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Abstract

Genome-wide association studies (GWAS) have identified many variants robustly associated with
complex traits but identifying the gene(s) mediating such associations is a major challenge. Here
we present an open resource that provides systematic fine-mapping and protein-coding gene
prioritization across 133,441 published human GWAS loci. We integrate diverse data sources,
including genetics (from GWAS Catalog and UK Biobank) as well as transcriptomic, proteomic
and epigenomic data across many tissues and cell types. We also provide systematic disease-
disease and disease-molecular trait colocalization results across 92 cell types and tissues and
identify 729 loci fine-mapped to a single coding causal variant and colocalized with a single gene.
We trained a machine learning model using the fine mapped genetics and functional genomics
data using 445 gold standard curated GWAS loci to distinguish causal genes from background
genes at the same loci, outperforming a naive distance based model. Genes prioritized by our
model are enriched for known approved drug targets (OR = 8.1, 95% CI: [5.7, 11.5]). These results
will be regularly updated and are publicly available through a web portal, Open Targets Genetics
(OTG, http://genetics.opentargets.org), enabling users to easily prioritize genes at disease-

associated loci and assess their potential as drug targets.

Introduction

Over 90% of GWAS-associated SNPs fall in non-coding regions, indicating that they affect
expression of neighbouring genes through regulatory mechanisms "2, which can act over long
distances and affect more than one gene. Hence, identification of the causal gene(s) and cell or
tissue site of action is a major challenge requiring detailed low-throughput analysis of individual
loci. One default approach has been to assign the top trait-associated SNP to the closest gene at
each locus. However relying on physical proximity alone can be misleading since SNPs can
influence gene expression over long genomic ranges 3, with studies based on eQTL data
suggesting that two thirds of the causal genes at GWAS loci are not the closest *°. To add to the
challenge, associated SNPs often span large regions due to linkage disequilibrium (LD), and
pinning down the functional SNP and the tissue or cell type which mediates its effect can be

complicated.

Connecting causal variants with their likely causal gene is a laborious process which requires the

integration of GWAS data with multi-omics datasets across a wide range of cell types and tissues
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such as expression and protein quantitative traits (eQTL and pQTL), chromatin accessibility and
chromatin interaction datasets. Subsequent functional assessment (such as reporter assays and
CRISPR/Cas9 genome editing) can then be used to confirm the relationship between a putative
causal variant and the gene it regulates. Using these integrative approaches, systematic
international efforts have been undertaken to translate GWAS associated signals into target
genes focused on one or a small subset of phenotypes ®°. However, there are currently no
resources that systematically prioritize all genes beyond specific therapy areas °. Therefore, there
is a need for a comprehensive, unbiased, scalable and reproducible approach that leverages all
the publicly available data and knowledge to assign genes systematically to published loci across

the entire range of phenotypes and diseases.

Drug development is hindered by a high attrition rate, with over 90% of the drugs that enter clinical
trials failing, primarily due to lack of efficacy found in later, more costly stages of development .
Retrospective analyses have estimated that drugs are twice as likely to be approved for clinical
use if their target is supported by underlying GWAS evidence ''. Hence there is a critical need to
build strategies that incorporate novel genetic discoveries and mechanistic evidence from GWAS
and post-GWAS studies to suggest novel therapeutic targets for which to develop medicines, and

ultimately increase the success rate of drug development.

Here, we describe a universal solution to these challenges: a systematic and comprehensive
analysis pipeline for integrating GWAS results with functional genomics data to prioritize the
causal gene(s) at each published GWAS-associated locus. The pipeline performs fine-mapping
and systematic disease-disease and disease-molecular trait colocalization analysis. We integrate
information from GWAS, expression and protein quantitative trait loci (eQTL and pQTL) and
epigenomics data (e.g. promoter capture Hi-C, DNase hypersensitivity sites). For gene
prioritization we developed a machine learning model trained on a set of 445 curated gold-
standard GWAS loci for which we have moderate or strong confidence in the functionally
implicated gene. The model integrates the fine-mapping with the functional genomics data, gene
distance, and in silico functional predictions to link each locus to its target gene(s). This output of

this pipeline feeds into Open Targets Genetics (https://genetics.opentargets.org), a user-friendly,

freely available, integrative web portal enabling users to easily prioritize likely causal variants and

target genes at all loci and assess their potential as pharmaceutical targets through linking out to
12,13

Open Targets Platform and will be regularly updated as new data become available.
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Results

Pipeline Overview

We harmonised and processed GWAS data from the GWAS Catalog and from UK Biobank, and
conducted systematic fine mapping to generate sets of credibly causal variants across all 133,441
study-lead variant associated loci. We also conducted cross-trait colocalization analyses for 3,621
GWAS studies with summary statistics available, which enabled us to identify traits and diseases
that share common genetic etiology and mechanisms. To investigate whether changes in gene
expression and protein abundance influence trait variation and disease susceptibility, we
integrated 92 tissue- and cell type-specific molecular QTL datasets including GTEx ¥, eQTLGen
5 the eQTL Catalogue '® and pQTLs ' and conducted systematic disease-molecular trait
colocalization tests. Finally, we used a machine learning framework based on fine mapping,
colocalization, functional genomics data and distance to prioritize likely causal genes at all trait-

associated loci (Figure 1).
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Figure 1: Open Targets Genetics pipeline schematic. a) Data sources include all available
GWAS, as well as variant effect predictions and functional genomic data. b) A number of pipelines
are run to perform statistical fine-mapping of GWAS, colocalization with gene expression
quantitative trait studies (QTLs) and also between distinct GWAS traits, and integrative “locus-to-
gene” prioritization from both genetic and functional genomic input features. c) Outputs of the
pipelines are available in a web portal, via programmatic API, and as bulk downloads.
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Fine mapping of all published genome-wide association studies

