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Abstract

Microbial community studies in general, and of the human microbiome in inflammatory bowel
disease (IBD) in particular, have now achieved a scale at which it is practical to associate features
of the microbiome with environmental exposures and health outcomes across multiple large-scale
populations. This permits the development of rigorous meta-analysis methods, of particular
importance in IBD as a means by which the heterogeneity of disease etiology and treatment
response might be explained. We have thus developed MMUPHin (Meta-analysis Methods with
a Uniform Pipeline for Heterogeneity in microbiome studies) for joint normalization, meta-analysis,
and population structure discovery using microbial community taxonomic and functional profiles.
Applying this method to ten IBD cohorts (5,151 total samples), we identified a single consistent
axis of microbial associations among studies, including newly associated taxa such as
Acinetobacter and Turicibacter detected due to the sensitivity of meta-analysis. Linear random
effects models further revealed associations with medications, disease location, and interaction

effects consistent within and between studies. Finally, multiple unsupervised clustering metrics


https://doi.org/10.1101/2020.08.31.261214
http://creativecommons.org/licenses/by/4.0/

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.261214; this version posted August 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

and dissimilarity measures agreed on a lack of discrete microbiome “types” in the IBD gut
microbiome. These results thus provide a benchmark for consistent characterization of the IBD
gut microbiome and a general framework applicable to meta-analysis of any microbial community

types.

Introduction

Meta-analysis for molecular epidemiology in large populations has seen great success in linking
high-dimensional ’omic features to complex health-related phenotypes. One example of this is in
genome-wide association studies (GWAS'), where the appropriate study scale, achieved by
rigorous integration of multiple cohorts, has both facilitated reproducible discoveries (in the form
of disease-associated loci**) and addressed confounding due to unobserved population
structure®. The inflammatory bowel diseases (IBD) represent a particular success story for GWAS
meta-analysis®*, and environmental and microbial contributors complementing the condition’s
complex genetic architecture have been detailed by many individual studies®®. However, in the
absence of methods appropriate for large-scale microbial meta-analysis, the extent to which these
findings reproduce across studies, or can be extended by increased joint sample sizes, remains
undetermined. Likewise, it is unclear whether reproducible population structure in the microbiome,
such as microbially-driven IBD “subtypes,” exists to help explain the clinical heterogeneity of these

conditions®.

Meta-analysis of microbial community profiles presents unique quantitative challenges relative to
other types of ‘omics data such as GWAS'™ or gene expression''. These include particularly
strong batch, inter-individual, and inter-population differences, and statistical issues including
zero-inflation and compositionality'®'®. Consequently, methods to correct for cohort and batch

14-17

effects from other ‘omics settings are not directly appropriate. Two recent studies have

suggested quantile normalization'® and Bayesian Dirichlet-multinomial regression (BDMMA)'® for
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microbial profiles, which are applicable to a limited subset of differential abundance tests and do
not provide batch-corrected profiles. To date, there are no methods permitting the joint analysis

of batch-corrected microbial profiles for most study designs.

IBD represents one of the best-studied, microbiome-linked inflammatory phenotypes to date

which thus stands to benefit from such approaches®?'. Among the inflammatory bowel diseases,

Crohn’s disease (CD) and ulcerative colitis (UC) have been individually linked with structural and
functional changes in the gut microbiome in many individual studies®'. Each of CD and UC can
itself be highly heterogeneous within the IBD population, however, and diversity in disease-
associated gut microbial features has not been consistently associated with factors including
disease subtype, progression, or treatment response’®?%%_ Of note, two meta-analysis studies
included IBD as one of several phenotypes®?°. These studies were not IBD-specific, did not have
access to appropriate normalization techniques, nor took the aforementioned factors into account.
The complexity of microbial involvement in IBD, and the presence of substantial unexplained
variation in the manifestation of its symptoms, makes it particularly appropriate for application of

meta-analysis techniques.

In this work, we introduce and validate a statistical framework for population-scale meta-analysis
of microbiome data, and apply it to the largest collection to date of ten published 16S rRNA gene
sequencing-based IBD studies (Table 1) to identify consistent disease associations and
population structure. We found both previously documented and novel microbial links to the
disease, with further differentiation among subtypes, phenotypic severity, and treatment effects.
We further confidently conclude that there are no apparent, reproducible microbiome-based
subtypes within CD or UC, which are instead a population structure gradient from less to more

“pro-inflammatory” ecological configurations. Our work thus represents one of the first large-scale
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efforts to assesses consistency in gut microbial findings for IBD and provides methodology

supporting future microbial community meta-analyses.

