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Abstract

Characterization of cortical states is essential for understanding brain functioning in the absence of
external stimuli. The balance between excitation and inhibition and the number of non-redundant
activity patterns, indexed by the 1/f slope and LZc respectively, distinguish cortical states. However,
the relation between these two measures has not been characterized. Here we analyzed the relation
between 1/f slope and LZc with two modeling approaches and in empirical human EEG and monkey
ECoG data. We contrasted resting state with propofol anesthesia, which is known to modulate the
excitation-inhibition balance. We found convergent results among all strategies employed, showing an
inverse and not trivial monotonic relation between 1/f slope and complexity. This behavior was
observed even when the signals' spectral properties were heavily manipulated, consistent at ECoG
and EEG scales. Models also showed that LZc was strongly dependent on 1/f slope but independent
of the signal's spectral power law's offset. Our results show that, although these measures have very
distinct mathematical origins, they are closely related. We hypothesize that differentially entropic
regimes could underlie the link between the excitation-inhibition balance and the vastness of

repertoire of cortical systems.

Keywords: Cortical States | Lempel-Ziv Complexity | 1/f Slope | Excitation/Inhibition Balance
| Anesthesia | Propofol
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Introduction

Spontaneously occurring brain activity patterns in the cerebral cortex constitute the so-called cortical
states (Harris & Thiele, 2011; Reimer et al., 2014). These are present without a direct link to external
stimuli, and constitute the basis of essential cognitive processes like attention (McGinley(Harris &
Thiele, 2011; Reimer et al., 2014) and global states of consciousness (GSC; e.g. sleep, wakefulness
and anesthesia; (Bayne et al., 2016; He & Raichle, 2009). One of the most prominent strategies to
characterize cortical states has been to analyze the spectral properties of their associated field
potentials like electroencephalogram (EEG) and local field potential (LFP). In the particular case of
attention, it has been shown that both induced (Klimesch et al., 1998) and spontaneous (Boncompte
et al., 2016; lemi et al., 2017) modulations of properties of alpha-band oscillations broadly explain the
attentional state of subjects. However, the characterization of GSC in terms of the unique properties
of their associated cortical states has proven to be more elusive. Traditional spectral characteristics of
brain field potentials cannot fully distinguish between GSC (Purdon & Sampson, 2015). This is well
illustrated for the case of anesthetics that equally produce a cease of phenomenological experiences
in loss of consciousness, but show diverse spectral neural signatures. For example, transitions from
wakefulness to anesthesia induced by propofol increase and frontalize alpha oscillations, while
dexmedetomidine anesthesia instead induces spindle-like activity without significant modulations of
alpha oscillations (Akeju et al., 2014; Huupponen et al., 2008). In recent years, new methodologies
have emerged with promising results, which aim at characterizing background cortical states in

general, but also specifically for GSC.

Cortical neurons in awake animals show strong membrane potential fluctuations which cause irregular
discharge similar to a Poisson process, known as high conductance states (Destexhe et al., 2003).
These states generate the background activity that support high-order processes are computed. It
has been shown that neurons can achieve irregular firing patterns with balanced excitatory and
inhibitory synaptic activity (van Vreeswijk & Sompolinsky, 1996; Brunel, 2000). From this perspective,
cortical states depend on global brain variables, such as relative levels of excitation and inhibition
(Haider et al., 2006). Moreover, from local circuit activity to whole-brain modeling, the computational
characterization of the balance between excitation and inhibition (E/I balance) has shown to modulate
information transmission and entropy (Deco et al., 2014; Rubin et al., 2017; Agrawal et al., 2018). On
the other hand, perturbations in the E/I balance has shown to be related with pathological brain
activity (Ziburkus et al., 2013) and neuropsychiatric disorders (Haider et al., 2006; Uhlhaas & Singer,
2010; Rubenstein & Merzenich, 2003; Sohal & Rubenstein, 2019). A particularly successful way to
quantify E/I balance is the slope of the power law decay of spectral power of brain field potentials.
Specifically, models have been shown that the background 1/f slope of the power spectral density
(PSD) emerges from the sum of stochastic excitatory and inhibitory currents (Destexhe et al., 2001;
Sheehan et al., 2018; Gao et al., 2017). Moreover, empirical validation of these models has shown
that the E/I balance can be properly inferred from background activity by parameterizing the 1/f shape
of the PSD (Gao et al., 2017; Trakoshis et al., 2020).
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78 Interest in the detailed informational structure of cortical states has produced a recent surge of
79 information-theory based approaches (Arsiwalla & Verschure, 2018; Ferenets et al., 2006; Sarasso et
80 al., 2014; Zhang et al., 2001). Data analysis strategies based on Lempel-Ziv complexity (LZc; Lempel
81 & Ziv, 1976), like the Perturbational Complexity Index (Casali et al., 2013) have been successful for
82  characterizing subject's GSC during dreamless sleep and during anesthesia-induced
83 unconsciousness, with independence of the anesthetic used. It has been shown that LZc decreases
84 concomitantly with the loss of phenomenological possibilities, which is consistent with theoretical
85  views of consciousness (Tononi & Edelman, 1998). Lempel-Ziv complexity algorithm computes the
86 number of non-redundant segments of a signal (Lempel & Ziv, 1976), which in turn, when applied to
87 brain data, is related to the abundance of the repertoire of brain activity patterns observed (Wenzel et
88  al., 2019). During the transition from wakefulness to sleep or anesthesia, the number of possible
89 experiences and cognitive processes that one can have is greatly reduced. Thus, it is expectable that
90 the complexity of brain activity follows the same pattern. In fact, this reduction of the repertoire of
91 brain activity has been seen in rats at the single neuron level using a myriad of convergent measures
92 of cortical diversity, including LZc (Wenzel et al., 2019) which suggests that LZc can be applied as a