To establish a comprehensive resource linking variants and traits or diseases, we integrate
GWAS studies both with and without full summary statistics. Full summary statistics were
obtained from three sources: the NHGRI-EBI GWAS Catalog summary statistics database
(number of studies (nsway) = 300)®; binary phenotypes from UK Biobank as published by Zhou et
al. (nsway= 1,283) " and all other UK Biobank phenotypes from the Neale lab (Nsway= 2,139;
downloaded 21/01/2019)® Studies with full summary statistics were restricted to those of
predominantly European ancestries due to the lack of suitable reference genotypes required for
conditional analysis from other populations. Studies without full summary statistics included all
others in the NHGRI-EBI GWAS Catalog (nsway= 14,013)'8. To prioritize candidate causal variants
at each GWAS association, we performed fine mapping of 10,494 GWAS Catalog and UK
Biobank studies. Two fine-mapping methods were used to maximise coverage of GWAS studies,
one using full summary statistics and a second using linkage disequilibrium (LD) information only
(see methods). For studies with full summary statistics, we first identified independent signals
using GCTA-COJO ?' and then conducted per-signal conditional analysis adjusting for other
independent signals in a region +2 Mb from the sentinel variant. We then used the Approximate
Bayes Factor approach ? to fine-map each conditionally independent signal. For studies without
summary statistics, we used the PICS method 2 with an LD reference from the most closely
matched 1000 Genomes superpopulation to estimate the probability that each variant is causal.
Both methods output a posterior probability (PP) for each variant to be causal for the given

association.

A total of 133,441 sentinel variants were detected, with 53% of these being shared by more than
one study (70,860 distinct sentinel variants). To assess the concordance of the two methods we
compared the 95% credible sets after applying both methods to all loci from studies with summary
statistics available. We found a median absolute difference in credible set size of 7 variants
(Supplementary Figure 1a), whereas the median credible set contained 17 variants. On average
across loci, 70% of the credible set posterior probability colocated to the same variants between
the two methods (Supplementary Figure 1b). These results suggest that on average the methods
produced have comparable results. For subsequent analyses, we therefore used the full summary
statistics method where these data were available, and for studies without summary statistics we
used the PICS method.


https://doi.org/10.1101/2020.09.16.299271
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299271; this version posted September 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Out of 133,441 loci association signals, 12,500 (9%) could be resolved to a single variant having
PP > 0.95 and a further 21,279 (16%) to between 2 and 5 likely causal variants. Single-variant
credible sets were 8.5 times more likely to have a moderate or high impact on protein-coding
transcripts as predicted by the Ensembl variant effect predictor (VEP) ?* compared to variants in
credible sets with 2 or more variants (OR=8.51, p<2.2e'®, Fisher's exact test). Outside coding
regions, single-variant credible set variants were preferentially located in Ensembl Regulatory
Build regulatory elements, including: promoters (OR=1.70, p<2.2e®), enhancers (OR=1.09,
p=4.08e™), transcription factor binding motifs (OR=1.85, p=1.22e™"°) or other open chromatin
regions (OR=1.19, p=4.8e™).

In order to identify GWAS signals with high-confidence evidence linking the trait to variant and
variant to gene, we took single-variant resolution loci and filtered these to retain variants with
moderate or high-impact coding consequences in VEP . We identified 2,284 single coding variants
linking 378 genes to 303 traits (Supplementary Table 1). Among these were several known
disease-causal gene associations and targets of approved therapies ( Supplementary Table 2)
as well as novel disease-causal gene associations that had no prior evidence in the Open Targets
Platform. One example is rs35383942, associated with breast cancer '92°
deleterious missense variant (Arg28GIn, CADD=24.3) in PHLDAS3 (Pleckstrin Homology Like

Domain Family A Member 3). PHLDAS is the direct target of TP53 and acts as a tumor suppressor

, Which is a predicted

gene through inhibition of AKT1, an oncogene that plays a pivotal role in cell proliferation and

survival 2.

Colocalization of GWAS and molecular traits

Since most associated variants are non-coding, it is expected that they influence disease risk
through alteration in gene expression or splicing. One way to identify the target gene is to
demonstrate that the statistical association of a GWAS locus and a gene expression QTL are
colocalized -- that is, that the pattern of SNP associations is consistent with them sharing the
same causal variant. We conducted systematic colocalization analysis %’ of GWAS loci with
molecular trait QTLs from 92 tissues or cell types. The QTL datasets (Supplementary Table 3)
include pQTLs for 2,994 plasma proteins assessed in 3,301 individuals of European descent "7,
eQTLs from 48 GTEXx tissues (v7.0), blood eQTLGen '°, and 14 eQTL studies from the newly

established eQTL Catalogue, a resource of uniformly processed gene expression and splicing
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QTLs recomputed from previously published datasets '®. The results of the colocalization test are

summarised by the probability, referred to as “H4”, that a causal variant is shared.

