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1 Abstract17

1. Extracting species calls from passive acoustic recordings is a common preliminary step to18

ecological analysis. For many species, particularly those occupying noisy, acoustically variable19

habitats, the call extraction process continues to be largely manual, a time-consuming and20

increasingly unsustainable process. Deep neural networks have been shown to offer excellent21

performance across a range of acoustic classification applications, but are relatively underused22

in ecology.23

2. We describe the steps involved in developing an automated classifier for a passive acous-24

tic monitoring project, using the identification of calls of the Hainan gibbon (Nomascus25

hainanus), one of the world’s rarest mammal species, as a case study. This includes pre-26

processing - selecting a temporal resolution, windowing and annotation; data augmentation;27

processing - choosing and fitting appropriate neural network models; and postprocessing -28

linking model predictions to replace, or more likely facilitate, manual labelling.29

∗Corresponding author: edufourq@gmail.com
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3. Our best model converted acoustic recordings into spectrogram images on the mel frequency30

scale, using these to train a convolutional neural network. Model predictions were highly31

accurate, with per-second false positive and false negative rates of 1.5% and 22.3%. Nearly32

all false negatives were at the fringes of calls, adjacent to segments where the call was correctly33

identified, so that very few calls were missed altogether. A postprocessing step identifying34

intervals of repeated calling reduced an eight-hour recording to, on average, 22 minutes for35

manual processing, and did not miss any calling bouts over 72 hours of test recordings.36

Gibbon calling bouts were detected regularly in multi-month recordings from all selected37

survey points within Bawangling National Nature Reserve, Hainan.38

4. We demonstrate that passive acoustic monitoring incorporating an automated classifier rep-39

resents an effective tool for remote detection of one of the world’s rarest and most threatened40

species. Our study highlights the viability of using neural networks to automate or greatly41

assist the manual labelling of data collected by passive acoustic monitoring projects. We em-42

phasise that model development and implementation be informed and guided by ecological43

objectives, and increase accessibility of these tools with a series of notebooks that allow users44

to build and deploy their own acoustic classifiers.45

Keywords: bioacoustics, passive acoustic monitoring, species identification, deep learning, con-46

volutional neural networks, Hainan gibbons.47

2 Introduction48

Deep learning holds enormous promise for automating the labelling of bioacoustic data. The num-49

ber of applications is growing (Christin, Hervet, & Lecomte, 2019), but the majority of datasets are50

still labelled manually (Fairbrass et al., 2019; Kiskin et al., 2020; Pamula, Pocha, & Klaczynski,51

2019), even as the rate of data collection makes this approach increasingly unsustainable. The52

mismatch between the potential of deep learning approaches and their actual uptake among prac-53

titioners occurs because getting models to perform as well as an experienced human is difficult.54

Human-like performance usually requires substantial amounts of training data or relatively sta-55

ble background environments, conditions that are often absent in ecological applications. Model56

tuning and data manipulation is often required, and while guidelines are emerging (Patterson &57

Gibson, 2017; Stowell, Wood, Pamuła, Stylianou, & Glotin, 2019), these can, with some justifica-58

tion, appear subjective and case specific. A lack of computing resources and user-friendly software59

can also be a barrier to entry. Case studies reporting successful applications play an important60

role in developing and disseminating best practices, and in discriminating between those tasks that61

current deep learning methods are able to automate and those they cannot. Previous applications62

have used convolutional neural networks (CNNs; LeCun, Bengio, and Hinton (2015)) to identify63
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various bird (Grill & Schlüter, 2017; Kahl et al., 2017; Stowell, Wood, et al., 2019) and whale64

species (Bergler et al., 2019; Bermant, Bronstein, Wood, Gero, & Gruber, 2019; Jiang et al., 2019;65

Shiu et al., 2020), bees (Kulyukin, Mukherjee, & Amlathe, 2018; Nolasco et al., 2019), as well as66

anomalous acoustic events in soundscapes (Sethi et al., 2020). These have shown, for example,67

that a generally good approach is to represent data as spectrograms and treat the problem as68

an image classification one, as well as providing specialised approaches for data augmentation on69

spectrogram inputs, such as pitch and time shifting and introducing background noise (Bergler et70

al., 2019; Sprengel, Jaggi, Kilcher, & Hofmann, 2016).71

Despite this, no studies report the process of applying deep learning within the scope of a72

typical acoustic monitoring project designed to answer a well-defined research question. Most73

applications are either smaller – using data collected for the purpose of testing a deep learning74

approach, and often written for a machine learning rather than ecological audience (e.g. Kiskin75

et al., 2020; Kulyukin et al., 2018); or larger – aggregating datasets across several independent76

studies to investigate if models generalise (Bergler et al., 2019; Shiu et al., 2020; Stowell, Wood,77

et al., 2019) – than most monitoring projects. In this paper we address this gap, describing the78

development of a classifier for identifying Hainan gibbon (Nomascus hainanus) calls in passive79

acoustic recordings collected as part of a long-term monitoring project, with the aim of providing80

practitioners with a realistic and relatable idea of the process, and modelling choices, involved, as81

well as guidelines for these choices.82

The Hainan gibbon is the world’s rarest primate and one of the world’s rarest mammals, with83

only a single population of about 30 individuals surviving in Bawangling National Nature Reserve84