93  multiscale proxy of neural repertoire.

94
95 Although 1/f slope and LZc have distant mathematical origins, one coming from spectral analysis and
96 the other from Information Theory, both have been shown to correlate with GSC (Miskovic et al.,
97  2019; Zhang et al., 2001). We hypothesize that this could be due to an underlying intrinsic relation
98 between E/I balance and the repertoire of activity patterns in cortical systems. Here we employed
99 three complementary approaches to study the possible relation between 1/f slope and LZc and thus
100 implicitly between E/I balance and the abundance of non-redundant repertoire in brain field potentials.
101 We analyzed this relation in: (i) a simple inverse Discrete Fourier Transform (iDFT) model, (ii) a
102 cortical field potential model, (iii) human EEG data, and (iv) monkey ECoG anesthesia data. Our
103  results consistently show a non-trivial relation between 1/f slope and LZc in brain field potentials, and
104  suggest that both could be related to the underlying entropy rate of the system..
105
106
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107  Materials and Methods

108

109 iDFT Models

110 To study the relation between the power-law slope of neuronal signals and their complexity in time,

111 we first employed an iDFT modeling strategy. We constructed signals with different 1/f slopes, among
112  other spectral parameters, and analyzed their resulting LZc. Each signal was simulated using 5
113  seconds of length sampled at 1KHz, which resulted in a Nyquist frequency (N;) of 500Hz. Each time
114  series was initially constructed in the frequency domain as the product of its amplitude and phase
115 components. The amplitude of each frequency component was set accordingly to a power-law

116  distribution, as illustrated in Equation 1:
117 Af)=0+f~ (1)

118  where fis the frequency of each term, A(f) is the amplitude of each frequency component, O is the
119  offset of the curve, the amplitude of the 1 Hz component, and s corresponds to the slope of the
120 power-law. Each initial phase was randomly assigned from a uniform distribution (-m to m). iDFT
121 algorithm (as implemented in Numpy; (Virtanen et al., 2020) was applied to the product of the

122 amplitude (A(f) and phase components to obtain the time series data according to Equation 2:
123 signal(t) = iDFT (A(f) * exp(i*6y) (2)

124 where i is the imaginary unit, and 6, corresponds to the initial phase of each frequency. Only positive
125  frequencies were employed. To better model the spectral properties of physiologically plausible neural
126 signals, in addition to constructing signals using the whole range of possible frequencies (0 to N;) we
127 also applied two types of constraints to the power-law distribution: an initial frequency (f;) and a final
128  frequency (). Both of these are illustrated in Figure 1A. Specifically, f, corresponds to setting all
129 amplitudes of frequencies lower than f, to the value of f,, thus flattening the curve to the left of f,. On
130 the other hand, applying a f; corresponds to setting the amplitude of every frequency higher than f; to
131  zero. To maintain time series stationarity, a requirement of the LZc algorithm (Lempel & Ziv, 1976;
132  Zhang et al., 2001), all iDFT models were made with a f, = 1Hz unless otherwise stated. For every set

133  of simulations, we generated a 256 time series with different values of s.

