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- 1 Abstract

18 1. Extracting species calls from passive acoustic recordings is a common preliminary step to
10 ecological analysis. For many species, particularly those occupying noisy, acoustically variable
20 habitats, the call extraction process continues to be largely manual, a time-consuming and
21 increasingly unsustainable process. Deep neural networks have been shown to offer excellent
22 performance across a range of acoustic classification applications, but are relatively underused
23 in ecology.

24 2. We describe the steps involved in developing an automated classifier for a passive acous-
25 tic monitoring project, using the identification of calls of the Hainan gibbon (Nomascus
26 hainanus), one of the world’s rarest mammal species, as a case study. This includes pre-
27 processing - selecting a temporal resolution, windowing and annotation; data augmentation;
28 processing - choosing and fitting appropriate neural network models; and postprocessing -
20 linking model predictions to replace, or more likely facilitate, manual labelling.
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30 3. Our best model converted acoustic recordings into spectrogram images on the mel frequency
31 scale, using these to train a convolutional neural network. Model predictions were highly
32 accurate, with per-second false positive and false negative rates of 1.5% and 22.3%. Nearly
33 all false negatives were at the fringes of calls, adjacent to segments where the call was correctly
34 identified, so that very few calls were missed altogether. A postprocessing step identifying
35 intervals of repeated calling reduced an eight-hour recording to, on average, 22 minutes for
36 manual processing, and did not miss any calling bouts over 72 hours of test recordings.
37 Gibbon calling bouts were detected regularly in multi-month recordings from all selected
38 survey points within Bawangling National Nature Reserve, Hainan.

30 4. We demonstrate that passive acoustic monitoring incorporating an automated classifier rep-
40 resents an effective tool for remote detection of one of the world’s rarest and most threatened
a species. Our study highlights the viability of using neural networks to automate or greatly
42 assist the manual labelling of data collected by passive acoustic monitoring projects. We em-
a3 phasise that model development and implementation be informed and guided by ecological
4a objectives, and increase accessibility of these tools with a series of notebooks that allow users
45 to build and deploy their own acoustic classifiers.

% Keywords: bioacoustics, passive acoustic monitoring, species identification, deep learning, con-

4z volutional neural networks, Hainan gibbons.

» 2 Introduction

s Deep learning holds enormous promise for automating the labelling of bioacoustic data. The num-
so  ber of applications is growing (Christin, Hervet, & Lecomte, 2019), but the majority of datasets are
s1 still labelled manually (Fairbrass et al., 2019; Kiskin et al., 2020; Pamula, Pocha, & Klaczynski,
s2 2019), even as the rate of data collection makes this approach increasingly unsustainable. The
ss mismatch between the potential of deep learning approaches and their actual uptake among prac-
sa titioners occurs because getting models to perform as well as an experienced human is difficult.
ss  Human-like performance usually requires substantial amounts of training data or relatively sta-
se ble background environments, conditions that are often absent in ecological applications. Model
sz tuning and data manipulation is often required, and while guidelines are emerging (Patterson &
ss  Gibson, 2017; Stowell, Wood, Pamuta, Stylianou, & Glotin, 2019), these can, with some justifica-
so tion, appear subjective and case specific. A lack of computing resources and user-friendly software
so can also be a barrier to entry. Case studies reporting successful applications play an important
e1 role in developing and disseminating best practices, and in discriminating between those tasks that
ez current deep learning methods are able to automate and those they cannot. Previous applications

63 have used convolutional neural networks (CNNs; LeCun, Bengio, and Hinton (2015)) to identify
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es various bird (Grill & Schliiter, 2017; Kahl et al., 2017; Stowell, Wood, et al., 2019) and whale
es species (Bergler et al., 2019; Bermant, Bronstein, Wood, Gero, & Gruber, 2019; Jiang et al., 2019;
es Shiu et al., 2020), bees (Kulyukin, Mukherjee, & Amlathe, 2018; Nolasco et al., 2019), as well as
ez anomalous acoustic events in soundscapes (Sethi et al., 2020). These have shown, for example,
es that a generally good approach is to represent data as spectrograms and treat the problem as
eo an image classification one, as well as providing specialised approaches for data augmentation on
70 spectrogram inputs, such as pitch and time shifting and introducing background noise (Bergler et
= al., 2019; Sprengel, Jaggi, Kilcher, & Hofmann, 2016).

72 Despite this, no studies report the process of applying deep learning within the scope of a
73 typical acoustic monitoring project designed to answer a well-defined research question. Most
72 applications are either smaller — using data collected for the purpose of testing a deep learning
7 approach, and often written for a machine learning rather than ecological audience (e.g. Kiskin
7 et al., 2020; Kulyukin et al., 2018); or larger — aggregating datasets across several independent
7z studies to investigate if models generalise (Bergler et al., 2019; Shiu et al., 2020; Stowell, Wood,
7s et al.,, 2019) — than most monitoring projects. In this paper we address this gap, describing the
7o development of a classifier for identifying Hainan gibbon (Nomascus hainanus) calls in passive
so acoustic recordings collected as part of a long-term monitoring project, with the aim of providing
s1 practitioners with a realistic and relatable idea of the process, and modelling choices, involved, as
s2  well as guidelines for these choices.

