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Abstract 

Genome-wide association studies (GWAS) have identified many variants robustly associated with 

complex traits but identifying the gene(s) mediating such associations is a major challenge. Here 

we present an open resource that provides systematic fine-mapping and protein-coding gene 

prioritization across 133,441 published human GWAS loci. We integrate diverse data sources, 

including genetics (from GWAS Catalog and UK Biobank) as well as transcriptomic, proteomic 

and epigenomic data across many tissues and cell types. We also provide systematic disease-

disease and disease-molecular trait colocalization results across 92 cell types and tissues and 

identify 729 loci fine-mapped to a single coding causal variant and colocalized with a single gene. 

We trained a machine learning model using the fine mapped genetics and functional genomics 

data using 445 gold standard curated GWAS loci  to distinguish causal genes from background 

genes at the same loci, outperforming a naive distance based model.  Genes prioritized by our 

model are enriched for known approved drug targets (OR = 8.1, 95% CI: [5.7, 11.5]). These results 

will be regularly updated and are publicly available through a web portal, Open Targets Genetics 

(OTG, http://genetics.opentargets.org), enabling users to easily prioritize genes at disease-

associated loci and assess their potential as drug targets.  

Introduction  

Over 90% of GWAS-associated SNPs fall in non-coding regions, indicating that they affect 

expression of neighbouring genes through regulatory mechanisms 1,2, which can act over long 

distances and affect more than one gene. Hence, identification of the causal gene(s) and cell or 

tissue site of action is a major challenge requiring detailed low-throughput analysis of individual 

loci. One default approach has been to assign the top trait-associated SNP to the closest gene at 

each locus. However relying on physical proximity alone can be misleading since SNPs can 

influence gene expression over long genomic ranges 3, with studies based on eQTL data 

suggesting that two thirds of the causal genes at GWAS loci are not the closest 4,5. To add to the 

challenge, associated SNPs often span large regions due to linkage disequilibrium (LD), and 

pinning down the functional SNP and the tissue or cell type which mediates its effect can be 

complicated.  

  

Connecting causal variants with their likely causal gene is a laborious process which requires the 

integration of GWAS data with multi-omics datasets across a wide range of cell types and tissues 
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such as expression and protein quantitative traits (eQTL and pQTL), chromatin accessibility and 

chromatin interaction datasets. Subsequent  functional assessment (such as reporter assays and 

CRISPR/Cas9 genome editing) can then be used to confirm the relationship between a putative 

causal variant and the gene it regulates. Using these integrative approaches, systematic 

international efforts have been undertaken to translate GWAS associated signals into target 

genes focused on one or a small subset of phenotypes 639. However, there are currently no 

resources that systematically prioritize all genes beyond specific therapy areas 9. Therefore, there 

is a need for a comprehensive, unbiased, scalable and reproducible approach that leverages all 

the publicly available data and knowledge to assign genes systematically to published loci across 

the entire range of phenotypes and diseases.  

 

Drug development is hindered by a high attrition rate, with over 90% of the drugs that enter clinical 

trials failing, primarily due to lack of efficacy found in later, more costly stages of development 10. 

Retrospective analyses have estimated that drugs are twice as likely to be approved for clinical 

use if their target is supported by underlying GWAS evidence 11.  Hence there is a critical need to 

build strategies that incorporate novel genetic discoveries and mechanistic evidence from GWAS 

and post-GWAS studies to suggest novel therapeutic targets for which to develop medicines, and 

ultimately increase the success rate of  drug development.    

 

Here, we describe a universal solution to these challenges: a systematic and comprehensive 

analysis pipeline for integrating GWAS results with functional genomics data to prioritize the 

causal gene(s) at each published GWAS-associated locus. The pipeline performs fine-mapping 

and systematic disease-disease and disease-molecular trait colocalization analysis. We integrate 

information from GWAS, expression and protein quantitative trait loci (eQTL and pQTL) and 

epigenomics data (e.g. promoter capture Hi-C, DNase hypersensitivity sites). For gene 

prioritization we developed a machine learning model trained on a set of 445 curated gold-

standard GWAS loci for which we have moderate or strong confidence in the functionally 

implicated gene. The model integrates the fine-mapping with the functional genomics data, gene 

distance, and in silico functional predictions to link each locus to its target gene(s). This output of 

this pipeline feeds into Open Targets Genetics (https://genetics.opentargets.org), a user-friendly, 

freely available, integrative web portal enabling users to easily prioritize likely causal variants and 

target genes at all loci and assess their potential as pharmaceutical targets through linking out to 

Open Targets Platform 12,13 and will be regularly updated as new data become available. 
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Results 

Pipeline Overview 

We harmonised and processed GWAS data from the GWAS Catalog and from UK Biobank, and 

conducted systematic fine mapping to generate sets of credibly causal variants across all 133,441 

study-lead variant associated loci. We also conducted cross-trait colocalization analyses for 3,621 

GWAS studies with summary statistics available, which enabled us to identify traits and diseases 

that share common genetic etiology and mechanisms. To investigate whether changes in gene 

expression and protein abundance influence trait variation and disease susceptibility, we 

integrated 92 tissue- and cell type-specific molecular QTL datasets including GTEx 14, eQTLGen 

