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Abstract  19 

 20 

Characterization of cortical states is essential for understanding brain functioning in the absence of 21 

external stimuli. The balance between excitation and inhibition and the number of non-redundant 22 

activity patterns, indexed by the 1/f slope and LZc respectively, distinguish cortical states. However, 23 

the relation between these two measures has not been characterized. Here we analyzed the relation 24 

between 1/f slope and LZc with two modeling approaches and in empirical human EEG and monkey 25 

ECoG data. We contrasted resting state with propofol anesthesia, which is known to modulate the 26 

excitation-inhibition balance. We found convergent results among all strategies employed, showing an 27 

inverse and not trivial monotonic relation between 1/f slope and complexity. This behavior was 28 

observed even when the signals' spectral properties were heavily manipulated, consistent at ECoG 29 

and EEG scales. Models also showed that LZc was strongly dependent on 1/f slope but independent 30 

of the signal's spectral power law's offset. Our results show that, although these measures have very 31 

distinct mathematical origins, they are closely related. We hypothesize that differentially entropic 32 

regimes could underlie the link between the excitation-inhibition balance and the vastness of 33 

repertoire of cortical systems. 34 

 35 
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Introduction 39 

 40 

Spontaneously occurring brain activity patterns in the cerebral cortex constitute the so-called cortical 41 

states (Harris & Thiele, 2011; Reimer et al., 2014). These are present without a direct link to external 42 

stimuli, and constitute the basis of essential cognitive processes like attention (McGinley(Harris & 43 

Thiele, 2011; Reimer et al., 2014) and global states of consciousness (GSC; e.g. sleep, wakefulness 44 

and anesthesia; (Bayne et al., 2016; He & Raichle, 2009). One of the most prominent strategies to 45 

characterize cortical states has been to analyze the spectral properties of their associated field 46 

potentials like electroencephalogram (EEG) and local field potential (LFP). In the particular case of 47 

attention, it has been shown that both induced (Klimesch et al., 1998) and spontaneous (Boncompte 48 

et al., 2016; Iemi et al., 2017) modulations of properties of alpha-band oscillations broadly  explain the 49 

attentional state of subjects. However, the characterization of GSC in terms of the unique properties 50 

of their associated cortical states has proven to be more elusive. Traditional spectral characteristics of 51 

brain field potentials cannot fully distinguish between GSC (Purdon & Sampson, 2015). This is well 52 

illustrated for the case of anesthetics that equally produce a cease of phenomenological experiences 53 

in loss of consciousness, but show diverse spectral neural signatures. For example, transitions from 54 

wakefulness to anesthesia induced by propofol increase and frontalize alpha oscillations, while 55 

dexmedetomidine anesthesia instead induces spindle-like activity without significant modulations of 56 

alpha oscillations (Akeju et al., 2014; Huupponen et al., 2008). In recent years, new methodologies 57 

have emerged with promising results, which aim at characterizing background cortical states in 58 

general, but also specifically for GSC. 59 

Cortical neurons in awake animals show strong membrane potential fluctuations which cause irregular 60 

discharge similar to a Poisson process, known as high conductance states (Destexhe et al., 2003). 61 

These states generate the background activity that support  high-order processes are computed. It 62 

has been shown that neurons can achieve irregular firing patterns with balanced excitatory and 63 

inhibitory synaptic activity (van Vreeswijk & Sompolinsky, 1996; Brunel, 2000). From this perspective, 64 

cortical states depend on global brain variables, such as relative levels of excitation and inhibition 65 

(Haider et al., 2006). Moreover, from local circuit activity to whole-brain modeling, the computational 66 

characterization of the balance between excitation and inhibition (E/I balance) has shown to modulate 67 

information transmission and entropy (Deco et al., 2014; Rubin et al., 2017; Agrawal et al., 2018). On 68 

the other hand, perturbations in the E/I balance has shown to be related with pathological brain 69 

activity (Žiburkus et al., 2013) and neuropsychiatric disorders (Haider et al., 2006; Uhlhaas & Singer, 70 

2010; Rubenstein & Merzenich, 2003; Sohal & Rubenstein, 2019). A particularly successful way to 71 

quantify E/I balance is the slope of the power law decay of spectral power of brain field potentials. 72 

Specifically, models have been shown that the background 1/f slope of the power spectral density 73 

(PSD) emerges from the sum of stochastic excitatory and inhibitory currents (Destexhe et al., 2001; 74 

Sheehan et al., 2018; Gao et al., 2017). Moreover, empirical validation of these models has shown 75 

that the E/I balance can be properly inferred from background activity by parameterizing the 1/f shape 76 

of the PSD (Gao et al., 2017; Trakoshis et al., 2020). 77 
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Interest in the detailed informational structure of cortical states has produced a recent surge of 78 

information-theory based approaches (Arsiwalla & Verschure, 2018; Ferenets et al., 2006; Sarasso et 79 

al., 2014; Zhang et al., 2001). Data analysis strategies based on Lempel-Ziv complexity (LZc; Lempel 80 