83 The Hainan gibbon is the world’s rarest primate and one of the world’s rarest mammals, with
sa only a single population of about 30 individuals surviving in Bawangling National Nature Reserve
ss (BNNR), Hainan, China (Chan, Fellowes, Geissmann, & Zhang, 2005; Liu, Ma, Cheyne, & Turvey,
ss  2020; S. Turvey et al., 2015). Improved monitoring of this population using novel methods, to un-
sz derstand factors affecting successful dispersal, breeding group formation and colonization of new
ss habitat, has been identified as an urgent short-term conservation goal for the species (S. Turvey
s et al., 2015; Zhang et al., 2020). Gibbons call regularly to advertise territory and maintain group
o0 cohesiveness against rivals, using a complex structure consisting of short individual vocal sylla-
o1 bles or "notes" of ca. 0.2-2.75s assembled together into longer "phrases" consisting of one to six
o2 mnotes, which are themselves organised into "songs" of several minutes (Deng, Zhou, & Yang, 2014).
oz Gibbon population surveys are usually conducted by detecting this daily song using a fixed-point
ea count survey method, whereby researchers listen opportunistically for calls at elevated listening
os posts (Brockelman & Srikosamatara, 1993; Kidney et al., 2016). However, this traditional moni-
o toring approach is labour-intensive and is only conducted for discrete survey periods. Gibbons are
oz therefore prime candidates for passive acoustic monitoring and recent studies have used data col-
os lected in this way to model occupancy (Vu & Tran, 2019) and to discriminate between individuals
oo using spectral features (Clink, Crofoot, & Marshall, 2019; Zhou et al., 2019). All of these studies,

100 however, have relied on an initial manual extraction of calls.
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101 In order to develop a continuous monitoring protocol for Hainan gibbons we conducted long-
102 term passive acoustic monitoring and developed an automated classifier able to identify whether
103 gibbons were calling in the vicinity of a particular recorder, with the aim of establishing whether
10 the area proximal to the recorder was occupied that day. It was therefore important to be able
105 to detect individual gibbon calling bouts, but not necessarily to be able to discriminate every
106 phrase made during the bout. We address issues that are important to the overall usefulness of a
107 classifier, including deciding how much data to manually label, data augmentation, operationally
10s  meaningful definitions of classifier success, and the development of user-friendly software. Our
100 study provides an effective new monitoring method for the world’s rarest primate, and also has
10 wider applicability for applying deep learning to develop passive acoustic monitoring frameworks
11 for other conservation-priority loud-call species such as cetaceans, elephants, or other primates

112 (Crunchant, Borchers, Kuhl, & Piel, 2020).

a3 Materials and Methods

s 3.1 Data collection

15 Eight Song Meter SM3 recorders (Wildlife Acoustics, Maynard, Massachusetts) were used to collect
16 acoustic data from 1 March to 20 August 2016 within BNNR. Recorders were attached to trees at
117 a height of approximately 1.5m in tropical evergreen forest. Four recorders were situated within
11 the known home ranges of the four Hainan gibbon social groups existing during the study period
10 (Groups A-D; see Bryant, Zeng, Hong, Chatterjee, and Turvey (2017)), three were situated at
120 locations intermediate between known home ranges, and a further recorder was placed in an area
121 where a solitary male gibbon was thought to occur (Bryant et al., 2016). They were placed at
122 locations that were used as regular listening posts for monitoring gibbons by reserve staff (Figure
123 1). The peak Hainan gibbon calling period is 06:00-07:00, with calling continuing at decreasing
124 regularity for several hours (Chan et al., 2005). Recorders were therefore set to record for eight
12s hours each day from the time of sunrise, which varied between approximately 05:00 and 06:00
126 during the study period. Memory cards and batteries were changed every 40 days. Devices did
127 not record continuously throughout the entire survey period due to logistical and technical issues;
12s in total, survey days per recorder varied between 79 and 129 days, and roughly 6,000 hours of
120 recordings were collected. The majority of recordings were made with a sampling rate of 9,600Hz

130 and bit depth of 16, with isolated recordings at 28,800Hz.

1 3.2 Data analysis

132 We manually labelled 32 eight-hour recordings by inspecting spectrograms and listening to audio

133 using Sonic Visualiser (Cannam, Landone, & Sandler, 2010), and recording the start and end
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Figure 1: Locations of eight Song Meter SM3 recorders (labelled 1-8) used to detect gibbons
in 2016 within Bawangling National Nature Reserve, Hainan, China, in relation to approximate
distributions of four Hainan gibbon social groups (A-D). Mapped distributions of groups A-C are
based on field data collected in 2010-2011 (see Bryant et al. (2017)); the groups all changed their
location slightly between 2011 and 2016, but data on exact group locations in 2016 are unavailable.
Approximate location of Group D indicated with hatching based on Bryant et al. (2016).

13a  times, and the number of notes, of each observed gibbon phrase. This process yielded 1,246 gibbon
135 phrases.