134

135  LZc algorithm

136 To compute the complexity of time series (both simulated and empirical), we used the Lempel-Ziv
137 Complexity algorithm as introduced by Lempel and Ziv (Lempel & Ziv, 1976). This algorithm quantifies
138 the number of distinct and non-redundant patterns of a signal and it can serve as a close analogue of
139  the entropy rate of a signal (Amigd et al., 2004). We implemented the LZ76 algorithm using custom
140 made Python scripts (available in Supplementary Materials). Briefly, every time series was first
141 binarized, assigning a value of 1 for each time point with an amplitude greater than the median of the
142 entire signal (5 s), and zero for those below it. Afterwards, the LZ76 algorithm was applied to the

143 resulting so-called symbolic signal. To quantify the number of non-redundant patterns, a sequential
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144 evaluation of the signal is performed. At each point, the algorithm analyzes whether the following
145 segment of the signal can be recreated from the already analyzed signal. In this sense, if the following
146  sequence is not contained in the previously analyzed signal, then the complexity increases. If the next
147  sequence is already contained in the already analyzed signal, the algorithm advances without
148  increasing the complexity. An illustrative description of the algorithm for two sample sequences can
149 be found in supplementary materials (Supplementary Figure 1). The number of non-redundant
150 patterns in a signal is then normalized to produce the final LZc value, which ranges (asymptotically for
151 long signals) from 0 to 1. The LZ76 algorithm has been widely applied to analyze neural signals, from
152 spike trains to EEG field potentials;, however, it should not be mistaken with the similar Lempel-Ziv-
153  Welch algorithm (Welch, 1984), also recently employed in neurocognitive studies (Schartner et al.,
154  2015). Although these two share commonalities, to our knowledge the link between complexity and
155  entropy rate has only been established for the LZ76 algorithm.

156

157  1/f slope vs. LZc modeling function

158  We found that the relation between 1/f slope and LZc in pure power-law iDFT data (Figure 1B) closely

159  followed a particular mathematical behavior:
160 LZc(s) = a; xexp (=b = In?(s¢ +1)) (3.1)

161 where s is the slope of the power-law, LZc(s) is the LZc value obtained for a signal with slope s and
162 as, b and c are free parameters such that a; ranges from 0 to 1 and b and ¢ € R+. The parameters b
163 and ¢ modify the shape of the curve, while a is a scaling factor. Without this scaling factor, the image
164  of LZc(s) ranges from (0 to 1), while if a, is introduced it ranges from (0 to a,) without changing the

165 internal structure of the curve. While Equation 3.1 appropriately adjusted to pure power-law signals

166  (Figure 1B) and iDFT-data generated with a non-trivial final frequency (f; # N,; Figure 1D), the LZc

167  values for signals with non-trivial f, ( > 1Hz) did not ranged from 0 to 1 but from a value greater than
168 zero to 1 (Figure 1C). Because of this, we designed a similar equation that better reflected the
169 required image of the LZc(s) function for non-trivial f, cases, introducing a second scaling parameter
170 ay:

171

172 LZc(s) = a, + (1 —ay) *exp (—b = In*(s¢ + 1) (3.2)

173

174 For every fit we employed Equations 3.1 or 3.2 using an algorithm that minimized the squares of the
175  differences between data and models as implemented in the scipy.optimize.curve fit function
176  (Virtanen et al., 2020). Best fit parameters and R values for goodness of fit for all iDFT simulations
177  can be found in Supplementary Table 1 (all R? > 0.98).

178

179  LFP Simulations

180 To simulate cortical LFP time series, we employed the strategy recently developed by Gao et. al.

181 (2017) where LFP time series are constructed based on modeled inhibitory and excitatory
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182 conductances. Briefly, inter spike intervals were generated by Poisson processes (Destexhe et al.,
183  2001) with specified average firing rates for GABA-A (inhibitory) and AMPA (excitatory) neurons. This
184 produced binary time series describing firing at each time point. These spike time series were then
185 convoluted with empirically defined conductance kernels for excitatory and inhibitory synapses
186  independently (Alain Destexhe et al., 2003; Gao et al., 2017). Each kernel was constructed as the
187 sum of an exponential growth and an exponential decay function, which were specific for excitatory
188 and inhibitory synapses (CNRGIab; http://compneuro.uwaterloo.ca/research/constants-constraints/).
189 Current time series were then obtained by multiplying each conductance by the difference between
190 the resting potential and the typical reversal potential of AMPA and GABA-A receptors. Finally, the
191 LFP time series were computed as the sum of excitatory and inhibitory currents (Mazzoni et al.,
192 2015). The particular parameters used in LFP simulations can be found in supplementary material
193 (Table S2), which are based on previous electrophysiological results and modeling of LFP (Gao et al.,
194  2017).

