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Abstract

We introduce a novel bioinformatics pipeline, STrain Resolution ON assembly Graphs
(STRONG), which identifies strains de novo, when multiple metagenome samples from the same
community are available. STRONG performs coassembly, followed by binning into metagenome
assembled genomes (MAGs), but uniquely it stores the coassembly graph prior to simplification
of variants. This enables the subgraphs for individual single-copy core genes (SCGs) in each
MAG to be extracted. It can then thread back reads from the samples to compute per sample
coverages for the unitigs in these graphs. These graphs and their unitig coverages are then used
in a Bayesian algorithm, BayesPaths, that determines the number of strains present, their
sequences or haplotypes on the SCGs and their abundances in each of the samples.

Our approach both avoids the ambiguities of read mapping and allows more of the
information on co-occurrence of variants in reads to be utilised than if variants were treated
independently, whilst at the same time exploiting the correlation of variants across samples that
occurs when they are linked in the same strain. We compare STRONG to the current state of
the art on synthetic communities and demonstrate that we can recover more strains, more
accurately, and with a realistic estimate of uncertainty deriving from the variational Bayesian
algorithm employed for the strain resolution. On a real anaerobic digestor time series we
obtained strain-resolved SCGs for over 300 MAGs that for abundant community members
match those observed from long Nanopore reads.

Keywords: microbiome, metagenome, strains, Bayesian, microbial community, assembly
graph
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Introduction .

There is a growing realisation that to fully understand microbial communities it is necessary to 2
resolve them to the level of individual strains [35]. The strain is for many species the 3
fundamental unit of microbiological diversity. This is because two strains of the same species 4
can have very different functional roles. The classic example is F. coli, where one strain can be s
a dangerous pathogen and another a harmless commensal [24]. The best definition of a strain,

and the only one that avoids ambiguity, is a set of clonal descendants of a single cell [15,39], 7
but strain genomes by this definition can only reliably be determined by sequencing cultured 8
isolates or single cells [30]. The former is not representative of the community and the latter is o
still too expensive and low-throughput for many applications as well as producing only 10
fragmentary genomes. For these reasons, there is a practical need for efficient methods that can 1
profile microbial communities at high genomic resolution. 12

In contrast to 16S rRNA gene sequencing, shotgun metagenomics has the potential to resolve 13
microbial communities to the strain level. This is because it generates reads from throughout 14
the genomes of all the community members. It also has the additional advantages of reduced 15

levels of bias and the capability to reconstruct genomes. There are many methods for 16
reference-based strain resolution from metagenome data [1,35,42], but they are, and will 17
continue to be, limited by the challenge of comprehensively isolating and sequencing the 18
genomes of diverse microbial strains. Comprehensive reference genome databases may be 19
possible for a few slowly evolving species or particularly well studied pathogens but for the 20
entirety of a complex community it is unlikely to ever be tractable. For example, in a recent de =
novo large-scale binning study of the relatively well-studied human gut microbiome, it was 2
found that 77% of the species recovered did not have a reference genome in public 23
databases [31]. This suggests that even less of the strain-level diversity in those samples would 2
be represented in a genome database. These observations motivate the need for de novo 25
methods of metagenomic strain resolution. 2

In the metagenomics context, we adopt the definition of a ‘metagenome strain’ as a clonal 27
subpopulation with sufficiently low levels of recombination with other strains, that it can be 28

distinguished genetically from them. This does not require that recombination between strains 29
does not occur, rather that either because of physical separation or selection, it has not been 30
sufficiently strong relative to the rate of mutation [40], to generate a continuum of diversity 31
throughout the genome. This means members of a ‘metagenome strain’ may differ substantially 32
from each other particularly in rapidly evolving accessory regions and the subpopulation as a 33
whole may descend from multiple cells but with a core genome that has descended from a single 34
cell in the recent past. This is equivalent to the definition of ‘lineage’ in [29]. For ease, in the 3
discussion below we will refer to strain in the metagenome context when properly we mean this 36
looser definition of a strain as a genetically distinct subpopulation. 37

De novo assembly of genomes from short read metagenome sequences remains very 38
challenging. Assemblies become fragmented for two reasons: firstly, low coverage genomes will 30
fragment through chance occurrences where sequence coverage drops out, following Lander and 4o
Waterman statistics [17], secondly, if either intra or inter-genomic repeats are present then the u
assembly graphs used to represent possible sequence overlaps become very complex, and it is 2

unclear which paths correspond to true genomes. Both of these issues are particularly 3
problematic for metagenomes, where there can be a wide range of species abundances, and in a
complex community a significant fraction of the species may be at low coverage. The first 45
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challenge can be addressed by sequencing more deeply. More difficult to address is the problem 4
of repeats. Just as they do in isolate genome sequencing, intra-genomic repeats such as the 165
rRNA operon will lead to uncertainty in metagenomic assemblies, but if multiple closely related s
strains from the same species are present then they will possess potentially large regions of 49
shared sequence. If the strain genomes are of comparable divergence to the reciprocal of the 50
read length then very complex graphs will result, for typical short read sequencing (75-150bp) s
this would be strains at around 98-99.5% sequence identity. The result is that it is not possible s
to find long paths in the graph that can be unambiguously assembled into long contiguous 53
sequence or contigs. For this reason metagenome assemblies for strain-diverse communities can s
comprise millions of contigs when made from short read data, with the added drawback that in s
the metagenomics context, we do not even know which contig derives from which species. For 6
species that contain multiple very similar strains (> 99.9%), then we expect better assemblies s
but the variants are then too far apart to be linked or phased by Illumina reads. In that case s
we may resolve the large-scale genome structure but not the sequences of the individual strains, so
which we will refer to as their haplotypes. 60

Metagenomic contig binning methods attempt to mitigate the problem introduced by 61
standard metagenome sample processing approaches, wherein the origin of each sequence read ¢
is unknown. Contig binning works because contigs deriving from the same or similar genomes 3
will share features that can be learnt without prior knowledge. These features can be sequence s

composition, but it is also possible to use per-sample coverage depths of contigs as a more 65
powerful feature, if multiple samples are available from the same (or very similar) 66
communities [2]. There are now numerous algorithms capable of using both coverage across 67
samples and composition to automatically cluster contigs and determine from single-copy core e
gene (SCQG) frequencies where the resulting bins are good quality metagenome assembled 69
genomes (MAGs) [3,13]. These tools enable genome bins to be extracted de novo from 70

metagenomes, and are becoming crucial for studying unculturable organisms, contributing to =
many exciting discoveries, such as the description of the Candidate Phyla Radiation [9] or an 7
improved understanding of the diversity of nitrogen fixers in the open ocean [14]. 73

The resolution of genome binning though, is limited by the resolution of the assembler, with 74
a typical maximum kmer length of around 100, the best case is that we can resolve to about 1% s
sequence divergence, so that bins correspond to something between a species and a strain. In 7
the presence of strain diversity, those contigs that are shared across strains will become a 7
consensus of the strains present, in the ideal situation their sequence would be that of the most 7
abundant strain, but even this is not guaranteed. Contigs that are part of the accessory genome 79
and present in a subset of strains may be successfully binned with the core genome, but they s

may not if they are too short or divergent in coverage. Consequently, if multiple strains are 81
present in the assembly the MAGs that result from binning will be an imperfect composite of s
multiple strains. 83

Strains in a metagenome can exhibit variation in shared genes, such as insertions/deletions s
and single-nucleotide variants or SNVs, as well as in their accessory gene complements. 85
Recently, we introduced DESMAN [32] to resolve subpopulations in MAGs using variant 86
frequencies on contigs when multiple samples from a community are available. This is similar to &
contig binning using coverage but it can be viewed as a relaxed form of clustering closer to 88
non-negative matrix factorisation, because each variant can appear in more than one 89

subpopulation haplotype. Similar strategies had been proposed prior to DESMAN but using 90
variant frequencies on reference genomes e.g. Lineages [29] and Constrains [27]. DESMAN and
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other earlier methods are all ‘linear mapping-based methods’ where metagenomic reads are 92
mapped onto a linear sequence, either a reference or consensus contig. This has multiple 93
drawbacks: firstly, the type of variant that can be represented is limited to changes at a single o4
base; secondly, mapping onto a linear sequence can be challenging when there is variation 95
present yielding unreliable results [19]; thirdly, it treats every variant as independent ignoring o
the co-occurrence of variants in reads, which is a powerful extra source of information when o7
strain divergence is greater than the inverse of read length, when we would expect most reads s
to contain more than one variant. The last issue can be addressed by keeping track of which 99
variants appear in which reads but that requires extra bookkeeping [18]. 100

To address these limitations, we introduce a new method, STRONG (Strain Resolution ON 101
Graphs), for analysing metagenome series when multiple samples are available either from the 10
same microbial community e.g. longitudinal time-series or cross-sectional studies where the 103
communities are similar enough to share a significant fraction of strains. STRONG can 104
determine the number of ‘metagenome strains’ in a MAG formed from binning of a coassembly 105
of all the samples, together with their sequences across multiple single-copy core genes, which 106
we define as the strain haplotype, and the coverages of each strain in each sample. STRONG 107

avoids the limitations of the variant-based approaches by resolving haplotypes directly on 108
assembly graphs using a novel variational Bayesian algorithm, BayesPaths. 109

