

## Title: Complexity and 1/f slope jointly reflect cortical states across different E/I balances

**Authors:** Medel, V<sup>1\*</sup>., Irani, M<sup>1\*</sup>., Ossandón, T<sup>1,2</sup>✉., Boncompte, G<sup>1</sup>✉.

<sup>1</sup> Neurodynamics of Cognition Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile

<sup>2</sup> Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile

\* Equally contributing authors

✉️GB: [gnboncompte@gmail.com](mailto:gnboncompte@gmail.com); TO: [tossandon@gmail.com](mailto:tossandon@gmail.com)

## Abstract

Characterization of cortical states is essential for understanding brain functioning in the absence of external stimuli. The balance between excitation and inhibition and the number of non-redundant activity patterns, indexed by the  $1/f$  slope and  $LZc$  respectively, distinguish cortical states. However, the relation between these two measures has not been characterized. Here we analyzed the relation between  $1/f$  slope and  $LZc$  with two modeling approaches and in empirical human EEG and monkey ECoG data. We contrasted resting state with propofol anesthesia, which is known to modulate the excitation-inhibition balance. We found convergent results among all strategies employed, showing an inverse and not trivial monotonic relation between  $1/f$  slope and complexity. This behavior was observed even when the signals' spectral properties were heavily manipulated, consistent at ECoG and EEG scales. Models also showed that  $LZc$  was strongly dependent on  $1/f$  slope but independent of the signal's spectral power law's offset. Our results show that, although these measures have very distinct mathematical origins, they are closely related. We hypothesize that differentially entropic regimes could underlie the link between the excitation-inhibition balance and the vastness of repertoire of cortical systems.

**Keywords:** Cortical States | Lempel-Ziv Complexity | 1/f Slope | Excitation/Inhibition Balance | Anesthesia | Propofol

39 ***Introduction***

40

41 Spontaneously occurring brain activity patterns in the cerebral cortex constitute the so-called cortical  
42 states (Harris & Thiele, 2011; Reimer et al., 2014). These are present without a direct link to external  
43 stimuli, and constitute the basis of essential cognitive processes like attention (McGinley(Harris &  
44 Thiele, 2011; Reimer et al., 2014) and global states of consciousness (GSC; e.g. sleep, wakefulness  
45 and anesthesia; (Bayne et al., 2016; He & Raichle, 2009). One of the most prominent strategies to  
46 characterize cortical states has been to analyze the spectral properties of their associated field  
47 potentials like electroencephalogram (EEG) and local field potential (LFP). In the particular case of  
48 attention, it has been shown that both induced (Klimesch et al., 1998) and spontaneous (Boncompte  
49 et al., 2016; Iemi et al., 2017) modulations of properties of alpha-band oscillations broadly explain the  
50 attentional state of subjects. However, the characterization of GSC in terms of the unique properties  
51 of their associated cortical states has proven to be more elusive. Traditional spectral characteristics of  
52 brain field potentials cannot fully distinguish between GSC (Purdon & Sampson, 2015). This is well  
53 illustrated for the case of anesthetics that equally produce a cease of phenomenological experiences  
54 in loss of consciousness, but show diverse spectral neural signatures. For example, transitions from  
55 wakefulness to anesthesia induced by propofol increase and frontalize alpha oscillations, while  
56 dexmedetomidine anesthesia instead induces spindle-like activity without significant modulations of  
57 alpha oscillations (Akeju et al., 2014; Huupponen et al., 2008). In recent years, new methodologies  
58 have emerged with promising results, which aim at characterizing background cortical states in  
59 general, but also specifically for GSC.

60 Cortical neurons in awake animals show strong membrane potential fluctuations which cause irregular  
61 discharge similar to a Poisson process, known as high conductance states (Destexhe et al., 2003).  
62 These states generate the background activity that supports high-order processes are computed. It  
63 has been shown that neurons can achieve irregular firing patterns with balanced excitatory and  
64 inhibitory synaptic activity (van Vreeswijk & Sompolinsky, 1996; Brunel, 2000). From this perspective,  
65 cortical states depend on global brain variables, such as relative levels of excitation and inhibition  
66 (Haider et al., 2006). Moreover, from local circuit activity to whole-brain modeling, the computational  
67 characterization of the balance between excitation and inhibition (E/I balance) has shown to modulate  
68 information transmission and entropy (Deco et al., 2014; Rubin et al., 2017; Agrawal et al., 2018). On  
69 the other hand, perturbations in the E/I balance has shown to be related with pathological brain  
70 activity (Žiburkus et al., 2013) and neuropsychiatric disorders (Haider et al., 2006; Uhlhaas & Singer,  
71 2010; Rubenstein & Merzenich, 2003; Sohal & Rubenstein, 2019). A particularly successful way to  
72 quantify E/I balance is the slope of the power law decay of spectral power of brain field potentials.  
73 Specifically, models have been shown that the background 1/f slope of the power spectral density  
74 (PSD) emerges from the sum of stochastic excitatory and inhibitory currents (Destexhe et al., 2001;  
75 Sheehan et al., 2018; Gao et al., 2017). Moreover, empirical validation of these models has shown  
76 that the E/I balance can be properly inferred from background activity by parameterizing the 1/f shape  
77 of the PSD (Gao et al., 2017; Trakoshis et al., 2020).

78 Interest in the detailed informational structure of cortical states has produced a recent surge of  
79 information-theory based approaches (Arsiwalla & Verschure, 2018; Ferenets et al., 2006; Sarasso et  
80 al., 2014; Zhang et al., 2001). Data analysis strategies based on Lempel-Ziv complexity (LZc; Lempel  
81 & Ziv, 1976), like the Perturbational Complexity Index (Casali et al., 2013) have been successful for  
82 characterizing subject's GSC during dreamless sleep and during anesthesia-induced  
83 unconsciousness, with independence of the anesthetic used. It has been shown that LZc decreases  
84 concomitantly with the loss of phenomenological possibilities, which is consistent with theoretical  
85 views of consciousness (Tononi & Edelman, 1998). Lempel-Ziv complexity algorithm computes the  
86 number of non-redundant segments of a signal (Lempel & Ziv, 1976), which in turn, when applied to  
87 brain data, is related to the abundance of the repertoire of brain activity patterns observed (Wenzel et  
88 al., 2019). During the transition from wakefulness to sleep or anesthesia, the number of possible  
89 experiences and cognitive processes that one can have is greatly reduced. Thus, it is expectable that  
90 the complexity of brain activity follows the same pattern. In fact, this reduction of the repertoire of  
91 brain activity has been seen in rats at the single neuron level using a myriad of convergent measures  
92 of cortical diversity, including LZc (Wenzel et al., 2019) which suggests that LZc can be applied as a  
93 multiscale proxy of neural repertoire.

94  
95 Although 1/f slope and LZc have distant mathematical origins, one coming from spectral analysis and  
96 the other from Information Theory, both have been shown to correlate with GSC (Miskovic et al.,  
97 2019; Zhang et al., 2001). We hypothesize that this could be due to an underlying intrinsic relation  
98 between E/I balance and the repertoire of activity patterns in cortical systems. Here we employed  
99 three complementary approaches to study the possible relation between 1/f slope and LZc and thus  
100 implicitly between E/I balance and the abundance of non-redundant repertoire in brain field potentials.  
101 We analyzed this relation in: (i) a simple inverse Discrete Fourier Transform (iDFT) model, (ii) a  
102 cortical field potential model, (iii) human EEG data, and (iv) monkey ECoG anesthesia data. Our  
103 results consistently show a non-trivial relation between 1/f slope and LZc in brain field potentials, and  
104 suggest that both could be related to the underlying entropy rate of the system..