GWAS-molecular QTL loci were tested if there was at least 1 variant overlapping in their 95%
credible sets, suggesting prior evidence for colocalization (refer to methods). Of the 70,364 trait-
associated loci from studies with summary statistics available, 49.4% had no colocalizing gene at
an H4 threshold >0.8, 25.5% had exactly 1 colocalizing gene and 25.2% had >1 colocalizing gene.
For loci with evidence of colocalization between GWAS and molecular QTL traits, 29% were
specific to a single tissue or cell type, whereas 71% were observed across multiple tissues. We
also examined non-coding QTLs that were fine-mapped to a single-variant resolution, and which
colocalized with binary traits GWAS (H4>0.95). Results from this analysis are summarised in

Supplementary Table 4.

We also performed cross-trait colocalization across 3,621 GWAS to identify traits that are likely
to be underpinned by the same molecular mechanism. A summary of the binary trait GWAS loci
with the highest colocalization score (H4>0.95) is displayed in Supplementary Table 5. One
example is a locus on chromosome 6 which colocalizes with asthma (6_90220794_T _C) and
Crohn’s disease (6_90263440_C_A) suggesting that the two diseases may share common genetic

etiology at this locus.

To demonstrate the value of colocalization evidence, we examined coding variants that were fine-
mapped to single-variant resolution, and which colocalized with a molecular QTL for the same
gene (729 variants, Supplementary Table 6). Such cis-variants make good genetic instruments
for testing the causal effect of the molecular phenotype on disease 2, and the ratio of coefficients
for the cis-variants is an estimate of the effect size of the molecular phenotype on disease. Using
this approach we identified several known gene-trait associations. For example, missense variant

d 15,17 and

rs34324219 is causal of changes in TCN1 RNA and protein expression in whole bloo
also colocalizes (H4>0.99) with pernicious anemia, a disorder in which too few red blood cells are
produced due to vitamin B12 deficiency. TCN1 encodes the protein haptocorrin (also known as
Transcobalamin-1) which binds vitamin B12 and is involved in its uptake . Also , splice region
variant rs1893592 causes increased expression of UBASH3A in most GTEXx tissues, including
thyroid. This signal colocalizes (H4>0.87) with self-reported treatment using the thyroid hormone
sodium levothyroxine. Hypothyroidism is a common comorbidity with type 1 diabetes, for which

there is strong evidence that UBASH3A is causal *. Finally, the synonymous variant rs2228079
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is the only credibly causal variant for an eQTL associated with altered ADORA1 expression in
whole blood (eQTLGen) and colocalizes with asthma in UK Biobank (H4>0.99). ADORA1
encodes a type of adenosine receptor, a class of proteins targeted by the approved drug

(Theophylline) for the treatment of asthma.

Colocalization also provided strong genetic evidence for some less well known gene-disease
associations (Supplementary Table 7). One example is splice region variant rs11589479, which
causes increase in ADAM15 expression in several monocytes states and also colocalizes
(H4=0.99) with Crohn’s disease *'. ADAM15, a disintegrin and metalloproteinase, is strongly
upregulated in colon tissues from inflammatory bowel disease patients compared to healthy
controls and plays a role in leukocyte trans-migration across epithelial and endothelial barriers as

well as the differentiation of regenerative colonic mucosa .

A machine learning model prioritizes genes at gold-standard loci

We next developed a “locus to gene” model (L2G) to prioritize causal protein-coding genes at
GWAS loci by integrating our catalog of fine mapping associations with relevant functional
genomics features. We first manually curated a set of 445 gold standard positive (GSP) genes at
GWAS loci for which we are confident of the causal gene assignment (Supplementary Table 8,
see methods). The selected genes are based on (i) expert domain knowledge of strong orthogonal
evidence or biological plausibility; (i) known drug target-disease pairs; (iii) experimental alteration
from literature reports (e.g. nucleotide editing); (iv) observational functional data (e.g. colocalizing
molecular QTLs, colocalizing epigenetics marks, reporter assays) (Supplementary Table 9). Next,
we defined locus-level predictive features from four evidence categories: in silico pathogenicity
prediction from VEP and PolyPhen, colocalization of molecular QTLs, gene distance to credible
set variants weighted by their fine-mapping probabilities, and chromatin interaction
(Supplementary Table 10). The chromatin interaction data comprised promoter-capture Hi-C from
27 cell types *3, FANTOM enhancer-TSS pairwise cap analysis of gene expression correlation®*;
and DNase | hypersensitive site-gene promoter correlation®*. Then, using a nested cross-
validation strategy, we trained a gradient boosting model to distinguish GSP genes from other

genes within 500 kb at the same loci (see methods).