This graph-based approach allows more complex variant structure and incorporates read 110
information. The usefulness of graphs for understanding microbial strains has been noted 111
before, and efficient algorithms developed for querying complex graphs and extracting more 112

complete representatives of MAGs in the presence of strain diversity [10]. STRONG, however, 13
is the first time that graphs have been used in an automated workflow to actually decompose 114
that strain diversity into haplotypes across multiple genes using multiple samples. We compare 115
STRONG to the current state of the art, DESMAN, on synthetic microbial communities and a 116
real metagenome time series from an anaerobic digester. In the former case we validate using 117
the known genome sequences, and for the latter we compare abundant MAGs with haplotypes 11

derived independently from Oxford Nanopore MinlON long reads. 119
Results 120
STRONG pipeline 121
The detailed pipeline is described in the Methods but the key steps are summarised in Figure 1 12
and reiterated here. We start from multiple samples of the same community and jointly 123
coassemble them with metaSPAdes, we save a high resolution graph (HRG) early in the 124
assembly process that preserves all the variant information in the coassembly. The metaSPAdes 125
assembly process then proceeds as normal and the resulting contigs are binned using 126

CONCOCT. We annotate the single-copy core genes in the contigs, allowing us to identify a 127
subset of bins as MAGs. A novel algorithm was then developed to map these SCG ORFs onto 128
the HRG and extract the complete assembly subgraphs corresponding to the genes of interest 129
(Methods - Relevant subgraph extraction). We obtained per sample unitig coverages on these 130
subgraphs by threading reads directly onto them. These subgraphs were simplified with a noise 1

filtering algorithm that used the MAG coverage depths, calculated as the length weighted 132
average of the contigs assigned to that MAG. The simplified subgraphs contain all the 133
information required for the BayesPaths algorithm (Methods - BayesPaths), that 134
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Figure 1. STRONG pipeline. This figure illustrates the principal steps in the STRONG
pipeline (see Methods - STRONG Pipeline). Step 1) Co-assembly with metaSPAdes and storage
of a high-resolution graph (HRG). Step 2) Contig binning with CONCOCT and annotation
of single-copy core genes (SCGs). Step 3) Mapping of SCGs onto the HRG and extraction
of individual SCG assembly graphs together with per-sample unitig coverages. Step 4) Joint
solution of SCG assembly graphs from each MAG with BayesPaths to determine strain number,
haplotypes and per-sample coverages.

simultaneously solves for the number of strains present, their coverage in each sample, and their 135
sequences on the SCGs. SCGs from the same MAG are linked through the binning process and 136
jointly solved in the strain resolution procedure to generate linked strain resolved sequences for 137
each SCG. We will refer below to the SCG sequences for a given strain as its haplotype. The 138
pipeline also applies DESMAN [32], to the same MAGs for comparative purposes, and will 139
perform benchmarking if known genomes are available. It is important to note that some SCGs 140

will be filtered during the BayesPaths procedure, see Methods, so that sequence inference is 141
only performed on a subset in the final output. 142
Synthetic data sets 143

In order to provide an example metagenome data set with a known strain configuration for each 14
species, we created a synthetic community comprised of 100 strains, with known genomes 145
deriving from 45 species, with 20 species represented by a single strain, 10 with two strains, 5 14
with three, 5 with four and 5 species with five strains. We then generated four data sets from 147
this community with the same total number of reads (150 million 2X150 bp) but increasing 148
sample numbers (3, 5, 10 and 15 samples). This configuration, where most species have a single 149
strain, might be an appropriate approximation to the human gut microbiome [38]. We denote 10

these data sets Synth_S03, Synth_S05, Synth_S10 and Synth_S15. For each sample number, 151
random species abundances were generated from a log-normal distribution, with strain 152
proportions from a Dirichlet. Full details of the synthetic sequence generation are given in the 1s3
Methods. 154

The STRONG pipeline was then applied to each of these data sets in turn. In Figure 2 we 15
illustrate the STRONG output for a single gene, COG0532 ‘Translation initiation factor 156
IF-2’ [37], from one MAG, Bin_55 of the ten sample synthetic data set, giving the resulting 157
decomposition of the assembly subgraph into three strains. Noting that the strains were 158

resolved in this MAG over 22 single-copy core genes simultaneously, and that for this 3.4 kbp 159
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Figure 2. BayesPaths algorithm. This illustrates the BayesPaths algorithm for a single
COGO0532 from one MAG, Bin_55 of the ten sample synthetic data set. The algorithm predicted
3 strains. We show the input to the algorithm: A) the unitig coverages across samples plus B)
the unitig graph without strain assignments. The outputs of the algorithm are shown in C) the
assignments of haplotypes to each unitig, D) the strain intensities across samples, effectively
coverage divided by read length (see Methods - BayesPaths), and E) unitig graphs for each
haplotype with their most likely paths. This algorithm is explained in detail in the Methods -
BayesPaths.

gene the haplotypes were found without errors. 160

For each of the four synthetic data sets we considered only MAGs which were assigned to  1a1
species (see Methods) with at least two strains - 20, 21, 24 and 22 MAGs, from the Synth_S03, 16
Synth_S05, Synth_S10 and Synth_S15 data sets respectively. For each MAG we mapped the 163
predicted haplotypes for the optimal strain decomposition for both the STRONG pipeline and 164

DESMAN algorithms onto the known reference strains. We then assigned each haplotype 165
prediction to its best matching reference. The best such match was denoted ‘Found’. If multiple 166
predicted haplotypes matched to the same reference they were denoted as ‘Repeated’. If a 167

reference had no haplotype prediction that matched to it better than the other references, it 168
was denoted as ‘Not found’. For the aggregate across these MAGs we show the total number of 160
such strains for each of the four data sets in Figure 3. 170

STRONG consistently outperforms DESMAN in terms of number of strains found, in total 1n
across all four samples it resolved 213 strains vs. 200 for DESMAN i.e. a 6.5% increase. It also 12

had fewer ‘Repeated’ strains, 8 vs. 23: a reduction of 65%. The strains ‘Found’ were also 173
reconstructed more accurately, the per base error rate for the BayesPaths reconstructions 174
averaged across all MAGs and all data sets was just 0.052%, three times lower than that for 175
DESMAN, 0.176%. This improvement was observed for all four data sets (see Table 1 and 176
Figure 4). STRONG was more likely to predict the correct number of strains, doing so for 73% 177
of MAGs summed across samples numbers versus 60% for DESMAN. It was also better at 178
predicting the strain relative abundances. Regressing true abundance against predicted 179
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Figure 3. No. of strains resolved by STRONG and DESMAN algorithms in the
synthetic community data sets. For MAGs with two or more strains we mapped haplotypes
to the references and assigned each predicted haplotype to its best matching reference. The best
such match was denoted ‘Found’. If multiple haplotypes matched to the same reference they
were denoted as ‘Repeated’. If a reference had no predicted haplotypes matched to it, it was
denoted as ‘Not found’. The bars give the total numbers in each category summed over MAGs
for the two methods (DESMAN and STRONG) and the panels results for the four different
data sets with increasing number of samples (Synth_S03, Synth_S05, Synth_S10 and Synth_S15).

abundance gave an adjusted R? of 0.84 averaged across sample numbers for STRONG vs. 0.80 10
for DESMAN. When this was restricted to MAGs where the number of strains was correctly  1a1
predicted, then both algorithms did better but STRONG still out performed DESMAN, with a 1s
mean R? of 0.98 compared to 0.93. Although the quantity varied across the four data sets, 183
roughly 1/3 of the SCGs were filtered during the BayesPaths as outliers (see - Table 1). 184

The STRONG pipeline outperforms DESMAN, but it still misses strains that are present. In 185
total across all MAGs and data sets, 63/276 i.e. 22.8%, of strains were missed by STRONG. 1
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Figure 4. Error rates in strains found against coverage depth for STRONG and
DESMAN algorithms in the synthetic community data sets. For the ‘Found’ strains
we computed per base error rate to the matched reference, this is shown on the y-axis, against
strain total coverage depth summed across samples on the x-axis, both axes are log transformed.
The results are separated across methods (DESMAN and STRONG) and sample number in the
synthetic community.