Results

Integrating 10 studies of the IBD stool and mucosal microbiomes

We collected and uniformly processed ten published 16S studies of the IBD gut microbiome
(Table 1, Fig. 1a, Supplemental Table 1) totaling 2,179 subjects and 5,151 samples. These
studies range widely in terms of cohort designs and population characteristics, including recent-
onset and established disease patients, cross-sectional and longitudinal sampling, pediatric and
adult populations, diseases (CD and UC), treated and treatment-naive patients, biopsy and stool
samples, and inclusion of healthy/non-IBD controls. Covariates were manually curated to ensure
consistency across studies (Methods). Major factors available from all or most studies included
demographics (age/sex/race), biogeography, disease location and/or extent, antibiotic usage,

immunosuppression, and steroid and/or 5-ASA usage.

Sample type
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a Collection of 10 168 IBD gut mlcroblome studles (Nsubjects=2,179 nsamp|es_5 151)
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83 Figure 1: A method for large-scale microbial community meta-analysis and its application to inflammatory
84 bowel disease. a) We developed a novel statistical framework, MMUPHin, allowing joint normalization and meta-
85 analysis of large microbial community profile collections with heterogeneous and complex designs (multiple covariates,
86 longitudinal samples, etc.). We applied it to a collection of 10 inflammatory bowel disease studies comprising 2,179
87 subjects and 5,151 total samples (Table 1). We uniformly processed the associated sequence data and harmonized
88 metadata across cohorts. Microbial taxonomic profiles were then corrected for batch- and study-effects before
89 downstream analyses for omnibus and per-feature association with disease phenotypes and unsupervised population
90 structure discovery. b) MDS ordination of all microbial profiles (Bray-Curtis dissimilarity) before batch correction
91 visualize the strongest associations with gut microbial composition, including disease, sample type (biopsy or stool),

92 cohort (visualized separately for larger and smaller studies), and dominant phyla.

93 Using this joint dataset and upon uniform bioinformatics processing (Methods), we first assessed
94  the factors that corresponded to overall variation in microbiome structure, which included disease
95  status, sample type (biopsy versus stool), and dominant phyla (Bacteroidetes and Firmicutes, Fig.
96 1b). Cohort effects prior to batch correction and meta-analysis were also significant. Microbiome
97 differences associated with disease were notable even without normalization. However, this can
98 be misleading due to the confounding of cohort structure between studies, such as the
99 differentiation between RISK (a predominantly mucosal study of CD) and PROTECT (a
100  predominantly stool study of UC). Inter-individual differences largely independent of population or
101  disease, such as Bacteroidetes versus Firmicutes dominance, were also universal among studies
102  and sample types as expected®?®. Many of these factors were of comparable effect size, both
103  visually and as quantified below, emphasizing the need for covariate-adjusted statistical modelling
104 to delineate the biological (disease, treatment) and technical (cohort, batch) effects associated

105  with individual taxa throughout the cohorts (Supplemental Notes, Supplemental Fig. 1-3).

Study Brief description N N Phenotype(s) Age Gender | Sample
subject | sample type(s)
PROTECT | Longitudinal cohort 405 1212 ucC 405 12.71 Male Biopsy
23 of newly diagnosed (539) (3.29) 52%/ 22%/
uc Female Stool
48% 78%
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RISK’ Pediatric cohort of 631 882 CD 430/ 12.16 Male Biopsy

treatment-naive CD Control 201 (3.22) 59%/ 72%/

Female Stool

41% 28%

Herfarth? | Densely (daily) 31 860 CD 19/ 36.03 Male Stool
Y sampled longitudinal (31) Control 12 | (14.12) 35%/
cohort Female
58%/
Missing
6%

Jansson- | Longitudinal follow 137 683 CD 49/ Male Stool
Lamende | up with fecal samples (137) uc 60/ 42%/
1322 Control 28 Female
58%

Pouchitis | Patients recruited 353 577 CD 42/ 46.19 Male Biopsy
28 underwent IPAA for Uc 266/ | (13.58) 52%/
treatment of UC or Control 45 Female
FAP prior to 48%

enrollment.