15 , the eQTL Catalogue 16 and pQTLs 17  and conducted systematic disease-molecular trait 

colocalization tests. Finally, we used a machine learning framework based on fine mapping, 

colocalization, functional genomics data and distance to prioritize likely causal genes at all trait-

associated loci (Figure 1). 
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Figure 1: Open Targets Genetics pipeline schematic. a) Data sources include all available 

GWAS, as well as variant effect predictions and functional genomic data. b) A number of pipelines 

are run to perform statistical fine-mapping of GWAS, colocalization with gene expression 

quantitative trait studies (QTLs) and also between distinct GWAS traits, and integrative <locus-to-

gene= prioritization from both genetic and functional genomic input features. c) Outputs of the 

pipelines are available in a web portal, via programmatic API, and as bulk downloads. 
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Fine mapping of all published genome-wide association studies 

To establish a comprehensive resource linking variants and traits or diseases, we integrate 

GWAS studies both with and without full summary statistics. Full summary statistics were 

obtained from three sources: the NHGRI-EBI GWAS Catalog summary statistics database 

(number of studies (nstudy) = 300)18;  binary phenotypes from UK Biobank as published by Zhou et 

al. (nstudy= 1,283) 19 and all other UK Biobank phenotypes from the Neale lab (nstudy= 2,139; 

downloaded 21/01/2019)20 Studies with full summary statistics were restricted to those of 

predominantly European ancestries due to the lack of suitable reference genotypes  required for 

conditional analysis from other populations. Studies without full summary statistics included all 

others in the NHGRI-EBI GWAS Catalog (nstudy= 14,013)18. To prioritize candidate causal variants 

at each GWAS association, we performed fine mapping of 10,494 GWAS Catalog and UK 

Biobank studies. Two fine-mapping methods were used to maximise coverage of GWAS studies, 

one using full summary statistics and a second using linkage disequilibrium (LD) information only 

(see methods). For studies with full summary statistics, we first identified independent signals 

using GCTA-COJO 21 and then conducted per-signal conditional analysis adjusting for other 

independent signals in a region ±2 Mb from the sentinel variant.  We then used the Approximate 

Bayes Factor approach 22 to fine-map each conditionally independent signal. For studies without 

summary statistics, we used the PICS method 23 with an LD reference from the most closely 

matched 1000 Genomes superpopulation to estimate the probability that each variant is causal. 

Both methods output a posterior probability (PP) for each variant to be causal for the given 

association. 

 

A total of 133,441 sentinel variants were detected, with 53% of these being shared by more than 

one study (70,860 distinct sentinel variants). To assess the concordance of the two methods we 

compared the 95% credible sets after applying both methods to all loci from studies with summary 

statistics available. We found a median absolute difference in credible set size of 7  variants 

(Supplementary Figure 1a), whereas the median credible set contained 17 variants. On average 

across loci, 70% of the credible set posterior probability colocated to the same variants between 

the two methods (Supplementary Figure 1b). These results suggest that on average the methods 

produced have comparable results. For subsequent analyses, we therefore used the full summary 

statistics method where these data were available, and for studies without summary statistics we 

used the PICS method. 
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Out of 133,441 loci association signals, 12,500 (9%) could be resolved to a single variant having 

PP > 0.95 and a further 21,279 (16%) to between 2 and 5 likely causal variants. Single-variant 

credible sets were 8.5 times more likely to have a moderate or high impact on protein-coding 

transcripts as predicted by the Ensembl variant effect predictor (VEP) 24 compared to variants in 

credible sets with 2 or more variants (OR=8.51, p<2.2e-16, Fisher9s exact test). Outside coding 

regions, single-variant credible set variants were preferentially located in Ensembl Regulatory 

Build regulatory elements, including: promoters (OR=1.70, p<2.2e-16), enhancers (OR=1.09, 

p=4.08e-4), transcription factor binding motifs (OR=1.85, p=1.22e-15) or other open chromatin 

regions (OR=1.19, p=4.8e-5). 

 

In order to identify GWAS signals with high-confidence evidence linking the trait to variant and 

variant to gene, we took single-variant resolution loci and filtered these to retain variants with 

moderate or high-impact coding consequences in VEP . We identified 2,284 single coding variants 

linking 378 genes to 303 traits (Supplementary Table 1). Among these were several known 

disease-causal gene associations and targets of approved therapies ( Supplementary Table 2) 

as well as novel disease-causal gene associations that had no prior evidence in the Open Targets 

Platform. One example is rs35383942, associated with breast cancer 19,25, which is a predicted 

deleterious missense variant (Arg28Gln, CADD=24.3) in PHLDA3 (Pleckstrin Homology Like 

Domain Family A Member 3). PHLDA3 is the direct target of TP53 and acts as a tumor suppressor 

gene through inhibition of AKT1, an oncogene that plays a pivotal role in cell proliferation and 

survival 26.  