105  
106

107 **Materials and Methods**

108

109 **iDFT Models**

110 To study the relation between the power-law slope of neuronal signals and their complexity in time,  
111 we first employed an iDFT modeling strategy. We constructed signals with different 1/f slopes, among  
112 other spectral parameters, and analyzed their resulting LZc. Each signal was simulated using 5  
113 seconds of length sampled at 1KHz, which resulted in a Nyquist frequency ( $N_f$ ) of 500Hz. Each time  
114 series was initially constructed in the frequency domain as the product of its amplitude and phase  
115 components. The amplitude of each frequency component was set accordingly to a power-law  
116 distribution, as illustrated in Equation 1:

117 
$$A(f) = O * f^{-s} \quad (1)$$

118 where  $f$  is the frequency of each term,  $A(f)$  is the amplitude of each frequency component,  $O$  is the  
119 offset of the curve, the amplitude of the 1 Hz component, and  $s$  corresponds to the slope of the  
120 power-law. Each initial phase was randomly assigned from a uniform distribution (- $\pi$  to  $\pi$ ). iDFT  
121 algorithm (as implemented in Numpy; (Virtanen et al., 2020) was applied to the product of the  
122 amplitude ( $A(f)$ ) and phase components to obtain the time series data according to Equation 2:

123 
$$\text{signal}(t) = iDFT (A(f) * \exp(i * \theta_0)) \quad (2)$$

124 where  $i$  is the imaginary unit, and  $\theta_0$  corresponds to the initial phase of each frequency. Only positive  
125 frequencies were employed. To better model the spectral properties of physiologically plausible neural  
126 signals, in addition to constructing signals using the whole range of possible frequencies (0 to  $N_f$ ) we  
127 also applied two types of constraints to the power-law distribution: an initial frequency ( $f_0$ ) and a final  
128 frequency ( $f_f$ ). Both of these are illustrated in Figure 1A. Specifically,  $f_0$  corresponds to setting all  
129 amplitudes of frequencies lower than  $f_0$  to the value of  $f_0$ , thus flattening the curve to the left of  $f_0$ . On  
130 the other hand, applying a  $f_f$  corresponds to setting the amplitude of every frequency higher than  $f_f$  to  
131 zero. To maintain time series stationarity, a requirement of the LZc algorithm (Lempel & Ziv, 1976;  
132 Zhang et al., 2001), all iDFT models were made with a  $f_0 = 1\text{Hz}$  unless otherwise stated. For every set  
133 of simulations, we generated a 256 time series with different values of  $s$ .

134

135 **LZc algorithm**

136 To compute the complexity of time series (both simulated and empirical), we used the Lempel-Ziv  
137 Complexity algorithm as introduced by Lempel and Ziv (Lempel & Ziv, 1976). This algorithm quantifies  
138 the number of distinct and non-redundant patterns of a signal and it can serve as a close analogue of  
139 the entropy rate of a signal (Amigó et al., 2004). We implemented the LZ76 algorithm using custom  
140 made Python scripts (available in Supplementary Materials). Briefly, every time series was first  
141 binarized, assigning a value of 1 for each time point with an amplitude greater than the median of the  
142 entire signal (5 s), and zero for those below it. Afterwards, the LZ76 algorithm was applied to the  
143 resulting so-called symbolic signal. To quantify the number of non-redundant patterns, a sequential

144 evaluation of the signal is performed. At each point, the algorithm analyzes whether the following  
145 segment of the signal can be recreated from the already analyzed signal. In this sense, if the following  
146 sequence is not contained in the previously analyzed signal, then the complexity increases. If the next  
147 sequence is already contained in the already analyzed signal, the algorithm advances without  
148 increasing the complexity. An illustrative description of the algorithm for two sample sequences can  
149 be found in supplementary materials (Supplementary Figure 1). The number of non-redundant  
150 patterns in a signal is then normalized to produce the final LZc value, which ranges (asymptotically for  
151 long signals) from 0 to 1. The LZ76 algorithm has been widely applied to analyze neural signals, from  
152 spike trains to EEG field potentials; however, it should not be mistaken with the similar Lempel-Ziv-  
153 Welch algorithm (Welch, 1984), also recently employed in neurocognitive studies (Schartner et al.,  
154 2015). Although these two share commonalities, to our knowledge the link between complexity and  
155 entropy rate has only been established for the LZ76 algorithm.

156

### 157 **1/f slope vs. LZc modeling function**

158 We found that the relation between 1/f slope and LZc in pure power-law iDFT data (Figure 1B) closely  
159 followed a particular mathematical behavior:

160 
$$LZc(s) = a_1 * \exp(-b * \ln^2(s^c + 1)) \quad (3.1)$$

161 where  $s$  is the slope of the power-law,  $LZc(s)$  is the LZc value obtained for a signal with slope  $s$  and  
162  $a_1$ ,  $b$  and  $c$  are free parameters such that  $a_1$  ranges from 0 to 1 and  $b$  and  $c \in \mathbb{R}^+$ . The parameters  $b$   
163 and  $c$  modify the shape of the curve, while  $a$  is a scaling factor. Without this scaling factor, the image  
164 of  $LZc(s)$  ranges from (0 to 1), while if  $a_1$  is introduced it ranges from (0 to  $a_1$ ) without changing the  
165 internal structure of the curve. While Equation 3.1 appropriately adjusted to pure power-law signals  
166 (Figure 1B) and iDFT-data generated with a non-trivial final frequency ( $f_f \neq N_q$ ; Figure 1D), the LZc  
167 values for signals with non-trivial  $f_0$  ( $> 1\text{Hz}$ ) did not ranged from 0 to 1 but from a value greater than  
168 zero to 1 (Figure 1C). Because of this, we designed a similar equation that better reflected the  
169 required image of the  $LZc(s)$  function for non-trivial  $f_0$  cases, introducing a second scaling parameter  
170  $a_2$ :

171

172 
$$LZc(s) = a_2 + (1 - a_2) * \exp(-b * \ln^2(s^c + 1)) \quad (3.2)$$

173

174 For every fit we employed Equations 3.1 or 3.2 using an algorithm that minimized the squares of the  
175 differences between data and models as implemented in the `scipy.optimize.curve_fit` function  
176 (Virtanen et al., 2020). Best fit parameters and  $R^2$  values for goodness of fit for all iDFT simulations  
177 can be found in Supplementary Table 1 (all  $R^2 > 0.98$ ).

178

### 179 **LFP Simulations**

180 To simulate cortical LFP time series, we employed the strategy recently developed by Gao et. al.  
181 (2017) where LFP time series are constructed based on modeled inhibitory and excitatory

182 conductances. Briefly, inter spike intervals were generated by Poisson processes (Destexhe et al.,  
183 2001) with specified average firing rates for GABA-A (inhibitory) and AMPA (excitatory) neurons. This  
184 produced binary time series describing firing at each time point. These spike time series were then  
185 convoluted with empirically defined conductance kernels for excitatory and inhibitory synapses  
186 independently (Alain Destexhe et al., 2003; Gao et al., 2017). Each kernel was constructed as the  
187 sum of an exponential growth and an exponential decay function, which were specific for excitatory  
188 and inhibitory synapses (CNRGlab; <http://compneuro.uwaterloo.ca/research/constants-constraints/>).  
189 Current time series were then obtained by multiplying each conductance by the difference between  
190 the resting potential and the typical reversal potential of AMPA and GABA-A receptors. Finally, the  
191 LFP time series were computed as the sum of excitatory and inhibitory currents (Mazzoni et al.,  
192 2015). The particular parameters used in LFP simulations can be found in supplementary material  
193 (Table S2), which are based on previous electrophysiological results and modeling of LFP (Gao et al.,  
194 2017).