The L2G model produced a well calibrated score, ranging from 0 to 1, which reflects the

approximate fraction of GSP genes among all genes above a given threshold (Figure 2). At a
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classification threshold of 20.5, the full model correctly identified 238 out of 445 true positives with

86 false positives (average precision = 0.65; Table 1). We compared the full model against a
naive nearest gene classifier (closest gene footprint and closest TSS), which selects the closest
gene to each lead variant, and thus does not make use of other candidate variants from fine-
mapping. The naive nearest gene classifier identified more true positives at the same threshold
(268 out of 445) but at the cost of identifying 2.4 times more false positives (207) (Average

precision=0.37). Hence the full L2G model has higher precision with a small reduction in recall.
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Figure 2: Performance of the locus-to-gene (L2G) model. (a) Calibration curve, showing (top) the
fraction of all GSP genes found as positives at different L2G score thresholds (mean predicted
value), and (bottom) the count of genes in each L2G score bin. (b) The precision-recall curve and
(c) the receiver-operator characteristic curve for identifying GSP genes from among those within
500 kb at each locus. (d) The Relative Importance of each predictor in the L2G model.
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To identify which features are most important in predicting GSP genes, we retrained the model to
include features from only one of the four evidence categories at a time (leave-one-group-in
analysis). No individual feature set gets a higher ‘Average Prediction’ score as the full model
(Table 1). Our ‘mean distance’ feature which aggregates across all the variants in the credible set
and weighs by their posterior probability was the most predictive (average precision=0.62)
followed by in silico pathogenicity prediction evidence (average precision=0.48), molecular QTL
colocalization (average precision=0.36) and chromatin interaction (average precision=0.26)
(Table 1, Leave-one-group-in section). Note that the ‘mean distance’ feature is distinct from a
‘naive closest gene distance’ feature because of the weighting across a credible set to the most
likely SNPs, and thus manages to discard many false positives (FPmean distance = 98 vs FPhnaive
closest footprint gene = 207 and FPhnaive closest TSS gene = 195). Within the mean distance features tested,
whether the gene was the closest at the locus using a gene footprint distance metric averaged
over the credible set and whether the gene was the closest at the locus using the minimum gene-
TSS distance over the 95% credible set, had the highest relative feature importances (Figure 2d).
Thus, when using distance as a predictor of causal genes, the distance relative to other genes is

more important than the absolute distance.
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Average Sensitivit Specificit GSP GSN
Features precision AUC Precision Recall TP FP TN FN y y FDR count count
Full model 0.65 0.93 0.73 0.53 236 86 6429 209 0.53 0.99 0.27 445 6515

Naive closest gene classification

Closest footprint 0.37 0.79 0.56 0.6 268 207 6308 177 0.6 0.97 044 445 6515

Closest TSS 0.34 0.76 0.56 0.55 246 195 6320 199 0.55 0.97 044 445 6515

Leave-one-group-in

Mean Distance* 0.62 0.91 0.69 049 219 98 6417 226 0.49 0.98 0.31 445 6515
Interaction 0.26 0.79 0.55 0.05 23 19 6496 422 0.05 1 045 445 6515
Molecular QTL 0.36 0.85 0.62 018 79 49 6466 366 0.18 0.99 0.38 445 6515
Pathogenicity

prediction 0.48 0.76 0.7 043 191 80 6435 254 0.43 0.99 0.3 445 6515

Leave-one-group-out

Mean Distance* 0.47 0.77 0.69 043 191 84 6431 254 0.43 0.99 0.31 445 6515
Interaction 0.65 0.93 0.73 0.53 234 85 6430 211 0.53 0.99 0.27 445 6515
Molecular QTL 0.65 0.93 0.74 0.54 239 86 6429 206 0.54 0.99 0.26 445 6515
Pathogenicity

prediction 0.63 0.92 0.71 05 222 91 6424 223 0.5 0.99 0.29 445 6515

Table 1: Classification performance for feature groups. Performance characteristics of the full
model are shown at the top, and analyses for individual groups of features are shown in sections
below. Counts are shown for true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). * Mean Distance aggregates across all the variants in the credible set and
weighs by their posterior probability.
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We also assessed the unique contribution of each evidence type by leaving out one group of
features at a time. Consistent with the leave-one-group-in analysis, dropping our mean distance
features had the largest impact on prediction (average precision change from 0.65 to 0.47),
followed by in silico pathogenicity prediction (average precision down to 0.63) (Table 1). Notably,
when molecular QTL colocalization evidence was removed from the model we saw similar
classification results, with 3 fewer true positives identified, and no net change in the Gold Standard
Negatives (GSN)(Supplementary Table 11a). There are various possible reasons for this: the
colocalization score may be redundant with some of our other features; we may lack the relevant
tissue- or context-specific QTLs; or we may have obscured the utility of colocalization information by
using a cross-tissue colocalization score. We also used a measure of continuous reclassification
improvement to evaluate prediction changes across all possible classification thresholds. Here,
adding molecular QTL colocalization evidence resulted in a net 4.7% GSPs having an increased
prediction score and a net 42.2% GSNs having a decreased score (Supplementary Table 11b).
This suggests that whilst our colocalization features do not provide sufficient evidence to support
novel positives, lack of colocalization accurately identifies negative gene assignments. Removing
chromatin interaction features resulted in a minor reduction in model performance (net 2 fewer
GSPs) (Table 1).