195

196 For each particular simulation, we manipulated firing rate and El-balance. Each firing rate was defined
197 as a parameter to generate inter spike intervals following a Poisson process. El-balance, defined as
198 the ratio between mean excitation and mean inhibition conductances, was manipulated by a
199 multiplicative parameter applied only to inhibitory conductances (Gao et al., 2017), such that mean
200 inhibition current was 2 to 10 times greater than the mean magnitude of excitation conductances.
201  Each simulated LFP time series consisted of 5s, and was downsampled to 1KHz to match iDFT
202 simulations. We employed this modeling strategy because it has been shown to capture amplitude
203 and spectral characteristics of synaptic conductances observed in vivo (Destexhe et al., 2001), and
204 has been previously validated as a tool to infer the E/I balance of cortical tissues (Gao et al., 2017).
205

206  Power Spectral Density and 1/f analysis

207 We employed the same approach to estimate the power-law slope of LFP simulations, human EEG
208 and monkey ECoG data. This consisted of calculating the Power Spectral Density (PSD) by means of
209  Fourier Transforms using Welch's method as implemented in the MNE toolbox (Gramfort et al., 2014;
210  Jas et al., 2018). Afterwards, the power-law 1/f slope and offset were obtained using the “Fitting
211 Oscillations & One Over f* (FOOOF) toolbox (Haller et al., n.d.). Aperiodic offset (O) and slope (s)
212 components are obtained by modeling the aperiodic signal according to Equation 1. The FOOOF
213 algorithm decomposes the log power spectra into a summation of narrowband Gaussian periodic
214 (oscillations) and the aperiodic (offset and slope) components for the whole frequency range. The
215 algorithm estimates periodic and aperiodic components, removes the periodic ones and estimates
216  again until only the aperiodic components of the signal remain. This allows for estimation of offset and
217 power-law slope with considerable independence from oscillatory behavior, which is particularly
218  important for empirical signal analysis (Haller et al., n.d.; Voytek & Knight, 2015). FOOOF toolbox also
219 contains a “knee” parameter, which was not considered as it corresponds to changes in the 1/f slope

220 at higher frequencies, not analyzed in this study. With this we obtained the 1/f slope and offset
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221 estimates of each time series. For our analyses we performed the FOOOF fitting using a frequency
222  range from 1 to 70 Hz for simulated and ECoG data, and 1 to 40 Hz in EEG data.

223

224  ECoG Data

225  We used an open ECoG database collected from 2 macaque monkeys (Chibi and George) during
226  wakefulness, propofol anesthesia (5 and 5.2 mg/kg), and recovery (Yanagawa et al., 2013z). Propofol
227 induced anesthesia was achieved through intravenous propofol injection. Loss of consciousness was
228  defined as the moment when monkeys no longer responded to touch stimuli. The ECoG grid
229 consisted of 128 channels using multichannel ECoG electrode arrays (Unique Medical, Japan). The
230 array was implanted in the subdural space with an interelectrode distance of 5 mm. Electrodes were
231 implanted in the left hemisphere continuously covering frontal, parietal, temporal and occipital lobes.
232  No further preprocessing than the one used by (Yanagawa et al., 2013) was applied to this data.
233  Since we were interested in assessing differences between brain states during wakefulness and
234 anesthesia and not in the transitions, we only considered periods of closed-eyes wakefulness and
235  anesthesia. We computed LZc and 1/f slope measures of the times series as mentioned above for
236 each electrode, epoch and subject and then averaged LZc and 1/f slope across epochs. These results
237  are shown in Figure 3.

238

239 EEG Data

240  We analyzed an open human propofol anesthesia EEG database (Chennu et al., 2016). We only
241 analyzed data collected during baseline and moderate sedation conditions. In each state, subjects
242  performed an auditory discrimination task. After the task, during closed eyes resting state, EEG data
243  was recorded with high-density 128 electrodes caps and the Net Amps 300 amplifier (Electrical
244 Geodesic Inc., Eugene, Oregon, USA) for ~7 minutes. Only channels covering the scalp area were
245 retained, which resulted in 91 channels for further analysis. Moderate sedation was induced by target-
246 controlled infusion of propofol, with targeted plasmatic propofol levels of 1.2 mcg/ml. Because the
247 level of propofol sedation is near the anesthetic threshold of unconsciousness, and not sufficient for
248 deep anesthesia, we collected data from the two subjects who lost the most performance. This was
249 assessed by the number of correct responses in the auditory discrimination task during moderate
250 sedation compared to the baseline condition. EEG signals were filtered between 0.5 Hz and 45 Hz
251 and segmented into 10-second epochs (ranging from 37 to 40 epochs per subject). Data was re-
252 referenced to the average of all channels. We did not apply any further preprocessing steps besides
253  those described by Chennu et al. (2016) for the analysis presented here. Further details of procedures
254 regarding data collection and preprocessing can be consulted in the original paper. Finally, for each
255  epoch (time segment) and electrode, we calculated LZc and 1/f slope and then averaged across
256  epochs.