(BNNR), Hainan, China (Chan, Fellowes, Geissmann, & Zhang, 2005; Liu, Ma, Cheyne, & Turvey,85

2020; S. Turvey et al., 2015). Improved monitoring of this population using novel methods, to un-86

derstand factors affecting successful dispersal, breeding group formation and colonization of new87

habitat, has been identified as an urgent short-term conservation goal for the species (S. Turvey88

et al., 2015; Zhang et al., 2020). Gibbons call regularly to advertise territory and maintain group89

cohesiveness against rivals, using a complex structure consisting of short individual vocal sylla-90

bles or "notes" of ca. 0.2–2.75s assembled together into longer "phrases" consisting of one to six91

notes, which are themselves organised into "songs" of several minutes (Deng, Zhou, & Yang, 2014).92

Gibbon population surveys are usually conducted by detecting this daily song using a fixed-point93

count survey method, whereby researchers listen opportunistically for calls at elevated listening94

posts (Brockelman & Srikosamatara, 1993; Kidney et al., 2016). However, this traditional moni-95

toring approach is labour-intensive and is only conducted for discrete survey periods. Gibbons are96

therefore prime candidates for passive acoustic monitoring and recent studies have used data col-97

lected in this way to model occupancy (Vu & Tran, 2019) and to discriminate between individuals98

using spectral features (Clink, Crofoot, & Marshall, 2019; Zhou et al., 2019). All of these studies,99

however, have relied on an initial manual extraction of calls.100
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In order to develop a continuous monitoring protocol for Hainan gibbons we conducted long-101

term passive acoustic monitoring and developed an automated classifier able to identify whether102

gibbons were calling in the vicinity of a particular recorder, with the aim of establishing whether103

the area proximal to the recorder was occupied that day. It was therefore important to be able104

to detect individual gibbon calling bouts, but not necessarily to be able to discriminate every105

phrase made during the bout. We address issues that are important to the overall usefulness of a106

classifier, including deciding how much data to manually label, data augmentation, operationally107

meaningful definitions of classifier success, and the development of user-friendly software. Our108

study provides an effective new monitoring method for the world’s rarest primate, and also has109

wider applicability for applying deep learning to develop passive acoustic monitoring frameworks110

for other conservation-priority loud-call species such as cetaceans, elephants, or other primates111

(Crunchant, Borchers, Kuhl, & Piel, 2020).112

3 Materials and Methods113

3.1 Data collection114

Eight Song Meter SM3 recorders (Wildlife Acoustics, Maynard, Massachusetts) were used to collect115

acoustic data from 1 March to 20 August 2016 within BNNR. Recorders were attached to trees at116

a height of approximately 1.5m in tropical evergreen forest. Four recorders were situated within117

the known home ranges of the four Hainan gibbon social groups existing during the study period118

(Groups A-D; see Bryant, Zeng, Hong, Chatterjee, and Turvey (2017)), three were situated at119

locations intermediate between known home ranges, and a further recorder was placed in an area120

where a solitary male gibbon was thought to occur (Bryant et al., 2016). They were placed at121

locations that were used as regular listening posts for monitoring gibbons by reserve staff (Figure122

1). The peak Hainan gibbon calling period is 06:00–07:00, with calling continuing at decreasing123

regularity for several hours (Chan et al., 2005). Recorders were therefore set to record for eight124

hours each day from the time of sunrise, which varied between approximately 05:00 and 06:00125

during the study period. Memory cards and batteries were changed every 40 days. Devices did126

not record continuously throughout the entire survey period due to logistical and technical issues;127

in total, survey days per recorder varied between 79 and 129 days, and roughly 6,000 hours of128

recordings were collected. The majority of recordings were made with a sampling rate of 9,600Hz129

and bit depth of 16, with isolated recordings at 28,800Hz.130

3.2 Data analysis131

We manually labelled 32 eight-hour recordings by inspecting spectrograms and listening to audio132

using Sonic Visualiser (Cannam, Landone, & Sandler, 2010), and recording the start and end133

4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.07.285502doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.285502
http://creativecommons.org/licenses/by/4.0/


Figure 1: Locations of eight Song Meter SM3 recorders (labelled 1-8) used to detect gibbons
in 2016 within Bawangling National Nature Reserve, Hainan, China, in relation to approximate
distributions of four Hainan gibbon social groups (A-D). Mapped distributions of groups A-C are
based on field data collected in 2010-2011 (see Bryant et al. (2017)); the groups all changed their
location slightly between 2011 and 2016, but data on exact group locations in 2016 are unavailable.
Approximate location of Group D indicated with hatching based on Bryant et al. (2016).

times, and the number of notes, of each observed gibbon phrase. This process yielded 1,246 gibbon134

phrases.135

To construct the fixed-length inputs required by CNNs, we divided each eight-hour recording136

into segments with window length 10s and hop length 1s (starting times of consecutive 10s segments137

differ by 1s, Figure 2). This window length was chosen so that even the longest phrase (8s,138