The low predictiveness of features apart from distance relates in part to their lower genome
coverage. For distance features, most sentinel variants have at least 1 gene within 500 kb, but
for pathogenicity, molecular QTL colocalization and chromatin interaction, coverage of variants
was low (Supplementary Figure 2). Only a small proportion of studies had summary statistics
available, limiting our ability to use coloc to perform a colocalization analysis (only 3% of all loci
had coloc derived evidence). Our complimentary colocalization method, using a reference LD-
panel to approximate summary statistics (the PICS method), increased the total number of loci
with colocalization evidence to 19%. Evidence from pQTLs was very sparse at <1% coverage,

which may account for its very low feature importance (Supplementary Figure 2).

Gene prioritization across all trait-associated loci

We used the trained L2G model to prioritize causal genes across all 133,441 trait-associated
GWAS loci in our repository. At a classification threshold of 0.5, 55.4% (n=74,096) of all loci had
a single gene prioritized whereas only 1.4% (n=1,907) had 2 or more genes prioritized

(Supplementary Figure 3). 43.2% of loci did not reach the classification threshold. Across all
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diseases, genes prioritized by the model were 7.8 times more likely (95% CI: [6.5, 9.3]) to be
supported by literature evidence identified by text mining (Supplementary Table 12). Genes
prioritized by the naive classifier using the closest gene footprint from the sentinel variant were
also enriched (5.6 times, 95% CI: [4.7, 6.6]) but not as highly as the full model (p-value=0.008
against null-hypothesis 10gORFui modet = l0gORNaive modet, Welch t-test).

In order to benchmark the L2G versus the distance based classifier, we tested whether prioritized
gene-diseases were enriched for known drug target-indication pairs across different clinical
phases according to the ChEMBL database. Genes prioritized by the model were enriched with
OR 7.4,8.5 and 8.1 (95% CI: [5.7, 9.4], [6.3, 11.3], [5.7, 11.5]) across clinical trial phases 22, 23

and 4, respectively (Supplementary Table 13). Using a naive classifier we saw lower odds ratio

point estimates but with overlapping confidence intervals (OR 5.3 [4.2, 6.7], 6.4 [4.8, 8.5] and 6.7
[4.8, 9.3]) (Supplementary Figure 4). Thus the prioritisation using the L2G model both
recapitulates the established enrichment of GWAS loci for known drugs’' but also demonstrates
that fine-mapping and colocalization combined with the L2G approach improves on their

approach, and hence is likely to also improve success in identifying novel drug targets.

Discussion

To address the challenges of translating GWAS signals to biological insights, we developed a
pipeline to format, harmonize, and aggregate human trait and disease GWAS, molecular QTLs
and functional genomics data in a consistent way, providing statistical evidence for target
prioritization across the entirety of GWAS traits and diseases. We then trained a machine learning
model that integrates fine-mapping and functional genomics data to prioritize likely causal variants
and genes at 133,441 trait-lead variant disease associations. The L2G score output by the model
represents the likelihood that a gene is causal for that trait, subject to the limitations of our gold
standard positive training data, and thus allows genes at all trait-associated loci to be ranked by
the relative strength of their evidence. Under cross-validation, the model resulted in a 58%
reduction in the number of false-positives detected (improved precision), at the cost of missing

11% of the gold-standard positives (reduction in recall). The top genes prioritized by the L2G
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score recover known relationships, including disease-gene pairs with approved drugs, as well as

novel disease-drug target associations that suggest potential novel therapeutic targets to pursue.

The strength of our machine learning approach stems from the systematic application of fine-
mapping to obtain per-variant probabilities prior to gene assignment. Sentinel variants discovered
by GWAS may not be the causal variant *%; by aggregating functional data across the credible set
we incorporate information from all plausible causal variants at the locus. Using a supervised
learning method allowed us to efficiently combine heterogeneous functional datasets into a single
model. The L2G score output by our model is well calibrated, meaning that it can be interpreted
as a probability and thus the evidence supporting a gene assignment can be compared both within

and between loci.

A limitation of our approach is that it requires a large number of high-quality gold standards to
train the model, and each source of gold standards will have biases. For example, when we
compared the dataset of drug targets from CHEMBL retrospectively mapped to GWAS loci to the
manually curated datasets (mainly focused on the closest genes and those with known missense
variants), we found that distance and VEP features performed much better in the manually
curated datasets (Supplementary Figure 5), emphasizing the need to curate less-biased datasets.
Using varied sources may help mitigate some source-specific biases, but manually curated allele-
gene pairs are intrinsically more likely to be close to each other. Future gold-standard training
data should represent a range of possible molecular mechanisms. The reliance on large amounts
of training data influenced the design of our model. To avoid stratifying gold-standards into smaller
subgroups, we trained the model across all diseases at once and using functional data
ascertained from different tissues/cell types aggregated into a single feature. This means that the
model is not currently able to specifically leverage the tissues/cell types that are most relevant for

a given disease.