Colocalization of GWAS and molecular traits 

Since most associated variants are non-coding, it is expected that they influence disease risk  

through alteration in gene expression or splicing. One way to identify the target gene is to 

demonstrate that the statistical association of a GWAS locus and a gene expression QTL are 

colocalized -- that is, that the pattern of SNP associations is consistent with them sharing the 

same causal variant.  We conducted systematic colocalization analysis 27 of GWAS loci with 

molecular trait QTLs from 92 tissues or cell types. The QTL datasets (Supplementary Table 3) 

include pQTLs for 2,994 plasma proteins assessed in 3,301 individuals of European descent 17, 

eQTLs from 48 GTEx tissues (v7.0), blood eQTLGen 15, and 14 eQTL studies  from the newly 

established eQTL Catalogue, a resource of uniformly processed gene expression and splicing 
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QTLs recomputed from previously published datasets 16. The results of the colocalization test are 

summarised by the probability, referred to as <H4=, that a causal variant is shared.  

 

GWAS-molecular QTL loci were tested if there was at least 1 variant overlapping in their 95% 

credible sets, suggesting prior evidence for colocalization (refer to methods). Of the 70,364 trait-

associated loci from studies with summary statistics available, 49.4% had no colocalizing gene at 

an H4 threshold >0.8, 25.5% had exactly 1 colocalizing gene and 25.2% had >1 colocalizing gene. 

For loci with evidence of colocalization between GWAS and molecular QTL traits, 29% were 

specific to a single tissue or cell type, whereas 71% were observed across multiple tissues. We 

also examined non-coding QTLs that were fine-mapped to a single-variant resolution, and which 

colocalized with binary traits GWAS  (H4>0.95). Results from this analysis are summarised in 

Supplementary Table 4. 

 

We also performed cross-trait colocalization across 3,621 GWAS to identify traits that are likely 

to be underpinned by the same molecular mechanism. A summary of the binary trait GWAS loci 

with the highest colocalization score (H4>0.95) is displayed in Supplementary Table 5. One 

example is a locus on chromosome 6 which colocalizes with asthma (6_90220794_T_C) and 

Crohn9s disease (6_90263440_C_A) suggesting that the two diseases may share common genetic 

etiology at this locus. 

 

To demonstrate the value of colocalization evidence, we examined coding variants that were fine-

mapped to single-variant resolution, and which colocalized with a molecular QTL for the same 

gene (729 variants, Supplementary Table 6). Such cis-variants make good genetic instruments 

for testing the causal effect of the molecular phenotype on disease 28, and the ratio of coefficients 

for the cis-variants is an estimate of the effect size of the molecular phenotype on disease. Using 

this approach we identified several known gene-trait associations. For example,  missense variant 

rs34324219 is causal of changes in TCN1 RNA and protein expression in whole blood 15,17 and 

also colocalizes (H4>0.99) with pernicious anemia, a disorder in which too few red blood cells are 

produced due to vitamin B12 deficiency. TCN1 encodes the protein haptocorrin (also known as 

Transcobalamin-1) which binds vitamin B12 and is involved in its uptake 29. Also , splice region 

variant rs1893592 causes increased expression of UBASH3A in most GTEx tissues, including 

thyroid. This signal colocalizes (H4>0.87) with self-reported treatment using the thyroid hormone 

sodium levothyroxine. Hypothyroidism is a common comorbidity with type 1 diabetes, for which 

there is strong evidence that UBASH3A is causal 30. Finally, the synonymous variant rs2228079 
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is the only credibly causal variant for an eQTL associated with altered ADORA1 expression in 

whole blood (eQTLGen) and colocalizes with asthma in UK Biobank (H4>0.99). ADORA1 

encodes a type of adenosine receptor, a class of proteins targeted by the approved drug 

(Theophylline) for the treatment of asthma. 

 

Colocalization also provided strong genetic evidence for some less well known gene-disease 

associations (Supplementary Table 7). One example is splice region variant rs11589479, which 

causes increase in ADAM15 expression in several monocytes states and also colocalizes 

(H4=0.99) with Crohn9s disease 31. ADAM15, a disintegrin and metalloproteinase, is strongly  

upregulated in colon tissues from inflammatory bowel disease patients compared to healthy 

controls and plays a role in leukocyte trans-migration across epithelial and endothelial barriers as 

well as the differentiation of regenerative colonic mucosa 32. 

A machine learning model prioritizes genes at gold-standard loci 

We next developed a <locus to gene= model (L2G) to prioritize causal protein-coding genes at 

GWAS loci by integrating our catalog of fine mapping associations with relevant functional 

genomics features. We first manually curated a set of 445 gold standard positive (GSP) genes at 

GWAS loci for which we are confident of the causal gene assignment (Supplementary Table 8, 

see methods). The selected genes are based on (i) expert domain knowledge of strong orthogonal 

evidence or biological plausibility; (ii) known drug target-disease pairs; (iii) experimental alteration 

from literature reports (e.g. nucleotide editing); (iv) observational functional data (e.g. colocalizing 

molecular QTLs, colocalizing epigenetics marks, reporter assays) (Supplementary Table 9). Next, 

we defined locus-level predictive features from four evidence categories: in silico pathogenicity 

prediction from VEP and PolyPhen, colocalization of molecular QTLs, gene distance to credible 

set variants weighted by their fine-mapping probabilities, and chromatin interaction 

(Supplementary Table 10). The chromatin interaction data comprised promoter-capture Hi-C from 

27 cell types 33, FANTOM enhancer-TSS pairwise cap analysis of gene expression correlation34; 

and DNase I hypersensitive site-gene promoter correlation35. Then, using a nested cross-

validation strategy, we trained a gradient boosting model to distinguish GSP genes from other 

genes within 500 kb at the same loci (see methods). 