& Ziv, 1976), like the Perturbational Complexity Index (Casali et al., 2013) have been successful for 81 

characterizing subject's GSC during dreamless sleep and during anesthesia-induced 82 

unconsciousness, with independence of the anesthetic used. It has been shown that LZc decreases 83 

concomitantly with the loss of phenomenological possibilities, which is consistent with theoretical 84 

views of consciousness (Tononi & Edelman, 1998). Lempel-Ziv complexity algorithm computes the 85 

number of non-redundant segments of a signal (Lempel & Ziv, 1976), which in turn, when applied to 86 

brain data, is related to the abundance of the repertoire of brain activity patterns observed (Wenzel et 87 

al., 2019). During the transition from wakefulness to sleep or anesthesia, the number of possible 88 

experiences and cognitive processes that one can have is greatly reduced. Thus, it is expectable that 89 

the complexity of brain activity follows the same pattern. In fact, this reduction of the repertoire of 90 

brain activity has been seen in rats at the single neuron level using a myriad of convergent measures 91 

of cortical diversity, including LZc (Wenzel et al., 2019) which suggests that LZc can be applied as a 92 

multiscale proxy of neural repertoire.  93 

 94 

Although 1/f slope and LZc have distant mathematical origins, one coming from spectral analysis and 95 

the other from Information Theory, both have been shown to correlate with GSC (Miskovic et al., 96 

2019; Zhang et al., 2001). We hypothesize that this could be due to an underlying intrinsic relation 97 

between E/I balance and the repertoire of activity patterns in cortical systems. Here we employed 98 

three complementary approaches to study the possible relation between 1/f slope and LZc and thus 99 

implicitly between E/I balance and the abundance of non-redundant repertoire in brain field potentials. 100 

We analyzed this relation in: (i) a simple inverse Discrete Fourier Transform (iDFT) model, (ii) a 101 

cortical field potential model,  (iii) human EEG data, and  (iv) monkey ECoG anesthesia data. Our 102 

results consistently show a non-trivial relation between 1/f slope and LZc in brain field potentials, and 103 

suggest that both could be related to the underlying entropy rate of the system.. 104 

 105 

  106 
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Materials and Methods 107 

 108 

iDFT Models 109 

To study the relation between the power-law slope of neuronal signals and their complexity in time, 110 

we first employed an iDFT modeling strategy. We constructed signals with different 1/f slopes, among 111 

other spectral parameters, and analyzed their resulting LZc. Each signal was simulated using 5 112 

seconds of length sampled at 1KHz, which resulted in a Nyquist frequency (Nf) of 500Hz. Each time 113 

series was initially constructed in the frequency domain as the product of its amplitude and phase 114 

components. The amplitude of each frequency component was set accordingly to a power-law 115 

distribution, as illustrated in Equation 1: 116 

              (1) 117 

where f is the frequency of each term, A(f) is the amplitude of each frequency component, O is the 118 

offset of the curve, the amplitude of the 1 Hz component, and s corresponds to the slope of the 119 

power-law. Each initial phase was randomly assigned from a uniform distribution (-π to π). iDFT 120 

algorithm (as implemented in Numpy; (Virtanen et al., 2020) was applied to the product of the 121 

amplitude (A(f) and phase components to obtain the time series data according to Equation 2: 122                                       (2) 123 

where i is the imaginary unit, and ¸0 corresponds to the initial phase of each frequency. Only positive 124 

frequencies were employed. To better model the spectral properties of physiologically plausible neural 125 

signals, in addition to constructing signals using the whole range of possible frequencies (0 to Nf) we 126 

also applied  two types of constraints to the power-law distribution: an initial frequency (f0)  and a final 127 

frequency (ff). Both of these are illustrated in Figure 1A. Specifically, f0 corresponds to setting all 128 

amplitudes of frequencies lower than f0 to the value of f0, thus flattening the curve to the left of f0. On 129 

the other hand, applying a ff corresponds to setting the amplitude of every frequency higher than ff to 130 

zero. To maintain time series stationarity, a requirement of the LZc algorithm (Lempel & Ziv, 1976; 131 

Zhang et al., 2001), all iDFT models were made with a f0 = 1Hz unless otherwise stated. For every set 132 

of simulations, we generated a 256 time series with different values of s. 133 

 134 

LZc algorithm 135 

To compute the complexity of time series (both simulated and empirical), we used the Lempel-Ziv 136 