The outputs of our analyses can be viewed in the Open Targets Genetics portal
(https://genetics.opentargets.org), a user-friendly web interface that supports visualisation of fine-
mapping and L2G scores for individual variants and genes across 133,441 trait-lead variant
GWAS associations. The portal also offers other features including disease-disease and disease-
molecular traits colocalization analyses across ~3,600 GWAS summary statistics and 92 tissue
and cell type-specific molecular QTL summary statistics to identify traits and diseases that share

common genetic susceptibility mechanisms.The portal will regularly be updated with new GWAS
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summary statistics both from Europeans and non-European ancestries as well as QTLs and
functional genomic data from a wider range of tissues and cell types. Planned enhancements
include displaying tissue- and cell type-specific enrichments for each included trait, using methods
such as CHEERS *' that leverage functional annotations. These enrichments will also be used to
improve the L2G model by using functional genomics data from tissues that are most relevant to
each disease and trait. Our repository of gold-standard gene assignments will be expanded as
more evidence arises. In particular, we encourage scientists from the genetics community to
contribute to this repository, since having diverse evidence sources can partially address the bias

that comes with manually curated sets.

Methods

Summary statistics based fine mapping

We harmonised summary statistics to ensure alleles and effect directions were consistent across
studies, and removed variants with low confidence estimates (minor allele count < 10). We
identified independently associated loci for each study using Genome-wide Complex Trait
Analysis Conditional and Joint Analysis (GCTA-COJO; v1.91.3) 2'. UK Biobank genotypes down-
sampled to 10k individuals were used as a linkage-disequilibrium (LD) reference for conditional
analysis *. We considered a locus to be independently associated if both marginal and conditional
p-values were less than 5e®. For each independent locus, we produced a set of summary
statistics that are conditional on all other independent loci £2Mb from the sentinel variant. Using
the conditional set of summary statistics, we computed approximate Bayes factors 3 from the
beta and standard error for each SNP, with a variance prior (W) of 0.15 for quantitative traits and
0.2 for binary traits, and determined variant posterior probabilities (PP) assuming a single causal
variant as: PP = SNP BF / sum(all SNP BFs) for all SNPs within a £500Kb window. We considered

any variant with a PP > 0.1% as being in the credible set.

Linkage-disequilibrium based fine mapping

In addition to the above fine mapping analysis, we conducted a complementary LD based
approach which allowed us to leverage information from studies that lack full summary statistics.
For each independent locus, we identified all variants in LD with the sentinel variant (R*>>0.5 in
+500Kb window). LD was calculated in 1000 Genomes phase 3 data *° by mapping the GWAS
study ancestries to the closest super population #', taking a sample size weighted-mean of the

Fisher Z-transformed correlations in the case of multi-ancestry studies. We then used the


https://doi.org/10.1101/2020.09.16.299271
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299271; this version posted September 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Probabilistic Identification of Causal SNPs (PICS) method to estimate the PP that each variant is

causal based on the LD structure at each locus %. As above, we kept all variants with PP > 0.1%.

Colocalization analysis

Molecular QTL summary statistics were acquired from the EBI eQTL Catalogue "¢, GTEx (v7) ™,

eQTLGen " and Sun et al. protein QTLs . Summary statistics were restricted to be +1Mb from
the gene transcription start site (TSS). We pre-processed and fine mapped molecular QTL
summary statistics using the same method described above for GWAS studies. However, we
used less stringent criteria for the inclusion of QTL lead variants, requiring minor allele count = 5

and adjusted for multiple testing using a Bonferroni correction of p < 0.05 / number of variants

tested per gene.

For GWAS studies with summary statistics, we performed a colocalization analysis if there was
at least 1 variant overlapping between the GWAS and molecular trait 95% credible sets (prior
evidence for colocalization). We conducted colocalization of summary statistics using the coloc
package (v.3.2-1) 27 with default priors. Given that there is prior evidence for colocalization, these
parameters will give conservative estimates. As with the fine mapping pipeline, we used summary
statistics conditional on all other independent loci within £2Mb and restricted the coloc analysis to
a +500Kb window around each sentinel variant. A minimum of 250 intersecting variants were
required for analysis.

For GWAS studies without summary statistics, we performed an alternative colocalization
analysis using the LD-based PICS fine mapping sets. Colocalization was approximated by taking
variants that intersect at pairs of GWAS and molecular trait loci, and summing the product of the
PPs.

Pre-processing of functional genomics data for L2G prioritization

We used 4 main classes of evidence to prioritize genes: (i) variant pathogenicity in silico
predictions; (ii) colocalization with molecular trait quantitative trait loci (QTL); (iii) chromatin
conformation; (iv) linear genomic distance from variant to gene.

We used in silico pathogenicity predictions to estimate the effect of variants on gene transcripts
and protein function. Firstly, we incorporated Variant Effect Predictor (VEP) ?* transcript

consequences. We mapped VEP’s impact ratings of High, Moderate, Low to scores of 1.0, 0.66,
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0.3 (respectively), and included an additional four consequences (intronic, 5 UTR, 3’ UTR,
nonsense-mediated mMRNA decay transcript variants) with a score of 0.1 as we expected them to
have predictive value through their functional consequences on mRNA transcription, secondary
structure and translation. For each variant-gene pair we took the maximum score across
transcripts. In addition to VEP we included PolyPhen-2 pathogenicity scores representing the

probability that a non-synonymous substitution is damaging *2.

