmpute2 addresses this issue hdyiagghe positional Burrows Wheeler
transform to enable constant-time searches thrtargk haplotype reference libraries.

In terms of accuracy, we found that Alphalmputed h higher accuracy than most of the
other software tested. For the pedigree only algarj Alphalmpute2 had a similar accuracy to
AlphaPeel. For the population only algorithm, Alphpute2 had a similar accuracy to Beagle
5.1 and Beagle 4.1. For the combined algorithm Alptpute2 had a higher accuracy than all of
the other algorithms including findhap and Alphatrted These results suggest that the
approximations used in multilocus peeling had Eniimpact on imputation accuracy for
pedigree based imputation, that the approximatnti Stephens algorithm used performs as
well as other techniques used to fit the Li angppB¢®ms model, and that the way that population
and pedigree based imputation are integrated ledostter performance compared to existing
software packages.

We were surprised by the large speed improvenetmiden Beagle 4.1 and Beagle 5.1.

Beagle 4.1 had the longest runtime of any of tHeveoe packages analysed with a runtime of
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36 hours on the 18k pedigree, whereas Beagle 6. & nantime similar to Alphalmpute2 with a
runtime of just 28 minutes on the 18k pedigree. iffygrovement in speed between Beagle 4.1
and Beagle 5.1 are impressive, but the changétplhasing algorithm are (to our knowledge)
as yet unpublished. The paper on Beagle 5 [26] debgribed the improvements to the haploid

imputation algorithm which primarily improve speed imputing whole genome sequence data.

Particle based approximation to the Li and Stephens model

The particle based implementation of the Li argpBens model in Alphalmpute?2 takes a
different approach for increasing the speed oLilend Stephens algorithm. Previous work has
increased the speed of diploid imputation by fm&t-phasing the data, and then running a
haploid imputation algorithm on the phased haplesyfl8]. The split between phasing and
imputation is important, because for many phasiggriahms increased speed by running the
algorithm to directly infer the phased genotyp@igglly groups of heterozygous loci) instead of
inferring the underlying haplotypes of origin. Tlakowed the algorithms to scale better for
known loci, but means that that a haploid imputaatgorithm needed to be run after pre-
phasing the data to fill in missing loci [35,36h&se phasing and imputation algorithms have
then been extended to utilize the Positional BusrtMheeler transform to increase the speed of
both the phasing step [37,38] and imputation s2€p. [

In contrast, the population imputation algorithmAlphalmpute2 runs phasing and
imputation together in a full diploid Li and Stepisemodel. In order to make this
computationally tractable, we approximate the ld &ephens model using a small number of
particles to search for paths with high posterrabgbility, and use the Positional Burrows

Wheeler Transform to update entire sets of patbsed. Our approach is most similar to that of
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FastLS [21], with the difference that we generatdtiple (approximate) samples from the
posterior distribution instead of calculating agdinmaximum-likelihood path. This has the
advantage of guaranteeing a constant-time runtimedch particle, and may increase accuracy
if multiple paths have similar high posterior prbbiéy. We believe that techniques like
Alphalmpute2 and FastLS may offer an alternativenare for performing imputation using a Li

and Stephens style model.

Conclusion

In this paper we present a new imputation algorifiphalmpute2, which combines
high-accuracy pedigree imputation with high-accynagpulation imputation. The pedigree
imputation was performed by an approximate forrmatfti-locus iterative peeling, and the
population imputation was performed using a newralgm which uses particles to approximate
a Li and Stephens style hidden Markov models. \W& finat in four simulated datasets that the
algorithm has higher accuracies and lower runticoespared to other existing imputation
software packages, and that it scales well enooighrt imputation on hundreds of thousands of
pedigree individuals in a matter of hours. We hithat as the size of agricultural populations
increase, this software will provided a much nedadetifor performing imputation while scaling

to the datasets available.
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Figure 1: A pictorial representation of a particf@ate. For each particle at locus we

consider a 4x4 grid of possible updaiepending on the genotype state at the next lacsth2
recombination state between loci. The probabilitgedecting of each option is given by
Equation 1. In the example, the selected statednis homozygous for the reference allele (
and has a recombination on the paternal haplofijpie.means that the paternal path is reset to
, While the maternal path is extended to


https://doi.org/10.1101/2020.09.16.299677
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299677; this version posted September 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Alphalmpute2: Imputation in livestock populations 14

871 Table 1: Imputation accuracy, memory, and runtioreshich algorithm. Beagle 4.1 did
872 not complete within 8 days on the 63k or 107k pesig. Imputation accuracies were averaged
873 across all 18 chromosomes. Time and memory are goreChromosome 1.

High  Medium Low Very Low Memory

Density Density Density  Density Time (m) (GB)
18k Pedigree
Alphalmpute2 .998 944 .990 .827 15 2.8
Pedigree Only .998 .661 .987 .862 3 2.5
Population Only 987 929 963 257 13 2.1
AlphaPeel .997 733 .984 .855 15 9.1
Beagle 4.1 .995 944 .969 327 2,250 12.4
Beagle 5.1 .626 909 939 219 28 17.1
Alphalmpute 940 .875 931 641 348 10.5
findhap 719 627 774 445 15 4.6
34k Pedigree
Alphalmpute? .998 961 .989 .699 24 4.2
Pedigree Only .998 .653 .987 .843 5 41
Population Only .992 .952 .962 199 25 36
AlphaPeel 997 .748 .986 .838 21 16.5
Beagle 4.1 996 .959 972 269 4,353 17.5
Beagle 5.1 .601 .937 .936 .148 46 26.0
Alphalmpute .955 .883 946 611 707 15.4
findhap 731 .678 .787 438 36 4.6
63k Pedigree
Alphalmpute2 .998 984 991 .858 53 8.6
Pedigree Only 976 541 974 .864 9 7.7
Population Only .988 .978 .962 .188 57 6.3
AlphaPeel .980 .596 .979 .855 74 29.8
Beagle 4.1
Beagle 5.1 578 910 937 140 88 26.5
Alphalmpute .898 .869 921 .625 2,556 27.0
findhap 757 732 .796 451 156 4.8
107k Pedigree
Alphalmpute2 .998 .987 993 821 105 14.4
Pedigree Only 991 719 991 .869 15 12.6
Population Only 990 981 963 148 106 11.6
AlphaPeel 992 .786 .990 .858 84 50.4
Beagle 4.1
Beagle 5.1 .682 948 942 114 190 43.7
Alphalmpute .942 .929 940 .639 7,859 41.2

findhap 778 761 801 455 395 5.0
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