257

258  Statistical analysis

259 Experimental data was visualized using raincloud plots (Allen et al.,, 2019; van Langen, 2020).

260 Statistical significance was assessed with a Type-1 error threshold of 0.05. All curve fits were carried
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out using Scipy optimize function. R? were calculated using custom made scripts. Differences among
groups in 1/f slope (Figure 3A, B) and LZc (Figure 3C, D) were assessed by two-way ANOVAs for
each measure. Conscious state (awake vs. anesthesia) and the subject's identity were used as ways.
We included both humans and monkey datasets in these ANOVAs. Afterwards, simple main effects
for conscious states were performed for each dataset, comparing awake vs. anesthesia for each
human and monkey individually. To estimate the relation between 1/f slope and LZc in ECoG and
EEG data, for each subject and electrode, we adjusted a linear curve to 1/f slope and LZc data across
epochs (time segments). The Pearson product-moment correlation coefficient for each one of these
fits was used as the dependent variable in a two-way ANOVA analysis (Figure 3E, F). Simple main

effects were applied in the same way as for the analysis of each individual measure.
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275 Results

276

277  iDFT Model

278 In order to analyze the relation between the spectral power-law slope and the LZc, we generated, by
279 means of iDFT, sets of 256 time series with different slopes (e.g. blue trace in Figure 1A) ranging from
280 0 to 2, and calculated the complexity values for each one. We found that, for pure power-law time
281 series, the relation between slope and LZc follows a strict monotonically descending behavior (Figure
282  1B), with lesser complexity values for time series with a steeper slope. This general behavior is
283  expected: slopes near zero reflect white noise (maximal LZc), while on the other hand, very high
284 slopes reflect time series with significant power only in low frequencies (periodic signals with minimal
285 LZc). Interestingly, we found that LZc had a one-to-one mapping with 1/f slope. This relation can be
286 robustly adjusted (R2 > 0.99) to an x-inverted asymmetrical sigmoid function (see Methods, Equation
287  3.1).

288

289 Electrophysiological field potential signals (e.g. EEG and ECoG) have been shown to present only
290  partial power-law behavior (He, 2014). In other words, only part of their spectrum follows a clear
291 spectral power law distribution. In an attempt to broadly emulate this, we introduced two types of
292 constraints to the spectra of signals: an initial (f;) and a final (f)) 1/f frequency (see Methods). Both
293 constraints are illustrated in Figure 1A (orange trace for fy; green trace for f)). We found that the
294 introduction of greater f, values (Figure 1C) generated signals with greater complexity across all
295 slopes tested. This effect was enhanced for higher slopes compared to lower slopes (Figure 1C).
296 Interestingly, the introduction fy higher than 1Hz reduced the dynamical range of the observed LZc (no
297  longer ranging from 0 to 1). On the other hand, when we included a final frequency f; to the generated
298  signals (a type of low-pass filter), we also found LZc values were reduced, in comparison to the pure
299 power law signals. This effect was more markedly observed in signals with lower slope values.
300 Similarly to f,, we found that f; reduced the dynamical range of possible complexity values, but in a
301 different way: LZc ranged from zero to a value lower than 1. Regardless of these spectral constraints,
302 we found that the slope vs. LZc behavior could be modeled with a simple set of related equations
303 (Equations 3.1 and 3.2), with a robust goodness of fit (all R?>0.98, see Supplementary Materials).
304

305 LFP model

306 Spectral 1/f power law slope has been suggested as a proxy for the background state (Destexhe et
307 al., 2001) and the balance between excitation and inhibition in cortical circuits (Destexhe et al., 2001;
308 Lombardi et al., 2017; Gao et al., 2017; Trakoshis et al., 2020). In this line, we hypothesized that E/I
309 balance could also be related to the repertoire of cortical activity as indexed by LZc. To test this
310 hypothesis in a more physiologically plausible model, we simulated LFP signals as a linear
311 combination of excitatory and inhibitory currents (see Methods; Destexhe et al., 2001). We conducted
312  simulations with different global firing rates and E/I ratios by parameterizing inhibitory conductances
313 (Fig 2A; see Methods). For each simulated time series, we calculated LZc and the spectral