195

196 For each particular simulation, we manipulated firing rate and EI-balance. Each firing rate was defined  
197 as a parameter to generate inter spike intervals following a Poisson process. EI-balance, defined as  
198 the ratio between mean excitation and mean inhibition conductances, was manipulated by a  
199 multiplicative parameter applied only to inhibitory conductances (Gao et al., 2017), such that mean  
200 inhibition current was 2 to 10 times greater than the mean magnitude of excitation conductances.  
201 Each simulated LFP time series consisted of 5s, and was downsampled to 1KHz to match iDFT  
202 simulations. We employed this modeling strategy because it has been shown to capture amplitude  
203 and spectral characteristics of synaptic conductances observed in vivo (Destexhe et al., 2001), and  
204 has been previously validated as a tool to infer the E/I balance of cortical tissues (Gao et al., 2017).

205

## 206 **Power Spectral Density and 1/f analysis**

207 We employed the same approach to estimate the power-law slope of LFP simulations, human EEG  
208 and monkey ECoG data. This consisted of calculating the Power Spectral Density (PSD) by means of  
209 Fourier Transforms using Welch's method as implemented in the MNE toolbox (Gramfort et al., 2014;  
210 Jas et al., 2018). Afterwards, the power-law 1/f slope and offset were obtained using the "Fitting  
211 Oscillations & One Over f" (FOOOF) toolbox (Haller et al., n.d.). Aperiodic offset (O) and slope (s)  
212 components are obtained by modeling the aperiodic signal according to Equation 1. The FOOOF  
213 algorithm decomposes the log power spectra into a summation of narrowband Gaussian periodic  
214 (oscillations) and the aperiodic (offset and slope) components for the whole frequency range. The  
215 algorithm estimates periodic and aperiodic components, removes the periodic ones and estimates  
216 again until only the aperiodic components of the signal remain. This allows for estimation of offset and  
217 power-law slope with considerable independence from oscillatory behavior, which is particularly  
218 important for empirical signal analysis (Haller et al., n.d.; Voytek & Knight, 2015). FOOOF toolbox also  
219 contains a "knee" parameter, which was not considered as it corresponds to changes in the 1/f slope  
220 at higher frequencies, not analyzed in this study. With this we obtained the 1/f slope and offset

221 estimates of each time series. For our analyses we performed the FOOOF fitting using a frequency  
222 range from 1 to 70 Hz for simulated and ECoG data, and 1 to 40 Hz in EEG data.

223

#### 224 **ECoG Data**

225 We used an open ECoG database collected from 2 macaque monkeys (Chibi and George) during  
226 wakefulness, propofol anesthesia (5 and 5.2 mg/kg), and recovery (Yanagawa et al., 2013z). Propofol  
227 induced anesthesia was achieved through intravenous propofol injection. Loss of consciousness was  
228 defined as the moment when monkeys no longer responded to touch stimuli. The ECoG grid  
229 consisted of 128 channels using multichannel ECoG electrode arrays (Unique Medical, Japan). The  
230 array was implanted in the subdural space with an interelectrode distance of 5 mm. Electrodes were  
231 implanted in the left hemisphere continuously covering frontal, parietal, temporal and occipital lobes.  
232 No further preprocessing than the one used by (Yanagawa et al., 2013) was applied to this data.  
233 Since we were interested in assessing differences between brain states during wakefulness and  
234 anesthesia and not in the transitions, we only considered periods of closed-eyes wakefulness and  
235 anesthesia. We computed LZc and 1/f slope measures of the times series as mentioned above for  
236 each electrode, epoch and subject and then averaged LZc and 1/f slope across epochs. These results  
237 are shown in Figure 3.

238

#### 239 **EEG Data**

240 We analyzed an open human propofol anesthesia EEG database (Chennu et al., 2016). We only  
241 analyzed data collected during baseline and moderate sedation conditions. In each state, subjects  
242 performed an auditory discrimination task. After the task, during closed eyes resting state, EEG data  
243 was recorded with high-density 128 electrodes caps and the Net Amps 300 amplifier (Electrical  
244 Geodesic Inc., Eugene, Oregon, USA) for ~7 minutes. Only channels covering the scalp area were  
245 retained, which resulted in 91 channels for further analysis. Moderate sedation was induced by target-  
246 controlled infusion of propofol, with targeted plasmatic propofol levels of 1.2 mcg/ml. Because the  
247 level of propofol sedation is near the anesthetic threshold of unconsciousness, and not sufficient for  
248 deep anesthesia, we collected data from the two subjects who lost the most performance. This was  
249 assessed by the number of correct responses in the auditory discrimination task during moderate  
250 sedation compared to the baseline condition. EEG signals were filtered between 0.5 Hz and 45 Hz  
251 and segmented into 10-second epochs (ranging from 37 to 40 epochs per subject). Data was re-  
252 referenced to the average of all channels. We did not apply any further preprocessing steps besides  
253 those described by Chennu et al. (2016) for the analysis presented here. Further details of procedures  
254 regarding data collection and preprocessing can be consulted in the original paper. Finally, for each  
255 epoch (time segment) and electrode, we calculated LZc and 1/f slope and then averaged across  
256 epochs.

257

#### 258 **Statistical analysis**

259 Experimental data was visualized using raincloud plots (Allen et al., 2019; van Langen, 2020).  
260 Statistical significance was assessed with a Type-1 error threshold of 0.05. All curve fits were carried

261 out using Scipy optimize function.  $R^2$  were calculated using custom made scripts. Differences among  
262 groups in 1/f slope (Figure 3A, B) and LZc (Figure 3C, D) were assessed by two-way ANOVAs for  
263 each measure. Conscious state (awake vs. anesthesia) and the subject's identity were used as ways.  
264 We included both humans and monkey datasets in these ANOVAs. Afterwards, simple main effects  
265 for conscious states were performed for each dataset, comparing awake vs. anesthesia for each  
266 human and monkey individually. To estimate the relation between 1/f slope and LZc in ECoG and  
267 EEG data, for each subject and electrode, we adjusted a linear curve to 1/f slope and LZc data across  
268 epochs (time segments). The Pearson product-moment correlation coefficient for each one of these  
269 fits was used as the dependent variable in a two-way ANOVA analysis (Figure 3E, F). Simple main  
270 effects were applied in the same way as for the analysis of each individual measure.  
271  
272  
273  
274

275 **Results**

276

277 **iDFT Model**

278 In order to analyze the relation between the spectral power-law slope and the LZc, we generated, by  
279 means of iDFT, sets of 256 time series with different slopes (e.g. blue trace in Figure 1A) ranging from  
280 0 to 2, and calculated the complexity values for each one. We found that, for pure power-law time  
281 series, the relation between slope and LZc follows a strict monotonically descending behavior (Figure  
282 1B), with lesser complexity values for time series with a steeper slope. This general behavior is  
283 expected: slopes near zero reflect white noise (maximal LZc), while on the other hand, very high  
284 slopes reflect time series with significant power only in low frequencies (periodic signals with minimal  
285 LZc). Interestingly, we found that LZc had a one-to-one mapping with 1/f slope. This relation can be  
286 robustly adjusted ( $R^2 > 0.99$ ) to an x-inverted asymmetrical sigmoid function (see Methods, Equation  
287 3.1).