Complexity algorithm as introduced by Lempel and Ziv (Lempel & Ziv, 1976). This algorithm quantifies 137 

the number of distinct and non-redundant patterns of a signal and it can serve as a close analogue of 138 

the entropy rate of a signal (Amigó et al., 2004). We implemented the LZ76 algorithm using custom 139 

made Python scripts (available in Supplementary Materials). Briefly, every time series was first 140 

binarized, assigning a value of 1 for each time point with an amplitude greater than the median of the 141 

entire signal (5 s), and zero for those below it. Afterwards, the LZ76 algorithm was applied to the 142 

resulting so-called symbolic signal. To quantify the number of non-redundant patterns, a sequential 143 
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evaluation of the signal is performed. At each point, the algorithm analyzes whether the following 144 

segment of the signal can be recreated from the already analyzed signal. In this sense, if the following 145 

sequence is not contained in the previously analyzed signal, then the complexity increases. If the next 146 

sequence is already contained in the already analyzed signal, the algorithm advances without 147 

increasing the complexity. An illustrative description of the algorithm for two sample sequences can 148 

be found in supplementary materials (Supplementary Figure 1). The number of non-redundant 149 

patterns in a signal is then normalized to produce the final LZc value, which ranges (asymptotically for 150 

long signals) from 0 to 1. The LZ76 algorithm has been widely applied to analyze neural signals, from 151 

spike trains to EEG field potentials;, however, it should not be mistaken with the similar Lempel-Ziv-152 

Welch algorithm (Welch, 1984), also recently employed in neurocognitive studies (Schartner et al., 153 

2015). Although these two share commonalities, to our knowledge the link between complexity and 154 

entropy rate has only been established for the LZ76 algorithm.  155 

 156 

1/f slope vs. LZc modeling function 157 

We found that the relation between 1/f slope and LZc in pure power-law iDFT data (Figure 1B) closely 158 

followed a particular mathematical behavior: 159                                   (3.1) 160 

where s is the slope of the power-law, LZc(s) is the LZc value obtained for a signal with slope s and 161 

a1, b and c are free parameters such that a1 ranges from 0 to 1 and b and c ϵ ℝ+. The parameters b 162 

and c modify the shape of the curve, while a is a scaling factor. Without this scaling factor, the image 163 

of LZc(s) ranges from (0 to 1), while if a1 is introduced it ranges from (0 to a1) without changing the 164 

internal structure of the curve. While Equation 3.1 appropriately adjusted to pure power-law signals 165 

(Figure 1B) and iDFT-data generated with a non-trivial final frequency (ff ≠ Nq; Figure 1D), the LZc 166 

values for signals with non-trivial f0 ( > 1Hz) did not ranged from 0 to 1 but from a value greater than 167 

zero to 1 (Figure 1C). Because of this, we designed a similar equation that better reflected the 168 

required image of the LZc(s) function for non-trivial f0 cases, introducing a second scaling parameter 169 

a2:  170 

 171                                         (3.2) 172 

 173 

For every fit we employed Equations 3.1 or 3.2 using an algorithm that minimized the squares of the 174 

differences between data and models as implemented in the scipy.optimize.curve_fit function 175 

(Virtanen et al., 2020). Best fit parameters and R
2
 values for goodness of fit for all iDFT simulations 176 

can be found in Supplementary Table 1 (all R
2
 > 0.98). 177 

 178 

LFP Simulations 179 

To simulate cortical LFP time series, we employed the strategy recently developed by Gao et. al. 180 

(2017) where LFP time series are constructed based on modeled inhibitory and excitatory 181 
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conductances. Briefly, inter spike intervals were generated by Poisson processes (Destexhe et al., 182 

2001) with specified average firing rates for GABA-A (inhibitory) and AMPA (excitatory) neurons. This 183 

produced binary time series describing firing at each time point. These spike time series were then 184 

convoluted with empirically defined conductance kernels for excitatory and inhibitory synapses 185 

independently (Alain Destexhe et al., 2003; Gao et al., 2017). Each kernel was constructed as the 186 

sum of an exponential growth and an exponential decay function, which were specific for excitatory 187 

and inhibitory synapses (CNRGlab; http://compneuro.uwaterloo.ca/research/constants-constraints/). 188 

Current time series were then obtained by multiplying each conductance by the difference between 189 

the resting potential and the typical reversal potential of AMPA and GABA-A receptors. Finally, the 190 

LFP time series were computed as the sum of excitatory and inhibitory currents (Mazzoni et al., 191 

2015). The particular parameters used in LFP simulations can be found in supplementary material 192 

(Table S2), which are based on previous electrophysiological results and modeling of LFP (Gao et al., 193 