314  parameters of 1/f slope and offset using the FOOOF toolbox (Haller et al., n.d.).
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315 Consistent with previous findings using this model (Gao et al., 2017), we found that manipulating E/I
316 balance consistently modulated the offset of the 1/f behavior. However, offset was also strongly
317 modulated by global cortical excitability (firing rate; Figure 2B). We found that the 1/f slope was also
318  robustly modulated by E/I balance; however, in contrast to offset, the slope was completely
319 independent of global excitability (Figure 2C). Interestingly, we found that LZc strongly correlated with
320 E/l balance, with more excitation leading to a smaller repertoire of cortical activity patterns, and a
321 more balanced neural population activity presenting higher complexity (Figure 2D). Similar to 1/f
322 slope, we found that the effect of changing E/I balance on LZc was independent of the global firing

323 rates of the simulated neural time series.

324 Given that E/I balance robustly modulated both 1/f slope and LZc, with independence of the firing rate,
325  we next asked whether the relation observed between 1/f slope and LZc seen in our iDFT model
326 could be reproduced in this more plausible cortical model, and if E/I balance tracked this relation.
327 Figure 2E depicts the average LZc and 1/f slope for 100 simulations with their corresponding E/I
328 balance values. It illustrates that there is a non-trivial inverse relation between these two measures,
329 as for the iDFT model. As expected, we found that higher E/I balance was associated with flatter
330 slopes and with higher complexity values, while when E/I balance was dominated by inhibition,
331 complexity was reduced and PSD showed steeper slopes. Interestingly, we also found that this
332 behavior could be well adjusted to Equation 3.1. We believe this result proposes a plausible biological

333 mechanism of the observed relation between LZc and the power-law exponent.

334

335  Experimental Data

336 Next, we asked whether the impact of modifying E/I balance on the relationship between 1/f slope and
337 LZc seen in our model could be reproduced in electrophysiological data. We first analyzed two high-
338 density datasets, human EEG and macaque monkey ECoG recordings under propofol anesthesia and
339 eyes-closed resting-state (Chennu et al., 2016; Yanagawa et al., 2013). Propofol is known to directly
340 enhance GABAergic inhibitory activity, and thus reduce E/I balance (Alkire et al., 2008). In
341 accordance with our previous results, we observed markedly increased 1/f slope (conscious state
342  main effect's F(1) = 1034, p < 0.001, n? = 0.467; simple main effects (awake vs. anesthesia) for all
343 humans and monkeys showed significant differences, p < 0.001 ) and reduced LZc with respect to
344  wakefulness in both monkeys and in one human (conscious state main effect F(1) = 442, p < 0.001,
345 /72 = 0.063; simple main effects (awake vs. anesthesia) for subjects except one human showed
346  significant differences, p < 0.001, Supplementary Figure 2). This is illustrated for representative EEG
347  and ECoG datasets in Figure 3 A-D).

348

349 In addition to the individual changes observed to LZc and 1/f slope due to anesthesia, we analyzed
350 the specific relation between these two measures and how it changed due to an increase in inhibitory
351 activity. To this end, we analyzed the correlation, across electrodes, between 1/f slope and LZc. We
352  found a significant and marked inverse relation in both datasets, in accordance with the results of both

353  our models. The correlation between these two measures was consistently found for all datasets
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analyzed (all p < 0.05; see also Supplementary Materials). Interestingly, this correlation was strongly
modulated by the propofol-induced reduction in E/I balance. In EEG data we observed an increase in
the Pearson product-moment correlation coefficient between 1/f slope and LZc (all simple main effects
p < 0.001). In contrast, ECoG data showed a reduction of this coefficient in response to propofol (all
simple main effects p < 0.001). We believe this apparent discrepancy (increase in EEG and decrease

in ECoG), is due to different baseline levels of LZc and 1/f slope across species (see Discussion).
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362 Discussion
363

364 In this article we explored the possible relation between two apparently dissimilar time series
365 characteristics of brain field potentials. Our results show a robust and inverse relation between LZc
366 and 1/f slope, constitutive of a one-to-one mapping in both synthetic and experimental data. This
367 relation closely followed an x-inverted asymmetric sigmoid function in the whole range of both
368 measures in synthetic data generated by iDFT models. This behavior was, although scaled, present
369  even when the spectral power law behavior only comprised a small portion of all frequencies of the
370 signal (Figure 1C, D). This is of particular importance as real electrophysiological signals do not show
371 a 1/f spectral power decay in the whole frequency range (He et al., 2010). In a more neurobiologically
372 plausible model, we observed a similar inverse relation between LZc and 1/f slope, which adjusted to
373 the same mathematical function. Moreover, we show that this relation follows the balance between
374 excitation and inhibition, with greater complexity and flatter 1/f slopes associated with the
375 predominance of excitatory over inhibitory activity. At the same time, although the offset was
376 modulated by E/I balance, the complexity of the signal was completely independent of the offset. We
377 probed this link between E/I balance and LZc by directly contrasting 1/f slope and LZc changes due to
378 a pharmacological intervention. Propofol, a GABA agonist, produced changes in both measures
379 consistent with what our models predicted: a reduced LZc and increased 1/f slope in both human EEG
380  and monkey ECoG data.