Chromatin interaction data were from promoter-capture Hi-C, FANTOM enhancer-TSS
correlation, and DNase-hypersensitivity enhancer-promoter correlation. Each of the data points
in these datasets is represented as a pair of interacting genomic intervals and an association
statistic. We retained interval pairs with one end encompassing an Ensembl gene Transcription
Start Site (TSS)* and the other end containing any variant in Gnomad 2.1 **, resulting in variant-

gene pairs with a dataset-specific association statistic.

We included two genomic distance metrics as it has been shown that, despite notable contrary
exceptions, linear distance is a good predictor of candidate causal genes *°. First, the distance
from each variant to all gene TSSs is included. Second, the distance from each variant to each
gene’s footprint, where the footprint is any position between the start and end positions of the
gene. For both metrics the canonical transcript is used, as defined by Ensembl for protein-coding

genes within a £500Kb window around each variant.

Derivation of locus-to-gene prioritization features

We next combined our fine mapping and functional genomics data to create features to prioritize
candidate causal genes at each trait-associated locus (locus-to-gene scoring) (Supplementary
Table 10).

Except for molecular trait colocalization evidence, each functional genomics dataset is variant-
centric, meaning they give variant-to-gene scores. We convert variant-centric scores into locus-
to-gene scores by aggregating over credible variants identified through fine mapping. For GWAS
studies with summary statistics available we used ABF credible sets, otherwise we used LD-
based PICS credible sets. We implemented two complementary methods for aggregating over
credible sets. Firstly, we took a weighted sum of scores across all variants identified by fine
mapping (PP > 0.01%) using PP of causality as weights (Equation 1). Secondly, we took the

maximum score for any variant in the 95% credible set (Equation 2).
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n

WeightedScore study,locus,gene,source,tissue = (score i,gene,source,tissue) * pp study,locus,i )
g g

v=i
Equation 1
maxscore(study,loCus,gene,source,tissue) = max(SCOre(i,gene,source,tissue))

Equation 2

Molecular trait colocalization evidence is a locus-centric score. We included both summary
statistic derived coloc evidence (Equation 3) and LD-derived colocalization evidence as features.
Each GWAS signal may have colocalization estimates from multiple independent molecular trait
signals (each conditional on the others), we therefore took the maximum score across estimates.
Given that evidence against colocalization (hs) cannot be directly estimated without full summary

statistics, this term was dropped for the LD-derived colocalization feature (Equation 4).

h
colocSumstatsScore siyay iocus,qtitype tissue,gene)y = max across molQTL loci(log, (E))

Equation 3

colocLdScore seuay,iocus qtitype, tissue,gene) = max across molQTL loci(log,(h4))

Equation 4

For functional genomics datasets with measurements in multiple tissues (or cell types), we
calculated the locus-level feature for each tissue separately and took the maximum across tissues

(Equation 5).

feature(study,locus,gene) = max across tissues(feature(study,locus,tissue,gene))

Equation 5

We next wanted to provide the model with information about other genes at each locus (termed
the neighbourhood feature). This allows the model to learn whether a given gene has, for
example, the highest colocalization score compared to others at the locus. To do this we divided

each feature by the maximum score across genes at that locus (Equation 6).
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feature(study,locus,gene)
max across genes(feature suay,iocus,genes))

neighbourhoodFeature swyay,iocus,gene) =
Equation 6

Curation of a GWAS gold-standard training dataset

We next assembled a repository of published GWAS loci
(https://github.com/opentargets/genetics-gold-standards) for which we have high confidence
that the gene mediating the association is known. Gold-standard evidence were grouped into 4
classes: (i) expert curated loci with strong orthogonal evidence or biological plausibility; (ii) drug
loci inferred from known drug target-disease pairs; (iii) loci inferred from experimental alteration
(e.g. nucleotide editing); (iv) loci inferred from observational functional data (e.g. colocalizing
molecular QTLs). We also assigned each gold-standard a confidence rating of high, medium or

low depending on our assessment of the strength of supporting evidence.

We started by compiling existing gold-standard examples from the literature. 227 curated
metabolite QTLs were sourced from Stacey et al *° and a further 136 loci were curated by Eric
Fauman with strong biological plausibility (Supplementary Table 6). We then ascertained 57
genes with “causal” or “strong” observational data from the Type 2 Diabetes Knowledge Portal
Effector Genes table, this equates to genes with: a confirmed causal coding variant; or at least
two of the following: (i) a likely causal coding variant, (ii) >1 piece of regulatory evidence, >1 piece
of perturbation evidence *°. We added a further 48 disease-causal genes curated from the
literature. These were mainly GWAS associated loci that were fine-mapped and colocalized with
eQTL and epigenomic features in disease-relevant tissues in order to prioritize likely functional
variants and their causal genes. These results were then functionally validated using experiments

such as reporter assays and CRISPR/Cas9 genome editing.