2017).  194 

 195 

For each particular simulation, we manipulated firing rate and EI-balance. Each firing rate was defined 196 

as a parameter to generate inter spike intervals following a Poisson process. EI-balance, defined as 197 

the ratio between mean excitation and mean inhibition conductances, was manipulated by a 198 

multiplicative parameter applied only to inhibitory conductances (Gao et al., 2017), such that mean 199 

inhibition current was 2 to 10 times greater than the mean magnitude of excitation conductances. 200 

Each simulated LFP time series consisted of 5s, and was downsampled to 1KHz to match iDFT 201 

simulations. We employed this modeling strategy because it has been shown to capture amplitude 202 

and spectral characteristics of synaptic conductances observed in vivo (Destexhe et al., 2001), and 203 

has been previously validated as a tool to infer the E/I balance of cortical tissues (Gao et al., 2017).  204 

 205 

Power Spectral Density and 1/f analysis  206 

We employed the same approach to estimate the power-law slope of LFP simulations, human EEG 207 

and monkey ECoG data. This consisted of calculating the Power Spectral Density (PSD) by means of 208 

Fourier Transforms using Welch's method as implemented in the MNE toolbox (Gramfort et al., 2014; 209 

Jas et al., 2018). Afterwards, the power-law 1/f slope and offset were obtained using the <Fitting 210 

Oscillations & One Over f= (FOOOF) toolbox (Haller et al., n.d.). Aperiodic offset (O) and slope (s) 211 

components are obtained by modeling the aperiodic signal according to Equation 1. The FOOOF 212 

algorithm decomposes the log power spectra into a summation of narrowband Gaussian periodic 213 

(oscillations) and the aperiodic (offset and slope) components for the whole frequency range. The 214 

algorithm estimates periodic and aperiodic components, removes the periodic ones and estimates 215 

again until only the aperiodic components of the signal remain. This allows for estimation of offset and 216 

power-law slope with considerable independence from oscillatory behavior, which is particularly 217 

important for empirical signal analysis (Haller et al., n.d.; Voytek & Knight, 2015). FOOOF toolbox also 218 

contains a <knee= parameter, which was not considered as it corresponds to changes in the 1/f slope 219 

at higher frequencies, not analyzed in this study.  With this we obtained the 1/f slope and offset 220 
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estimates of each time series. For our analyses we performed the FOOOF fitting using a frequency 221 

range from 1 to 70 Hz for simulated and ECoG data, and 1 to 40 Hz in EEG data. 222 

 223 

ECoG Data 224 

We used an open ECoG database collected from 2 macaque monkeys (Chibi and George) during 225 

wakefulness, propofol anesthesia (5 and 5.2 mg/kg), and recovery (Yanagawa et al., 2013z). Propofol 226 

induced anesthesia was achieved through intravenous propofol injection. Loss of consciousness was 227 

defined as the moment when monkeys no longer responded to touch stimuli. The ECoG grid 228 

consisted of 128 channels using multichannel ECoG electrode arrays (Unique Medical, Japan). The 229 

array was implanted in the subdural space with an interelectrode distance of 5 mm. Electrodes were 230 

implanted in the left hemisphere continuously covering frontal, parietal, temporal and occipital lobes. 231 

No further preprocessing than the one used by (Yanagawa et al., 2013) was applied to this data. 232 

Since we were interested in assessing differences between brain states during wakefulness and 233 

anesthesia and not in the transitions, we only considered periods of closed-eyes wakefulness and 234 

anesthesia. We computed LZc and 1/f slope measures of the times series as mentioned above for 235 

each electrode, epoch and subject and then averaged LZc and 1/f slope across epochs. These results 236 

are shown in Figure 3. 237 

 238 

EEG Data 239 

We analyzed an open human propofol anesthesia EEG database (Chennu et al., 2016). We only 240 

analyzed data collected during baseline and moderate sedation conditions. In each state, subjects 241 

performed an auditory discrimination task. After the task, during closed eyes resting state, EEG data 242 

was recorded with high-density 128 electrodes caps and the Net Amps 300 amplifier (Electrical 243 

Geodesic Inc., Eugene, Oregon, USA) for ~7 minutes. Only channels covering the scalp area were 244 

retained, which resulted in 91 channels for further analysis. Moderate sedation was induced by target-245 

controlled infusion of propofol, with targeted plasmatic propofol levels of 1.2 mcg/ml. Because the 246 

level of propofol sedation is near the anesthetic threshold of unconsciousness, and not sufficient for 247 

deep anesthesia, we collected data from the two subjects who lost the most performance. This was 248 

assessed by the number of correct responses in the auditory discrimination task during moderate 249 

sedation compared to the baseline condition. EEG signals were filtered between 0.5 Hz and 45 Hz 250 

and segmented into 10-second epochs (ranging from 37 to 40 epochs per subject). Data was re-251 

referenced to the average of all channels. We did not apply any further preprocessing steps besides 252 

those described by Chennu et al. (2016) for the analysis presented here. Further details of procedures 253 

regarding data collection and preprocessing can be consulted in the original paper. Finally, for each 254 

epoch (time segment) and electrode, we calculated LZc and 1/f slope and then averaged across 255 

epochs.  256 

 257 

Statistical analysis 258 

Experimental data was visualized using raincloud plots (Allen et al., 2019; van Langen, 2020). 259 