Supplementary Material A) fits within a single segment; using a slightly longer segment length139

allows for potentially longer unseen phrases, and results in more positive segments after windowing.140

All audio was converted into mono, as done in various applications (e.g. Bergler et al., 2019; Qazi,141

Tabassam Nawaz, Rashid, & Habib, 2018; Stowell, Petrusková, Šálek, & Linhart, 2019). By cross-142

referencing the time intervals of each segment with the logged start and end times of known gibbon143

phrases, each segment was labelled as (a) a “presence”, if its time interval completely contained144

the interval of at least one labelled phrase, (b) an “absence”, if its time interval contained no part145

of any phrase, or (c) a “partial presence”, if its time interval intersected but did not completely146

contain the interval of at least one labelled phrase (Figure 2). Partial presences were excluded147

from further analysis.148

Preprocessed amplitudes in each 10s segment were downsampled to 4800Hz, and the down-149

sampled inputs – each segment a time series of 48000 observations – used as inputs to the 1-D150

CNNs described in the next section. In addition, we converted each audio segment into a mel-scale151
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Figure 2: Hainan gibbon calls consist of a sequence of “phrases”, each phrase consisting of variable
(typically, 1-6) “notes” and often with relatively large intervals between phrases. Left: a two-note
phrase followed by a three-note phrase. A single calling bout may last anywhere from a few to
dozens of minutes. Our model divides the recording interval into sliding 10s windows or “segments”
(blue boxes), with 80% overlap between adjacent segments. Segments are classified as contained
at least one full gibbon phrase (Present; solid line), a partial phrase (Partial; dotted line), or no
part of a phrase (Absent; dashed line). Partial presences were excluded from further analysis,
creating a two-class audio classification problem. Right: a gibbon phrase partially obscured by
noisy background conditions, in this case other species calling (red boxes).

spectrogram (Bergler et al., 2019; Huang, Acero, & Hon, 2001), to be used as an input image to152

a 2-D CNN, using a window size of 1,024/9,600s, a hop size of 256/9,600s, and 128 mel frequency153

bins with centres uniformly spaced between 1 and 2kHz, a conservative interval following Deng et154

al. (2014) and our own exploratory analyses. These values for chosen on the basis of preliminary155

investigations, although results are not particularly sensitive to these choices. The spectrogram156

images had a size of 128 × 188 pixels; larger image sizes can capture greater detail but typically157

require more network parameters and computation time to do so.158

After processing, our dataset consisted of 5,285 segments containing at least one complete159

phrase. While the vast majority of segments do not contain any gibbon calls, we restricted the160

number of absence segments to the same number as presences, to avoid a large class imbalance.161

Absence segments were initially collected by randomly sampling, but we found that better results162

were obtained by specifically including absence segments that contained typical ambient noise, such163

as bird calls, rain events, and other background noises that could potentially confuse the classifier164

(Stowell, Petrusková, et al., 2019). Extracting these required additional manual processing of the165

audio data.166
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3.3 Data augmentation167

Data augmentation – boosting sample sizes by adding new samples artificially created by ma-168

nipulating existing ones, for example using geometric operations like translations and rotation169

– is commonly used to improve classifier performance, particularly when the training dataset is170

relatively small (Hestness et al., 2017; Sun, Shrivastava, Singh, & Gupta, 2017). We used data aug-171

mentation to create up to ten new copies of each 10s segment in both presence and absence classes.172

For each presence segment x(pre), we randomly selected ten absence segments, x(abs)
i , i = 1, . . . , 10.173

We randomly shifted the starting time of each absence segment forward by 0 < ti < 9 seconds, with174

the absence segment wrapping back on itself so that it remained 10s long (Figure 3c), to obtain the175

shifted segment x
(shift)
i . Presence segments were not shifted, as this already occurred during the176

windowing process used to create the original segments. Segments contain amplitude values and177

thus allow for arithmetic operations to be performed on them. We blended the presence segment178

with each shifted segment to create augmented presence segments x(aug)
i = αx(pre)+(1−α)x

(shift)
i ,179

where α is a mixing parameter, here chosen to be 0.9 (Figure 3d). We created augmented absence180

segments using the same approach, i.e. combining pairs of absence segments to create a mixture181

of background scenes.182

After augmenting the original segments, we obtained 18,992 segments (9,496 presence, 9,496183

absence) from 19 recordings to train the neural networks. We randomly selected 60% of the data184

for training (5,697 presence, 5,697 absence) and used the remaining 40% for validation (3,799185

presence, 3,799 absence). Non-augmented segments from nine separate recordings (2,231 presence,186

23,689 absence) were kept aside for testing.187

Figure 3: Data augmentation steps involve (a) selecting a presence segment containing a Hainan
gibbon phrase, (b) randomly selecting a segment containing only background noise, (c) shifting
the starting time of the absence segment forward by a random amount, here two seconds, and (d)
blending together the presence and shifted absence segments.