136 To construct the fixed-length inputs required by CNNs, we divided each eight-hour recording
137 into segments with window length 10s and hop length 1s (starting times of consecutive 10s segments
138 differ by 1s, Figure 2). This window length was chosen so that even the longest phrase (8s,
130 Supplementary Material A) fits within a single segment; using a slightly longer segment length
1a0 allows for potentially longer unseen phrases, and results in more positive segments after windowing.
11 All audio was converted into mono, as done in various applications (e.g. Bergler et al., 2019; Qazi,
12 Tabassam Nawaz, Rashid, & Habib, 2018; Stowell, Petruskové, Salek, & Linhart, 2019). By cross-
13 referencing the time intervals of each segment with the logged start and end times of known gibbon
14 phrases, each segment was labelled as (a) a “presence”; if its time interval completely contained
15 the interval of at least one labelled phrase, (b) an “absence”, if its time interval contained no part
s of any phrase, or (c¢) a “partial presence”, if its time interval intersected but did not completely
17 contain the interval of at least one labelled phrase (Figure 2). Partial presences were excluded
s from further analysis.

140 Preprocessed amplitudes in each 10s segment were downsampled to 4800Hz, and the down-
150 sampled inputs — each segment a time series of 48000 observations — used as inputs to the 1-D

151 CNNs described in the next section. In addition, we converted each audio segment into a mel-scale
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Figure 2: Hainan gibbon calls consist of a sequence of “phrases”, each phrase consisting of variable
(typically, 1-6) “notes” and often with relatively large intervals between phrases. Left: a two-note
phrase followed by a three-note phrase. A single calling bout may last anywhere from a few to
dozens of minutes. Our model divides the recording interval into sliding 10s windows or “segments”
(blue boxes), with 80% overlap between adjacent segments. Segments are classified as contained
at least one full gibbon phrase (Present; solid line), a partial phrase (Partial; dotted line), or no
part of a phrase (Absent; dashed line). Partial presences were excluded from further analysis,
creating a two-class audio classification problem. Right: a gibbon phrase partially obscured by
noisy background conditions, in this case other species calling (red boxes).

12 spectrogram (Bergler et al., 2019; Huang, Acero, & Hon, 2001), to be used as an input image to
153 a 2-D CNN, using a window size of 1,024,/9,600s, a hop size of 256/9,600s, and 128 mel frequency
1sa  bins with centres uniformly spaced between 1 and 2kHz, a conservative interval following Deng et
155 al. (2014) and our own exploratory analyses. These values for chosen on the basis of preliminary
156 investigations, although results are not particularly sensitive to these choices. The spectrogram
157 images had a size of 128 x 188 pixels; larger image sizes can capture greater detail but typically
158 require more network parameters and computation time to do so.

159 After processing, our dataset consisted of 5,285 segments containing at least one complete
10 phrase. While the vast majority of segments do not contain any gibbon calls, we restricted the
12 number of absence segments to the same number as presences, to avoid a large class imbalance.
12 Absence segments were initially collected by randomly sampling, but we found that better results
13 were obtained by specifically including absence segments that contained typical ambient noise, such
1ea  as bird calls, rain events, and other background noises that could potentially confuse the classifier
165 (Stowell, Petruskova, et al., 2019). Extracting these required additional manual processing of the

166 audio data.
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1z 3.3 Data augmentation

1es  Data augmentation — boosting sample sizes by adding new samples artificially created by ma-
160 nipulating existing ones, for example using geometric operations like translations and rotation
170 — is commonly used to improve classifier performance, particularly when the training dataset is
i relatively small (Hestness et al., 2017; Sun, Shrivastava, Singh, & Gupta, 2017). We used data aug-
172 mentation to create up to ten new copies of each 10s segment in both presence and absence classes.

173 For each presence segment x(P"¢) | we randomly selected ten absence segments, xgabs),i =1,...,10.
17 We randomly shifted the starting time of each absence segment forward by 0 < ¢; < 9 seconds, with

175 the absence segment wrapping back on itself so that it remained 10s long (Figure 3c), to obtain the

(shift)

w7e  shifted segment x; . Presence segments were not shifted, as this already occurred during the
17z windowing process used to create the original segments. Segments contain amplitude values and
i7s  thus allow for arithmetic operations to be performed on them. We blended the presence segment
1o with each shifted segment to create augmented presence segments xgaug ) = ax(Pre) (1 —a)xgsmf t),
10 where « is a mixing parameter, here chosen to be 0.9 (Figure 3d). We created augmented absence
11 segments using the same approach, i.e. combining pairs of absence segments to create a mixture
182 of background scenes.

183 After augmenting the original segments, we obtained 18,992 segments (9,496 presence, 9,496
18 absence) from 19 recordings to train the neural networks. We randomly selected 60% of the data
s for training (5,697 presence, 5,697 absence) and used the remaining 40% for validation (3,799
18  presence, 3,799 absence). Non-augmented segments from nine separate recordings (2,231 presence,

17 23,689 absence) were kept aside for testing.

(a) Presence (b) Absence (c) Shifting (d) Blending

Freq (kHz)

0 5 10 0 5 10 0 5 10
Time (s)

Figure 3: Data augmentation steps involve (a) selecting a presence segment containing a Hainan
gibbon phrase, (b) randomly selecting a segment containing only background noise, (c¢) shifting
the starting time of the absence segment forward by a random amount, here two seconds, and (d)
blending together the presence and shifted absence segments.

s 3.4 Neural networks

18 We considered two kinds of CNN architectures: a 1-D CNN using preprocessed amplitudes of 10s
10 segments as inputs, and a 2-D CNN that had inputs consisting of spectrogram images constructed

101 from the preprocessed amplitudes. As we had relatively little training data by deep learning stan-
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Figure 4: Best architectures for 1-D and 2-D CNNs, for both augmented and non-augmented
training datasets. Selected architectures were those with intermediate numbers of free parameters,
particularly for 2-D CNNs.