Some of these, 7 out of 63, were below the minimum coverage of detected strains (5.68), but 17

most were not, suggesting that either they were not sufficiently divergent in terms of 188
nucleotides or coverage profiles to be detected. Examination of phylogenetic trees for the 189
haplotypes and reference genomes constructed using the SCGs revealed that in many cases ‘Not 190
found’ strains had identical SCG haplotypes to those that were resolved. 101

The BayesPaths algorithm used to resolve strains in STRONG uses variational inference (see 192
Methods - BayesPaths), an approximate Bayesian strategy [7]. This has the advantage of 103
providing estimates of uncertainty in the inference of both the strain haplotypes and their 104
abundances. The algorithm predicts the marginal probabilities that a given strain passes 105
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Method Data set MAGs #SCGs #{SCGs Found Not F. Rep. Err R2 fG
STRONG | o " 20 35.75 18.95 46 19 2 0.068 | 0.86 (0.99) | 23/34 = 0.68
DESMAN Y- 43 22 2 0.121 | 0.79 (0.93) | 24/34 = 0.71
STRONG | o - o1 35.29 22.14 54 14 0 0.054 | 0.82 (0.98) | 28/37 = 0.76
DESMAN Y- 52 16 5 0.186 | 0.83 (0.99) | 20/37 = 0.54
STRONG 32.23 21.91 55 8 3 0.042 | 0.83 (0.99) | 26/39 = 0.67
DESMAN | Synth-S10 24 50 23 5 0.252 | 0.76 (0.95) | 21/39 = 0.54
STRONG 35.45 23.36 58 12 3 0.045 | 0.86 (0.98) | 32/40 = 0.80
DESMAN | Synth-S15 22 58 12 11 0.143 | 0.81 (0.87) | 25/40 = 0.63

Table 1. Comparison of STRONG to DESMAN for strain reconstruction in the
synthetic community data sets. Data set: Results are shown for the four different sample
numbers. MAGs: The number of MAGs reconstructed with more than two reference strains.
#SCGs: The average number of SCGs found in each MAG. #fSCGs The average number of
SCGs after filtering in STRONG. Found: Number of reference strains that had a predicted
strain that best matched it. Not F.: Number of reference strains that had no predicted strain
with a closest match to it. Rep.: Number of reference strains with more than one best matching
predicted strain. Err: The average error rate of the ‘Found’ strains in percentage base pairs.
R?: Correlation between predicted and actual strain relative proportions given as adjusted R?,
the figure in parentheses is when restricted to MAGs where the number of strains was correctly
predicted. f&: the fraction of MAGs where the number of strains was correctly inferred.

through a particular unitig. To provide a single sequence for the evaluation above and 196
applications below we output the most likely path and hence sequence for each strain. However, 107
we also calculate an estimate of path uncertainty by sampling many possible paths (default 100) 198

consistent with the marginal distributions and calculate the average number of nodes that 199
deviate from the most likely path, we refer to this as the divergence. For the ‘Found’ strains 200
this correlates strongly with actual error rate to the reference strain (Pearson’s correlation 201
r = 0.56, p < 2.2e — 16 - see Figure S1). Thus the divergence is a useful prediction of 202
uncertainty in the haplotype sequence inference, enabling us to estimate error rates in real data 203
sets in the absence of known reference sequences. Roughly speaking, the expected per base 204
error rate is 0.01 times the divergence, so that a strain divergence of 0.1 predicts a 0.1% error 205
rate. In real data sets, the uncertainty estimates in the abundances are also useful, placing 206
bounds on the abundance of individual strains in each sample. 207

In Table S3 we give approximate run times for each component of the STRONG pipeline on 208
the synthetic community data sets, using 64 threads on a standard bioinformatics server (see 200
Table S3). The BayesPaths step is the most time consuming part of the analysis (up to 36 210
hours), but it is still comparable to the initial coassembly. The only part of the pipeline with 21
substantial memory requirements is the initial coassembly with metaSPAdes, the other steps 212

are CPU limited. 213
Anaerobic digester time series 214
We next applied the STRONG pipeline to a real metagenomics time series, comprising ten 215
samples taken at approximately 5 weekly intervals, from an industrial anaerobic digestion 216
reactor (see Table S4 and Methods for details). This provides an evaluation community of 217
intermediate complexity to test the pipeline’s capability to resolve strains and reconstruct 218
intraspecies dynamics. Each sample was sequenced on the NovaSeq platform with 2x150 bp 219

reads at a mean depth of 11.63 Gbp. One sample was also run on a Nanopore MinION flow cell 220
producing 43.78 Gbp of reads with a read N50 of 6,727 bp and a maximum length of 108 kbp. 2z
CONCOCT binning produced 905 bins, of which 309 had 75% of SCGs present in 222
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single-copy, which we designate MAGs. In total 11 of these MAGs exhibited overlapping SCG 23
graphs and were merged into 6 composite MAGs (see Methods - STRONG Pipeline), so that 2
304 MAGs were actually used in the strain decomposition. We calculated coverage depth per 225
sample for each bin and then normalised by sample size to obtain a community profile at each 22
time point. Overall the reactor exhibited a clear shift in community structure over time, despite 227
consistent operating conditions, with sample time explaining 48% of the variation in community 22
structure (p = 0.001 - Figure S2). Of the MAGs, 110 had an abundance that changed 220
significantly over time (Bonferonni adjusted p-value < 0.05 from Pearson’s correlation of log 230
transformed normalised abundance) and these were evenly split between those that increased 23
(55) or decreased in abundance (55). 232

No. of strains predicted
N

10 100 1000
Total MAG coverage depth
Figure 5. Number of strains resolved by STRONG against MAG coverage depth

for the AD time series. Pearson’s correlation between coverage depth and number of strains
(r =0.36, p = 1.004e — 10). The curve indicates a LOESS smoothing.

We used the STRONG algorithm to resolve strains in the 304 MAGs. This is a complex data 233
set and running the complete pipeline took over 16 days, of which roughly 60% of the time was 234
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spent on the BayesPaths strain resolution (see Table S3). The number of strains found varied 23
between 1 and 7, with a mean of 1.7, shown as a function of coverage depth in Figure 5. In 236
total 121 (39.8%) of these MAGs had more than one strain, and there was a significant positive 237
association between MAG coverage depth and number of strains (r = 0.36, p = 1.004e — 10), 238
which is expected, as low coverage MAGs will be under-sampled. This correlation disappears 230
though when we restrict to all MAGs with a coverage greater than thirty (r = 0.19, p = 0.1023). 240
On average 20.9 SCGs were used after filtering for strain haplotype predictions. 241

SigStrainChange FALSE (78
NStrains D i DNA(24)

Phylum [ TRUE (12)

SigDown
- SigUp [ TRUE (16) [ ] FALSE (98)
45

B TRUE (26)

[] FALSE (88)

Phylum
[ Firmicutes_A (33)
D Firmicutes_G (7)
[ patescibacteria (4)
[ cloacimonadota (3)

[ Bacteroidota (24)
[ Firmicutes_B (6)
[l chiorofiexota (3)
[ Halobacterota (3)

[ verrucomicrobiota (3)
. Planctomycetota (3)
D Desulfobacterota (2)

[ Fibrobacterota (3)
D Firmicutes (3)
D Euryarchaeota (2)

|:| Caldatribacteriota (2)
. Actinobacteriota (2)
D Acidobacteriota (1)
D Hydrogenedentota (1)
[ Riflebacteria (1)

[:‘ Synergistota (2)
D Spirochaetota (2)
. Firmicutes_D (1)
D Crenarchaeota (1)
I:‘ Elusimicrobiota (1)
[ Firmicutes_E (1)

Figure 6. MAG summary for anaerobic digester time series. For the 114 MAGs with
aggregate coverage > 20 we give their phylogeny constructed using concatenated marker genes
together with their normalised coverages in the ten samples. We also indicate which MAGs
significantly increased (SigUp) or decreased (SigDown) in total abundance (adjusted p < 0.05),
their GTDB phylum assignment, no. of strains resolved by STRONG and whether the strain
abundances changed significantly over time (adjusted p < 0.05) using permutation ANOVA
(SigStrainChange).

For the 108 MAGs that had at least two strains with relative frequencies determined in five 22
or more samples we used permutation ANOVA to determine whether strain proportions 243
depended on sampling time. In total 13 of the MAGs had an adjusted p-value < 0.05 i.e. 244
12.0%. For these same MAGs 37 had a total coverage that changed significantly over time with 245
an adjusted p-value < 0.05 i.e. 34.2%. Therefore the intra-species dynamics are more stable 246
than inter-species, with strain proportions remaining fixed as the MAG coverages vary, this was 247

true for 33 of the 37 MAGs that changed significantly in coverage. 248
In Figure 6, we use the Anvi’o program [16] to summarise information on phylogeny, 249
taxonomy, normalised coverages in the ten samples, and whether the MAGs changed 250

significantly in total abundance, together with the number of strains resolved by STRONG and 2
if those strain relative proportions changed significantly with time. This was restricted to just 25

those 114 MAGs with an aggregate coverage greater than twenty to simplify the diagram. 253
The Nanopore sequencing provides us with a means to directly test the validity of the 254
STRONG haplotype reconstructions, at least for the most abundant MAGs. The most 255
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Figure 7. Comparison of Nanopore reads to STRONG prediction for COG0532
from Bin_72. Non-metric multidimensional scaling of Nanopore reads that mapped to COG0532
from Bin_72 of the anaerobic digester time series (red) together with the three haplotypes
reconstructed from short reads by STRONG (black 0, 1 and 2). Haplotypes 0 and 2 were
identical for COG0532. Distances were calculated as fractional Hamming distances (see text) on
short read variant positions (see Methods - Nanopore Sequence Analysis). Blue dashed lines
indicate read density contours.

abundant MAG, Bin_72, had an aggregate short read coverage depth of 2364.25, across all the
samples. This MAG was assigned to the phylum Cloacimonadota using the GTDB

taxonomy [11]. Interestingly, this is an example of a MAG which changes significantly in
abundance, decreasing over time, (adjusted p = 4.9e — 05) but where the proportions of the

three strains predicted varied less dramatically (R? = 0.35 adjusted p = 0.089) - see Figure S5.