 

The L2G model produced a well calibrated score, ranging from 0 to 1, which reflects the 

approximate fraction of GSP genes among all genes above a given threshold (Figure 2). At a 
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classification threshold of g0.5, the full model correctly identified 238 out of 445 true positives with 

86 false positives (average precision = 0.65; Table 1). We compared the full model against a 

naive nearest gene classifier (closest gene footprint and closest TSS), which selects the closest 

gene to each lead variant, and thus does not make use of other candidate variants from fine-

mapping. The naive nearest gene classifier identified more true positives at the same threshold 

(268 out of  445) but at the cost of identifying 2.4 times more false positives (207) (Average 

precision=0.37). Hence the full L2G model has higher precision with a small reduction in recall. 
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Figure 2: Performance of the locus-to-gene (L2G) model. (a) Calibration curve, showing (top) the 

fraction of all GSP genes found as positives at different L2G score thresholds (mean predicted 

value), and (bottom) the count of genes in each L2G score bin. (b) The precision-recall curve and 

(c) the receiver-operator characteristic curve for identifying GSP genes from among those within 

500 kb at each locus. (d) The Relative Importance of each predictor in the L2G model. 
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To identify which features are most important in predicting GSP genes, we retrained the model to 

include features from only one of the four evidence categories at a time (leave-one-group-in 

analysis). No individual feature set gets a higher 8Average Prediction9 score as the full model 

(Table 1). Our 8mean distance9 feature which aggregates across all the variants in the credible set 

and weighs by their posterior probability was the most predictive (average precision=0.62) 

followed by in silico pathogenicity prediction evidence (average precision=0.48), molecular QTL 

colocalization (average precision=0.36) and chromatin interaction (average precision=0.26) 

(Table 1, Leave-one-group-in section). Note that the 8mean distance9 feature is distinct from a 

8naive closest gene distance9 feature because of the weighting across a credible set to the most 

likely SNPs, and thus manages to discard many false positives (FPmean distance = 98 vs FPnaive 

closest footprint gene = 207 and FPnaive closest TSS gene = 195). Within the mean distance features tested, 

whether the gene was the closest at the locus using a gene footprint distance metric averaged 

over the credible set and whether the gene was the closest at the locus using the minimum gene-

TSS distance over the 95% credible set, had the highest relative feature importances (Figure 2d). 

Thus, when using distance as a predictor of causal genes, the distance relative to other genes is 

more important than the absolute distance. 
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Features 
Average 

precision AUC Precision Recall TP FP TN FN 
Sensitivit

y 
Specificit

y FDR 
GSP 

count 
GSN 

count 

Full model 0.65 0.93 0.73 0.53 236 86 6429 209 0.53 0.99 0.27 445 6515 

              

Naïve closest gene classification                       

Closest footprint 0.37 0.79 0.56 0.6 268 207 6308 177 0.6 0.97 0.44 445 6515 

Closest TSS 0.34 0.76 0.56 0.55 246 195 6320 199 0.55 0.97 0.44 445 6515 

              

Leave-one-group-in                         

Mean Distance* 0.62 0.91 0.69 0.49 219 98 6417 226 0.49 0.98 0.31 445 6515 

Interaction 0.26 0.79 0.55 0.05 23 19 6496 422 0.05 1 0.45 445 6515 

Molecular QTL 0.36 0.85 0.62 0.18 79 49 6466 366 0.18 0.99 0.38 445 6515 

Pathogenicity 

prediction 0.48 0.76 0.7 0.43 191 80 6435 254 0.43 0.99 0.3 445 6515 

              

Leave-one-group-out                         

Mean Distance* 0.47 0.77 0.69 0.43 191 84 6431 254 0.43 0.99 0.31 445 6515 

Interaction 0.65 0.93 0.73 0.53 234 85 6430 211 0.53 0.99 0.27 445 6515 

Molecular QTL 0.65 0.93 0.74 0.54 239 86 6429 206 0.54 0.99 0.26 445 6515 

Pathogenicity 

prediction 0.63 0.92 0.71 0.5 222 91 6424 223 0.5 0.99 0.29 445 6515 

 

Table 1: Classification performance for feature groups. Performance characteristics of the full 

model are shown at the top, and analyses for individual groups of features are shown in sections 

below. Counts are shown for true positives (TP), false positives (FP), true negatives (TN), and 

false negatives (FN). * Mean Distance aggregates across all the variants in the credible set and 

weighs by their posterior probability. 
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We also assessed the unique contribution of each evidence type by leaving out one group of 

features at a time. Consistent with the leave-one-group-in analysis, dropping our mean distance 

features had the largest impact on prediction (average precision change from 0.65 to 0.47), 

followed by in silico pathogenicity prediction (average precision down to 0.63) (Table 1). Notably, 

when molecular QTL colocalization evidence was removed from the model we saw similar 

classification results, with 3 fewer true positives identified, and no net change in the Gold Standard 

Negatives (GSN)(Supplementary Table 11a). There are various possible reasons for this: the 

colocalization score may be redundant with some of our other features; we may lack the relevant 

tissue- or context-specific QTLs; or we may have obscured the utility of colocalization information by 

using a cross-tissue colocalization score. We also used a measure of continuous reclassification 

improvement to evaluate prediction changes across all possible classification thresholds. Here, 

adding molecular QTL colocalization evidence resulted in a net 4.7% GSPs having an increased 

prediction score and a net 42.2% GSNs having a decreased score (Supplementary Table 11b). 