Statistical significance was assessed with a Type-1 error threshold of 0.05. All curve fits were carried 260 
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out using Scipy optimize function. R
2
 were calculated using custom made scripts. Differences among 261 

groups in 1/f slope (Figure 3A, B) and LZc (Figure 3C, D) were assessed by two-way ANOVAs for 262 

each measure. Conscious state (awake vs. anesthesia) and the subject's identity were used as ways. 263 

We included both humans and monkey datasets in these ANOVAs. Afterwards, simple main effects 264 

for conscious states were performed for each dataset, comparing awake vs. anesthesia for each 265 

human and monkey individually. To estimate the relation between 1/f slope and LZc in ECoG and 266 

EEG data, for each subject and electrode, we adjusted a linear curve to 1/f slope and LZc data across 267 

epochs (time segments). The Pearson product-moment correlation coefficient for each one of these 268 

fits was used as the dependent variable in a two-way ANOVA analysis (Figure 3E, F). Simple main 269 

effects were applied in the same way as for the analysis of each individual measure. 270 

 271 

 272 

 273 

  274 
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Results 275 

 276 

iDFT Model 277 

In order to analyze the relation between the spectral power-law slope and the LZc, we generated, by 278 

means of iDFT, sets of 256 time series with different slopes (e.g. blue trace in Figure 1A) ranging from 279 

0 to 2, and calculated the complexity values for each one. We found that, for pure power-law time 280 

series, the relation between slope and LZc follows a strict monotonically descending behavior (Figure 281 

1B), with lesser complexity values for time series with a steeper slope. This general behavior is 282 

expected: slopes near zero reflect white noise (maximal LZc), while on the other hand, very high 283 

slopes reflect time series with significant power only in low frequencies (periodic signals with minimal 284 

LZc). Interestingly, we found that LZc had a one-to-one mapping with 1/f slope. This relation can be 285 

robustly adjusted (R
2
 > 0.99) to an x-inverted asymmetrical sigmoid function (see Methods, Equation 286 

3.1). 287 

 288 

Electrophysiological field potential signals (e.g. EEG and ECoG) have been shown to present only 289 

partial power-law behavior (He, 2014). In other words, only part of their spectrum follows a clear 290 

spectral power law distribution. In an attempt to broadly emulate this, we introduced two types of 291 

constraints to the spectra of signals: an initial (f0) and a final (ff) 1/f frequency (see Methods). Both 292 

constraints  are illustrated in Figure 1A (orange trace for f0; green trace for ff). We found that the 293 

introduction of greater f0 values (Figure 1C) generated signals with greater complexity across all 294 

slopes tested. This effect was enhanced for higher slopes compared to lower slopes (Figure 1C). 295 

Interestingly, the introduction f0 higher than 1Hz reduced the dynamical range of the observed LZc (no 296 

longer ranging from 0 to 1). On the other hand, when we included a final frequency f f to the generated 297 

signals (a type of low-pass filter), we also found LZc values were reduced, in comparison to the pure 298 

power law signals. This effect was more markedly observed in signals with lower slope values. 299 

Similarly to f0, we found that ff reduced the dynamical range of possible complexity values, but in a 300 

different way: LZc ranged from zero to a value lower than 1. Regardless of these spectral constraints, 301 

we found that the slope vs. LZc behavior could be modeled with a simple set of related equations 302 

(Equations 3.1 and 3.2), with a robust goodness of fit (all R
2
 > 0.98, see Supplementary Materials). 303 

 304 

LFP model 305 

Spectral 1/f power law slope has been suggested as a proxy for the background state (Destexhe et 306 

al., 2001) and the balance between excitation and inhibition in cortical circuits (Destexhe et al., 2001; 307 

Lombardi et al., 2017; Gao et al., 2017; Trakoshis et al., 2020). In this line, we hypothesized that E/I 308 

balance could also be related to the repertoire of cortical activity as indexed by LZc. To test this 309 

hypothesis in a more physiologically plausible model, we simulated LFP signals as a linear 310 

combination of excitatory and inhibitory currents (see Methods; Destexhe et al., 2001). We conducted 311 

simulations with different global firing rates and E/I ratios by parameterizing inhibitory conductances 312 