288

289 Electrophysiological field potential signals (e.g. EEG and ECoG) have been shown to present only  
290 partial power-law behavior (He, 2014). In other words, only part of their spectrum follows a clear  
291 spectral power law distribution. In an attempt to broadly emulate this, we introduced two types of  
292 constraints to the spectra of signals: an initial ( $f_0$ ) and a final ( $f_f$ ) 1/f frequency (see Methods). Both  
293 constraints are illustrated in Figure 1A (orange trace for  $f_0$ ; green trace for  $f_f$ ). We found that the  
294 introduction of greater  $f_0$  values (Figure 1C) generated signals with greater complexity across all  
295 slopes tested. This effect was enhanced for higher slopes compared to lower slopes (Figure 1C).  
296 Interestingly, the introduction  $f_0$  higher than 1Hz reduced the dynamical range of the observed LZc (no  
297 longer ranging from 0 to 1). On the other hand, when we included a final frequency  $f_f$  to the generated  
298 signals (a type of low-pass filter), we also found LZc values were reduced, in comparison to the pure  
299 power law signals. This effect was more markedly observed in signals with lower slope values.  
300 Similarly to  $f_0$ , we found that  $f_f$  reduced the dynamical range of possible complexity values, but in a  
301 different way: LZc ranged from zero to a value lower than 1. Regardless of these spectral constraints,  
302 we found that the slope vs. LZc behavior could be modeled with a simple set of related equations  
303 (Equations 3.1 and 3.2), with a robust goodness of fit (all  $R^2 > 0.98$ , see Supplementary Materials).

304

305 **LFP model**

306 Spectral 1/f power law slope has been suggested as a proxy for the background state (Destexhe et  
307 al., 2001) and the balance between excitation and inhibition in cortical circuits (Destexhe et al., 2001;  
308 Lombardi et al., 2017; Gao et al., 2017; Trakoshis et al., 2020). In this line, we hypothesized that E/I  
309 balance could also be related to the repertoire of cortical activity as indexed by LZc. To test this  
310 hypothesis in a more physiologically plausible model, we simulated LFP signals as a linear  
311 combination of excitatory and inhibitory currents (see Methods; Destexhe et al., 2001). We conducted  
312 simulations with different global firing rates and E/I ratios by parameterizing inhibitory conductances  
313 (Fig 2A; see Methods). For each simulated time series, we calculated LZc and the spectral  
314 parameters of 1/f slope and offset using the FOOOF toolbox (Haller et al., n.d.).

315 Consistent with previous findings using this model (Gao et al., 2017), we found that manipulating E/I  
316 balance consistently modulated the offset of the 1/f behavior. However, offset was also strongly  
317 modulated by global cortical excitability (firing rate; Figure 2B). We found that the 1/f slope was also  
318 robustly modulated by E/I balance; however, in contrast to offset, the slope was completely  
319 independent of global excitability (Figure 2C). Interestingly, we found that LZc strongly correlated with  
320 E/I balance, with more excitation leading to a smaller repertoire of cortical activity patterns, and a  
321 more balanced neural population activity presenting higher complexity (Figure 2D). Similar to 1/f  
322 slope, we found that the effect of changing E/I balance on LZc was independent of the global firing  
323 rates of the simulated neural time series.

324 Given that E/I balance robustly modulated both 1/f slope and LZc, with independence of the firing rate,  
325 we next asked whether the relation observed between 1/f slope and LZc seen in our iDFT model  
326 could be reproduced in this more plausible cortical model, and if E/I balance tracked this relation.  
327 Figure 2E depicts the average LZc and 1/f slope for 100 simulations with their corresponding E/I  
328 balance values. It illustrates that there is a non-trivial inverse relation between these two measures,  
329 as for the iDFT model. As expected, we found that higher E/I balance was associated with flatter  
330 slopes and with higher complexity values, while when E/I balance was dominated by inhibition,  
331 complexity was reduced and PSD showed steeper slopes. Interestingly, we also found that this  
332 behavior could be well adjusted to Equation 3.1. We believe this result proposes a plausible biological  
333 mechanism of the observed relation between LZc and the power-law exponent.

334

### 335 **Experimental Data**

336 Next, we asked whether the impact of modifying E/I balance on the relationship between 1/f slope and  
337 LZc seen in our model could be reproduced in electrophysiological data. We first analyzed two high-  
338 density datasets, human EEG and macaque monkey ECoG recordings under propofol anesthesia and  
339 eyes-closed resting-state (Chennu et al., 2016; Yanagawa et al., 2013). Propofol is known to directly  
340 enhance GABAergic inhibitory activity, and thus reduce E/I balance (Alkire et al., 2008). In  
341 accordance with our previous results, we observed markedly increased 1/f slope (conscious state  
342 main effect's  $F(1) = 1034$ ,  $p < 0.001$ ,  $\eta^2 = 0.467$ ; simple main effects (awake vs. anesthesia) for all  
343 humans and monkeys showed significant differences,  $p < 0.001$ ) and reduced LZc with respect to  
344 wakefulness in both monkeys and in one human (conscious state main effect  $F(1) = 442$ ,  $p < 0.001$ ,  
345  $\eta^2 = 0.063$ ; simple main effects (awake vs. anesthesia) for subjects except one human showed  
346 significant differences,  $p < 0.001$ , Supplementary Figure 2). This is illustrated for representative EEG  
347 and ECoG datasets in Figure 3 A-D).

348

349 In addition to the individual changes observed to LZc and 1/f slope due to anesthesia, we analyzed  
350 the specific relation between these two measures and how it changed due to an increase in inhibitory  
351 activity. To this end, we analyzed the correlation, across electrodes, between 1/f slope and LZc. We  
352 found a significant and marked inverse relation in both datasets, in accordance with the results of both  
353 our models. The correlation between these two measures was consistently found for all datasets

354 analyzed (all  $p < 0.05$ ; see also Supplementary Materials). Interestingly, this correlation was strongly  
355 modulated by the propofol-induced reduction in E/I balance. In EEG data we observed an increase in  
356 the Pearson product-moment correlation coefficient between 1/f slope and LZc (all simple main effects  
357  $p < 0.001$ ). In contrast, ECoG data showed a reduction of this coefficient in response to propofol (all  
358 simple main effects  $p < 0.001$ ). We believe this apparent discrepancy (increase in EEG and decrease  
359 in ECoG), is due to different baseline levels of LZc and 1/f slope across species (see Discussion).  
360  
361

362 **Discussion**

363

364 In this article we explored the possible relation between two apparently dissimilar time series  
365 characteristics of brain field potentials. Our results show a robust and inverse relation between LZc  
366 and 1/f slope, constitutive of a one-to-one mapping in both synthetic and experimental data. This  
367 relation closely followed an x-inverted asymmetric sigmoid function in the whole range of both  
368 measures in synthetic data generated by iDFT models. This behavior was, although scaled, present  
369 even when the spectral power law behavior only comprised a small portion of all frequencies of the  
370 signal (Figure 1C, D). This is of particular importance as real electrophysiological signals do not show  
371 a 1/f spectral power decay in the whole frequency range (He et al., 2010). In a more neurobiologically  
372 plausible model, we observed a similar inverse relation between LZc and 1/f slope, which adjusted to  
373 the same mathematical function. Moreover, we show that this relation follows the balance between  
374 excitation and inhibition, with greater complexity and flatter 1/f slopes associated with the  
375 predominance of excitatory over inhibitory activity. At the same time, although the offset was  
376 modulated by E/I balance, the complexity of the signal was completely independent of the offset. We  
377 probed this link between E/I balance and LZc by directly contrasting 1/f slope and LZc changes due to  
378 a pharmacological intervention. Propofol, a GABA agonist, produced changes in both measures  
379 consistent with what our models predicted: a reduced LZc and increased 1/f slope in both human EEG  
380 and monkey ECoG data.