This suggests that whilst our colocalization features do not provide sufficient evidence to support 

novel positives, lack of colocalization accurately identifies negative gene assignments. Removing 

chromatin interaction features resulted in a minor reduction in model performance (net 2 fewer 

GSPs) (Table 1). 

 

The low predictiveness of features apart from distance relates in part to their lower genome 

coverage. For distance features, most sentinel variants have at least 1 gene within 500 kb, but 

for pathogenicity, molecular QTL colocalization and chromatin interaction, coverage of variants 

was low (Supplementary Figure 2). Only a small proportion of studies had summary statistics 

available, limiting our ability to use coloc to perform a colocalization analysis (only 3% of all loci 

had coloc derived evidence). Our complimentary colocalization method, using a reference LD-

panel to approximate summary statistics (the PICS method), increased the total number of loci 

with colocalization evidence to 19%. Evidence from pQTLs was very sparse at <1% coverage, 

which may account for its very low feature importance (Supplementary Figure 2). 

Gene prioritization across all trait-associated loci 

We used the trained L2G model to prioritize causal genes across all 133,441 trait-associated 

GWAS loci in our repository. At a classification threshold of 0.5, 55.4% (n=74,096) of all loci had 

a single gene prioritized whereas only 1.4% (n=1,907) had 2 or more genes prioritized 

(Supplementary Figure 3). 43.2% of loci did not reach the classification threshold. Across all 
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diseases, genes prioritized by the model were 7.8 times more likely (95% CI: [6.5, 9.3]) to be 

supported by literature evidence identified by text mining (Supplementary Table 12). Genes 

prioritized by the naive classifier using the closest gene footprint from the sentinel variant were 

also enriched (5.6 times, 95% CI: [4.7, 6.6]) but not as highly as the full model (p-value=0.008 

against null-hypothesis logORFull model = logORNaive model, Welch t-test).  

 

In order to benchmark the L2G versus the distance based classifier, we tested whether prioritized 

gene-diseases were enriched for known drug target-indication pairs across different clinical 

phases according to the ChEMBL database. Genes prioritized by the model were enriched with 

OR 7.4, 8.5 and 8.1 (95% CI: [5.7, 9.4], [6.3, 11.3], [5.7, 11.5]) across clinical trial phases g2, g3 

and 4, respectively (Supplementary Table 13). Using a naive classifier we saw lower odds ratio 

point estimates but with overlapping confidence intervals (OR 5.3 [4.2, 6.7], 6.4 [4.8, 8.5] and 6.7 

[4.8, 9.3]) (Supplementary Figure 4). Thus the prioritisation using the L2G model both 

recapitulates the established enrichment of GWAS loci for known drugs11 but also demonstrates 

that fine-mapping and colocalization combined with the L2G approach improves on their 

approach, and hence is likely to also improve success in identifying novel drug targets.    

Discussion 

To address the challenges of translating GWAS signals to biological insights, we developed a 

pipeline to format, harmonize, and aggregate human trait and disease GWAS, molecular QTLs 

and functional genomics data in a consistent way, providing statistical evidence for target 

prioritization across the entirety of GWAS traits and diseases. We then trained a machine learning 

model that integrates fine-mapping and functional genomics data to prioritize likely causal variants 

and genes at 133,441 trait-lead variant disease associations. The L2G score output by the model 

represents the likelihood that a gene is causal for that trait, subject to the limitations of our  gold 

standard positive training data, and thus allows genes at all trait-associated loci to be ranked by 

the relative strength of their evidence. Under cross-validation, the model resulted in a 58% 

reduction in the number of false-positives detected (improved precision), at the cost of missing 

11% of the gold-standard positives (reduction in recall). The top genes prioritized by the L2G 
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score recover known relationships, including disease-gene pairs with approved drugs, as well as 

novel disease-drug target associations that suggest potential novel therapeutic targets to pursue.   

 

The strength of our machine learning approach stems from the systematic application of fine-

mapping to obtain per-variant probabilities prior to gene assignment. Sentinel variants discovered 

by GWAS may not be the causal variant 36; by aggregating functional data across the credible set 

we incorporate information from all plausible causal variants at the locus. Using a supervised 

learning method allowed us to efficiently combine heterogeneous functional datasets into a single 

model. The L2G score output by our model is well calibrated, meaning that it can be interpreted 

as a probability and thus the evidence supporting a gene assignment can be compared both within 

and between loci.  

 

A limitation of our approach is that it requires a large number of high-quality gold standards to 

train the model, and each source of gold standards will have biases. For example, when we 

compared the dataset of drug targets from CHEMBL retrospectively mapped to GWAS loci to the 

manually curated datasets (mainly focused on the closest genes and those with known missense 

variants), we found that distance and VEP features performed much better in the manually 

curated datasets (Supplementary Figure 5), emphasizing the need to curate less-biased datasets. 