102 dards, we chose these networks as they use simple architectures requiring relatively few parameters.
103 Both 1-D and 2-D CNNs use up to three convolutional layers, each followed by a max pooling layer
10a  that reduces the size of the intermediate input passed to the next layer of the network. We used
15 16 X 1 and 16 x 16 convolutional kernels for 1-D and 2-D CNNs, respectively. The stack of convo-
106 lutional layers was followed by one or two dense layers (Figure 4). The resulting model outputs a
107 predicted probability that the input segment (1-D or 2-D) contains at least one complete gibbon
108 phrase.

190 We chose model hyperparameters using a grid search over the number of convolutional (1,2, 3)
200 and dense (1,2, 3) layers, nodes in each of the dense layers (8, 16, 32), filters in each convolutional
200 layer (8,16, 32), kernel size in each convolutional and max pooling layer (4, 8,16), and dropout rate
202 (0,0.2,0.4,0.6). Each model was trained for 50 epochs using the Adam optimizer (Kingma & Ba,
203 2014) a batch size of 8 segments, and a learning rate of 0.001. Models were evaluated based on
20 test set accuracy (proportion of all predictions that were correct), sensitivity (proportion of true
205 positives divided by positive examples), and specificity (proportion of true negatives divided by
206 negative examples). Optimal thresholds for converting predicted probabilities into binary classifi-
207 cations were those that minimized the ratio of sensitivity and false discovery rate in the validation

208 dataset.
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200 Models were implemented in Python 3 using the TensorFlow (Abadi et al., 2015) library with
210 Keras (Chollet et al., 2015) for the neural network component, and the Librosa library for audio
211 processing and spectrogram construction (McFee et al., 2020). Model training and testing was
212 done on a machine running Ubuntu 16.04 LTS with an Intel i7-6700K CPU, 16GB of RAM, and
213 an Nvidia GTX 1070 8GB Graphics Processing Unit. Code and analysis scripts are available online

214 at https://github.com/emmanueldufourq/GibbonClassifier.

a5 3.5  Post-processing

216 For an audio recording of arbitrary duration, our approach was to break that recording into over-
217 lapping 10s segments, and to use a trained CNN to output, for each segment starting at second
zns s =0,1,2,..., a predicted probability indicating the likelihood that at least one complete gibbon
210 phrase is contained in the next ten seconds. These probabilities are based only on the acoustic
220 content of their associated segments, and can give rise to biologically unrealistic call patterns. We
221 used a post-processing step to remove isolated predicted presence segments which are highly likely
222 to be false positives rather than actual calls, and to obtain start and end times for each predicted
223 calling bout, to facilitate manual verification and support the main research objective of detecting
22 and monitoring gibbon activity.

225 To do this, we formed connected components of presence segments that occur close together
226 in time and in sufficient numbers that, given known gibbon call characteristics (i.e. song duration,
227 inter-phrase duration), they are likely to be part of a single calling bout (Supplementary Material
22s  A). With presence segments arranged in temporal order, presence segment i is included in the same
220 component as segment i— 1 if they are separated by less than 200s; otherwise segment i begins a new
230 component. This process allocates each presence segment to exactly one component. Components
231 were then reviewed, and any components consisting of fewer than 20 segments (equivalent to
a2 roughly four phrases of length 5s) were removed, as were any components where the average
233 time between consecutive presence segments in the component was greater than 10s (suggesting
23 a "chain" of isolated presence predictions, since calls usually persist over multiple consecutive
235 segments).

236 The first and last presence segment in each remaining component give the start and end times
237 of each predicted gibbon calling bout. To evaluate the post-processing step, we mimic its intended
238 application by assuming that all predicted bouts are passed to an observer for manual processing,
230 and that all presence segments within the bout are subsequently identified. This approach means
220 that post-processing accuracy measures are conditional on the use of additional, error-free manual

221 verification.
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2 4 Results

23 Hainan gibbon calls could be detected with a high degree of accuracy. Without post-processing,
2aa  mearly 80% of segments containing gibbon calls were correctly identified, with very few false pos-
2es  itives (Table 1). Even with false negative rates of 20% very few gibbon phrases were missed
2a6  altogether, because phrases occur across multiple overlapping segments and nearly all segments
2a7  incorrectly identified as absences occurred at the beginning and end of a phrase, abutted by several
2as  segments where the phrase was correctly detected (Figure 5). After post-processing, fewer than
200 2% of all presence segments occurred outside of predicted call bouts (Table 1), and all 20 call bouts
250 across nine test set recordings were detected, with two predicted call bouts being false positives
251 (Supplementary Material B). In the training set, 34 of 35 call bouts were correctly recognised with

252 2 false positive call bouts.