381

382 The slope of the spectral power law has been linked to E/I balance (Lombardi et al., 2017), while LZc  
383 reflects the vastness of the repertoire of brain activity patterns (Wenzel et al., 2019). Although these  
384 two measures may seem unrelated at first, we hypothesize that both reflect a specific type of entropy  
385 of cortical systems. The entropy of a system can be characterized by the probabilities of each of its  
386 possible states (Shannon entropy), but also in terms of the probabilities of the transitions between  
387 these states in time, namely its entropy rate (or transition entropy). Low values of 1/f slope represent a  
388 flatter power spectrum, which is characteristic of irregular desynchronized cortical states, while  
389 steeper 1/f slopes showcase mainly low frequency periodic behavior (Fazlali et al., 2016; Voytek &  
390 Knight, 2015). These two extremes can also be characterized in terms of their signals' transition  
391 entropy: flat 1/f slopes (similar to white noise) have low autocorrelations and thus high entropy rates,  
392 while in mainly periodic signals, its history strongly constrains future values; thus they present low  
393 transition entropies. Interestingly, Amigó et al. (2004) have shown for electrophysiological signals that  
394 LZc closely reflects the entropy rate of the underlying system. This is particularly useful as direct  
395 estimations of entropy rate require much longer data series than LZ76 (Amigó et al., 2004). In our  
396 implementation of LZc, because we binarize each signal based on its median value, the number of  
397 points in each state (ones and zeros) is equal, which results in a constant Shannon or distribution  
398 entropy. In this line, we believe signal's LZc could be reflecting not only the vastness of the repertoire  
399 of cortical activity, but also specifically the transition entropy of the system. Thus, the strong relation  
400 we observe between LZc and 1/f slope suggests both measures are, at least partially, driven by the  
401 transition entropy of the underlying cortical system.

402

403 In addition to the 1/f slope, the PSD offset has been shown to reflect relevant physiological  
404 information (Miller et al., 2014; Manning et al., 2009). Changes in the offset have been suggested to  
405 be linked to the fMRI BOLD signal, making it a potential bridge between different spatial and temporal  
406 scales of brain features (Wen & Liu, 2016). Moreover, computational modeling has shown that  
407 broadband spectral shifts reflect changes in local neural populations' total firing rate (Miller et al.,  
408 2009; Wen & Liu, 2016). Our results show that quantifying aperiodic activity while manipulating the E/I  
409 balance and firing rates reveals that only the offset is specifically modulated by firing rate (Figure 2B)  
410 while the slope was only specifically modulated by shifts in E/I the balance (Fig. 2C). In addition, LZc  
411 was not dependent on the firing rate, but was strongly regulated by E/I balance. Although we observe  
412 a relation between 1/f offset and LZc, this effect is not specific as the same offset can result from  
413 many E/I balances and firing rates combinations (Figure 2B, Supplementary Figure 2). Previous spike  
414 model simulations have shown that E/I balance is strongly related to the entropy of the modeled  
415 system (Agrawal et al., 2018). In this line, we believe the relation found here between 1/f and LZc  
416 suggests that the transition entropy and the E/I balance of cortical systems could be more closely  
417 linked than previously thought.

418

419 Future work should include the role of oscillations, as recent evidence has suggested that low  
420 frequency 1/f slope is dependent on alpha-band activity (Becker et al., 2018). Despite this potential  
421 limitation of our simulations, which lacked oscillations, we observe the same general behavior in EEG  
422 and ECoG data, which does present oscillatory activity. It should be noted that the exponent of the  
423 power-law has been characterized in different frequency ranges across the literature (He et al., 2010;  
424 Becker et al., 2018; Lombardi et al., 2017; Miskovic et al., 2019; Trakoshis et al., 2020;  
425 Schawronkow & Voytek, n.d.). In this line, the frequency ranges that we employed here were based  
426 on generating interpretations that could be extrapolated for both local and global measures of field  
427 potentials. Moreover, we have shown that changing the initial and cut-off frequency of the power-law  
428 decay does not qualitatively affect the relation between 1/f slope and LZc (Fig. 1C, 1D). From this  
429 perspective, our results suggest that 1-70 Hz and 1-40 Hz frequency ranges share the characteristic  
430 of representing the global state of cortical activity. Further work could include the modeling of tight and  
431 loose coupling regimes between excitation and inhibition, which has been suggested as a more  
432 plausible mechanism of cortical E/I balance regulation (Dehghani et al., 2016; Denève & Machens,  
433 2016; Trakoshis et al., 2020; Denève & Machens, 2016). These limitations are probably why we also  
434 observe a reduced range of both LZc and 1/f slope, despite modeling a broad E/I balance range. We  
435 observe a consistent relation between 1/f slope and LZc across two models and two brain field  
436 potential datasets despite this limitation.

437 The E/I-balance shapes cortical neurons' computational properties (Denève & Machens, 2016), and  
438 therefore behavior and cognition (Harris & Thiele, 2011). Alterations of this balance have been related  
439 to schizophrenia (Uhlhaas & Singer, 2010), autism (Rubenstein & Merzenich, 2003), and epilepsy  
440 (Žiburkus et al., 2013), which suggests it might also play an unexplored role in other neuropsychiatric  
441 disorders (Sohal & Rubenstein, 2019). Moreover, E/I balance is not a static property of the cortex. It

442 changes depending on the behavioral state (Waschke et al., 2019), task demands (Pfeffer et al.,  
443 2018; Waschke et al., 2019), performance (Sheehan et al., 2018) and depending on circadian  
444 rhythms (Bridi et al., 2020), which suggests that this property is under fine dynamic control. It has  
445 been proposed that cortical states and neural complexity could be regulated by subcortical cholinergic  
446 and noradrenergic activity (D'Andola et al., 2018); (Nghiem et al., 2020). Future research could  
447 address this topic with a multiscale approach to the underlying cortical states of neuromodulation-  
448 related psychiatric disorders (Medel et al., 2019). From this perspective, the readout of E/I balance  
449 through brain signal complexity and the power-law of the PSD could be useful for addressing  
450 fundamental questions about the modulation of the state dependence of cortical computations. This  
451 offers new methods to understand the general mechanisms of cortical states functioning, as well as  
452 broadening the diagnostic and therapeutic tools related to neuropsychiatric disorders.

453

454

#### 455 ***Acknowledgments***

456

457 We would like to thank Chile's national agency for science ANID for their financial support to GB  
458 (postdoctoral project N° 3200248), TO (FONDECYT N° 1180932) and to VM (doctoral scholarship N°  
459 (21180871). We also thank Fernanda Weinstein for her valuable comments on previous versions of  
460 this manuscript.

461

462

463

464 **References**

465 Agrawal, V., Cowley, A. B., Alfaori, Q., Larremore, D. B., Restrepo, J. G., & Shew, W. L. (2018).  
466 Robust entropy requires strong and balanced excitatory and inhibitory synapses. *Chaos* , 28(10),  
467 103115.

468 Akeju, O., Pavone, K. J., Westover, M. B., Vazquez, R., Prerau, M. J., Harrell, P. G., Hartnack, K. E.,  
469 Rhee, J., Sampson, A. L., Habeeb, K., Gao, L., Pierce, E. T., Walsh, J. L., Brown, E. N., &  
470 Purdon, P. L. (2014). A comparison of propofol- and dexmedetomidine-induced  
471 electroencephalogram dynamics using spectral and coherence analysis. *Anesthesiology*, 121(5),  
472 978–989.

473 Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. *Science*, 322(5903),  
474 876–880.

475 Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit, R. A. (2019). Raincloud plots: a multi-  
476 platform tool for robust data visualization. *Welcome Open Research*, 4, 63.

477 Amigó, J. M., Szczepański, J., Wajnryb, E., & Sanchez-Vives, M. V. (2004). Estimating the entropy  
478 rate of spike trains via Lempel-Ziv complexity. *Neural Computation*, 16(4), 717–736.

479 Arsiwalla, X. D., & Verschure, P. (2018). Measuring the Complexity of Consciousness. *Frontiers in*  
480 *Neuroscience*, 12, 424.

481 Bayne, T., Hohwy, J., & Owen, A. M. (2016). Are There Levels of Consciousness? *Trends in*  
482 *Cognitive Sciences*, 20(6), 405–413.