In addition to literature sourced loci, gold-standard evidence was generated based on known
drug-target-indication associations curated in ChREMBL in clinical trial phase II, Il or IV *’. Drugs
that bind a protein complex, rather than a single protein, were removed unless the binding subunit
was known.The ChEMBL evidence was combined with the genetics features to identify loci with
known drug targets. Gold-standards derived from phase Il, Ill and IV drug targets were assigned
a confidence of low, medium and high, respectively. Additionally, confidences were adjusted to
indicate the distance of the sentinel variant to the drug target, variant-gene distances of < 500,

250, 100Kb kb were assigned confidences low, medium and high, respectively.
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Duplications were removed from the Gold-standard positives (GSP) list so that GWAS allele-gene
pairs never occurred more than once in the training data. The same gene could occur as a GSP
more than once if the associated alleles were independent, i.e. if no variants overlapped between

their credible sets (using all variants with PP > 0.1%). All non-GSP genes in the training data at

the locus (£500kb) were set as gold-standard negatives (GSN). GSNs genes were subsequently
removed if they had a stringDB score = 0.7 with the GSP at the same locus, the aim being to
remove alternative explanations for the association between trait-associated allele and gene. This

resulted in a total of 229 GSNs being removed (out of a total of 9,171). A total of 445 GSP were

included in the final training data.

Supervised learning of locus-to-gene features

We used all GWAS loci with high or medium confidence gold-standard evidence (445 loci) to train
an XGBoost gradient boosting classifier “® using a binary logistic learning objective function.
Nested cross-validation (CV) as implemented in scikit-learn was used to maintain independence
of the training and test data and to tune hyperparameters. The outer CV consisted of 5 folds split
by chromosomes so that each group contained an approximately equal number of GSPs. Within
each fold, we used a random parameter search to train 1000 models, which were assessed using

a balanced accuracy metric averaged over 5 randomly split inner folds.

For each group of features included in the main model, we conducted sub-analyzes whereby
either only that feature group was included (leave-one-group-in), or everything except that feature
group was included (leave-one-group-out). This allowed us to evaluate the relative performance
of each feature group individually. Additionally, we output the Relative Importance of each feature

as implemented in the XGBoost model “°.

Model internal validation

Our cross-validation approach produces separate models for each of the 5 outer folds. We
evaluated the performance of each model against the remaining 20% of loci not used for training.
We used average precision and area under the receiver operator curve (AUC) metrics to assess
the classification across the full range of prediction probabilities outputted by the model. We also
assess the performance of the model after applying a hard threshold of >0.5 (>50% confidence
that the characteristics of the observed locus is consistent with being a gold-standard positive

locus).
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We compared the relative performance of leave-one-group-in and leave-one-group-out models
by calculating the net reclassification improvement (NRI) of loci compared to the full model *°. NRI
measures the number of GSP loci that move above the classification threshold (>0.5), compared
to GSN that move below, when the model is updated. We also calculate continuous NRI (cNRI),
the sum of the percentage of GSPs with classification scores that move in the correct direction

vs. GSNs that move in the wrong direction (towards higher scores) °'.

Model external validation with literature evidence

We benchmarked the L2G assignment against independent gene-disease associations scored
by literature mining in the Open Targets Platform. We excluded any publications for studies
curated in GWAS Catalog to ensure independence of the training data. We restricted analyses to
a subset of 22 prioritized diseases (Coronary artery disease, Breast carcinoma, Prostate
carcinoma, Acute lymphoblastic leukemia, Inflammatory bowel disease, Crohn's disease,
Ulcerative colitis, Rheumatoid arthritis, Osteoarthritis, Type | diabetes mellitus, Hypothyroidism,
Psoriasis, Atopic eczema, Asthma, Alzheimer's disease, Parkinson's disease, Ankylosing
spondylitis, Celiac disease, Gout, Multiple sclerosis, Systemic lupus erythematosus). For each
disease, we constructed a 2x2 contingency table of ‘gene prioritised by L2G model (score > 0.5)
and ‘gene prioritised by Open Targets literature evidence (top decile [>0.52])". Only genes scored
by the L2G model (+500kb of a sentinel GWAS variant) were included in the contingency table.

We calculated enrichment and statistical significance using Fisher’s exact test.

Enrichment of known drug targets

We calculated drug target enrichment using known target-indication pairs curated in ChEMBL
(accessed: 2019-03-25). We constructed a single 2x2 contingency table pooling across all
indications, which consisted of ‘gene prioritized by L2G model (score > 0.5) and ‘gene is known
target of drug for indication matched to GWAS disease phenotype’. GWAS studies were only
included if they could be mapped to a ChEMBL indication (matched using Experimental Factor
Ontology) and that indication has a known drug that can be mapped to a protein-coding gene that

was scored by the L2G model. Enrichment was calculated by Fisher’s exact test.
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Data availability

Our results are freely available through a web portal (genetics.opentargets.org), GraphQL API or
through bulk download. GWAS gold standard genes: github.com/opentargets/genetics-gold-

standards.
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