CNN 2-D 2-D 2-D 1-D 1-D 1-D

+ Augmentation Yes Yes No Yes Yes No

+ Postprocessing Yes No No Yes No No
Accuracy (Test) 99.37% 97.60% 92.32% | 94.30% 94.76% 94.76%
Sensitivity (Test) 98.30% 77.68% 79.65% | 54.21% 40.98% 25.56%
Specificity (Test) 99.42% 98.51% 92.92% | 95.96% 96.91% 97.60%
Accuracy (Train) 98.68% 97.20% 93.65% | 95.14% 94.16%  93.44%
Sensitivity (Train) 94.84% 80.64% 77.85% | 69.62% 53.42% 24.53%
Specificity (Train) 99.12% 98.59% 94.94% | 97.66% 97.92% 99.24%
Model Parameters 23,922 23,922 24978 | 2,650 2,650 2,378
Train Duration (sec) | 644 643 265 628 627 117

Table 1: Average classification accuracy and parameter settings for the best 2-D and 1-D CNN
models across 72 hours of test recordings (2,231 segments containing gibbon phrases, 23,689 with-
out). Gibbon calls can be identified with very high accuracy, and performance is improved by data
augmentation and a postprocessing heuristic.

253 The best performing approach was a 2-D CNN with both data augmentation and post-processing.
252 Data augmentation improved specificity by 5.6%, a relative reduction in false positives of 79% but
2ss  without associated relative reduction in sensitivity; post-processing further improved both sensi-
a6 tivity (20.6%) and specificity (0.9%, Table 1). Accuracy was substantially higher when treating
257 the task as an image (spectrogram) classification problem than if the preprocessed acoustic data
2ss  were directly used as input to a 1-D CNN. An 8 hour test file took on average 6 minutes to process
280 of which 3 minutes 10 seconds were used for reading in the audio file and 2 minutes 42 seconds to
260 convert to spectrograms; the remaining time was used to compute the CNN predictions.

261 Across the entire monitoring project, gibbon calls were detected on 71% of recording days
262 across all locations. Gibbons were detected regularly at all locations, with recorders situated
263 within known group or solitary home ranges detecting calls on 33-86% of recording days, and
26 those situated between home ranges detecting calls on 46-89% of recording days. Mean durations
265 of calling bouts per recorder varied between 24.2 and 40.8 minutes (overall mean = 29.7 minutes),

266 with mean starting times of 06:16-07:56 am and mean finishing times of 09:12-10:15 am (Figure

10
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Figure 5: Per-second predicted probabilities that a gibbon phrase is contained within the next
10s of audio, over (a) an eight-hour file, (b) a five-minute window. Segments with predicted
probabilities above an optimized threshold of 0.76 (red line) are classified as containing a gibbon
phrase, with misclassifications denoted by crosses. Observed and predicted classes are plotted
above the probabilities, using the same notation. Colour is used to denote the observed class.
Most incorrect false negative classifications are at the beginning and end of phrases, separated by
segments that correctly identify the call. In this way, nearly all phrases are clearly identified, and
a practitioner can be pointed to those regions that contain calls.

267 6; Table 2). Calls were detected less frequently during the wet season (March-April) than the
2es  dry season (May-August), with inter-season differences varying substantially between locations

260 (Supplementary Table C).

= 9 Discussion

272 Long-term monitoring will generate thousands of hours of recordings across multiple survey sites,
272 and manually labelling these recordings is typically infeasible given logistical constraints. Our
273 results demonstrate that passive acoustic monitoring incorporating an automated classifier can be
27a  an effective tool for remote detection of calling species, potentially enabling systematic monitoring
275 whilst saving time, funds and manpower. Our approach, applied to Hainan gibbons, is general and
276 easily extended to other calling species.

277 Our models allow new recordings to be classified on a per-second basis, to a high degree of accu-
27s  racy. Although perhaps false negative rates of 1.7% may not be sufficiently low for full automation
270 of Hainan gibbon call monitoring, they greatly facilitate the process of manually annotating these
200 datasets by ruling out large portions of recordings that have a near-zero probability of containing
261 gibbon song. In our test datasets, this reduced the amount of audio to be manually processed by

22 95%. Our model clearly detected all calling bouts in the test data, at the cost of two false positives.

11
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Figure 6: Daily patterns in gibbon calling activity. The red line denotes, per 10 minutes, the
proportion of recordings across all locations in which a call was detected (e.g. 05:00-05:10, 05:10-
05:20, ...). The black line smooths the observed proportions using a GAM (see Supplementary
Material D for details). The bottom plot shows the number of recordings per 10-minute segment,
showing the survey effort from 05:00-14:00. Peak activity occurs shortly after dawn, dropping
rapidly but with some calling activity recorded throughout the morning. Plot inset shows the
duration of independent call bouts detected by the classifier. Call bouts are intervals of regular
calling, with no detected call 200s either side of the bout. Daily calling typically consists of a
number of calling bouts.

% days  Mean calling Mean start Mean end

Location Sél;w;y calls time per time of time of
Y detected  day (min) first bout  last bout

1 87 70 24.2 07:34 09:41

2 90 46 29.9 06:58 09:12

3 103 82 31.3 07:30 10:15

4 105 86 26.5 07:44 09:52

5 79 33 29.9 07:31 09:23

6 103 79 24.4 07:56 10:15

7 129 89 30.9 06:53 09:54

8 105 65 40.8 06:16 10:01

Table 2: Calling behaviour across 8 survey locations for the 161 day survey period March—August
2016. Recorders were situated within the known home ranges of the four Hainan gibbon social
groups existing during the study period, at locations intermediate between known home ranges,
and in an area where a solitary male gibbon was thought to occur. Locations of home ranges are
indicated by numbers 1, 2, 3 and 4. 6 = solitary.
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2ss  Where false negatives are particularly costly, this is easily incorporated by lowering the threshold
2sa  required for manual verification. We expect that with more, and more diverse, training data, error
2ss  rates would decline further.