483 Becker, R., Van de Ville, D., & Kleinschmidt, A. (2018). Alpha Oscillations Reduce Temporal Long-  
484 Range Dependence in Spontaneous Human Brain Activity. *The Journal of Neuroscience: The*  
485 *Official Journal of the Society for Neuroscience*, 38(3), 755–764.

486 Boncompte, G., Villena-González, M., Cosmelli, D., & López, V. (2016). Spontaneous Alpha Power  
487 Lateralization Predicts Detection Performance in an Un-Cued Signal Detection Task. *PloS One*,  
488 11(8), e0160347.

489 Bridi, M. C. D., Zong, F.-J., Min, X., Luo, N., Tran, T., Qiu, J., Severin, D., Zhang, X.-T., Wang, G.,  
490 Zhu, Z.-J., He, K.-W., & Kirkwood, A. (2020). Daily Oscillation of the Excitation-Inhibition Balance  
491 in Visual Cortical Circuits. *Neuron*, 105(4), 621–629.e4.

492 Brunel, N. (2000). Dynamics of networks of randomly connected excitatory and inhibitory spiking  
493 neurons. *Journal of Physiology, Paris*, 94(5-6), 445–463.

494 Casali, A. G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K. R., Casarotto, S., Bruno,  
495 M.-A., Laureys, S., Tononi, G., & Massimini, M. (2013). A theoretically based index of  
496 consciousness independent of sensory processing and behavior. *Science Translational Medicine*,  
497 5(198), 198ra105.

498 Chennu, S., O'Connor, S., Adapa, R., Menon, D. K., & Bekinschtein, T. A. (2016). Brain Connectivity  
499 Dissociates Responsiveness from Drug Exposure during Propofol-Induced Transitions of  
500 Consciousness. *PLoS Computational Biology*, 12(1), e1004669.

501 D'Andola, M., Rebollo, B., Casali, A. G., Weinert, J. F., Pigorini, A., Villa, R., Massimini, M., &  
502 Sanchez-Vives, M. V. (2018). Bistability, Causality, and Complexity in Cortical Networks: An In  
503 Vitro Perturbational Study. *Cerebral Cortex*, 28(7), 2233–2242.

504 Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini, D., & Corbetta, M. (2014). How  
505 local excitation-inhibition ratio impacts the whole brain dynamics. *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, 34(23), 7886–7898.

506 Dehghani, N., Peyrache, A., Telenczuk, B., Le Van Quyen, M., Halgren, E., Cash, S. S., Hatsopoulos,  
507 N. G., & Destexhe, A. (2016). Dynamic Balance of Excitation and Inhibition in Human and  
508 Monkey Neocortex. *Scientific Reports*, 6, 23176.

509 Denève, S., & Machens, C. K. (2016). Efficient codes and balanced networks. *Nature Neuroscience*,  
510 19(3), 375–382.

511 Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic  
512 conductances recreate in vivo-like activity in neocortical neurons. *Neuroscience*, 107(1), 13–24.

513 Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in  
514 vivo. *Nature Reviews. Neuroscience*, 4(9), 739–751.

515 Fazlali, Z., Ranjbar-Slamloo, Y., Adibi, M., & Arabzadeh, E. (2016). Correlation between Cortical State  
516 and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex. *Frontiers in  
517 Neural Circuits*, 10, 14.

518 Ferenets, R., Lipping, T., Anier, A., Jäntti, V., Melto, S., & Hovilehto, S. (2006). Comparison of entropy  
519 and complexity measures for the assessment of depth of sedation. *IEEE Transactions on Bio-Medical  
520 Engineering*, 53(6), 1067–1077.

521 Gao, R., Peterson, E. J., & Voytek, B. (2017). Inferring synaptic excitation/inhibition balance from field  
522 potentials. In *NeuroImage* (Vol. 158, pp. 70–78).

524 https://doi.org/10.1016/j.neuroimage.2017.06.078

525 Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., &

526 Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. *NeuroImage*, 86,

527 446–460.

528 Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in

529 vivo is generated through a dynamic balance of excitation and inhibition. *The Journal of*

530 *Neuroscience: The Official Journal of the Society for Neuroscience*, 26(17), 4535–4545.

531 Haller, M., Donoghue, T., Peterson, E., Varma, P., Sebastian, P., Gao, R., Noto, T., Knight, R. T.,

532 Shestyuk, A., & Voytek, B. (n.d.). *Parameterizing neural power spectra*.

533 https://doi.org/10.1101/299859

534 Harris, K. D., & Thiele, A. (2011). Cortical state and attention. *Nature Reviews. Neuroscience*, 12(9),

535 509–523.

536 He, B. J. (2014). Scale-free brain activity: past, present, and future. *Trends in Cognitive Sciences*,

537 18(9), 480–487.

538 He, B. J., & Raichle, M. E. (2009). The fMRI signal, slow cortical potential and consciousness. *Trends*

539 *in Cognitive Sciences*, 13(7), 302–309.

540 He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and

541 functional significance of scale-free brain activity. *Neuron*, 66(3), 353–369.

542 Huupponen, E., Maksimow, A., Lapinlampi, P., Särkelä, M., Saastamoinen, A., Snapir, A., Scheinin,

543 H., Scheinin, M., Meriläinen, P., Himanen, S.-L., & Jääskeläinen, S. (2008).

544 Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.

545 *Acta Anaesthesiologica Scandinavica*, 52(2), 289–294.

546 Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous Neural Oscillations Bias

547 Perception by Modulating Baseline Excitability. *The Journal of Neuroscience: The Official Journal*

548 *of the Society for Neuroscience*, 37(4), 807–819.

549 Jas, M., Larson, E., Engemann, D. A., Leppäkangas, J., Taulu, S., Hämäläinen, M., & Gramfort, A.

550 (2018). A Reproducible MEG/EEG Group Study With the MNE Software: Recommendations,

551 Quality Assessments, and Good Practices. *Frontiers in Neuroscience*, 12, 530.

552 Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced alpha

553 band power changes in the human EEG and attention. *Neuroscience Letters*, 244(2), 73–76.

554 Lempel, A., & Ziv, J. (1976). On the Complexity of Finite Sequences. *IEEE Transactions on*  
555 *Information Theory / Professional Technical Group on Information Theory*, 22(1), 75–81.

556 Lombardi, F., Herrmann, H. J., & de Arcangelis, L. (2017). Balance of excitation and inhibition  
557 determines 1/f power spectrum in neuronal networks. *Chaos* , 27(4), 047402.

558 Manning, J. R., Jacobs, J., Fried, I., & Kahana, M. J. (2009). Broadband shifts in local field potential  
559 power spectra are correlated with single-neuron spiking in humans. *Journal of*  
560 *Neuroscience*, 29(43), 13613-13620.

561 Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., & Tononi, G. (2005). Breakdown of  
562 cortical effective connectivity during sleep. *Science*, 309(5744), 2228–2232.

563 Medel, V., Valdés, J., Castro, S., Ossandón, T., & Boncompte, G. (2019). Commentary: Amplification  
564 and Suppression of Distinct Brainwide Activity Patterns by Catecholamines [Review of  
565 *Commentary: Amplification and Suppression of Distinct Brainwide Activity Patterns by*  
566 *Catecholamines*]. *Frontiers in Behavioral Neuroscience*, 13, 217.

567 Miller, K. J., Honey, C. J., Hermes, D., Rao, R. P. N., denNijs, M., & Ojemann, J. G. (2014).  
568 Broadband changes in the cortical surface potential track activation of functionally diverse  
569 neuronal populations. *NeuroImage*, 85 Pt 2, 711–720.

570 Miller, K. J., Sorensen, L. B., Ojemann, J. G., & den Nijs, M. (2009). Power-law scaling in the brain  
571 surface electric potential. *PLoS Computational Biology*, 5(12), e1000609.