3.4 Neural networks188

We considered two kinds of CNN architectures: a 1-D CNN using preprocessed amplitudes of 10s189

segments as inputs, and a 2-D CNN that had inputs consisting of spectrogram images constructed190

from the preprocessed amplitudes. As we had relatively little training data by deep learning stan-191
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Figure 4: Best architectures for 1-D and 2-D CNNs, for both augmented and non-augmented
training datasets. Selected architectures were those with intermediate numbers of free parameters,
particularly for 2-D CNNs.

dards, we chose these networks as they use simple architectures requiring relatively few parameters.192

Both 1-D and 2-D CNNs use up to three convolutional layers, each followed by a max pooling layer193

that reduces the size of the intermediate input passed to the next layer of the network. We used194

16× 1 and 16× 16 convolutional kernels for 1-D and 2-D CNNs, respectively. The stack of convo-195

lutional layers was followed by one or two dense layers (Figure 4). The resulting model outputs a196

predicted probability that the input segment (1-D or 2-D) contains at least one complete gibbon197

phrase.198

We chose model hyperparameters using a grid search over the number of convolutional (1, 2, 3)199

and dense (1, 2, 3) layers, nodes in each of the dense layers (8, 16, 32), filters in each convolutional200

layer (8, 16, 32), kernel size in each convolutional and max pooling layer (4, 8, 16), and dropout rate201

(0, 0.2, 0.4, 0.6). Each model was trained for 50 epochs using the Adam optimizer (Kingma & Ba,202

2014) a batch size of 8 segments, and a learning rate of 0.001. Models were evaluated based on203

test set accuracy (proportion of all predictions that were correct), sensitivity (proportion of true204

positives divided by positive examples), and specificity (proportion of true negatives divided by205

negative examples). Optimal thresholds for converting predicted probabilities into binary classifi-206

cations were those that minimized the ratio of sensitivity and false discovery rate in the validation207

dataset.208
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Models were implemented in Python 3 using the TensorFlow (Abadi et al., 2015) library with209

Keras (Chollet et al., 2015) for the neural network component, and the Librosa library for audio210

processing and spectrogram construction (McFee et al., 2020). Model training and testing was211

done on a machine running Ubuntu 16.04 LTS with an Intel i7-6700K CPU, 16GB of RAM, and212

an Nvidia GTX 1070 8GB Graphics Processing Unit. Code and analysis scripts are available online213

at https://github.com/emmanueldufourq/GibbonClassifier.214

3.5 Post-processing215

For an audio recording of arbitrary duration, our approach was to break that recording into over-216

lapping 10s segments, and to use a trained CNN to output, for each segment starting at second217

s = 0, 1, 2, . . ., a predicted probability indicating the likelihood that at least one complete gibbon218

phrase is contained in the next ten seconds. These probabilities are based only on the acoustic219

content of their associated segments, and can give rise to biologically unrealistic call patterns. We220

used a post-processing step to remove isolated predicted presence segments which are highly likely221

to be false positives rather than actual calls, and to obtain start and end times for each predicted222

calling bout, to facilitate manual verification and support the main research objective of detecting223

and monitoring gibbon activity.224

To do this, we formed connected components of presence segments that occur close together225

in time and in sufficient numbers that, given known gibbon call characteristics (i.e. song duration,226

inter-phrase duration), they are likely to be part of a single calling bout (Supplementary Material227

A). With presence segments arranged in temporal order, presence segment i is included in the same228

component as segment i−1 if they are separated by less than 200s; otherwise segment i begins a new229

component. This process allocates each presence segment to exactly one component. Components230

were then reviewed, and any components consisting of fewer than 20 segments (equivalent to231

roughly four phrases of length 5s) were removed, as were any components where the average232

time between consecutive presence segments in the component was greater than 10s (suggesting233

a "chain" of isolated presence predictions, since calls usually persist over multiple consecutive234

segments).235

The first and last presence segment in each remaining component give the start and end times236

of each predicted gibbon calling bout. To evaluate the post-processing step, we mimic its intended237

application by assuming that all predicted bouts are passed to an observer for manual processing,238

and that all presence segments within the bout are subsequently identified. This approach means239

that post-processing accuracy measures are conditional on the use of additional, error-free manual240

verification.241
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4 Results242

Hainan gibbon calls could be detected with a high degree of accuracy. Without post-processing,243

nearly 80% of segments containing gibbon calls were correctly identified, with very few false pos-244

itives (Table 1). Even with false negative rates of 20% very few gibbon phrases were missed245

altogether, because phrases occur across multiple overlapping segments and nearly all segments246

incorrectly identified as absences occurred at the beginning and end of a phrase, abutted by several247

segments where the phrase was correctly detected (Figure 5). After post-processing, fewer than248

2% of all presence segments occurred outside of predicted call bouts (Table 1), and all 20 call bouts249

across nine test set recordings were detected, with two predicted call bouts being false positives250

(Supplementary Material B). In the training set, 34 of 35 call bouts were correctly recognised with251