381

382  The slope of the spectral power law has been linked to E/I balance (Lombardi et al., 2017), while LZc
383 reflects the vastness of the repertoire of brain activity patterns (Wenzel et al., 2019). Although these
384  two measures may seem unrelated at first, we hypothesize that both reflect a specific type of entropy
385  of cortical systems. The entropy of a system can be characterized by the probabilities of each of its
386 possible states (Shannon entropy), but also in terms of the probabilities of the transitions between
387  these states in time, namely its entropy rate (or transition entropy). Low values of 1/f slope represent a
388  flatter power spectrum, which is characteristic of irregular desynchronized cortical states, while
389 steeper 1/f slopes showcase mainly low frequency periodic behavior (Fazlali et al., 2016; Voytek &
390 Knight, 2015). These two extremes can also be characterized in terms of their signals' transition
391 entropy: flat 1/f slopes (similar to white noise) have low autocorrelations and thus high entropy rates,
392  while in mainly periodic signals, its history strongly constrains future values; thus they present low
393 transition entropies. Interestingly, Amigo et al. (2004) have shown for electrophysiological signals that
394 LZc closely reflects the entropy rate of the underlying system. This is particularly useful as direct
395 estimations of entropy rate require much longer data series than LZ76 (Amigo et al., 2004). In our
396 implementation of LZc, because we binarize each signal based on its median value, the number of
397 points in each state (ones and zeros) is equal, which results in a constant Shannon or distribution
398 entropy. In this line, we believe signal’s LZc could be reflecting not only the vastness of the repertoire
399 of cortical activity, but also specifically the transition entropy of the system. Thus, the strong relation
400 we observe between LZc and 1/f slope suggests both measures are, at least partially, driven by the

401 transition entropy of the underlying cortical system.
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402

403 In addition to the 1/f slope, the PSD offset has been shown to reflect relevant physiological
404  information (Miller et al., 2014; Manning et al., 2009). Changes in the offset have been suggested to
405 be linked to the fMRI BOLD signal, making it a potential bridge between different spatial and temporal
406  scales of brain features (Wen & Liu, 2016). Moreover, computational modeling has shown that
407 broadband spectral shifts reflect changes in local neural populations' total firing rate (Miller et al.,
408  2009; Wen & Liu, 2016). Our results show that quantifying aperiodic activity while manipulating the E/I
409 balance and firing rates reveals that only the offset is specifically modulated by firing rate (Figure 2B)
410  while the slope was only specifically modulated by shifts in E/I the balance (Fig. 2C). In addition, LZc
41 was not dependent on the firing rate, but was strongly regulated by E/I balance. Although we observe
412  a relation between 1/f offset and LZc, this effect is not specific as the same offset can result from
413 many E/I balances and firing rates combinations (Figure 2B, Supplementary Figure 2). Previous spike
414  model simulations have shown that E/I balance is strongly related to the entropy of the modeled
415  system (Agrawal et al., 2018). In this line, we believe the relation found here between 1/f and LZc
416 suggests that the transition entropy and the E/I balance of cortical systems could be more closely
417  linked than previously thought.

418

419 Future work should include the role of oscillations, as recent evidence has suggested that low
420  frequency 1/f slope is dependent on alpha-band activity (Becker et al., 2018). Despite this potential
421 limitation of our simulations, which lacked oscillations, we observe the same general behavior in EEG
422 and ECoG data, which does present oscillatory activity. It should be noted that the exponent of the
423 power-law has been characterized in different frequency ranges across the literature (He et al., 2010;
424  Becker et al.,, 2018; Lombardi et al.,, 2017; Miskovic et al., 2019; Trakoshis et al., 2020;
425 Schaworonkow & Voytek, n.d.). In this line, the frequency ranges that we employed here were based
426  on generating interpretations that could be extrapolated for both local and global measures of field
427 potentials. Moreover, we have shown that changing the initial and cut-off frequency of the power-law
428  decay does not qualitatively affect the relation between 1/f slope and LZc (Fig. 1C, 1D). From this
429 perspective, our results suggest that 1-70 Hz and 1-40 Hz frequency ranges share the characteristic
430 of representing the global state of cortical activity. Further work could include the modeling of tight and
431 loose coupling regimes between excitation and inhibition, which has been suggested as a more
432 plausible mechanism of cortical E/I balance regulation (Dehghani et al., 2016; Denéve & Machens,
433  2016; Trakoshis et al., 2020; Denéve & Machens, 2016). These limitations are probably why we also
434  observe a reduced range of both LZc and 1/f slope, despite modeling a broad E/I balance range. We
435 observe a consistent relation between 1/f slope and LZc across two models and two brain field