(Fig 2A; see Methods). For each simulated time series, we calculated LZc and the spectral 313 

parameters of 1/f slope and offset using the FOOOF toolbox (Haller et al., n.d.). 314 
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Consistent with previous findings using this model (Gao et al., 2017), we found that manipulating E/I 315 

balance consistently modulated the offset of the 1/f behavior. However, offset was also strongly 316 

modulated by global cortical excitability (firing rate; Figure 2B). We found that the 1/f slope was also 317 

robustly modulated by E/I balance; however, in contrast to offset, the slope was completely 318 

independent of global excitability (Figure 2C). Interestingly, we found that LZc strongly correlated with 319 

E/I balance, with more excitation leading to a smaller repertoire of cortical activity patterns, and a 320 

more balanced neural population activity presenting higher complexity (Figure 2D). Similar to 1/f 321 

slope, we found that the effect of changing E/I balance on LZc was independent of the global firing 322 

rates of the simulated neural time series. 323 

Given that E/I balance robustly modulated both 1/f slope and LZc, with independence of the firing rate, 324 

we next asked whether the relation observed between 1/f slope and LZc seen in our iDFT model 325 

could be reproduced in this more plausible cortical model, and if E/I balance tracked this relation. 326 

Figure 2E depicts the average LZc and 1/f slope for 100 simulations with their corresponding E/I 327 

balance values. It illustrates that there is a non-trivial inverse relation between these two measures, 328 

as for the iDFT model. As expected, we found that higher E/I balance was associated with flatter 329 

slopes and with higher complexity values, while when E/I balance was dominated by inhibition, 330 

complexity was reduced and PSD showed steeper slopes. Interestingly, we also found that this 331 

behavior could be well adjusted to Equation 3.1. We believe this result proposes a plausible biological 332 

mechanism of the observed relation between LZc and the power-law exponent.  333 

 334 

Experimental Data 335 

Next, we asked whether the impact of modifying E/I balance on the relationship between 1/f slope and 336 

LZc seen in our model could be reproduced in electrophysiological data. We first analyzed two high-337 

density datasets, human EEG and macaque monkey ECoG recordings under propofol anesthesia and 338 

eyes-closed resting-state (Chennu et al., 2016; Yanagawa et al., 2013). Propofol is known to directly 339 

enhance GABAergic inhibitory activity, and thus reduce E/I balance (Alkire et al., 2008). In 340 

accordance with our previous results, we observed markedly increased 1/f slope (conscious state 341 

main effect’s F(1) = 1034, p < 0.001, ·2
 = 0.467; simple main effects (awake vs. anesthesia) for all 342 

humans and monkeys showed significant differences, p < 0.001 ) and reduced LZc with respect to 343 

wakefulness in both monkeys and in one human (conscious state main effect F(1) = 442, p < 0.001, 344 

·2
 = 0.063; simple main effects (awake vs. anesthesia) for subjects except one human showed 345 

significant differences, p < 0.001, Supplementary Figure 2). This is illustrated for representative EEG 346 

and ECoG datasets in  Figure 3 A-D). 347 

 348 

In addition to the individual changes observed to LZc and 1/f slope due to anesthesia, we analyzed 349 

the specific relation between these two measures and how it changed due to an increase in inhibitory 350 

activity. To this end, we analyzed the correlation, across electrodes, between 1/f slope and LZc. We 351 

found a significant and marked inverse relation in both datasets, in accordance with the results of both 352 

our models. The correlation between these two measures was consistently found for all datasets 353 
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analyzed (all p < 0.05; see also Supplementary Materials). Interestingly, this correlation was strongly 354 

modulated by the propofol-induced reduction in E/I balance. In EEG data we observed an increase in 355 

the Pearson product-moment correlation coefficient between 1/f slope and LZc (all simple main effects 356 

p < 0.001). In contrast, ECoG data showed a reduction of this coefficient in response to propofol (all 357 

simple main effects p < 0.001). We believe this apparent discrepancy (increase in EEG and decrease 358 

in ECoG), is due to different baseline levels of LZc and 1/f slope across species (see Discussion). 359 

 360 

361 
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Discussion 362 

 363 

In this article we explored the possible relation between two apparently dissimilar time series 364 

characteristics of brain field potentials. Our results show a robust and inverse relation between LZc 365 

and 1/f slope, constitutive of a one-to-one mapping in both synthetic and experimental data. This 366 

relation closely followed an x-inverted asymmetric sigmoid function in the whole range of both 367 

measures in synthetic data generated by iDFT models. This behavior was, although scaled, present 368 

even when the spectral power law behavior only comprised a small portion of all frequencies of the 369 

signal (Figure 1C, D). This is of particular importance as real electrophysiological signals do not show 370 

a 1/f spectral power decay in the whole frequency range (He et al., 2010). In a more neurobiologically 371 

plausible model, we observed a similar inverse relation between LZc and 1/f slope, which adjusted to 372 

the same mathematical function. Moreover, we show that this relation follows the balance between 373 