286 Where environmental conditions were similar to those used to train the model, predictions
2s7  were almost perfect and could be used to identify start and end times of call phrases and bouts,
2ss  returning almost identical values to a human observer. It is impossible to know in advance whether
280 environmental conditions are similar enough to warrant confidence in the associated predictions,
200 but these results suggest that, as more training data covering a range of environmental conditions
201 are added, model applications may go beyond gibbon detection, by automatically extracting inputs
202 for more detailed behavioural analyses, for example of gibbon call syntax (Clarke, Reichard, &
203 Zuberbiihler, 2006).

204 Practically, developing an acoustic classifier such as ours requires a number of steps: deciding on
205 an appropriate unit of analysis; manually labelling data; augmenting data and allocating it between
206 training, validation, and test sets; choosing and fitting appropriate neural network models; and
207 selecting a preferred model and using it to process the unlabelled portion of the data. Our study
208 illustrates how model development and implementation are informed and guided by ecological
200 Objectives, here primarily detecting gibbon vocalizations over time scales of minutes or hours, and
s00 domain knowledge of Hainan gibbon call behaviour.

301 We based our classifier on phrases, rather than shorter notes or longer calling bouts, to balance
302 ease of identification with data availability and computational requirements. Individual notes are
303 easily confused with other sources (see Figure 2b). While calling bouts are highly distinctive,
304 there are relatively few of them and, being longer in duration, they require more parameters to
305 capture the same degree of detail. Phrases are far more numerous, less variable, and require fewer
306 parameters.

307 Given this choice, segment duration was chosen to be longer than the longest phrase across all
308 training data (8 seconds). The slightly longer segment length provides more presence segments —
300 for example, an 8s phrase results in three 10s presence segments, but would only result in a single
310 segment if the segment length was restricted to 8s. Preliminary runs based on shorter segments
sin of 0.5-2 seconds and partial phrases did not yield good performance, with many false positives,
312 probably because a small segment is not enough to distinguish gibbons from other species calling
s13 within the same frequency range.

314 Even using phrases, we have relatively few positive examples and these occur within a highly
a1 variable background environment, which is likely to be a common situation for ecological appli-
a1 cations. The amount of data available to train neural networks is important, and CNNs tend to
;17 require relatively large amounts of data (at least thousands of each class) to generalize well. It
s1s may often be possible, as in our case, to collect or label additional data, but data augmentation

310 is a valuable low-cost strategy for increasing sample sizes in conjunction with these other more
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320 effort-intensive approaches (Bergler et al., 2019; Hestness et al., 2017; Kahl et al., 2017; Sun et
;22 al., 2017). In practice the process can be an iterative one guided by subjective judgement. We
322 initially annotated only 40h across five recordings, but models based on these were poor, even with
323 augmentation. Model performance (on the same test set) improved as we add more training data;
32 we were also able to create more complex neural networks. Gains in accuracy decreased with addi-
325 tional annotations, and we stopped when these became marginal, but presumably further increases
326 are possible as novel environments are included.

327 Training, validation and test datasets should be constructed by allocating longer contiguous
328 sequences of audio to each of these, and then preprocessing each of these, rather than randomly
320 allocating the segments themselves, which are highly autocorrelated and will thus overstate test
330 accuracy. Wherever possible, we recommend using entirely independent recordings in the test
a1 dataset.

332 We found that 2-D CNNs based on spectrograms performed substantially better than 1-D CNNs
333 that use amplitude time series following some initial preprocessing, mirroring Stowell, Wood, et al.
33 (2019). Deep neural networks are often motivated by an argument that they learn salient features,
;35 rather than having to have these provided to them, but where intermediate features (here, spectral
a3  densities) can be provided, these speed up the learning process and provide measurable benefits.
;37 Beyond the 2-D/1-D distinction, we found that network architectures had relatively little impact
338 on model accuracy, and we achieved good performance using relatively small, simple network
330 architectures, again motivated by limitations on training data. We used few dense layers, each with
3.0 only a small number of nodes, as these are particularly parameter hungry. Our basic approach was
sa1 to start with simple architectures, evaluate them, and then add complexity in an iterative manner.
342 Traditional performance metrics such as precision and recall, while important, are not the only
a3 relevant measures of classifier success. Practically, classifiers such as ours can be used to point to
saa  audio segments that possibly contain gibbon calls, and that require manual verification. Where
sas  classification accuracy lags behind that of human experts, or where errors are costly — that is, in
a6 many ecological applications — attention shifts from replacing manual annotation to facilitating
a7 it. Probability cutoffs can be calibrated to balance the costs of false positives and negatives, and,
sas even if the model is wrong by a few seconds, the amount of time spent in manual verification,
sa0  compared to that required to processing the entire file manually, is minimal. Our classifier reduces
ss0  an eight-hour recording to on average 22 minutes with false positive and negative rates under 2%.
51 This time can be further reduced by playing back only those 10s segments that are predicted to
2 contain phrases, although in our case the reduction in overall time was offset by the difficulty of
53 manually verifying segments that are often not contiguous in time.