572 Miskovic, V., MacDonald, K. J., Rhodes, L. J., & Cote, K. A. (2019). Changes in EEG multiscale  
573 entropy and power-law frequency scaling during the human sleep cycle. *Human Brain Mapping*,  
574 40(2), 538–551.

575 Nghiêm, T.-A. E., Tort-Colet, N., Górska, T., Ferrari, U., Moghimyfiroozabad, S., Goldman, J. S.,  
576 Teleńczuk, B., Capone, C., Bal, T., di Volo, M., & Destexhe, A. (2020). Cholinergic Switch  
577 between Two Types of Slow Waves in Cerebral Cortex. *Cerebral Cortex* , 30(6), 3451–3466.

578 Pfeffer, T., Avramiea, A.-E., Nolte, G., Engel, A. K., Linkenkaer-Hansen, K., & Donner, T. H. (2018).  
579 Catecholamines alter the intrinsic variability of cortical population activity and perception. *PLoS*  
580 *Biology*, 16(2), e2003453.

581 Purdon, P. L., & Sampson, A. (2015). Clinical electroencephalography for anesthesiologists part I:  
582 background and basic signatures. : *The Journal of* ....  
583 <https://anesthesiology.pubs.asahq.org/Article.aspx?articleid=2430415>

584 Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S. (2014). Pupil  
585 fluctuations track fast switching of cortical states during quiet wakefulness. *Neuron*, 84(2), 355–  
586 362.

587 Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: increased ratio of  
588 excitation/inhibition in key neural systems. *Genes, Brain, and Behavior*, 2(5), 255–267.

589 Rubin, R., Abbott, L. F., & Sompolinsky, H. (2017). Balanced excitation and inhibition are required for  
590 high-capacity, noise-robust neuronal selectivity. *Proceedings of the National Academy of  
591 Sciences of the United States of America*, 114(44), E9366–E9375.

592 Sarasso, S., Rosanova, M., Casali, A. G., Casarotto, S., Fecchio, M., Boly, M., Gosseries, O., Tononi,  
593 G., Laureys, S., & Massimini, M. (2014). Quantifying cortical EEG responses to TMS in (un)  
594 consciousness. *Clinical EEG and Neuroscience: Official Journal of the EEG and Clinical  
595 Neuroscience Society*, 45(1), 40–49.

596 Schartner, M., Seth, A., Noirhomme, Q., Boly, M., Bruno, M.-A., Laureys, S., & Barrett, A. (2015).  
597 Complexity of Multi-Dimensional Spontaneous EEG Decreases during Propofol Induced General  
598 Anaesthesia. *PloS One*, 10(8), e0133532.

599 Schawronkow, N., & Voytek, B. (n.d.). Longitudinal changes in aperiodic and periodic activity in  
600 electrophysiological recordings in the first seven months of life.  
601 <https://doi.org/10.1101/2020.08.18.256016>

602 Sheehan, T. C., Sreekumar, V., Inati, S. K., & Zaghloul, K. A. (2018). Signal Complexity of Human  
603 Intracranial EEG Tracks Successful Associative-Memory Formation across Individuals. *The  
604 Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, 38(7), 1744–1755.

605 Sohal, V. S., & Rubenstein, J. L. R. (2019). Excitation-inhibition balance as a framework for  
606 investigating mechanisms in neuropsychiatric disorders. In *Molecular Psychiatry* (Vol. 24, Issue 9,  
607 pp. 1248–1257). <https://doi.org/10.1038/s41380-019-0426-0>

608 Tononi, G., & Edelman, G. M. (1998). Consciousness and complexity. *Science*, 282(5395), 1846–  
609 1851.

610 Trakoshis, S., Martínez-Cañada, P., Rocchi, F., Canella, C., You, W., Chakrabarti, B., Ruigrok, A. N.,  
611 Bullmore, E. T., Suckling, J., Markicevic, M., Zerbi, V., MRC AIMS Consortium, Baron-Cohen, S.,  
612 Gozzi, A., Lai, M.-C., Panzeri, S., & Lombardo, M. V. (2020). Intrinsic excitation-inhibition  
613 imbalance affects medial prefrontal cortex differently in autistic men versus women. *eLife*, 9.

614 <https://doi.org/10.7554/eLife.55684>

615 Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia.

616 *Nature Reviews. Neuroscience*, 11(2), 100–113.

617 van Langen, J (2020). Open-visualizations for repeated measures in R.

618 <https://github.com/jorvlan/open-visualizations>.

619 van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory

620 and inhibitory activity. *Science*, 274(5293), 1724–1726.

621 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,

622 Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,

623 Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... SciPy 1.0 Contributors. (2020).

624 SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature Methods*, 17(3),

625 261–272.

626 Voytek, B., & Knight, R. T. (2015). Dynamic network communication as a unifying neural basis for

627 cognition, development, aging, and disease. *Biological Psychiatry*, 77(12), 1089–1097.

628 Waschke, L., Tune, S., & Obleser, J. (2019). Local cortical desynchronization and pupil-linked arousal

629 differentially shape brain states for optimal sensory performance. *eLife*, 8.

630 <https://doi.org/10.7554/eLife.51501>

631 Welch, T. A. (1984). A technique for high-performance data compression. *Computer*, 6, 8–19.

632 Wen, H., & Liu, Z. (2016). Broadband Electrophysiological Dynamics Contribute to Global Resting-

633 State fMRI Signal. In *The Journal of Neuroscience* (Vol. 36, Issue 22, pp. 6030–6040).

634 <https://doi.org/10.1523/jneurosci.0187-16.2016>

635 Wenzel, M., Han, S., Smith, E. H., Hoel, E., Greger, B., House, P. A., & Yuste, R. (2019). Reduced

636 Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced Loss of

637 Consciousness. *Cell Systems*, 8(5), 467–474.e4.

638 Yanagawa, T., Chao, Z. C., Hasegawa, N., & Fujii, N. (2013). Large-scale information flow in

639 conscious and unconscious states: an ECoG study in monkeys. *PLoS One*, 8(11), e80845.

640 Zhang, X. S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth of

641 anesthesia for patients. *IEEE Transactions on Bio-Medical Engineering*, 48(12), 1424–1433.

642 Žiburkus, J., Cressman, J. R., & Schiff, S. J. (2013). Seizures as imbalanced up states: excitatory and