2 false positive call bouts.252

CNN 2-D 2-D 2-D 1-D 1-D 1-D
+ Augmentation Yes Yes No Yes Yes No
+ Postprocessing Yes No No Yes No No
Accuracy (Test) 99.37% 97.60% 92.32% 94.30% 94.76% 94.76%
Sensitivity (Test) 98.30% 77.68% 79.65% 54.21% 40.98% 25.56%
Specificity (Test) 99.42% 98.51% 92.92% 95.96% 96.91% 97.60%
Accuracy (Train) 98.68% 97.20% 93.65% 95.14% 94.16% 93.44%
Sensitivity (Train) 94.84% 80.64% 77.85% 69.62% 53.42% 24.53%
Specificity (Train) 99.12% 98.59% 94.94% 97.66% 97.92% 99.24%
Model Parameters 23,922 23,922 24,978 2,650 2,650 2,378
Train Duration (sec) 644 643 265 628 627 117

Table 1: Average classification accuracy and parameter settings for the best 2-D and 1-D CNN
models across 72 hours of test recordings (2,231 segments containing gibbon phrases, 23,689 with-
out). Gibbon calls can be identified with very high accuracy, and performance is improved by data
augmentation and a postprocessing heuristic.

The best performing approach was a 2-D CNN with both data augmentation and post-processing.253

Data augmentation improved specificity by 5.6%, a relative reduction in false positives of 79% but254

without associated relative reduction in sensitivity; post-processing further improved both sensi-255

tivity (20.6%) and specificity (0.9%, Table 1). Accuracy was substantially higher when treating256

the task as an image (spectrogram) classification problem than if the preprocessed acoustic data257

were directly used as input to a 1-D CNN. An 8 hour test file took on average 6 minutes to process258

of which 3 minutes 10 seconds were used for reading in the audio file and 2 minutes 42 seconds to259

convert to spectrograms; the remaining time was used to compute the CNN predictions.260

Across the entire monitoring project, gibbon calls were detected on 71% of recording days261

across all locations. Gibbons were detected regularly at all locations, with recorders situated262

within known group or solitary home ranges detecting calls on 33–86% of recording days, and263

those situated between home ranges detecting calls on 46–89% of recording days. Mean durations264

of calling bouts per recorder varied between 24.2 and 40.8 minutes (overall mean = 29.7 minutes),265

with mean starting times of 06:16-07:56 am and mean finishing times of 09:12-10:15 am (Figure266
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Figure 5: Per-second predicted probabilities that a gibbon phrase is contained within the next
10s of audio, over (a) an eight-hour file, (b) a five-minute window. Segments with predicted
probabilities above an optimized threshold of 0.76 (red line) are classified as containing a gibbon
phrase, with misclassifications denoted by crosses. Observed and predicted classes are plotted
above the probabilities, using the same notation. Colour is used to denote the observed class.
Most incorrect false negative classifications are at the beginning and end of phrases, separated by
segments that correctly identify the call. In this way, nearly all phrases are clearly identified, and
a practitioner can be pointed to those regions that contain calls.

6; Table 2). Calls were detected less frequently during the wet season (March-April) than the267

dry season (May-August), with inter-season differences varying substantially between locations268

(Supplementary Table C).269

5 Discussion270

Long-term monitoring will generate thousands of hours of recordings across multiple survey sites,271

and manually labelling these recordings is typically infeasible given logistical constraints. Our272

results demonstrate that passive acoustic monitoring incorporating an automated classifier can be273

an effective tool for remote detection of calling species, potentially enabling systematic monitoring274

whilst saving time, funds and manpower. Our approach, applied to Hainan gibbons, is general and275

easily extended to other calling species.276

Our models allow new recordings to be classified on a per-second basis, to a high degree of accu-277

racy. Although perhaps false negative rates of 1.7% may not be sufficiently low for full automation278

of Hainan gibbon call monitoring, they greatly facilitate the process of manually annotating these279

datasets by ruling out large portions of recordings that have a near-zero probability of containing280

gibbon song. In our test datasets, this reduced the amount of audio to be manually processed by281

95%. Our model clearly detected all calling bouts in the test data, at the cost of two false positives.282
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Figure 6: Daily patterns in gibbon calling activity. The red line denotes, per 10 minutes, the
proportion of recordings across all locations in which a call was detected (e.g. 05:00-05:10, 05:10-
05:20, ...). The black line smooths the observed proportions using a GAM (see Supplementary
Material D for details). The bottom plot shows the number of recordings per 10-minute segment,
showing the survey effort from 05:00–14:00. Peak activity occurs shortly after dawn, dropping
rapidly but with some calling activity recorded throughout the morning. Plot inset shows the
duration of independent call bouts detected by the classifier. Call bouts are intervals of regular
calling, with no detected call 200s either side of the bout. Daily calling typically consists of a
number of calling bouts.