We will focus on the longest SCG for which strains were resolved, COGO0532, where the three
strains are present in only two variants, haplotypes 0 and 2 being identical on this core gene. In
Figure S4 we give the short read variant graph for this gene, which in this case is mostly simple

12/33

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.06.284828; this version posted September 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

256

257

258

259

260

261

262

263


https://doi.org/10.1101/2020.09.06.284828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.06.284828; this version posted September 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

bubbles, together with the assigned haplotypes. In fact, across the 18 SCGs used to decompose 264
strains, haplotypes 0 and 1 were most similar with 99.7% nucleotide identity. These two strains 265
had 99.4% and 99.1% identity with haplotype 2 respectively. That this pattern was not 266
observed on COGO0532 may suggest some recombination in the evolution of these organisms. 267

In Figure 7 we show for COG0532 both the Nanopore reads that map to this gene and the 268
three haplotypes inferred by BayesPaths, as an Non-metric Multi-dimensional Scaling (NMDS) 260
plot using fractional Hamming distances on the short read variant positions. These are defined 270
as the Hamming distance between two reads but only on the intersecting variant positions and 271
ignoring gaps. We then normalise by the number of such non-gap intersecting positions to give 272

a distance between 0 and 1. The Nanopore reads are consistent with the inference of two 273
variants on this gene, as there are two clear clusters observed, and the two modes of those 274
clusters are close to those haplotypes. The variation around the modes is caused by the high 275
error rate of the Nanopore reads. 276

In order to provide a quantitative comparison of the Nanopore reads and the STRONG 277
predictions, we applied the EM algorithm defined in the Methods (Nanopore Sequence 278
Analysis) on the 1,603 Nanopore reads mapping to this COG (cluster of orthologous groups). 27
Examining the negative log-likelihood as a function of number of strains, it flattens at two 280
strains (see Figure S3) and the two strains inferred exactly match (100% identity over 2,313 281
bps) haplotypes 0/2 and 1 respectively. Furthermore, STRONG in this sample predicted 282

frequencies of 28.0% for haplotype 1. This closely matched the Nanopore haplotype frequencies 283
for this strain of 27.6%. We also ran the Nanopore EM algorithm for all 18 filtered COGs in 284

this bin separately. For the 11 COGs where more than one strain was predicted from the 285
Nanopore reads, we compared the STRONG and Nanopore predictions. For haplotypes 0, 1 286
and 2 exact matches were found for 6, 7 and 4 SCGs respectively with average nucleotide 287
identities across all genes of 99.89%, 99.89% and 99.82%. 288

For lower coverage MAGs we generally obtain a reasonable correspondence between the 289
STRONG haplotypes and Nanopore predictions. In most cases the number of strains is 290
comparable between the two, although the accuracy of matches reduces with decreased 201

Nanopore read counts, as we might expect. As an example, in Figure S7 we compare Nanopore 20
reads with the five STRONG haplotypes from COGO0072 of Bin_846, a Firmicutes MAG in the 203
AD time series. The most abundant Nanopore mode clearly matches STRONG haplotype 4, the 20
most abundant strain in this sample, and there is also some support for haplotypes 0 and 2. 295
There is less evidence for strains 1 and 3, but these are low abundance in this sample (see 206
Figure S9). This is confirmed from the EM algorithm applied to the Nanopore reads matching 207
this gene, where we would predict four Nanopore haplotypes (Figure S6). Comparing these 4 20

Nanopore strains to the STRONG predictions we find that three closely match: Nanopore 209
haplotype 0 matched best to STRONG strain 4 with 98.8% nucleotide identity, Nanopore 300
haplotype 1 to STRONG 4 with 99.9% identity and Nanopore haplotype 2 to STRONG strain 0 30
with 99.7% identity. There is also a correspondence in relative abundance, with the most 302
abundant Nanopore haplotype 1 recruiting 82% of the reads vs 74% relative frequency for the 303
corresponding strain haplotype from STRONG. 304
Discussion 205
We have demonstrated that on synthetic data the STRONG pipeline and the BayesPaths 306
algorithm are able to accurately infer strain sequences on the SCGs and abundances across 307
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samples. Performance does improve with increasing sample number in terms of the number of 308
strains resolved, but reassuringly even when only a small number of samples are available we 300
are still able to accurately predict (with 0.068% per base error rate) strains, and when ten or 310
more samples are available we obtain error rates below 0.05% i.e. 1 error in every 2000 bps 311
from short read data. This is better performance than the state of the art, and sufficiently 312
accurate for high resolution phylogenetics. Strains are resolved more accurately as they increase 313
in coverage (see Figure 4), and in fact, when coverages exceed twenty fold we can resolve strains sus
very reliably, with just 0.011% error rate averaged across strains in the ten sample synthetic 315
data set. We believe therefore that this pipeline will be useful whenever high quality de novo 316
strains are required from metagenome short read time series. 317

This is to our knowledge the first algorithm capable of constructing strains from 318
metagenomes using assembly graphs from multi-sample coassemblies. Graph-based haplotype 3o
resolution has been applied to viruses [4] and for eukaryotic transcripts [5,6], but ours is the 32

first algorithm to resolve strains across multiple gene subgraphs connected through a contig 321
binning procedure. The BayesPaths algorithm is also a substantial algorithmic advance 322
enabling coverage across multiple samples to be incorporated into a rigorous Bayesian 323
procedure that gives uncertainties in both the paths (i.e. the sequences) and the strain 324
abundances. This algorithm could be utilised outside of the actual STRONG pipeline in other 32
application areas, for example for finding viral haplotypes. 326

In addition, to the new strain resolution algorithm, BayesPaths, STRONG incorporates a 327
number of useful tools for large-scale variant graph processing, in particular, the tools for 328

extraction of subgraphs that correspond to individual coding genes and the spades-gsimplifier 329
tool for error correction on those graphs. These can be applied to any graph in the GFA format, 33
and could therefore find applicability outside of the context of our pipeline. This also means 3

that in the future we could add alternative choices for the coaseembly step, for instance 332
replacing metaSPAdes with MEGAHIT [25]. Similarly, we plan to add support for alternative 33
binners to CONCOCT. 334

Currently, we are restricted to core genes that are single-copy and shared across all strains in 33
a MAG. We can in theory use any such genes, so if a particular MAG is of interest the pipeline 33
could be run with a larger set of COGs that are SCGs for that MAG. There would be a cost in 337
terms of increased running time, which will increase with more genes and unitigs in a roughly 33

linear fashion. 339

The analysis of a time series from an anaerobic digestor illustrates the practicality of our 340
pipeline on a realistically sized data set. We should note though that to resolve strains on these 3u
304 MAGs took nearly 10 days using 64 threads on a standard bioinformatics server (see 342
Table S3. The AD analysis also demonstrates the importance of strain dynamics in a real 343

microbial community with nearly 40% of MAGs exhibiting strain variation, but this variation 3
was relatively stable compared to the MAG dynamics themselves. If strains are functionally 345
redundant to one another we would expect significant neutral fluctuations over time. Therefore 34
this could be evidence for intra-species niche partitioning. 347

In general, we found a good correspondence between haplotypes inferred from Nanopore 348
reads and the STRONG predictions in the AD data set. For the most abundant MAG, Bin_72, 3a
they matched very closely. In addition, the relative abundances of strains were consistent across sso
the two sequencing technologies, despite the use of different DNA extraction protocols, and the 3s
different biases inherent in library preparation and sequencing platforms. These technical 352
elements in the data generation process are known to introduce bias at the species level [12], 35
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but our findings suggest that intraspecies abundance may generally be robust against such 354
biases, which makes sense in that all the strains of a species will have similar physical properties sss
and genomic traits. 356

STRONG is an effective strategy to de novo resolve subpopulations at high phylogenetic 357
resolution within MAGs, but as discussed in the Introduction, it is important to add the caveat sss

that the haplotype sequences obtained are not equivalent to those from sequencing cultured 350
isolates, where we can identify the resulting genome with a single organism present in the 360
original community. The metagenome strains, in the best case, will correspond to different 361
modal sequences of the taget species, about which substantial unresolved variation may exist. 36
They will correspond to peaks in the probability distribution of all possible sequence 363
configurations, and as such will provide important insights into the naturally occurring 364
variation, but there remains the question of how to identify and quantify the unresolved 365
variation surrounding those peaks. In the worst case, when STRONG is applied to rapidly 366
recombining microbes, such as those found in the oceans [30], the resulting sequences may not ss
even be real in the sense of characterising any true individual. An additional unaddressed 368

question is how to determine when this has occurred, for now we would simply urge caution 360
when using STRONG in cross-sectional studies of rapidly evolving microbes, and suggest that 37w
the term ‘metagenome strain’ or ‘metagenome haplotype’ be used when referring to the output 3n
sequences. The same caveat does of course apply to any current purely bioinformatics strategy s

for de novo resolution of genomes from metagenomes. Even if a single sample is used for 373
binning and there are no subpopulations, the resulting MAG is still a composite and not a 374
strain in the traditional microbiological sense [39]. 375