Using varied sources may help mitigate some source-specific biases, but manually curated allele-

gene pairs are intrinsically more likely to be close to each other. Future gold-standard training 

data should represent a range of possible molecular mechanisms. The reliance on large amounts 

of training data influenced the design of our model. To avoid stratifying gold-standards into smaller 

subgroups, we trained the model across all diseases at once and using functional data 

ascertained from different tissues/cell types aggregated into a single feature. This means that the 

model is not currently able to specifically leverage the tissues/cell types that are most relevant for 

a given disease. 

 

The outputs of our analyses can be viewed in the Open Targets Genetics portal 

(https://genetics.opentargets.org), a user-friendly web interface that supports visualisation of fine-

mapping and L2G scores for individual variants and genes across 133,441 trait-lead variant 

GWAS associations. The portal also offers other features including disease-disease and disease-

molecular traits colocalization analyses across ~3,600 GWAS summary statistics and 92 tissue 

and cell type-specific molecular QTL summary statistics to identify traits and diseases that share 

common genetic susceptibility mechanisms.The portal will regularly be updated with new GWAS 
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summary statistics both from Europeans and non-European ancestries as well as QTLs and 

functional genomic data from a wider range of tissues and cell types. Planned enhancements 

include displaying tissue- and cell type-specific enrichments for each included trait, using methods 

such as CHEERS 37 that leverage functional annotations. These enrichments will also be used to 

improve the L2G model by using functional genomics data from tissues that are most relevant to 

each disease and trait. Our repository of gold-standard gene assignments will be expanded as 

more evidence arises. In particular, we encourage scientists from the genetics community to 

contribute to this repository, since having diverse evidence sources can partially address the bias 

that comes with manually curated sets. 

Methods 

Summary statistics based fine mapping 

We harmonised summary statistics to ensure alleles and effect directions were consistent across 

studies, and removed variants with low confidence estimates (minor allele count < 10). We 

identified independently associated loci for each study using Genome-wide Complex Trait 

Analysis Conditional and Joint Analysis (GCTA-COJO; v1.91.3) 21. UK Biobank genotypes down-

sampled to 10k individuals were used as a linkage-disequilibrium (LD) reference for conditional 

analysis 38. We considered a locus to be independently associated if both marginal and conditional 

p-values were less than 5e-8. For each independent locus, we produced a set of summary 

statistics that are conditional on all other independent loci ±2Mb from the sentinel variant. Using 

the conditional set of summary statistics, we computed approximate Bayes factors 39 from the 

beta and standard error for each SNP, with a variance prior (W) of 0.15 for quantitative traits and 

0.2 for binary traits, and determined variant posterior probabilities (PP) assuming a single causal 

variant as: PP = SNP BF / sum(all SNP BFs) for all SNPs within a ±500Kb window. We considered 

any variant with a PP > 0.1% as being in the credible set. 

Linkage-disequilibrium based fine mapping 

In addition to the above fine mapping analysis, we conducted a complementary LD based 

approach which allowed us to leverage information from studies that lack full summary statistics. 

For each independent locus, we identified all variants in LD with the sentinel variant (R2>0.5 in 

±500Kb window). LD was calculated in 1000 Genomes phase 3 data 40 by mapping the GWAS 

study ancestries to the closest super population 41, taking a sample size weighted-mean of the 

Fisher Z-transformed correlations in the case of multi-ancestry studies. We then used the 
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Probabilistic Identification of Causal SNPs (PICS) method to estimate the PP that each variant is 

causal based on the LD structure at each locus 23. As above, we kept all variants with PP  > 0.1%. 

Colocalization analysis 

Molecular QTL summary statistics were acquired from the EBI eQTL Catalogue 16, GTEx (v7) 14, 

eQTLGen 15  and Sun et al. protein QTLs 17. Summary statistics were restricted to be ±1Mb from 

the gene transcription start site (TSS). We pre-processed and fine mapped molecular QTL 

summary statistics using the same method described above for GWAS studies. However, we 

used less stringent criteria for the inclusion of QTL lead variants, requiring minor allele count g 5 

and adjusted for multiple testing using a Bonferroni correction of p < 0.05 / number of variants 

tested per gene. 

 

For GWAS studies with summary statistics, we performed a colocalization analysis if there was 

at least 1 variant overlapping between the GWAS and molecular trait 95% credible sets (prior 

evidence for colocalization). We conducted colocalization of summary statistics using the coloc 

package (v.3.2-1) 27 with default priors. Given that there is prior evidence for colocalization, these 

parameters will give conservative estimates. As with the fine mapping pipeline, we used summary 

statistics conditional on all other independent loci within ±2Mb and restricted the coloc analysis to 

a ±500Kb window around each sentinel variant. A minimum of 250 intersecting variants were 

required for analysis. 

For GWAS studies without summary statistics, we performed an alternative colocalization 

analysis using the LD-based PICS fine mapping sets. Colocalization was approximated by taking 

variants that intersect at pairs of GWAS and molecular trait loci, and summing the product of the 

PPs. 

Pre-processing of functional genomics data for L2G prioritization 

We used 4 main classes of evidence to prioritize genes: (i) variant pathogenicity in silico 

predictions; (ii) colocalization with molecular trait quantitative trait loci (QTL); (iii) chromatin 

conformation; (iv) linear genomic distance from variant to gene. 