Cs- Cross sectional 397 467 CD 215/ 41.68 Male Biopsy

PRISM?® | cohort nested in UC 144/ | (15.22) 47%/ 29%/

PRISM Control 38 Female Stool

53% 71%

HMP2° Large cohort of newly 81 177 CD 37/ 29.76 Male Biopsy
diagnosed IBD with (162) uc 22/ | (19.63) 51%/
multi 'omics Control 22 Female
measurement. 49%

Mucosall | Pediatric cohort with 83 132 CD 36/ 12.93 Male Biopsy
BD*® Paneth cell Control 47 | (3.65) 58%/
phenotypes Female
42%

LSS- Longitudinal cohort 18 | 88(19) CD 12/ 30.37 Male Stool
PRISM3! | nested in PRISM. uce6 | (10.52) 39%/
Female
61%

BIDMC- FMT Trial design 8 16 ch8 38.38 Male Stool
FMT3? (12.73) 62%/
Female
38%
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106 Table 1: 10 uniformly processed 16S rRNA gene sequencing studies of the IBD mucosal/stool microbiomes.
107 For longitudinal cohorts, numbers in parentheses indicate baseline sample size. For age, mean and standard error

108 (parenthesized) are shown. Additional covariates are summarized in Supplemental Table 1.

109 A statistical framework for meta-analysis of microbial community profiles

110  We developed a collection of novel methods for meta-analysis of environmental exposures,
111 phenotypes, and population structures across microbial community studies, specifically
112 accounting for technical batch effects and interstudy differences (Methods, Fig. 1a). It consists
113  of three main components: batch and study effect correction, covariate modeling, and population
114  structure discovery. First, we extended methods from the gene expression literature (ComBat'?)
115  to enable batch correction of zero-inflated microbial abundance data. Based on linear modelling,
116 the method can differentiate between technical effects (batch, study) versus covariates of
117  Dbiologically interest (exposure, phenotype). Second, we combined well-validated data
118  transformation and linear modelling combinations for microbial community profiles® with fixed and
119  random effect modelling®* for meta-analytical synthesis of per-feature (taxon, gene, or pathway)
120  differential abundance effects. Lastly, we generalized and formalized approaches from cancer
121 transcriptional subtyping®® to permit unsupervised discovery and validation of both discrete and
122  continuous population structures in microbial community data (Supplemental Fig. 4). Our
123  methods, implemented as Meta-analysis Methods with a Uniform Pipeline for Heterogeneity in
124  microbiome studies (MMUPHin), are available as an R package through Bioconductor®® and at

125 https://bioconductor.org/packages/release/bioc/html/MMUPHin.html.

126  We validated MMUPHin both in comparison to existing methods and through extensive simulation
127  studies (Fig. 2), with simulated realistic microbial abundance profiles at different data
128 dimensionality, biological/technical batch signal strength, and discrete/continuous population
129  structures (Methods, Supplemental Table 2, Supplemental Fig. 5-8). MMUPHin successfully

130  reduced variability attributable to technical effects in simulated microbial profiles, as first quantified
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131 by the PERMANOVA R2 statistic®” (Fig. 2a-b, Supplemental Fig. 5). This was true both in terms
132  of reducing the overall microbial variability attributable to technical artifacts and in terms of the
133  ratio of “biological” versus technical variability (Fig. 2a). ComBat correction, suited for gene
134  expression data, was capable of reducing batch effects to a lesser degree, but also tended to
135 reduce desirable “biological” variation in the process, likely due to noise introduced by it changing
136  many zero counts to non-zero values. Previously proposed techniques for microbial community
137  data, namely quantile normalization’ and BDMMA'®, are only appropriate for differential
138  abundance analysis and do not provide batch-normalized profiles, thus precluding PERMANOVA
139 batch effect quantification; their per-feature testing performance is evaluated together with
140  MMUPHin in the following section. MMUPHiIn thus provides batch-corrected microbial community
141 profiles that retain biologically meaningful variation more than (or not even possible using) existing

142 methods.