An obvious extension of our algorithm would be to resolve the accessory genome into strain 37
genomes. This could be done on a per gene basis by relaxing the requirement that every strain 37
passes through every gene, but an approach that incorporates the path structure in the full 378
metagenomic assembly would be more powerful. Use of the full assembly may be possible in an 37
efficient manner by factorising the variational approximation on a per gene basis and allowing 3so
the solutions for one gene to depend on the expectations across their neighbours. Or it may be 3a
that more computationally tractable versions of the algorithm can be developed that will scale 3s

to larger graphs. In any case the issues discussed above of our inferred ‘strains’ containing 383
unresolved variation will become more pertinent when we extend our algorithm to the full 384
genome, and it will be necessary to consider not just the most likely genome associated with a sss
subpopulation but also its variants. 386

In the future we also plan to directly incorporate long read information into the strain 387
resolution rather than just using it for validation. It was encouraging therefore to see the 388
correspondence in strain frequencies between the two approaches. We are confident that in the sso
near future, through the combination of long reads with methods similar to those we have 300
introduced in STRONG, that complete metagenome de novo strain resolution will become a 301
realistic possibility. 392
Conclusion 303

We have introduced a complete bioinformatics pipeline, STrain Resolution ON assembly Graphs 3o
(STRONG), that is capable of extracting single-copy core gene variant graphs from short read 3o
metagenome coassemblies for individual metagenome assembled genomes (MAGs). We 396
demonstrated how these graphs and associated per-sample unitig coverages can be used in a 397
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novel Bayesian algorithm, BayesPaths, to find MAG strain number, haplotypes and abundances. 30
This approach achieves superior accuracy to variant based methods on synthetic communities 300

and predictions on real data that match those from long Nanopore long reads. 400

STRONG is freely available from https://github.com/chrisquince/STRONG. 401
Methods w02
Synthetic data set generation 403
The in silico synthetic communities were generated by first downloading a list of complete 404

bacterial genomes from the NCBI and selecting species with multiple strains present. Genomes 405
were restricted to those that were full genome projects, possessed at least 35 of 36 single-copy 06
core genes (SCGs) identified in [3], and with relatively few contigs (< 5) in the assemblies. 407
Communities were created by specifying species from this list and the number of strains desired. 408
The strains selected were then chosen at random from the candidates for each species, with the a0
extra restrictions that all strains in a species were at least 0.05% and no more than 5% 410
nucleotide divergent on the SCGs from any other strain in the species. This corresponds to a 4
minimum divergence of approximately 15 nucleotides over the roughly 30 kbp region formed by 412
summing the SCGs. The genomes used are given in Tables S1 and S2. 413
Each species indexed ¢ was then given an abundance, y; s, in each sample, s =1,...,5,

which was drawn from a lognormal distribution with a species dependent mean and standard
deviation, themselves drawn from a normal and gamma distribution respectively:

log(yi,s) ~ N (i, 04)

where:
i ~ N(va Up)

and:
o; ~ Gammal(k,, 6)).

For all four community configurations — S equal to 3, 5, 10 and 15 — we used pu, = 1,
op =0.125, k, =1 and 6, = 1. The species abundances were then normalised to one
(Vi s = Yis/ > ; Vis). For each strain within a species its proportion in each sample was then
drawn from a Dirichlet:
pg.s ~ Dirichlet(a) (1)

with a = 1. 414

This allowed us to specify a copy number for each genome ¢ in species ¢ in each sample as a5
y; sPg,s- We then generated 150 million paired-end 2x150 bp reads in total across all samples 416
with Illumina HiSeq error distributions using the ART read simulator [21]. The code for the a7

synthetic community generation is available from a18
https://github.com/chrisquince/STRONG_Sim. 419
Synthetic data set evaluation 420
We can determine which contig derived from which reference genome by considering the a1
simulated reads that map onto it. We know which reference each of these came from, enabling 42
us to assign a contig to a genome as that which a majority of its reads derive from. We can 423
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then assign each MAG generated by STRONG to a reference species as the one which the 424
majority of its contig’s derive from weighted by the contig length. 425
Anaerobic digester sampling and sequencing 426
AD sample collection 427
We obtained ten samples from a farm anaerobic digestion bioreactor across a period of 428
approximately one year. The sampling times, metadata and accession numbers are given in 429
Table S4. The reactor was fed on a mixture of slurry, whey and crop residues, and operated 430
between 35-40°C, with mechanical stirring. Biomass samples were taken directly from the AD 4n
reactor by the facility operators and shipped in ice-cooled containers to the University of 432

Warwick. Upon receipt, they were stored at 4°C and then sampled into several 1-5mL aliquots 433
within a few days. DNA was usually extracted from these aliquots immediately but some were 434

first stored in a -80°C freezer until subsequent thawing and extraction. 435
AD short read sequencing 436
DNA extraction was performed using the Qiagen Powersoil extraction kit following the 437
manufacturer’s protocol. DNA samples were sequenced by Novogene using the NovaSeq 438
platform with 2x150 bp reads at a mean depth of 11.63 Gbp. 439
AD long read sequencing 440

Anaerobic digester samples were stored in 1.8 mL Cryovials at -80°C. Samples were defrosted at 4
4°C overnight prior to DNA extraction. DNA was extracted from a starting mass of 250 mg of 4
anaerobic digester sludge using the MP Biomedical ™ FastDNA™ SPIN Kit for Soil (cat no: s
116560200) and a modified manufacturers protocol. Defrosted samples were homogenised by 4
pipetting and then transferred to a MP bio™ lysing matrix E tube (cat no: 116914050-CF). s
Samples were resuspended in 938 pL of Sodium phosphate buffer (cat no: 116560205). 446

Preliminary cell lysis was undertaken using lysozyme at a final concentration of 200 ng/uL 47
and 20 pL of Molzyme Bug Lysis”™ solution. Samples were mixed by inversion and incubated as
at 37°C for 30 min on a shaking incubator (< 100 rpm). Lysozyme was inactivated by adding
122 pL of MP bio MT buffer and mixing by inversion. Samples were then mechanically lysed in 450
a VelociRuptor V2 bead beating machine (cat no: SLS1401) at 5 m/s for 20 seconds then 451
placed on ice for five minutes. 452

Samples were centrifuged at 14000 g for five minutes to pellet the particulate matter and the as3
supernatant was transferred to a new 1.5 mL microfuge tube. Proteins were precipitated from s
the crude lysate by adding 250 L of PPST™ (cat no: 116560203) and then mixing by inversion. ass

[

Precipitated proteins were pelleted for five minutes at 14000 g and the supernatant was 456
transferred to 1000 pL of pre mixed DNA binding matrix solution (cat no: 116540408). 457
Samples were mixed by inversion for two minutes. 458

DNA binding matrix beads were recovered using the MP bio™ spin filter (cat no: 450
116560210) and manufacturer based spin protocol. The binding matrix was washed of 460

impurities by complete resuspension in 500 pL of SEWS-M solution (cat no: 116540405) and 461
centrifuged at 14000 g for five minutes. The DNA binding matrix was then washed for a second 46
time by resuspension in 500 uL of 80% EtOH followed by centrifugation at 14000 g for five 463
minutes. Flow though was discarded and centrifuged at 14000 g for two minutes to remove 464

17/33


https://doi.org/10.1101/2020.09.06.284828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.06.284828; this version posted September 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

residual EtOH. The binding matrix was left to air dry for 2 minutes then DNA was eluted using 465
100 pL of DES elution buffer at 56°C. Elute was collected by centrifugation at 14000 g for 5 466
minutes and stored at 4°C prior to library preparation. Eluted DNA concentration was 467
estimated using a Qubit 4™ fluorometer with the dsDNA Broad Range sensitivity assay kit  ass
(cat no: Q32853). 260:280 and 260:230 purity ratios were quantified using a Nanodrop™ 2000. e

A 1x SPRI clean up procedure was undertaken prior to library construction to further 470
reduce contaminant carry over. Input DNA was standardised to 1.2 pg in 48 pL of HoO using a 4n
qubit 4™ fluorometer and dsDNA 1x High Sensitivity assay kit (cat no: Q33231). Library an
preparation was undertaken using the Oxford Nanopore®© Ligation Sequencing Kit 473
(SQK-LSK109) with minor modifications to the manufacturer protocol. The FFPE/End repair 474
incubation step was extended to 30 min at 20°C and 30 min at 65°C, while DNA was eluted 475
from SPRI beads at 37°C for 30 min with gentle agitation. The SQK-LSK109 long fragment 7

buffer was used to ensure removal of non-ligated adaptor units and reduce short fragment a77
carryover into the final sequencing library. The final library DNA concentration was 478
standardised to 250 ng in 12 uL of EB using a qubit 4™ fluorometer and dsDNA 1 x High 479
Sensitivity assay Kkit. 480

Sequencing was undertaken for 72 hours on an Oxford Nanopore© R 9.4.1 (FLO-MIN106) 4
flow cell with 1489 active pores. DNA was left to tether for 1 hour prior to commencing 482

sequencing. The flow cell and sequencing reaction was controlled by a MinION™ MKII device 4
and the GUI MinKNOW V. 19.12.5. ATP refuelling was undertaken every 18 hours with 75 ul 484
of flush buffer (FB). Post Hoc basecalling was undertaken using Guppy V. 3.5.1 and the high 4
accuracy configuration (HAC) mode. 486