We used in silico pathogenicity predictions to estimate the effect of variants on gene transcripts 

and protein function. Firstly, we incorporated Variant Effect Predictor (VEP) 24 transcript 

consequences. We mapped VEP9s impact ratings of High, Moderate, Low to scores of 1.0, 0.66, 
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0.3 (respectively), and included an additional four consequences (intronic, 59 UTR, 39 UTR, 

nonsense-mediated mRNA decay transcript variants) with a score of 0.1 as we expected them to 

have predictive value through their functional consequences on mRNA transcription, secondary 

structure and translation. For each variant-gene pair we took the maximum score across 

transcripts. In addition to VEP we included PolyPhen-2 pathogenicity scores representing the 

probability that a non-synonymous substitution is damaging 42.  

 

Chromatin interaction data were from promoter-capture Hi-C, FANTOM enhancer-TSS 

correlation, and DNase-hypersensitivity enhancer-promoter correlation. Each of the data points 

in these datasets is represented as a pair of interacting genomic intervals and an association 

statistic. We retained interval pairs with one end encompassing an Ensembl gene Transcription 

Start Site (TSS)43 and the other end containing any variant in Gnomad 2.1 44, resulting in variant-

gene pairs with a dataset-specific association statistic. 

 

We included two genomic distance metrics as it has been shown that, despite notable contrary 

exceptions, linear distance is a good predictor of candidate causal genes 45. First, the distance 

from each variant to all gene TSSs is included. Second, the distance from each variant to each 

gene9s footprint, where the footprint is any position between the start and end positions of the 

gene. For both metrics the canonical transcript is used, as defined by Ensembl for protein-coding 

genes within a ±500Kb window around each variant. 

Derivation of locus-to-gene prioritization features 

We next combined our fine mapping and functional genomics data to create features to prioritize 

candidate causal genes at each trait-associated locus (locus-to-gene scoring) (Supplementary 

Table 10). 

 

Except for molecular trait colocalization evidence, each functional genomics dataset is variant-

centric, meaning they give variant-to-gene scores. We convert variant-centric scores into locus-

to-gene scores by aggregating over credible variants identified through fine mapping. For GWAS 

studies with summary statistics available we used ABF credible sets, otherwise we used LD-

based PICS credible sets. We implemented two complementary methods for aggregating over 

credible sets. Firstly, we took a weighted sum of scores across all variants identified by fine 

mapping (PP > 0.01%) using PP of causality as weights (Equation 1). Secondly, we took the 

maximum score for any variant in the 95% credible set (Equation 2). 
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Equation 2 

 

Molecular trait colocalization evidence is a locus-centric score. We included both summary 

statistic derived coloc evidence (Equation 3) and LD-derived colocalization evidence as features. 

Each GWAS signal may have colocalization estimates from multiple independent molecular trait 

signals (each conditional on the others), we therefore took the maximum score across estimates. 

Given that evidence against colocalization (h3) cannot be directly estimated without full summary 

statistics, this term was dropped for the LD-derived colocalization feature (Equation 4). 
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Equation 3 
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Equation 4 

 

For functional genomics datasets with measurements in multiple tissues (or cell types), we 

calculated the locus-level feature for each tissue separately and took the maximum across tissues 

(Equation 5). 

 

�������("#$%&,()*$",+,-,) = ���	������	�������(�������("#$%&,()*$",#/""$,,+,-,)) 
Equation 5 

 

We next wanted to provide the model with information about other genes at each locus (termed 

the neighbourhood feature). This allows the model to learn whether a given gene has, for 

example, the highest colocalization score compared to others at the locus. To do this we divided 

each feature by the maximum score across genes at that locus (Equation 6). 
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Equation 6 

Curation of a GWAS gold-standard training dataset 

We next assembled a repository of published GWAS loci 

(https://github.com/opentargets/genetics-gold-standards) for which we have high confidence 

that the gene mediating the association is known. Gold-standard evidence were grouped into 4 

classes: (i) expert curated loci with strong orthogonal evidence or biological plausibility; (ii) drug 

loci inferred from known drug target-disease pairs; (iii) loci inferred from experimental alteration 

(e.g. nucleotide editing); (iv) loci inferred from observational functional data (e.g. colocalizing 

molecular QTLs). We also assigned each gold-standard a confidence rating of high, medium or 

low depending on our assessment of the strength of supporting evidence. 

 

We started by compiling existing gold-standard examples from the literature. 227 curated 

metabolite QTLs were sourced from Stacey et al 45 and a further 136 loci were curated by Eric 

Fauman with strong biological plausibility (Supplementary Table 6). We then ascertained 57 

genes with <causal= or <strong= observational data from the Type 2 Diabetes Knowledge Portal 

Effector Genes table, this equates to genes with: a confirmed causal coding variant; or at least 

two of the following: (i) a likely causal coding variant, (ii) >1 piece of regulatory evidence, >1 piece 

of perturbation evidence 46. We added a further 48 disease-causal genes curated from the 

literature. These were mainly GWAS associated loci that were fine-mapped and colocalized with 

eQTL and epigenomic features in disease-relevant tissues in order to prioritize likely functional 

variants and their causal genes. These results were then functionally validated using experiments 

such as reporter assays and CRISPR/Cas9 genome editing.  