Location
Survey
days

% days
calls

detected

Mean calling
time per
day (min)

Mean start
time of

first bout

Mean end
time of

last bout

1 87 70 24.2 07:34 09:41
2 90 46 29.9 06:58 09:12
3 103 82 31.3 07:30 10:15
4 105 86 26.5 07:44 09:52
5 79 33 29.9 07:31 09:23
6 103 79 24.4 07:56 10:15
7 129 89 30.9 06:53 09:54
8 105 65 40.8 06:16 10:01

Table 2: Calling behaviour across 8 survey locations for the 161 day survey period March–August
2016. Recorders were situated within the known home ranges of the four Hainan gibbon social
groups existing during the study period, at locations intermediate between known home ranges,
and in an area where a solitary male gibbon was thought to occur. Locations of home ranges are
indicated by numbers 1, 2, 3 and 4. 6 = solitary.
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Where false negatives are particularly costly, this is easily incorporated by lowering the threshold283

required for manual verification. We expect that with more, and more diverse, training data, error284

rates would decline further.285

Where environmental conditions were similar to those used to train the model, predictions286

were almost perfect and could be used to identify start and end times of call phrases and bouts,287

returning almost identical values to a human observer. It is impossible to know in advance whether288

environmental conditions are similar enough to warrant confidence in the associated predictions,289

but these results suggest that, as more training data covering a range of environmental conditions290

are added, model applications may go beyond gibbon detection, by automatically extracting inputs291

for more detailed behavioural analyses, for example of gibbon call syntax (Clarke, Reichard, &292

Zuberbühler, 2006).293

Practically, developing an acoustic classifier such as ours requires a number of steps: deciding on294

an appropriate unit of analysis; manually labelling data; augmenting data and allocating it between295

training, validation, and test sets; choosing and fitting appropriate neural network models; and296

selecting a preferred model and using it to process the unlabelled portion of the data. Our study297

illustrates how model development and implementation are informed and guided by ecological298

objectives, here primarily detecting gibbon vocalizations over time scales of minutes or hours, and299

domain knowledge of Hainan gibbon call behaviour.300

We based our classifier on phrases, rather than shorter notes or longer calling bouts, to balance301

ease of identification with data availability and computational requirements. Individual notes are302

easily confused with other sources (see Figure 2b). While calling bouts are highly distinctive,303

there are relatively few of them and, being longer in duration, they require more parameters to304

capture the same degree of detail. Phrases are far more numerous, less variable, and require fewer305

parameters.306

Given this choice, segment duration was chosen to be longer than the longest phrase across all307

training data (8 seconds). The slightly longer segment length provides more presence segments –308

for example, an 8s phrase results in three 10s presence segments, but would only result in a single309

segment if the segment length was restricted to 8s. Preliminary runs based on shorter segments310

of 0.5–2 seconds and partial phrases did not yield good performance, with many false positives,311

probably because a small segment is not enough to distinguish gibbons from other species calling312

within the same frequency range.313

Even using phrases, we have relatively few positive examples and these occur within a highly314

variable background environment, which is likely to be a common situation for ecological appli-315

cations. The amount of data available to train neural networks is important, and CNNs tend to316

require relatively large amounts of data (at least thousands of each class) to generalize well. It317

may often be possible, as in our case, to collect or label additional data, but data augmentation318

is a valuable low-cost strategy for increasing sample sizes in conjunction with these other more319
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effort-intensive approaches (Bergler et al., 2019; Hestness et al., 2017; Kahl et al., 2017; Sun et320

al., 2017). In practice the process can be an iterative one guided by subjective judgement. We321

initially annotated only 40h across five recordings, but models based on these were poor, even with322

augmentation. Model performance (on the same test set) improved as we add more training data;323

we were also able to create more complex neural networks. Gains in accuracy decreased with addi-324

tional annotations, and we stopped when these became marginal, but presumably further increases325

are possible as novel environments are included.326

Training, validation and test datasets should be constructed by allocating longer contiguous327

sequences of audio to each of these, and then preprocessing each of these, rather than randomly328

allocating the segments themselves, which are highly autocorrelated and will thus overstate test329

accuracy. Wherever possible, we recommend using entirely independent recordings in the test330

dataset.331

We found that 2-D CNNs based on spectrograms performed substantially better than 1-D CNNs332

that use amplitude time series following some initial preprocessing, mirroring Stowell, Wood, et al.333

(2019). Deep neural networks are often motivated by an argument that they learn salient features,334

rather than having to have these provided to them, but where intermediate features (here, spectral335

densities) can be provided, these speed up the learning process and provide measurable benefits.336

Beyond the 2-D/1-D distinction, we found that network architectures had relatively little impact337

on model accuracy, and we achieved good performance using relatively small, simple network338

architectures, again motivated by limitations on training data. We used few dense layers, each with339

only a small number of nodes, as these are particularly parameter hungry. Our basic approach was340

to start with simple architectures, evaluate them, and then add complexity in an iterative manner.341

Traditional performance metrics such as precision and recall, while important, are not the only342

relevant measures of classifier success. Practically, classifiers such as ours can be used to point to343

audio segments that possibly contain gibbon calls, and that require manual verification. Where344

classification accuracy lags behind that of human experts, or where errors are costly – that is, in345

many ecological applications – attention shifts from replacing manual annotation to facilitating346

it. Probability cutoffs can be calibrated to balance the costs of false positives and negatives, and,347

even if the model is wrong by a few seconds, the amount of time spent in manual verification,348

compared to that required to processing the entire file manually, is minimal. Our classifier reduces349

an eight-hour recording to on average 22 minutes with false positive and negative rates under 2%.350