143  For differential abundance testing, MMUPHIn successfully corrected for false associations when
F44 batch/cohort effects were confounded with variables of interest, which is a common concern for
145  ‘omics meta-analysis®®, while quantile normalization'® and BDMMA'® had either inflated or overly
146  conservative false positive rates (Fig. 2c-d, Supplemental Fig. 6). We also validated MMUPHin’s
147  support for unsupervised population structure discovery, in addition to these “supervised”
148  differential abundance and statistical association tests. In microbial communities, valid,
149  generalizable population structure can manifest as either discretely clustered subtypes® or as
150  continuously variable gradients of community configurations*’, but methods for discovery are
151  particularly susceptible to false positives in the presence of technical artifacts?®“°. To this end, for
152  discrete structures, MMUPHin utilizes established clustering strength evaluation metrics*' to a)
153  evaluate the existence of discrete clusters within individual microbiome studies and b) to validate
154  the reproducibility of such structures among studies meta-analytically (Fig. 2e-f, Supplemental

155  Fig. 7). For continuous structures, our method generalizes single study principal component
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analysis (PCA*?) to multiple studies by constructing a network of correlated top PC loadings®,
thus identifying major axes of variation that explain the largest amount of heterogeneity between
microbial profiles and are also consistent across studies (Fig. 2g-h, Supplemental Fig. 8). As a
result, MMUPHin was able to successfully identify discrete clusters (i.e. microbiome "types") when
present, as well as significantly consistent continuous patterns of microbiome variation that recur

among populations (Supplemental Notes).
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163 Figure 2: Effectiveness of batch correction, association meta-analysis, and unsupervised population structure
164 discovery methods. All evaluations use simulated microbial community profiles as detailed in Methods. Left panels
165 summarize representative subsets of results (full set of simulation cases presented in Supplemental Table 2 and
166 results in Supplemental Fig. 5-8), and right panels show examples of batch-influenced data pre- and post-correction.
167 a, b) MMUPHin is effective for covariate-adjusted batch effect reduction while maintaining the effect of positive control
168 variables. Results shown correspond to the subset of details in Supplemental Fig. 5 with number of samples per batch
169 = 500, number of batches = 4, and number of features = 1000 with 5% spiked with associations. c, d) Batch correction
170 and meta-analysis reduces false positives when an exposure is spuriously associated with microbiome features due to
171 an imbalanced distribution between batches. Corresponds to Supplemental Fig. 6 with number of samples per batch
172 = 500, number of features = 1000 with 5% spiked associations, and case proportion difference between batches = 0.8.
173 Evaluations of BDMMA generates low FPRs due to the zero-inflated nature of simulated microbial abundances, and
174 are included only in Supplemental Fig. 6. e, f) Batch correction improves correct identification of the true underlying
175 number of clusters during discrete population structure discovery. Corresponds to Supplemental Fig. 7 with number
176 of batches = 4. g, h) Continuous structure discovery accurately recovers microbiome compositional gradients in a

177 simulated population. Corresponds to Supplemental Fig. 8 with number of batches = 6.

178  Meta-analysis of the IBD microbiome

179  Given these validations of MMUPHIn’s accuracy in simulated data, we next applied it to the 10-
180  study, 4,789-sample IBD gut amplicon profile meta-analysis introduced above (Fig. 3). MMUPHin
181  successfully reduced the effects both of differences among studies, and of batches within studies
182  (study effect correction modelling disease and sample type as covariates, see Methods),
183  although these remained among the strongest source of variation among taxonomic profiles as
184  quantified by PERMANOVA R2 (Fig. 3a, Methods, Supplemental Table 3). Among biological
185 variables, sample type (biopsy/stool), biopsy location (multiple, conditional on biopsy samples),
186  disease status (IBD/control), and disease types (CD/UC, conditional on IBD) consistently had the
187  strongest effect on the microbiome among studies. Several relationships between study design
188  and phenotypic effects were apparent. Batches had a particularly strong effect in CS-PRISM and