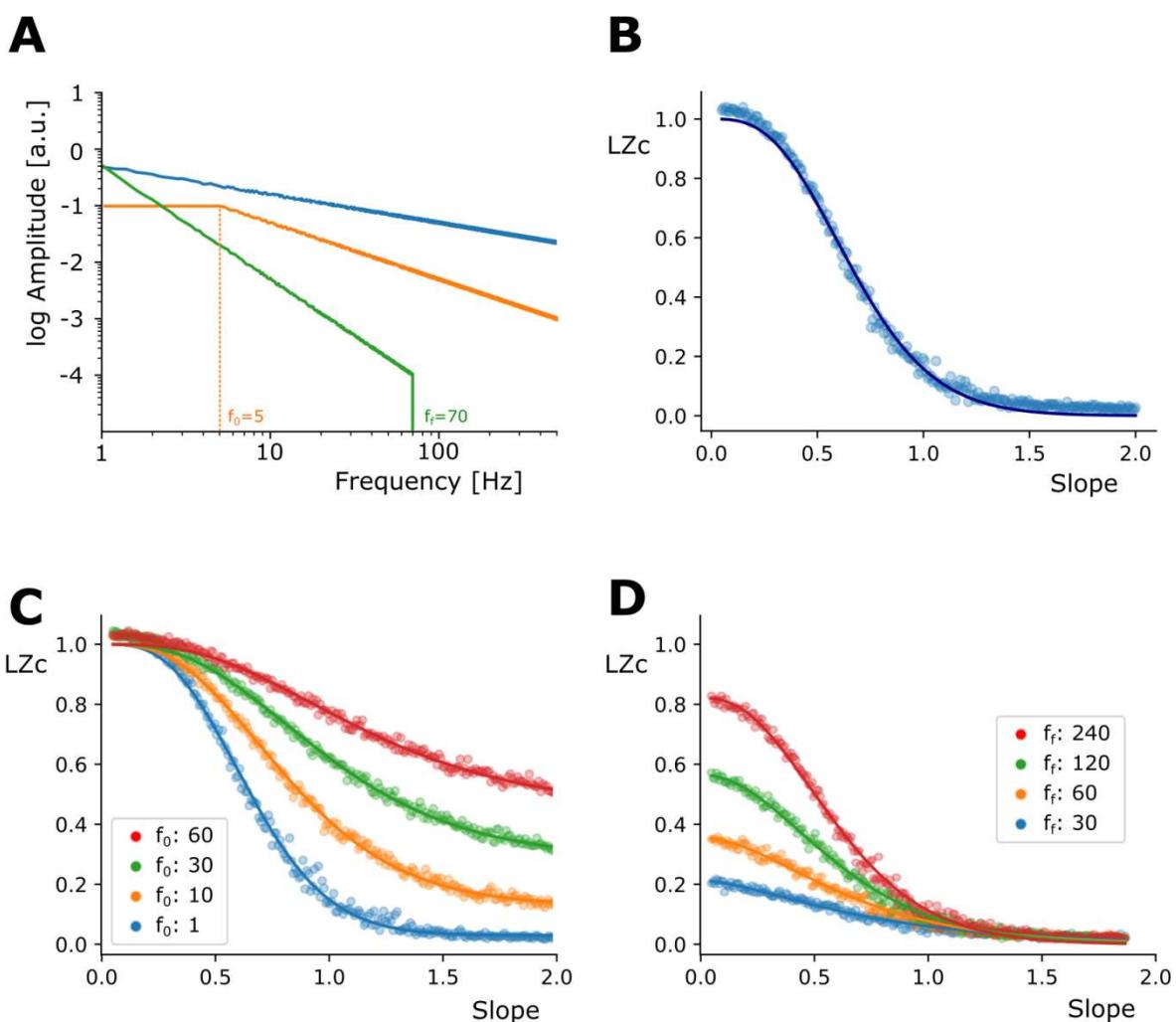
643 inhibitory conductances during seizure-like events. *Journal of Neurophysiology*, 109(5), 1296–

644 1306.

645

646 **Figures**

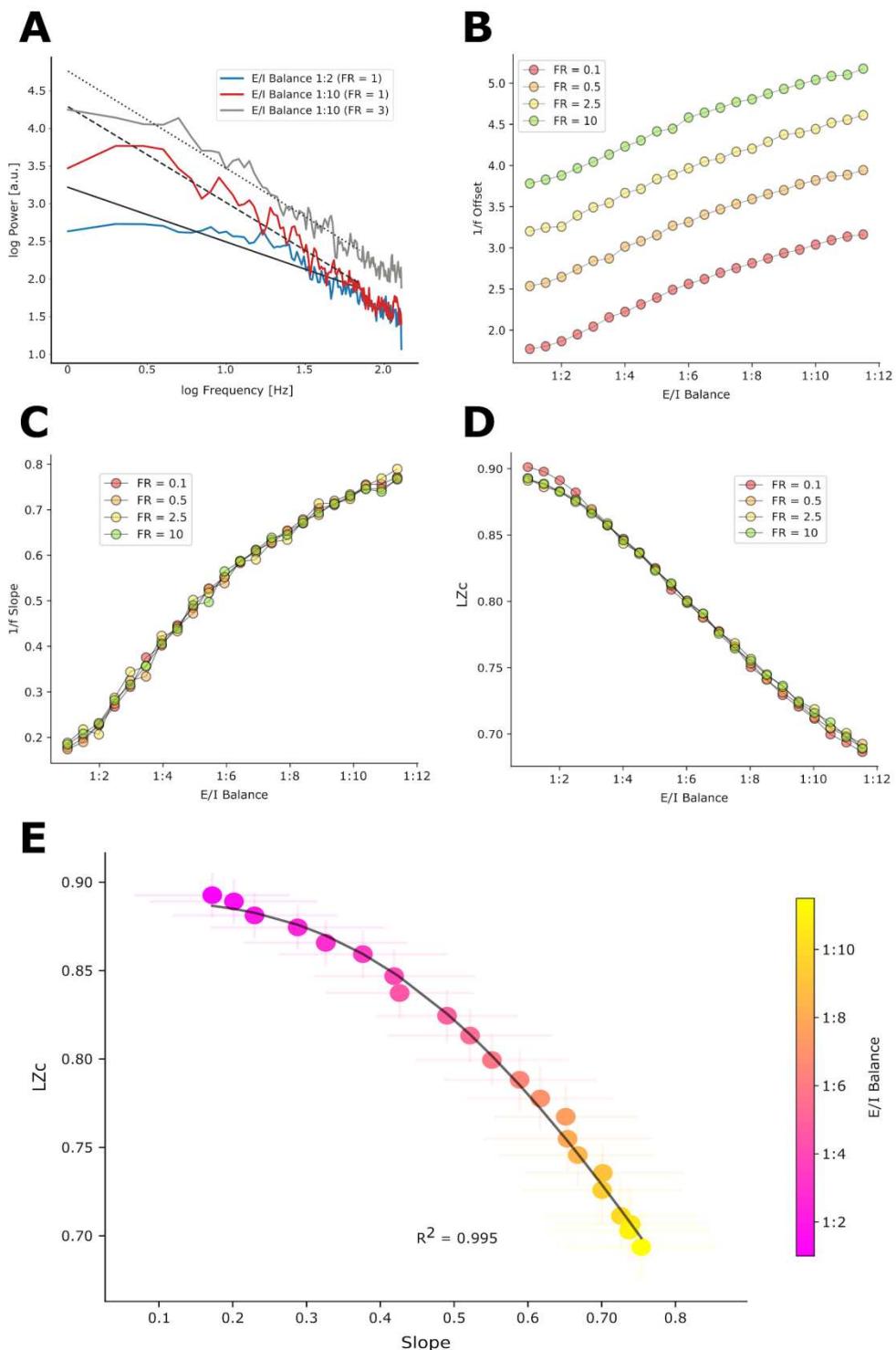
647



648

649

650 **Figure 1. iDFT models showcase the inverse relation between LZc and 1/f Slope. (A)** Illustration  
651 of the amplitude spectrum in terms of frequency for signals composed using the iDFT model;  $f_0$  and  $f_f$   
652 represent the initial and final frequency of the power law behavior. **(B)** Scatter plot of the LZc of 256  
653 signals constructed with different 1/f slopes. Solid line corresponds to the best fit of Equation 3.1. **(C)**  
654 and **(D)** illustrate the effect of including four different  $f_0$ 's and  $f_f$ 's in the construction of signals  
655 respectively. Although the curves are scaled in comparison to (B), an homologous inverse relation is  
656 observed.



657  
658  
659  
660  
661  
662  
663  
664  
665  
666

**Figure 2. LZc and 1/f slope as a function of E/I balance.** (A) Power Spectral Density plots of sample simulated brain signals with different E/I balances and total firing rates constructed using a cortical field potential model. (B) Plot showing the relation between offset and E/I balance, and its relation to firing rate. (C) Plots showing the positive relation between 1/f slope and E/I balance, which is independent of firing rate. (D) Plot showing the inverse relation between LZc and E/I balance. This relation was independent of firing rate. (E) Color scatter plot showcasing the relation observed between 1/f slope and LZc across a range of E/I balances (color bar) error bars represent the standard deviation across 100 simulations.