This time can be further reduced by playing back only those 10s segments that are predicted to351

contain phrases, although in our case the reduction in overall time was offset by the difficulty of352

manually verifying segments that are often not contiguous in time.353

Analysis of our multi-month dataset demonstrated that gibbons could be detected regularly354

across all selected survey points, with call detection consistent with known patterns of gibbon355

behaviour and ecology. Calls were detected at expected times (Chan et al., 2005), and our dataset356
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provides a more precise baseline on Hainan gibbon call timing and duration. Hainan gibbon calling357

bouts were also generally detected less frequently during the wet season, a period when other358

gibbon species are also known to sing less frequently (Cheyne, 2008; Clink, Ahmad, & Klinck,359

2020). Interestingly, call bouts recorded within the area occupied by a solitary male gibbon were360

amongst the shortest recorded bouts, and started and finished later than bouts from known social361

groups. While we cannot exclude the possibility of detecting group calls at this location, this362

finding suggests important new information on the behavioural ecology of solitary Hainan gibbons363

that may assist future monitoring and conservation planning.364

It is uncertain whether within-recorder and between-recorder variation in calling bout detections365

represents variation in calling frequency between groups, and/or variation in detection effectiveness366

by recorders, with the latter possibility likely associated with specific recorder placement, local367

terrain, specific gibbon movement patterns across landscapes, and group home range size (cf.368

Bryant et al. (2017)). Future work could investigate detection likelihood in relation to specific369

environmental parameters and local weather conditions (e.g., rainfall, wind, temperature), data on370

which were not available for our survey period but are known to affect calling behaviour in other371

gibbons (Coudrat, Nanthavong, Ngoprasert, Suwanwaree, & Savini, 2015; Yin et al., 2016).372

Where calls can be detected across multiple recording locations, acoustic spatial capture-373

recapture methods provide a means of estimating animal abundance (Stevenson et al., 2015).374

While our locations are too far apart for this to be feasible, this represents an important next step375

in monitoring a critically endangered population. Classifiers capable of discriminating between376

groups or individuals can be valuable inputs to this process (Augustine, Royle, Linden, & Fuller,377

2020), as well as providing insight into the behavioural ecology of groups or individuals. We also378

recommend that call detection ranges should be determined for the specific field conditions at379

BNNR (e.g., slope, vegetation density), to calibrate monitoring effectiveness of specific recorders,380

and determine effective recorder placement (grid area/density) to ensure saturation of monitoring381

coverage. However, passive acoustic monitoring can now be introduced as an important component382

of the Hainan gibbon conservation toolkit, both for future use at BNNR and also to potentially383

detect unknown remnant gibbon populations elsewhere across Hainan (S. T. Turvey et al., 2017).384

Our classifier permits rapid and potentially real-time monitoring of Hainan gibbons, and we hope385

that the approach we describe in developing this classifier can serve as a roadmap for practitioners386

to implement their own classifier for other passive acoustic monitoring projects, and contribute to387

the effective conservation of calling species.388
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Supplementary Material546

A Details of observed call bouts in training data547

In the preliminary stage of model building we used a subset of 72 hours of recordings (nine eight-548

hour recordings) to inform our decision to use a window of 10s. Across these recordings, an average549

of 2.3 calling bouts were observed per eight-hour period (min 1, max 4), with on average 54 phrases550

per bout (min 31, max 116). The average duration between phrases within a calling bout was 19.4s.551

Table A.1 presents the distribution of the numbers of syllables per phrase, as well as the mean552

duration of phrases consisting of different numbers of syllables. All phrases contained between one553

and six phrases, with the majority of phrases made up of one to four syllables.554

Type Average total duration Number of instances
1 syllable 2.6 ± 0.9 175
2 syllables 4.3 ± 0.8 413
3 syllables 5.1 ± 0.9 339
4 syllables 5.8 ± 0.8 302
5 syllables 6.4 ± 0.8 62
6 syllables 6.0 ± 0.6 13

Duet 6.1 ± 0.9 56

Table A.1: The average total duration for each type of hainan gibbon song. These are the syllables
in the long calls that the hainan gibbon’s perform. The number of times each type occurs is also
presented. These values also include the breaks between consecutive calls.