STRONG pipeline a87

STRONG processes co-assembly graph regions for multiple metagenomic datasets in order to  ass
simultaneously infer the composition of closely related strains for a particular MAG and their 4s
core gene sequences. Here, we provide an overview of STRONG. We start from a series of S 490
related metagenomic samples, e.g. samples of the same (or highly similar) microbial community o
taken at different time points or from different locations. 402

The Snakemake based pipeline begins with the recovery of metagenome-assembled genomes 403
(MAGs) [22]. We perform co-assembly of all available data with the metaSPAdes assembler [28], 404
and then bin the contigs obtained by composition and coverage profiles across all available 495
samples with CONCOCT [3]. Each bin is then analyzed for completeness and contamination 46
based on single-copy core genes, and poor quality bins are discarded. The default criterion is o7

that a MAG requires greater than or equal to 75% of the SCGs in a single copy. While we 498
currently focus on this combination of software tools, in principle we could use any other 499
software or pipeline for MAG recovery, e.g. we could use MEGAHIT as the primary 500

assembler [25] or alternative binning tools or their combination. For each MAG we then extract so1
the full or partial sequences of the core genes that we further refer to as single-copy core gene s
(SCG) sequences. 503

The final coassembly graph produced by metaSPAdes cannot be used for strain resolution  sos
because, as with other modern assembly pipelines, variants between closely related strains will sos
be removed during the graph simplification process. Instead, we output the initial graph for the sos
final K-mer length used in the (potentially) iterative assembly following processing by a custom sor
executable — spades-gsimplifier based on the SPAdes codebase — to remove likely erroneous  sos
edges using a ‘mild’ coverage threshold and a tip clipping procedure. We refer to the resulting soo
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graph as a high-resolution assembly graph or HRAG. 510

The graph edges are then annotated with their corresponding sequence coverage profiles 511
across all available samples. As is typical in de Bruijn graph analysis, the coverage values are sz
given in terms of the k-mer rather than nucleotide coverage. Profile computation is performed si3
by a second tool for aligning reads onto the HRAG: unitig-coverage. The potential advantage of s
this approach in comparison to estimation based on k-mer multiplicity, is that it can correctly sis

handle the results of any bubble removal procedure that we might want to add to the 516
preliminary simplification phase in future. 517

For each detected SCG sequence (across all MAGs) we next try to identify the subgraph of s
the HRAG encoding the complete sequences of all variants of the gene across all strains 519

represented by the MAG. The procedure is described in more detail in the next section. During s
testing we faced two types of problems here: (1) related strains might end up in different MAGs 52
and (2) some subgraphs might consist of fragments corresponding to several different species. sz
We take several steps to mitigate those problems. Firstly, we compare SCG graphs between all s
bins, not just MAGs. If an SCG graph shares unitigs between bins, then it is flagged as 524
overlapping. If multiple SCG graphs between MAGs (> 10) overlap then we merge those MAGs, s
combining all graphs and processing them for strains together. Following merging any MAG s

SCG graphs with overlaps remaining are filtered out and not used in the strain resolution. 527

After MAG merging and COG subgraph filtering we process the remaining MAGs one by s
one. Before the core ‘decomposition’ procedure is launched on the set of SCG subgraphs 529
corresponding to a particular MAG, they are subjected to a second round of simplification, 530
parameterised by the mean coverage of the MAG, to filter nodes that are likely to be noise 531

again by the spades-gsimplifier program. This module is described in more detail below. The  ss2
resulting set of simplified SCGs of the HRAG for a MAG are then passed to the core graph 533
decomposition procedure, which uses the graph structure constraints, along with coverage 534
profiles associated with unitig nodes, to simultaneously predict: the number of strains making s3s
up the population represented by the MAG; their coverage depths across the samples; paths 536

corresponding to each strain within every subgraph (each path encodes a sequence of the 537
particular SCG instance). 538
A fraction of the SCGs in a MAG may properly derive from other organisms due to the 539

possibility of incorrect binning i.e contamination. In fact, the default 75% single-copy criterion sao
allows up to 25% contamination. In addition, the subgraph extraction is not always perfect. We sa
therefore add an extra level of filtering to the BayesPaths algorithm, iteratively running the 542
program for all SCGs, but then filtering those with mean error rates, defined by Equation 18, s
that exceed a default of 2.5 times the median deviation from the median gene error. Filtering s
on the median deviation is in general a robust strategy for identifying outliers. As a result of s
this filtering the pipeline only infers strain sequences on a subset of the input SCGs. We have s
found, however, that the number of SCGs for which strain haplotypes are inferred is sufficient s
for phylogenetics. 548

Relevant subgraph extraction 549

Provided with the predicted (partial) gene sequence, T, and the upper bound on the length of sso
the coding sequence, L, defined as 3a(U,) where (U,,) is the average length in amino acids of  ss
that SCG in the COG database, and o = 1.5 by default. The procedure for relevant HRAG 552
subgraph extraction involves the following steps. First, the sequence T is split into two halves, ss3

T’ and T", keeping the correct frame (both 77 and T" are forced to divide by 3). 7" and T” are ss
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then processed independently. Without loss of generality we describe the processing of T”: 555
1. Identify the path P corresponding to 7" in the HRAG. We denote its length as Lp. 556

2. Launch a graph search of the stop codons to the right (left) of the rightmost (leftmost)  ss7
position of 7" (T"). The stop codon search is frame aware and is performed by a 558
depth-first search (DFS) on the graph in which each vertex corresponds to a pair of the  sso
HRAG position and the partial sequence of the last traversed codon !. Vertices of this 560
‘state graph’ are naturally connected following the HRAG constraints. The search is cut se

off whenever a vertex with a frame state encoding a stop codon sequence is identified. 562
Several stop codons can be identified within the same HRAG edge sequence in ‘different se3
frames’, moreover the procedure correctly identifies all stop codons even if the graph 564

contains cycles (although such subgraphs may be ignored in later stages of the pipeline). ses

3. The ‘backward’ search of the stop codons ‘to the left’ is actually implemented as a 566
‘forward’ search of the complementary sequences from the complementary position in the sez
graph. Note that, as in classic ORF analysis, while the identified positions of the stop 568
codons ‘to the right’ correspond to putative ends of the coding sequences for some of the seo
variants of the analyzed gene, positions of the stop codons ‘to the left’ only provide the swo
likely boundary for where the coding sequence can start. In particular, left stop codons  sn
are likely to fall within the coding sequence of the neighbouring gene (in a different 572
frame). Actual start codons are thus likely to lie somewhere on the path (with sequence s3
length divisible by 3) between one of the ‘left’ stop codons and one of the ‘right’ stop 574

codons. For reasons of simplicity, further analysis of edges on the paths between left 575
(right) stop codons ignores the constraint of divisibility by 3. 576
4. After the sets of ‘left’ and ‘right’ stop codon positions are identified along with the 577
shortest distances between them and the T” path, we attempt to gather the relevant 578
subgraph given by the union of edges lying on some path of a constrained length (see 579

further) between some pair of left and right stop codons. First, for each pair (s,t) of the sso
left and right stop codon positions we compute the maximal length of the paths that we ss
want to consider Lg; as Lp + min dist from s to start of P + min dist from end of P to t. ss
The edge e = (v,w) is considered relevant if there exists a pair of left (right) stop codon  sss
positions (s',¢’) such that the edge e lies on the path of length not exceeding Ls; between se
s" and t/, which is equivalent to checking that 585
min_dist(s’, v) + length(e) + min_dist(w, t') < Lg;. To allow for efficient checks of the 586
shortest distances we precompute them by launching the Dijkstra algorithm from all left ss7

(right) stop codon positions in the forward (backward) direction 2. 588
5. We then exclude from the set of relevant edges the edges that are too far from any 580
putative (right) stop codon to be a part of any COG instance. In particular, we exclude s
any edge e = (v, w), such that the minimal distance from vertex w to any of the right 501
stop codon positions exceeds L. 502

'Due to the properties of the procedure and the fact that it deals with DBGs, the actual implementation
encodes frame state as an integer [0,2] rather than the string of last partially traversed codon.