189 RISK, for example, where biopsy and stool samples were also perfectly separated by batch.
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Treatment exposures all had small effects on microbiome structure within studies, which typically
reached statistical significance only when combined by meta-analysis; antibiotics were an
exception with slightly larger effects. Montreal classification did not generally correspond with

significant variation, while age (at sample collection as stratified below and above 18, and at

diagnosis by Montreal age classification**) had small but significant effects. The effects of gender
and race were not significant. Lastly, for longitudinal studies, relatively stable differences between
subjects over time were large and significant, consistently for both longer-interval (HMP2) as well
as densely sampled cohorts (Herfarth, daily samples), in agreement with previous individual
studies’ observations®?.
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Figure 3: Meta-analytic omnibus and per-feature testing reveal novel and previously documented IBD
associations. a) Omnibus testing (PERMANOVA on Bray-Curtis dissimilarities with stratification and covariate control
where appropriate, see Methods and Supplemental Table 3) identified between-subject differences as the greatest
source of microbiome variability, with IBD phenotype, disease (CD/UC), and sample type (stool/biopsy) as additional
main sources of biological variation. MMUPHin successfully reduced between-cohort and within-study batch effects,
although these technical sources also remained significant contributors to variability. b) Individual taxa significantly
associated with IBD phenotypes or treatments after meta-analysis. Taxa are arranged by family-level median effect
size of IBD vs. control for disease results and that of antibiotic usage for treatment results. Effect sizes are aggregated

regression coefficients (across studies with random effects modelling) on arcsin square root-transformed relative
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209 abundances. Detailed model information in Methods and Supplemental Table 3. Individual study results in

210  Supplemental Table 4.

211 We identified individual taxonomic features consistently associated with disease and treatment
212  variables (Fig. 3b, Supplemental Table 4), with meta-analysis multivariate differential
213  abundance analysis, adjusting for common demographics (age, gender, race) and further
214  stratifying for sample type and disease when appropriate (Methods, Supplemental Table 3). At
215 a very high level, differential abundance patterns between CD and control microbiomes were
216  consistent with, and often more severe than contrasts between UC and control, confirming with
217  increased resolution previous observations that CD patients tend to have more aggravated
218  dysbiosis than UC patients®. As expected, our meta-analysis confirms many of the taxa
219  associated with IBD reported by previous individual (Fig. 3b, detailed in Supplemental Notes);
220 these findings strongly supports the emerging hypotheses of pro-inflammatory aerotolerant
221  clades forming a positive feedback loop in the gut during inflammation, often of oral origin’, and

222  depleting the gut’s typical fastidious anaerobe population as a result.

223  We also identified two taxa not previously associated with IBD, both of modest effect sizes and
224  likely newly detected by the meta-analysis’ increased power. The genus Acinetobacter was
225 enriched in CD, and Turicibacter was depleted. Turicibater in particular is poorly represented in
226  reference sequence databases, with only nine genomes for one species (Turicibacter sanguinis)
227  currently in the NCBI genome database; this makes it easy to overlook in shotgun metagenomic
228  profiles relative to amplicon sequencing. The genus Acinetobacter, conversely, is quite well
229  characterized due to its role in antimicrobial resistant infections*, and it was previously linked
230  specifically to the primary sclerosing cholangitis phenotype in UC*, although without follow-up to
231  our knowledge. Turicibacter is overall less characterized both in isolation and with respect to
232  disease, although our findings and others’ suggest it might be inflammation-sensitive when

233  present; it was one of many clades increased in mice during CD8+ T cell depletion*® and reduced
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234  in a homozygous TNF deletion*’. As the strains of Acinetobacter implicated in gut inflammation
235 are unlikely to be those responsible for e.g. nosocomial infections, further investigation of both

236 clades using more detailed data or IBD-specific isolates is warranted.

237 Among treatment variables (samples or time points during which subjects were receiving
238  antibiotics, immunosuppressants, steroids, and/or 5-ASAs), antibiotics had the strongest effects
239 onindividual taxa, as well as the greatest number of significantly associated taxa (Fig. 3b). These
240  associations are also broadly in agreement with previous observations for microbiome responses
241  to antibiotics in IBD or generally, e.g. the depletion of Faecalibacterium, Ruminococcus, and
242  Bacteroides in patients treated with antibiotics, and the enrichment of (often stereotypically
243 resistant) taxa such as Streptococcus, Acinetobacter, and the Enterobacteriaceae, with
244  differential responses to the treatment groups speaking to both administration considerations and

245  their impact on host versus microbial community bioactivities (Supplemental Notes).