excitation and inhibition, with greater complexity and flatter 1/f slopes associated with the 374 

predominance of excitatory over inhibitory activity. At the same time, although the offset was 375 

modulated by E/I balance, the complexity of the signal was completely independent of the offset. We 376 

probed this link between E/I balance and LZc by directly contrasting 1/f slope and LZc changes due to 377 

a pharmacological intervention. Propofol, a GABA agonist, produced changes in both measures 378 

consistent with what our models predicted: a reduced LZc and increased 1/f slope in both human EEG 379 

and monkey ECoG data.  380 

 381 

The slope of the spectral power law has been linked to E/I balance (Lombardi et al., 2017), while LZc 382 

reflects the vastness of the repertoire of brain activity patterns (Wenzel et al., 2019). Although these 383 

two measures may seem unrelated at first, we hypothesize that both reflect a specific type of entropy 384 

of cortical systems. The entropy of a system can be characterized by the probabilities of each of its 385 

possible states (Shannon entropy), but also in terms of the probabilities of the transitions between 386 

these states in time, namely its entropy rate (or transition entropy). Low values of 1/f slope represent a 387 

flatter power spectrum, which is characteristic of irregular desynchronized cortical states, while 388 

steeper 1/f slopes showcase mainly low frequency periodic behavior (Fazlali et al., 2016; Voytek & 389 

Knight, 2015). These two extremes can also be characterized in terms of their signals' transition 390 

entropy: flat 1/f slopes (similar to white noise) have low autocorrelations and thus high entropy rates, 391 

while in mainly periodic signals, its history strongly constrains future values; thus they present low 392 

transition entropies. Interestingly, Amigó et al. (2004) have shown for electrophysiological signals that 393 

LZc closely reflects the entropy rate of the underlying system. This is particularly useful as direct 394 

estimations of entropy rate require much longer data series than LZ76 (Amigó et al., 2004). In our 395 

implementation of LZc, because we binarize each signal based on its median value, the number of 396 

points in each state (ones and zeros) is equal, which results in a constant Shannon or distribution 397 

entropy. In this line, we believe signal’s LZc could be reflecting not only the vastness of the repertoire 398 

of cortical activity, but also specifically the transition entropy of the system. Thus, the strong relation 399 

we observe between LZc and 1/f slope suggests both measures are, at least partially, driven by the 400 

transition entropy of the underlying cortical system. 401 
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 402 

In addition to the 1/f slope, the PSD offset has been shown to reflect relevant physiological 403 

information (Miller et al., 2014; Manning et al., 2009). Changes in the offset have been suggested to 404 

be linked to the fMRI BOLD signal, making it a potential bridge between different spatial and temporal 405 

scales of brain features (Wen & Liu, 2016). Moreover, computational modeling has shown that 406 

broadband spectral shifts reflect changes in local neural populations' total firing rate (Miller et al., 407 

2009; Wen & Liu, 2016). Our results show that quantifying aperiodic activity while manipulating the E/I 408 

balance and firing rates reveals that only the offset is specifically modulated by firing rate (Figure 2B)  409 

while the slope was only specifically modulated by shifts in E/I the balance (Fig. 2C). In addition, LZc 410 

was not dependent on the firing rate, but was strongly regulated by E/I balance. Although we observe 411 

a relation between 1/f offset and LZc, this effect is not specific as the same offset can result from 412 

many E/I balances and firing rates combinations (Figure 2B, Supplementary Figure 2). Previous spike 413 

model simulations have shown that E/I balance is strongly related to the entropy of the modeled 414 

system (Agrawal et al., 2018). In this line, we believe the relation found here between 1/f and LZc 415 

suggests that the transition entropy and the E/I balance of cortical systems could be more closely 416 

linked than previously thought.  417 

 418 

Future work should include the role of oscillations, as recent evidence has suggested that low 419 

frequency 1/f slope is dependent on alpha-band activity (Becker et al., 2018). Despite this potential 420 

limitation of our simulations, which lacked oscillations, we observe the same general behavior in EEG 421 

and ECoG data, which does present oscillatory activity. It should be noted that the exponent of the 422 

power-law has been characterized in different frequency ranges across the literature (He et al., 2010; 423 

Becker et al., 2018; Lombardi et al., 2017; Miskovic et al., 2019; Trakoshis et al., 2020; 424 

Schaworonkow & Voytek, n.d.). In this line, the frequency ranges that we employed here were based 425 

on generating interpretations that could be extrapolated for both local and global measures of field 426 

potentials. Moreover, we have shown that changing the initial and cut-off frequency of the power-law 427 

decay does not qualitatively affect the relation between 1/f slope and LZc (Fig. 1C, 1D).  From this 428 

perspective, our results suggest that 1-70 Hz and 1-40 Hz frequency ranges share the characteristic 429 

of representing the global state of cortical activity. Further work could include the modeling of tight and 430 

loose coupling regimes between excitation and inhibition, which has been suggested as a more 431 

plausible mechanism of cortical E/I balance regulation (Dehghani et al., 2016; Denève & Machens, 432 