2 Actually Dijkstra runs are initiated from the ends/starts of corresponding edges and the distances are later
corrected.
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6. After the sets of the graph edges potentially encoding the gene sequence are gathered for sos

T’ and T" the union of the two sets, ER, is then taken and augmented by the edges, 594
connecting the ‘inner’ ER vertices (vertices which have at least one outgoing and at least sos
one incoming edge in the ER) to the rest of the graph. 596
Initial splitting of 7" into 7" and T” is required to detect relevant stop codons which are not 597

reachable from the last position of T in HRAG (or from which the first position of T'in HRAG  sos
can not be reached). In addition to the resulting component in gfa format, we also store the 509
positions of the putative stop codons, and ids of edges connecting the component to the rest of o0
the graph (further referred to as ‘sinks’ and ‘sources’). 601

Subgraph simplification 602

While processing SCG subgraphs from a particular MAG we use the available information on 603
the coverage of the MAG in the dataset. In particular, we set up the simplification module to o4
remove tips (a node with no successors) below a certain length and edges with coverage below a 6o
fraction of the total coverage across all samples. If a tip is not removed it is labelled as a 606
‘dead-end’ to distinguish it from potential connections to the rest of the graph. 607

While simplifying a COG subgraph, edges connecting it to the rest of the assembly graph  e0s
should be handled with care (in particular, they should be excluded from the set of potential oo
tips). This is because in the BayesPaths algorithm they form potential sources and sinks of the 610

possible haplotype paths. Moreover, during the simplification the graph changes, and such 611
edges might become part of longer edges. Since we are interested in which dead-ends of the 612
component do, and do not lead to the rest of the graph, the output contains the up-to-date set 13
of connections of the simplified component to the rest of the graph. 614

We now briefly describe the implemented procedures based on ‘relative coverage’ criteria. 615
Amongst other procedures for erroneous edge removal SPAdes implements a procedure 616

considering the ratio of the edge coverage to the adjoining coverage of edges adjacent to it. We 17
define an edge e as ‘predominated’ by vertex v incident to it if there is edge e; outgoing from v s
and edge ey incoming to v whose coverages exceed the coverage of e at least by a factor of a (by 610
default equal to 5). Short edges (shorter than k + €) predominated by both vertices incident to 62
them are then removed from the graph. Erroneous graph elements in high genomic coverage 62
graph regions often form subgraphs of three or more erroneous edges. SPAdes implements a 622
procedure for search (and subsequent removal) of subgraphs limited by a set of predominated s
edges. Starting from a particular edge (v, w) predominated by vertex v, the graph is traversed e
from vertex w breadth-first without taking into account the edge directions. If the vertex 625
considered at the moment predominates the edge by which it was entered, the edges incident to 62
it are not added to the traversal. The standard limitation of erroneous edge lengths naturally e
transforms into a condition of maximum length of the path between the vertices of the traversed e2s

subgraph. A limit on the maximum total length of its edges is additionally introduced. 629
BayesPaths 630
The model 631
We define an assembly graph G = (V, &) as a collection of unitig sequence vertices V =1,...,V 63

and directed edges £ C V x V. Each edge defines an overlap and comprises a pair of vertices 633
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and directions (u? — v?) € £ where d € {+, —} and indicates whether the overlap occurs 634
between the sequence (4) or its reverse complement (—). We define: 635
e Counts z, , for each unitigv =1,...,V in sample s =1,...,5 636

e Paths for strain g = 1,...,G defined by 7f,, € 0,1 indicating whether strain g passes 637

through that edge in the graph 638
e Flow of strain ¢ through unitig v, ¢97 = D ucA(w) Nov and ¢ = > ueD(v) 19,4 where 639
A(v) is the set of ancestors of v and D(v) descendants in the assembly graph 640
e The following is true ¢J7 = ¢9~ = ¢ 641

e Strain intensities 7,5 as the rate per position that a read is generated from g in sample s 62

e Unitig lengths L, 643
e Unitig bias 6, is the fractional increase in reads generated from v given factors such as 644

GC content influencing coverage 645
e Source node s and sink node t such that ¢t = ¢J~ = /" =¢? =1 646

Then assume normally distributed counts for each node in each sample giving a joint density for
observations and latent variables:

vV s G G S
P(X, ]-‘7 H, @) = H HN xv,s’LvevZ Q%L’Yh,sa'r_l) H H P(’Yh,sp‘h)
= h=1s=1

v=1s=1

G v

JTTT o = o] o =1 o = 1] Pt)

h=1v=1

P(Ap|ao, Bo) IV_IP(G’U:U’CHTO) (2)

v=1

||':]®

where [] indicates the Iverson bracket evaluating to 1 if the condition is true and zero otherwise.
We assume an exponential prior for the v, , with a rate parameter that is strain dependent,
such that:

P(vg,s|1Ag) = Agexp(—7g,sAg) (3)
We then place gamma hyper-priors on the Ay:

aQ

P(Aglaw, Bo) = =22 exp(—BoA 4

(Aglavo, Bo) e xp(—BoAy) (4)
This acts as a form of automatic relevance determination (ARD) forcing strains with low 647
intensity across all samples to zero in every sample [8]. 648

We use a standard Gamma prior for the precision:

B
Iar)

For the biases 6, we use a truncated normal prior: 649

P(rlas, Br) = exp(—0B;7) (5)
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2 exp(— 3 (6 — po)?
P(0y| 1o, 70) = 2 1 =31 ) 0, >=0

— Y (—pov7o)

where W is the standard normal cumulative distribution. The mean of this is set to one, pg =1, 6s0
so that our prior is that the coverage on any given node is unbiased, with a fairly high precision s
70 = 100, to reflect an assumption that the observed coverage should reflect the summation of 652
the strains. Finally, we assume a uniform prior over the possible discrete values of the 7 ,,. If s
the assembly graph is a directed acyclic graph (DAG) then nJ, € 0,1. We have found that for s
most genes and typical kmer lengths this is true, but we do not need to assume it. 655

Variational Approximation 656

We use variational inference to obtain an approximate solution to the posterior distribution of sz
this model [7]. Variational inference is an alternative strategy to Markov chain Monte Carlo 658

(MCMC) sampling. Rather than attempting to sample from the posterior distribution, 659
variational inference assumes a tractable approximating distribution for the posterior, and then eso
finds the parameters for that distribution that minimise the Kullback-Leibler divergence 661
between the approximation and the true posterior distribution. Further, in mean-field 662
variational inference the approximation can be factorised into a product over a number of 663
components that each approximate the posterior of a parameter in the true distribution. In 664

practice the Kullback-Leibler divergence is not computable because it depends on the evidence, 665
i.e. the joint distribution marginalised over all latent variables. Instead, inference is carried out ess

by maximising the evidence lower bound (ELBO), which is equal to the negative of the 667
Kullback-Leibler divergence plus a constant, that constant being the evidence. In our case, 668
because all the distributions are conjugate we can employ CAVI, coordinate ascent variational eeo
inference, to iteratively maximise the ELBO. 670

Our starting point is to assume the following factorisation for the variational approximation:

v
q(X,T,H) H ({0} uYuwen H H an(Vh,s) H qn(An) H ¢ (0v)q(7) (6)

h=1 h=1s=1 h=1

Q
Q

where A is the set of edges in the assembly graph and V = 1,...,V the set of unitig sequence o
vertices. Note that we have assumed a fully factorised approximation except for the 771’},“, the e
paths for each strain through the graph. There we assume that the path for each strain forms a 673
separate factor allowing strong correlations between the different elements of the path. This is 67
therefore a form of structured variational inference [20]. 675

To obtain the CAVI updates we use the standard procedure of finding the log of the optimal 676
distributions q for each set of factorised variables as the expectation of the log joint distribution 677
Equation 2 over all the other variables, except the one being optimised. Using an informal 678
notation we will denote these expectations as (In P>_qj where ¢; is the variable being optimised. 67
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Then the mean field update for each set of {nf 4}y vea is derived as:

In qz({mg;,u}u,veA) = <1D P>—ng’uu,v€,4

1%
=In (H Oge+ 59=0 -Z‘,l%f*,l)

v=1

vV S - G 2
{3 (s 0SSt
v=1 s=1 h=1 —n? wu,vEA

+ Terms independent of 1Y
Consider the second term only:

( ZZQI’vS v 798>¢9+L2 Z¢v7hs Z¢U'st >

v=1 s=1

This becomes:

G
-5 ZE: —220,5(00) Lo (Yg,5) 8% + 2L5(0,°) D (00 (vn,5) (1,50 0% + Lo (007) (37.5) (69)°
v=1 s=1 h#g

Which can be reorganised to:

ln Q;({Tlgu}u,veA ln (H 6¢9+7¢9 5¢9— 1 ¢g+ 1) + Z Cl ’U¢ + Z C2 U ¢g (7)
v=1

Where: 680
< S G
Clo = —75° Z —2%y,5(0v) Lv(Vg,5) + 2L3<9v2> Z<¢ﬁ><’7h,8><7975>
s=1 h#g
-
e = 20202
It is apparent from Equation 7 that the q;({n%u}u,ve A) takes the form of a multivariate 681

discrete distribution with |u,v € A| dimensions. The first term in Equation 7 enforces the flow e
constraints, and does not separate across nodes, the next two terms are effectively coefficients es3
on the total flow through a unitig and its square. The updates for the other variables below, s
depend on the expected values of the total flow through each of the unitig nodes for the strain ess
g, (¢9), which themselves depend on the 77 ,. These expected values can be efficiently obtained ess

for all v by representing Equation 7 as a factor graph comprising nodes consisting of factors 687
corresponding to both the constraints and the flow probabilities through each node with 688
variables 1y ,. We can then find the marginal probabilities for both the 79, and the ¢J using s
the Junction Tree algorithm [41], from these we can calculate the required expectations. 690

Next we consider the mean field update for the v, ,:

Ing* (g.s) = (nP)_, .