354 Analysis of our multi-month dataset demonstrated that gibbons could be detected regularly
s across all selected survey points, with call detection consistent with known patterns of gibbon

sse  behaviour and ecology. Calls were detected at expected times (Chan et al., 2005), and our dataset
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357 provides a more precise baseline on Hainan gibbon call timing and duration. Hainan gibbon calling
s bouts were also generally detected less frequently during the wet season, a period when other
3o gibbon species are also known to sing less frequently (Cheyne, 2008; Clink, Ahmad, & Klinck,
sso  2020). Interestingly, call bouts recorded within the area occupied by a solitary male gibbon were
se1  amongst the shortest recorded bouts, and started and finished later than bouts from known social
32 groups. While we cannot exclude the possibility of detecting group calls at this location, this
33 finding suggests important new information on the behavioural ecology of solitary Hainan gibbons
ssa that may assist future monitoring and conservation planning.

365 It is uncertain whether within-recorder and between-recorder variation in calling bout detections
ses represents variation in calling frequency between groups, and/or variation in detection effectiveness
ez by recorders, with the latter possibility likely associated with specific recorder placement, local
ses terrain, specific gibbon movement patterns across landscapes, and group home range size (cf.
see  Bryant et al. (2017)). Future work could investigate detection likelihood in relation to specific
a0 environmental parameters and local weather conditions (e.g., rainfall, wind, temperature), data on
372 which were not available for our survey period but are known to affect calling behaviour in other
sz gibbons (Coudrat, Nanthavong, Ngoprasert, Suwanwaree, & Savini, 2015; Yin et al., 2016).

373 Where calls can be detected across multiple recording locations, acoustic spatial capture-
s7a  recapture methods provide a means of estimating animal abundance (Stevenson et al., 2015).
375 While our locations are too far apart for this to be feasible, this represents an important next step
76 in monitoring a critically endangered population. Classifiers capable of discriminating between
sz groups or individuals can be valuable inputs to this process (Augustine, Royle, Linden, & Fuller,
srs - 2020), as well as providing insight into the behavioural ecology of groups or individuals. We also
37 recommend that call detection ranges should be determined for the specific field conditions at
sso  BNNR (e.g., slope, vegetation density), to calibrate monitoring effectiveness of specific recorders,
ssn and determine effective recorder placement (grid area/density) to ensure saturation of monitoring
;2 coverage. However, passive acoustic monitoring can now be introduced as an important component
sss  of the Hainan gibbon conservation toolkit, both for future use at BNNR and also to potentially
ssa  detect unknown remnant gibbon populations elsewhere across Hainan (S. T. Turvey et al., 2017).
sss  Our classifier permits rapid and potentially real-time monitoring of Hainan gibbons, and we hope
sss that the approach we describe in developing this classifier can serve as a roadmap for practitioners
ss7  to implement their own classifier for other passive acoustic monitoring projects, and contribute to

sss  the effective conservation of calling species.
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546 Supplementary Material

= A Details of observed call bouts in training data

ses  In the preliminary stage of model building we used a subset of 72 hours of recordings (nine eight-
se0  hour recordings) to inform our decision to use a window of 10s. Across these recordings, an average
sso  of 2.3 calling bouts were observed per eight-hour period (min 1, max 4), with on average 54 phrases
ss1 per bout (min 31, max 116). The average duration between phrases within a calling bout was 19.4s.
ss= Table A.1 presents the distribution of the numbers of syllables per phrase, as well as the mean
sss  duration of phrases consisting of different numbers of syllables. All phrases contained between one

ssa and six phrases, with the majority of phrases made up of one to four syllables.

Type Average total duration | Number of instances
1 syllable 2.6 £0.9 175
2 syllables 4.3 + 0.8 413
3 syllables 5.1+£0.9 339
4 syllables 5.8 £ 0.8 302
5 syllables 6.4 + 0.8 62
6 syllables 6.0 + 0.6 13
Duet 6.1 £0.9 56

Table A.1: The average total duration for each type of hainan gibbon song. These are the syllables
in the long calls that the hainan gibbon’s perform. The number of times each type occurs is also
presented. These values also include the breaks between consecutive calls.

= B Details of predicted call bouts in test data

sss Lable B.1 shows observed and predicted start and end times of calling bouts in nine eight-hour
ss7 - recordings used to test our final (2-D CNN) model. Each bout is denoted by [ts,t.], where t; and
sss L. are start and end times (in seconds from the start of the recording) respectively. No calling
sso bouts were missed, but two predicted bouts were false positives (denoted in bold) - these are 52

seo and 272 seconds of false positives respectively.