436  potential datasets despite this limitation.

437 The E/l-balance shapes cortical neurons' computational properties (Denéve & Machens, 2016), and
438  therefore behavior and cognition (Harris & Thiele, 2011). Alterations of this balance have been related
439  to schizophrenia (Uhlhaas & Singer, 2010), autism (Rubenstein & Merzenich, 2003), and epilepsy
440 (Ziburkus et al., 2013), which suggests it might also play an unexplored role in other neuropsychiatric

441 disorders (Sohal & Rubenstein, 2019). Moreover, E/l balance is not a static property of the cortex. It
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changes depending on the behavioral state (Waschke et al.,, 2019), task demands (Pfeffer et al.,
2018; Waschke et al.,, 2019), performance (Sheehan et al., 2018) and depending on circadian
rhythms (Bridi et al., 2020), which suggests that this property is under fine dynamic control. It has
been proposed that cortical states and neural complexity could be regulated by subcortical cholinergic
and noradrenergic activity (D’Andola et al., 2018); (Nghiem et al., 2020). Future research could
address this topic with a multiscale approach to the underlying cortical states of neuromodulation-
related psychiatric disorders (Medel et al., 2019). From this perspective, the readout of E/I balance
through brain signal complexity and the power-law of the PSD could be useful for addressing
fundamental questions about the modulation of the state dependence of cortical computations. This
offers new methods to understand the general mechanisms of cortical states functioning, as well as

broadening the diagnostic and therapeutic tools related to neuropsychiatric disorders.
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650  Figure 1. iDFT models showcase the inverse relation between LZc and 1/f Slope. (A) lllustration
651 of the amplitude spectrum in terms of frequency for signals composed using the iDFT model; f, and f;
652 represent the initial and final frequency of the power law behavior. (B) Scatter plot of the LZc of 256
653 signals constructed with different 1/f slopes. Solid line corresponds to the best fit of Equation 3.1. (C)
654 and (D) illustrate the effect of including four different fy’s and ff's in the construction of signals
655 respectively. Although the curves are scaled in comparison to (B), an homologous inverse relation is
656  observed.
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Figure 2. LZc and 1/f slope as a function of E/l balance. (A) Power Spectral Density plots of
sample simulated brain signals with different E/I balances and total firing rates constructed using a
cortical field potential model. (B) Plot showing the relation between offset and E/I balance, and its
relation to firing rate. (C) Plots showing the positive relation between 1/f slope and E/I balance, which
is independent of firing rate. (D) Plot showing the inverse relation between LZc and E/I balance. This
relation was independent of firing rate. (E) Color scatter plot showcasing the relation observed
between 1/f slope and LZc across a range of E/I balances (color bar) error bars represent the
standard deviation across 100 simulations.
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669 Figure 3. Propofol reduces LZc and steepens 1/f slope in human EEG and monkey ECoG data.
670 (A) Propofol increases 1/f Slope across electrodes in human EEG data of a representative subject. In
671 (A), (B), (C) and (D) each point depicts the average value (1/f slope or LZc) across time epochs for an
672 electrode. Boxes depict the average value across electrodes, the range that includes 50% of points
673 and the 2 standard deviations range. Density distributions across electrodes are plotted vertically on
674  the right side of each plot. Blue and Red colors represent Awake and Anesthesia (propofol)
675 respectively for all panels. (B) Average 1/f slope values for Awake and Anesthesia conditions for a
676 representative monkey's ECoG data. (C) LZc in the same EEG dataset as (A) for Awake and
677  Anesthesia conditions. (D) LZc in the same ECoG data as in (B) for Awake and Anesthesia. (E)
678 Depicts a 2D density plot of the LZc vs 1/f slope of all epochs and electrodes for Awake and
679 Anesthesia conditions. Black lines depict the average value, across electrodes, of the slope of the
680 regressions performed between 1/f slope and LZc data (see methods). (F) Same as (E) but for ECoG
681  data.
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