246  Subsets of IBD-linked taxa were additionally associated with the diseases’ phenotypic severity
247  (Fig. 4a, Supplemental Table 5). Montreal classification*® was used as a proxy for disease
248  severity, including Behavior categories for Crohn’s disease (B1 non-stricturing, non-penetrating,
249 B2 stricturing, non-penetrating, B3 stricturing and penetrating) and Extent for ulcerative colitis (E1
250 limited to rectum, E2 up to descending colon, E3 pancolitis). We tested for features differentially
251  abundant in the more severe phenotypes when compared against the least severe category (B1
252 CD and E1 UC, Methods). Among statistically significant results, many extended those identified
253  above as overall IBD associated (Fig. 3b), such as the depletion of Faecalibacterium in B3 CD
254  and Roseburia in B2 CD, as well as the enrichment of Enterobacteriaceae in E3 UC. In most
255 cases, microbial dysbiosis was also additionally aggravated from the moderate to the most
256  extreme disease manifestations; such differences were statistically significant (Methods) in, for
257  example, the progressive depletion of Bacteroides in CD and UC, as well as the enrichment of

258 Enterobacteriaceae in UC. This meta-analysis is uniquely powered to detect these subtle
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259  differences, which aid in shedding light on the microbiome’s response to progressive inflammation
260 and disease subtypes. Pancolitis corresponds with a unique microbial configuration distinct from
261  regional colitis and not generally detectable in smaller studies®, for example, while more severe
262  CD induces essentially a more extreme form of the same dysbiosis observed in less severe forms

263  of the disease.

CD Behavior UC Extent
a B1 non-stricturing, non—penetraiting E1 Ulcerative proctitis
B2 stricturing E2 Distal UC
B3 penetrating E3 Pancolitis
C i C i
Fusobacterium- .oms;rt:m h Enterobacteriaceae(f) unclassified .omEpazrl‘j:?B h, |E
W B3 vs. B1 " .|l E3vs. E1 *
Rosebuirial ,1 Holdemania ¥l *J
Phascolarctobacterium : | *H
Peptoniphilus- *I ¥
Oscillospira ¥ | *i
; - * X
Rikenellaceae(f) unclassified+ ..‘ ”
* Rikenellaceae(f) unclassified ; | :J
X
Ruminococcaceae(f) unclassified ‘ *
X Coprococcus il :J q<0.1
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ides ¥ 5 *
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265 Figure 4: IBD-associated taxa are aggravated in more severe disease; disease biogeography and CD/UC
266 differentially affect some taxa with respect to disease and treatment. a) Statistically significant genera from meta-
267 analytically synthesized differential abundance effects among severity of CD and UC phenotypes as quantified by
268 Montreal classification. The difference between the most severe phenotype with the least severe one (B3 vs. B1 for
269 CD, E3 vs. E1 for UC) was in most cases more aggravated than that of the intermediate phenotype. Many of the
270 identified features overlap with those associated with IBD vs. control differences, suggesting a consistent gradient of
271 severity effects on the microbiome. Individual study results in Supplemental Table 5. b) Genus Dehalobacterium as
272 an example in which a taxon is uniquely affected in the stool microbiome during CD and not at the mucosa. Likewise,

273 family Enterobacteriaceae as an example in which steroid treatment corresponds with enrichment of the clade in CD
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274 samples, but depletion in UC. In all panels, effect sizes are aggregated regression coefficients on arcsin square root-
275 transformed relative abundances. Full sets of statistically significant interactions, with individual study results, are in

276  Supplemental Table 6.

277  Additionally, diseases (CD and UC) and their corresponding dysbioses also interacted distinctly
278 with the microbiome under different treatment regimes and in different biogeographical
279  environments (mucosa vs. stool, Fig. 4b, Supplemental Table 6). Interaction effects, in the
280  statistical sense, were defined as a main exposure (IBD or treatment) having differential effects
281  on taxon abundance with respect to either sample type (biopsy/stool) or diseases (CD/UC); they
282  were identified via moderator meta-analysis models (Methods). Overall, we found elevated
283  effects of both CD (relative to controls) and antibiotic treatment in stool as compared to biopsy-
284  based measurements of the microbiome (Supplemental Table 6). An example of this is
285  Dehalobacterium, with significantly greater depletion in CD stool relative to biopsies (Fig. 4b).
286  Dehalobacterium, as with Turicibacter above, is underrepresented in reference sequence
287  databases, better-detected by amplicon sequencing, and thus not a common microbial signature
288  of IBD. It has been linked to CD in at least one existing 16S-based stool study*®. In contrast,
289  several UC-specific microbial disruptions were more prominent at the mucosa (i.e. in biopsies,
290 Supplemental Table 6). Coupled with the severity-linked differences above, this suggests CD-
291 induced changes in the entire gut microbial ecosystem largely as a consequence of inflammation,
292  with UC-induced dysbioses both more local and more specific to disease and treatment regime.
293  Additional results include effect of steroids on the Enterobacteriaceae, which tended to be more
294  abundant in CD patients receiving steroids, but less abundant in UC recipients (Fig. 4b,