«« C Seasonal differences in gibbon detections

se2 Table C.1 reports the same summary statistics as Table 2 in the main text, but separately for wet
ses and dry seasons. Gibbons called substantially less frequently in the wet season at four sites (2,
sea D, 8), more frequently at two sites (4, 7), and less on average across all sites (65% (261,/403) vs.
ses 7% (305/398)). Calling occurred over a subtantially greater part of the day in the wet season
ses  (07:05-10:25) than in the dry season (07:25-09:30), although mean calling time per day did not

ser  differ substantially (wet season = 30m, dry season = 29m).
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File Type Bouts (seconds)
. Correct [3682 3899], [3911 4174]
Predicted [3357, 4180]
5 Correct [3349 3831], [8854 9456], [14796 15502]
Predicted [3342, 3836], 8850, 9459], [14791, 15500]
3 Correct [3676 3795], [14759 14955], [19557 20257], [20533 20856]
Predicted [3623, 3802], [14752, 14962, [19365, 20262, [20526, 20860]
4 Correct [3950 4201], [5390 5941]
Predicted [3945, 4208], [5351, 594§]
5 Correct [3398 4148], [8507 9018], [10642 11035], [14918 15542]
Predicted [3366, 4154], [8477, 9024], [10509, 11039], [14911, 15548]
6 Correct [3423 3783, 6370 7086|
Predicted [1216, 1268, [3417, 3789], [6367, 7001]
. Correct [5607 6626]
Predicted [1704, 1976], [5627, 6629]
8 Correct [3133 3802], [11643 12317]
Predicted [3312, 4028], [114%8, 12322]
9 Correct [10210 10235], [24377 25125]
Predicted [10184, 10239], [24373, 25129)]

Table B.1: Observed and predicted start and end times (sec) of calling bouts

Location

Survey
days

% days  Mean calling Mean start Mean end
calls time per time of time of
detected  day (min) first bout  last bout

Dry season
1

~N O T W N

8

Wet season
1

0 O Ui Wi

(Mar-Apr), 61 days

52 75 28.7 07:19 09:26
37 73 26.4 07:00 08:48
58 81 34.8 08:01 10:09
52 81 28.6 07:46 09:25
51 51 29.9 07:31 09:23
55 80 28.3 08:04 10:10
46 78 21.6 07:07 08:46
47 94 31.2 06:33 09:26
(May-Aug), 100 days

35 63 16.2 08:00 10:09
53 26 36.8 06:54 09:58
45 82 26.7 06:49 10:24
53 91 24.5 07:42 10:16
28 0 - - -
48 77 19.9 07:48 10:20
83 95 35.2 06:47 10:25
58 41 58.5 05:45 11:05

Table C.1: Detection of gibbon calling bouts by different recorders in wet and dry seasons.
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1) (Generalized additive model details

seo  We fitted a generalized additive model (GAM) with the mgcv package in R (Wood, 2017) to
s70 model the relationship between the number of detected gibbon call bouts and time-of-day. A
s71 binomial distribution for the error terms and an log link function was used, with a smooth term
sz using cubic regression splines with 10 knots (k = 10) capturing non-linearities in the relationship
s73 between predictor and response variable. The exact number of knots is not critical but was chosen
s7a conservatively with the intention of producing biologically meaningful results. We checked that
s7s we did not over-specify the number of knots using the effective degrees of freedom as a guide.
sze  The model explained 88% of the variability in detected counts (deviance explained) and residual
s77  analysis plots indicated symmetrically distributed residuals. There was no discernible evidence
s7s  of heteroskedasticity or unmodelled relationships between residuals and either observed or fitted

s7o  values of the dependent variable.

= B Software

ss1 ' 1wo interactive notebooks, Train.ipynb and Predict.ipynb, illustrate the two main processes in
ss2  developing an automated classifier: pre-processing audio file and training a convolutional neural
ss3 network (Train.ipynd) and using an already-constructed model to identify calls in a new and
ssa  unlabelled recordings (Predict.ipynbd).

585 A detailed manual is provided in the same repository as the code, so here we only briefly
sse illustrate the workflow (Figure E.1). Users first need to download the code repository and install
ss7 all requirements in requirements.tzxt using pip install -r requirements.txt.

588 For training, input data takes the form of (a) one or more .wav files containing already annotated
sso  recordings, (b) a text file containing the annotated call times in the training files, and (c) a text file
seo  containing the filenames of these .wav files. Upon downloading the repository, an example of (a)
son  and (c) is downloaded to the Raw Data/Train and Call Labels folders, while an example of (b)
sz appears as Training Files.txt in the root directory. Folders and filenames can be changed as note-
so3  book options, as well as optional parameters controlling various aspects of model building (down-
sos  sampling rate, augmentation, etc). Two core functions execute_preprocessing_all_files and
sos  train_model perform preprocessing (creating image files containing spectrograms) and build the
see  CNN.

507 For predicting on test or unlabelled files, users specify the location of the test .wav file, as well as
ses the location of the model parameters obtained during training. Model weights for our best 2-D CNN
seo  are downloaded with the repository and saved as Experiments/pretrained_weights _from_ paper.hdf5,
so0 50 this notebook will run directly on new data without needing to retrain the model. The function

eo1 execute_processing runs the test file through the trained neural network and outputs predicted
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s02 call times as a spreadsheet.

Augmentation.py
Train_Helper.py
Extract_Audio_Heiper.py
CNN_Network,py

Predict_Helper.py
Hyper_Parameters.py
CNN_Network.py

Example training file

i 051600
Makes use of Uses the following u
«—— TrainCNMNmodel ——— >
the following data file ‘B}
Python scripts e
Execute this
notebook
Train.ipynb
Example testing file
085700
Makes use of | Predict and l Uses the following A
the following phdiprocessiig data file W)
Python scripts s
Execute this
notebook

Predict.ipynb

Figure E.1: Illustrating the pipeline and code dependencies for training and prediction.
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