B Details of predicted call bouts in test data555

Table B.1 shows observed and predicted start and end times of calling bouts in nine eight-hour556

recordings used to test our final (2-D CNN) model. Each bout is denoted by [ts, te], where ts and557

te are start and end times (in seconds from the start of the recording) respectively. No calling558

bouts were missed, but two predicted bouts were false positives (denoted in bold) - these are 52559

and 272 seconds of false positives respectively.560

C Seasonal differences in gibbon detections561

Table C.1 reports the same summary statistics as Table 2 in the main text, but separately for wet562

and dry seasons. Gibbons called substantially less frequently in the wet season at four sites (2,563

5, 8), more frequently at two sites (4, 7), and less on average across all sites (65% (261/403) vs.564

77% (305/398)). Calling occurred over a subtantially greater part of the day in the wet season565

(07:05–10:25) than in the dry season (07:25–09:30), although mean calling time per day did not566

differ substantially (wet season = 30m, dry season = 29m).567
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File Type Bouts (seconds)

1
Correct [3682 3899], [3911 4174]

Predicted [3357, 4180]

2
Correct [3349 3831], [8854 9456], [14796 15502]

Predicted [3342, 3836], [8850, 9459], [14791, 15506]

3
Correct [3676 3795], [14759 14955], [19557 20257], [20533 20856]

Predicted [3623, 3802], [14752, 14962], [19365, 20262], [20526, 20860]

4
Correct [3950 4201], [5390 5941]

Predicted [3945, 4208], [5351, 5948]

5
Correct [3398 4148], [8507 9018], [10642 11035], [14918 15542]

Predicted [3366, 4154], [8477, 9024], [10509, 11039], [14911, 15548]

6
Correct [3423 3783], [6370 7086]

Predicted [1216, 1268], [3417, 3789], [6367, 7091]

7
Correct [5607 6626]

Predicted [1704, 1976], [5627, 6629]

8
Correct [3133 3802], [11643 12317]

Predicted [3312, 4028], [11488, 12322]

9
Correct [10210 10235], [24377 25125]

Predicted [10184, 10239], [24373, 25129]

Table B.1: Observed and predicted start and end times (sec) of calling bouts

Location
Survey
days

% days
calls

detected

Mean calling
time per
day (min)

Mean start
time of

first bout

Mean end
time of

last bout

Dry season (Mar-Apr), 61 days
1 52 75 28.7 07:19 09:26
2 37 73 26.4 07:00 08:48
3 58 81 34.8 08:01 10:09
4 52 81 28.6 07:46 09:25
5 51 51 29.9 07:31 09:23
6 55 80 28.3 08:04 10:10
7 46 78 21.6 07:07 08:46
8 47 94 31.2 06:33 09:26

Wet season (May-Aug), 100 days
1 35 63 16.2 08:00 10:09
2 53 26 36.8 06:54 09:58
3 45 82 26.7 06:49 10:24
4 53 91 24.5 07:42 10:16
5 28 0 – – –
6 48 77 19.9 07:48 10:20
7 83 95 35.2 06:47 10:25
8 58 41 58.5 05:45 11:05

Table C.1: Detection of gibbon calling bouts by different recorders in wet and dry seasons.
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D Generalized additive model details568

We fitted a generalized additive model (GAM) with the mgcv package in R (Wood, 2017) to569

model the relationship between the number of detected gibbon call bouts and time-of-day. A570

binomial distribution for the error terms and an log link function was used, with a smooth term571

using cubic regression splines with 10 knots (k = 10) capturing non-linearities in the relationship572

between predictor and response variable. The exact number of knots is not critical but was chosen573

conservatively with the intention of producing biologically meaningful results. We checked that574

we did not over-specify the number of knots using the effective degrees of freedom as a guide.575

The model explained 88% of the variability in detected counts (deviance explained) and residual576

analysis plots indicated symmetrically distributed residuals. There was no discernible evidence577

of heteroskedasticity or unmodelled relationships between residuals and either observed or fitted578

values of the dependent variable.579

E Software580

Two interactive notebooks, Train.ipynb and Predict.ipynb, illustrate the two main processes in581

developing an automated classifier: pre-processing audio file and training a convolutional neural582

network (Train.ipynb) and using an already-constructed model to identify calls in a new and583

unlabelled recordings (Predict.ipynb).584

A detailed manual is provided in the same repository as the code, so here we only briefly585

illustrate the workflow (Figure E.1). Users first need to download the code repository and install586

all requirements in requirements.txt using pip install -r requirements.txt.587

For training, input data takes the form of (a) one or more .wav files containing already annotated588

recordings, (b) a text file containing the annotated call times in the training files, and (c) a text file589

containing the filenames of these .wav files. Upon downloading the repository, an example of (a)590

and (c) is downloaded to the Raw_Data/Train and Call_Labels folders, while an example of (b)591

appears as Training_Files.txt in the root directory. Folders and filenames can be changed as note-592

book options, as well as optional parameters controlling various aspects of model building (down-593

sampling rate, augmentation, etc). Two core functions execute_preprocessing_all_files and594

train_model perform preprocessing (creating image files containing spectrograms) and build the595

CNNs.596

For predicting on test or unlabelled files, users specify the location of the test .wav file, as well as597

the location of the model parameters obtained during training. Model weights for our best 2-D CNN598

are downloaded with the repository and saved as Experiments/pretrained_weights_from_paper.hdf5,599

so this notebook will run directly on new data without needing to retrain the model. The function600

execute_processing runs the test file through the trained neural network and outputs predicted601
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call times as a spreadsheet.602

Figure E.1: Illustrating the pipeline and code dependencies for training and prediction.
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