2016; Trakoshis et al., 2020; Denève & Machens, 2016). These limitations are probably why we also 433 

observe a reduced range of both LZc and 1/f slope, despite modeling a broad E/I balance range. We 434 

observe a consistent relation between 1/f slope and LZc across two models and two brain field 435 

potential datasets despite this limitation. 436 

The E/I-balance shapes cortical neurons' computational properties (Denève & Machens, 2016), and 437 

therefore behavior and cognition (Harris & Thiele, 2011). Alterations of this balance have been related 438 

to schizophrenia (Uhlhaas & Singer, 2010), autism (Rubenstein & Merzenich, 2003), and epilepsy 439 

(Žiburkus et al., 2013), which suggests it might also play an unexplored role in other neuropsychiatric 440 

disorders (Sohal & Rubenstein, 2019). Moreover, E/I balance is not a static property of the cortex. It 441 
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changes depending on the behavioral state (Waschke et al., 2019), task demands (Pfeffer et al., 442 

2018; Waschke et al., 2019), performance (Sheehan et al., 2018) and depending on circadian 443 

rhythms (Bridi et al., 2020), which suggests that this property is under fine dynamic control.  It has 444 

been proposed that cortical states and neural complexity could be regulated by subcortical cholinergic 445 

and noradrenergic activity (D’Andola et al., 2018); (Nghiem et al., 2020). Future research could 446 

address this topic with a multiscale approach to the underlying cortical states of neuromodulation-447 

related psychiatric disorders (Medel et al., 2019). From this perspective, the readout of E/I balance 448 

through brain signal complexity and the power-law of the PSD could be useful for addressing 449 

fundamental questions about the modulation of the state dependence of cortical computations. This 450 

offers new methods to understand the general mechanisms of cortical states functioning, as well as 451 

broadening the diagnostic and therapeutic tools related to neuropsychiatric disorders. 452 

 453 
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Figures 646 

 647 

 648 
 649 

Figure 1. iDFT models showcase the inverse relation between LZc and 1/f Slope. (A) Illustration 650 

of the amplitude spectrum in terms of frequency for signals composed using the iDFT model; f0 and ff 651 

represent the initial and final frequency of the power law behavior. (B) Scatter plot of the LZc of 256 652 

signals constructed with different 1/f slopes. Solid line corresponds to the best fit of Equation 3.1. (C) 653 

and (D) illustrate the effect of including four different f0’s and ff’s in the construction of signals 654 

respectively. Although the curves are scaled in comparison to (B), an homologous inverse relation is 655 

observed. 656 
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 657 
Figure 2. LZc and 1/f slope as a function of E/I balance. (A) Power Spectral Density plots of 658 

sample simulated brain signals with different E/I balances and total firing rates constructed using a 659 

cortical field potential model. (B) Plot showing the relation between offset and E/I balance, and its 660 

relation to firing rate. (C) Plots showing the positive relation between 1/f slope and E/I balance, which 661 

is independent of firing rate. (D) Plot showing the inverse relation between LZc and E/I balance. This 662 

relation was independent of firing rate. (E) Color scatter plot showcasing the relation observed 663 

between 1/f slope and LZc across a range of E/I balances (color bar) error bars represent the 664 

standard deviation across 100 simulations.  665 
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 667 
 668 

Figure 3. Propofol reduces LZc and steepens 1/f slope in human EEG and monkey ECoG data. 669 

(A) Propofol increases 1/f Slope across electrodes in human EEG data of a representative subject. In 670 

(A), (B), (C) and (D) each point depicts the average value (1/f slope or LZc) across time epochs for an 671 

electrode. Boxes depict the average value across electrodes, the range that includes 50% of points 672 

and the 2 standard deviations range. Density distributions across electrodes are plotted vertically on 673 

the right side of each plot. Blue and Red colors represent Awake and Anesthesia (propofol) 674 

respectively for all panels. (B) Average 1/f slope values for Awake and Anesthesia conditions for a 675 

representative monkey’s ECoG data. (C) LZc in the same EEG dataset as (A) for Awake and 676 

Anesthesia conditions. (D) LZc in the same ECoG data as in (B) for Awake and Anesthesia. (E) 677 

Depicts a 2D density plot of the LZc vs 1/f slope of all epochs and electrodes for Awake and 678 

Anesthesia conditions. Black lines depict the average value, across electrodes, of the slope of the 679 

regressions performed between 1/f slope and LZc data (see methods). (F) Same as (E) but for ECoG 680 

data. 681 
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