 

In addition to literature sourced loci, gold-standard evidence was generated based on known 

drug-target-indication associations curated in ChEMBL  in clinical trial phase II, III or IV 47. Drugs 

that bind a protein complex, rather than a single protein, were removed unless the binding subunit 

was known.The ChEMBL evidence was combined with the genetics features to identify loci with 

known drug targets. Gold-standards derived from phase II, III and IV drug targets were assigned 

a confidence of low, medium and high, respectively. Additionally, confidences were adjusted to 

indicate the distance of the sentinel variant to the drug target, variant-gene distances of < 500, 

250, 100Kb kb were assigned confidences low, medium and high, respectively. 
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Duplications were removed from the Gold-standard positives (GSP) list so that GWAS allele-gene 

pairs never occurred more than once in the training data. The same gene could occur as a GSP 

more than once if the associated alleles were independent, i.e. if no variants overlapped between 

their credible sets (using all variants with PP > 0.1%). All non-GSP genes in the training data at 

the locus (±500kb) were set as gold-standard negatives (GSN). GSNs genes were subsequently 

removed if they had a stringDB score g 0.7 with the GSP at the same locus, the aim being to 

remove alternative explanations for the association between trait-associated allele and gene. This 

resulted in a total of 229 GSNs being removed (out of a total of 9,171). A total of 445 GSP were 

included in the final training data. 

Supervised learning of locus-to-gene features 

We used all GWAS loci with high or medium confidence gold-standard evidence (445 loci) to train 

an XGBoost gradient boosting classifier 48 using a binary logistic learning objective function. 

Nested cross-validation (CV) as implemented in scikit-learn was used to maintain independence 

of the training and test data and to tune hyperparameters. The outer CV consisted of 5 folds split 

by chromosomes so that each group contained an approximately equal number of GSPs. Within 

each fold, we used a random parameter search to train 1000 models, which were assessed using 

a balanced accuracy metric averaged over 5 randomly split inner folds. 

 

For each group of features included in the main model, we conducted sub-analyzes whereby 

either only that feature group was included (leave-one-group-in), or everything except that feature 

group was included (leave-one-group-out). This allowed us to evaluate the relative performance 

of each feature group individually. Additionally, we output the Relative Importance of each feature 

as implemented in the XGBoost model 49. 

Model internal validation 

Our cross-validation approach produces separate models for each of the 5 outer folds. We 

evaluated the performance of each model against the remaining 20% of loci not used for training. 

We used average precision and area under the receiver operator curve (AUC) metrics to assess 

the classification across the full range of prediction probabilities outputted by the model. We also 

assess the performance of the model after applying a hard threshold of >0.5 (>50% confidence 

that the characteristics of the observed locus is consistent with being a gold-standard positive 

locus). 
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We compared the relative performance of leave-one-group-in and leave-one-group-out models 

by calculating the net reclassification improvement (NRI) of loci compared to the full model 50. NRI 

measures the number of GSP loci that move above the classification threshold (>0.5), compared 

to GSN that move below, when the model is updated. We also calculate continuous NRI (cNRI), 

the sum of the percentage of GSPs with classification scores that move in the correct direction 

vs. GSNs that move in the wrong direction (towards higher scores) 51. 

Model external validation with literature evidence 

We benchmarked the L2G assignment against independent gene-disease associations scored 

by literature mining in the Open Targets Platform. We excluded any publications for studies 

curated in GWAS Catalog to ensure independence of the training data. We restricted analyses to 

a subset of 22 prioritized diseases (Coronary artery disease, Breast carcinoma, Prostate 

carcinoma, Acute lymphoblastic leukemia, Inflammatory bowel disease, Crohn's disease, 

Ulcerative colitis, Rheumatoid arthritis, Osteoarthritis, Type I diabetes mellitus, Hypothyroidism, 

Psoriasis, Atopic eczema, Asthma, Alzheimer's disease, Parkinson's disease, Ankylosing 

spondylitis, Celiac disease, Gout, Multiple sclerosis, Systemic lupus erythematosus). For each 

disease, we constructed a 2x2 contingency table of 8gene prioritised by L2G model (score > 0.5)9 

and 8gene prioritised by Open Targets literature evidence (top decile [>0.52])`. Only genes scored 

by the L2G model (±500kb of a sentinel GWAS variant) were included in the contingency table. 

We calculated enrichment and statistical significance using Fisher9s exact test. 

Enrichment of known drug targets 

We calculated drug target enrichment using known target-indication pairs curated in ChEMBL 

(accessed: 2019-03-25). We constructed a single 2x2 contingency table pooling across all 

indications, which consisted of 8gene prioritized by L2G model (score > 0.5)9 and 8gene is known 

target of drug for indication matched to GWAS disease phenotype9. GWAS studies were only 

included if they could be mapped to a ChEMBL indication (matched using Experimental Factor 

Ontology) and that indication has a known drug that can be mapped to a protein-coding gene that 

was scored by the L2G model. Enrichment was calculated by Fisher9s exact test. 
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Data availability 

Our results are freely available through a web portal (genetics.opentargets.org), GraphQL API or 

through bulk download. GWAS gold standard genes: github.com/opentargets/genetics-gold-

standards. 
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