\%4 . G 2
= — <Z 5 (l‘v,s - eva[Z QSZL’WL,S]) > - <)\g>’yg,5
h=1 —g.s

v=1
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Ing*(vg,s) =

v
AT ST 20 (0 + 206D L (00) S ) (60 + (02127, (601
v=1 h#g

- <)‘g>'79,s

with the restriction 74 > 0 this gives a normal distribution but truncated to (0, inf) for v, ,
with mean and precision:

w0t Lo{68) — (68) Sy ) (B1NODIE () .
How = >, L2(692)
Tos = (1) Y L2([9]%) 9)

(10)

Derivations for the other updates follow similarly giving a Gamma posterior for the 7 with
parameter updates:

aT:a0+Q/2 (11)
57' - /80 + Z((xv,s - A11,5)2> (12)

where 2 = V.S and we have used A, s as a short hand for the predicted count number:
)\U,S = QU Z Wg,sqbg'
g

Then the 7 have the following expectations and log expectations:

(Tv,s) = ar/Br (13)

(log 7y.s) = ¢ (or +1/2) — log (5r) (14)
where 1) is the digamma function. The biases 6, have a truncated normal distribution and their o1
updates can be derived similar to the above. 602
Evidence lower bound (ELBO) 693

Iterating the CAVI updates defined above will generate a variational approximation that is
optimal in the sense of maximising the evidence lower bound (ELBO) so called because it
bounds the log evidence, log(p(x)) > ELBO(q(z)). It is useful to calculate the ELBO whist
performing CAVI updates to verify convergence and the ELBO itself is sometimes used as a
Bayesian measure of model fit, although as a bound that may be controversial [7]. The ELBO
can be calculated from the relationship:

ELBO(q) = E [log p(z|2)] + E [log p(z)] — E [log ¢(2)] (15)

25/33


https://doi.org/10.1101/2020.09.06.284828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.06.284828; this version posted September 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The first term is simply the expected log-likelihood of the data given the latent variables. In
our case it is:

G
1 1
E [logp(z]2)] = 50 ({log ) —log(2m)) — 5 (7} ((es — Lubs 3 0bms)®)  (16)
h=1
where 2 = V'S and the expectations are over the optimised distributions g. 694

The second term is the expectation under ¢(z) of the log prior distributions. In our case
with standard distributions it is easy to calculate for instance for each of the v, ,:

1 Tg.s Tg.s 1 Tgs
Eﬂogpvmﬁ)]==§lm§<§;>-— 5 (&@ﬁ>+¢@ﬁ-—2u%s¢mﬁ>)—Jog[2ewf<u%s 5 )]-

With the g, and 7, s given by their current values derived from Equation 10 and the moments o5

of 74,5 calculated from a truncated normal distribution with those current parameters. The 696
third terms are simply the negative entropy of the variational approximations and for the 607
standard distributions used here are easily calculated. 698
Implementation details 699

One update of the algorithm consists of updating each variable or sets of variables in turn given 700

the current optimal solutions of the other distributions. In practice we update: 701
e Compute the marginal flows {nJ .}, vea for each strain g =1,...,G in turn using 702
Equation 7 and the Junction Tree algorithm. This can be performed for each single 703
copy-core gene independently 704

e Update the truncated normal strain abundances ¢(v4s) for each strain in each sample, 705
s=1,...,5 using Equation 10 706

e Update the ¢(7) 707

e Update the ARD parameter distributions g(\,) if used 708

e Update the nodes biases ¢(6,) 700

e Check for redundant or low abundance strains and remove (see below) 710
After a maximum fixed number of iterations or if the ELBO converges we stop iterating. 711

Variational inference can be sensitive to initial conditions as it can only find local maxima of 712
the ELBO, we therefore use a previously published variational Bayesian version of non-negative 713
matrix factorisation [8], to find an initial approximate solution. 714

Empirical modelling of node variances 715

For low-coverage MAGs a precision that is identical for all nodes performs satisfactorily, but
since the true distribution of read counts is Poisson this overestimates the precision for nodes
with high counts x, ;. To address we developed an empirical procedure where we first calculate
(log 7, 5) for each node using Equation 14 as:

<kg7b§>::¢(a0+]/2)—1q;(ﬂgxg§+-;<@%§-—Avﬁﬁ>) (17)
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a quantity which exhibits high variability, so we then smooth this over log(z, s) using 716
generalised additive models as implemented in pyGAM [36] to give (log 7, s)". The term Sy X, s 77
gives a prior which is effectively Poisson. We then obtain (7, ) as exp((log 7, s)"). This 718

procedure has no theoretical justification but gives good results in practice. This approach of 719
modelling a non-Gaussian distribution as a Gaussian with empirical variances is similar to that 720
used in voom for RNASeq [23]. 721

Cross-validation to determine optimum number of strains 722

The ARD procedure usually converges on the correct number of strains except for high-coverage
MAGs where overfitting may occur and too many strains can be predicted. We therefore
additionally implemented a cross-validation procedure, splitting the entire data matrix x, , into
test and train folds (default ten folds) and training the model on the train fold and then testing
on the held out data. The correct number of strains was then taken to be the one that
maximised the log predictive posterior with an empirical variance reflecting the Poisson nature
of the data. The exact test statistic being:

Z %log(ﬂ/)’s) - % Z Té,s((f%,s - )‘U,S)2> (18)

v,s€FE v,s€F

where 7, ; = 1/(0.5 4 2,,5) and E indicates data points in the test set to down-weight high read 7

count nodes reflecting approximately Poisson noise. 724
Nanopore sequence analysis 725
Sequence preprocessing 726

To enable a qualitative comparison between haplotypes obtained from the Nanopore reads and 727
the BayesPaths predictions we developed the following pipeline applied at the level of individual 72s

single-copy core genes (SCGs) from MAGs: 729
1. We mapped all reads using minimap2 [26] against the SCG contig consensus ORF 730
sequence and selected those reads with alignments that spanned at least one third of the 71
gene with a nucleotide identity > 80%. 732

2. We then extracted the aligned portion of each read, reverse complementing if necessary, 733
so that all reads ran in the same direction as the SCG ORF. 734

3. We then obtained the variant positions on the consensus from the output of the 735
DESMAN pipeline [32]. These are variant positions prior to haplotype calling 736
representing the total unlinked variation observed in the short reads. 737

4. For each Nanopore fragment we aligned against the SCG ORF using a 738
Needleman-Wunsch global alignment and generated a condensed read comprising bases 739
only from the short read variant positions. 740

This provided us with a reduced representation of each Nanopore read effectively filtering  7a
variation that was not observed in the short reads. These reduced representations were then 74
used to calculate distances, defined as Hamming distances on the variant positions normalised 743
by number of positions observed, both between the reads and between the reads and the 744
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predicted COG sequences from BayesPaths. From these we generated NMDS plots indicating 74

sequence diversity, and they provided an input to the hybrid Nanopore strain resolution 746
algorithm below. 747
EM algorithm for hybrid Nanopore strain resolution 748

We also developed a simple EM algorithm for direct prediction of paths and their abundances 749
on the short read assembly graph that are consistent with a set of observed long reads. We 750
began by mapping the set of n =1,..., N Nanopore sequences denoted {S,} onto the 751
corresponding simplified SCG graph generated by STRONG using GraphAligner [33]. This 752
provided us with N optimal alignment paths as walks in our SCG graph. We denote this graph 7s3
G comprising unitig vertices v and edges e € {u, v} defining overlaps. 754
We assume, as is almost always the case that the graphs contain no unitigs in both forward 7ss
and reverse configurations, and that there are no cycles, so that each SCG is a directed acyclic 7s6
graph (DAG) with one copy of each unitig, and we only need to track the direction that each 757
overlap enters and leaves each unitig. Then best alignment walks comprise a sequence of edges, 7ss
ef,... ey, where W), is the number of edges in the walk of read n, that traverse the graph. 759
Given these observed Nanopore reads we aim to reconstruct G haplotypes comprising paths
from a dummy source node s, which has outgoing edges to all the true source nodes in the
graph, through the graph to a dummy sink ¢, which connects all the true sinks. We further
assume that each haplotype has relative frequency m,. Each such haplotype path
Py = {s, el ..., elg/vg,t} will translate into a nucleotide sequence 7,. We assume that these
haplotypes generate Nanopore reads with a fixed error rate ¢ which gives a likelihood:

N G
P({S1,....SvHm AT, Tah) = [] | D mgem™ o (1 — )M | . (19)
n=1 \g=1
where m,, 4 is the number of basepair mismatches between S, and 7T, counting insertions, 760
deletions and substitutions equally and M, ; the number of matches. 761
To maximise this likelihood we used an Expectation-Maximisation algorithm. Iterating the 7e2
following steps until convergence: 763

1. E-step: Calculate the responsibility of each haplotype for each sequence as:

Tge™ma (1 — €)Mng
Z. =
S ek (1 — ) Mnon

(20)

Alignments of reads against haplotypes were performed using vsearch [34]. 764

2. M-step: We update each haplotype by finding the most likely path on the short read
graph given the current expectations. These are calculated by assigning a weight wg to
each edge e in the graph as:

nee
where n € e are the set of reads whose optimal alignment contains that edge and L is the
unique length of the unitig the edge connects to, i.e. ignoring the overlap length. We then
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find for haplotype g the maximal weight path through this DAG using a topological sort.
The error rates are updated as:

Zn.gM
€ — Zn Zg n,9''n,g (22)
Zn Zg Z"ngnag

where L, 4 are the alignment lengths. 765

As is often the case with EM algorithms convergence depends strongly on initial conditions. 766

Therefore we initialise using a partitioning around medoids clustering using the distances 767
calculated in Methods - Nanopore Sequence Analysis. We can estimate the number of 768
haplotypes from the negative log-likelihood as a function of haplotype number. 760
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