295 Supplemental Table 6, Supplemental Notes).

296 Consistent IBD microbial population structure discovered by unsupervised analysis

297  The existence of subtypes within gut microbial communities has been a major open question in

298 human microbiome studies, and it is of particular importance within IBD as a potential explanation
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299 for heterogeneity in disease etiology and treatment response®®. To systematically characterize
300 population structure in the IBD gut microbiome that was reproducible among studies, we
301  performed both discrete and continuous structure discovery on the 10 cohorts using our meta-
302 analysis framework. To identify potential discrete community types (i.e. clusters), we performed
303 clustering analysis within each cohort’s IBD patient population, and evaluated the clustering
304  strength via prediction strength (Methods). We found no evidence to support discrete clustering
305  structure within individual cohorts, nor were we able to reproduce each cohort’s clustering results
306 externally (Fig. 5a). This lack of discrete structure was consistent when we further stratified
307 samples to either CD or UC populations (Supplemental Fig. 9), or extended to additional
308  dissimilarity metric and clustering strength measurements (Supplemental Fig. 9, Methods). Our
309  observation that the IBD gut microbiome cannot be well characterized by discrete clusters is thus
310  consistent with previous findings on gut microbial heterogeneity for healthy populations*® and
311 suggests that, at the level powered by this study, such microbiome subtypes are not clearly

312  responsible for clinical heterogeneity.
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Figure 5: Unsupervised population structure discovery finds no evidence of microbiome-based subtypes in
the IBD gut, but a reproducible gradient of continuously variable dysbiosis in disease. a) No support was
detected for discrete microbiome subtypes (clusters) within the IBD microbiome, neither within cohort nor when
evaluated among studies (red bars) using prediction strength*!. This remained true during stratification within CD and
UC, and for additional dissimilarity metric/clustering strength measurements (Supplemental Fig. 9). b) Conversely,
two reproducible, continuously variable patterns of microbiome population structure were identified using groups of
similar principal components (Methods)?®. These patterns were consistent within and between cohorts, disease types,
and sample types, as well as under different edge strength cutoffs (Supplemental Fig. 11), and their consensus
loadings were reproducible among cohorts (Supplemental Fig. 12). c) Top 20 genera with highest absolute loadings
for the disease-associated dysbiosis score corresponding to the first cluster in b. Many of these taxa were also IBD-

associated (Fig. 3b). d) Distribution of the dysbiosis pattern across CD, UC, non-IBD control, and healthy populations.
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325 Although it was defined in an unsupervised way solely within the IBD population, across which the pattern is highly

326 variable, it also differentiates well between IBD and control populations (Supplemental Fig. 13).

327  Conversely, we identified two consistent, continuously varying gradients of microbial community
328  variation in the IBD microbiome (Fig. 5b-d, Supplemental Fig. 10). These gradients represent
329  patterns of microbes that occur with greater or lesser abundance in tandem, and which covary
330 across subjects in a population; they were identified as principal component (PC) vectors that
331  recur among different cohorts (see Methods)*. Briefly, we used the four largest IBD cohorts (CS-
332  PRISM, Pouchitis, PROTECT, and RISK) as training datasets to identify two clusters of consistent
333 PCs (Fig. 5b), which were confirmed with sensitivity analysis (Supplemental Fig. 11) and
334  validated in the remaining cohorts (Supplemental Fig. 12). The consensus loadings (i.e. within-
335 cluster average) representing these two clusters (Fig. 5¢, Supplemental Fig. 10, Supplemental
336 Table 7) were used to assign continuously varying scores to the IBD population that capture
337  gradient changes in the microbiome that occurred consistently within IBD, across diseases,
338 sample types, and cohorts. This disease-linked "type" of microbiome variation corresponded

339  roughly to severity or extent of inflammation, as detailed below.

340 In particular, while the second continuous population structure captured the Firmicutes-
341  Bacteroidetes tradeoff present in most gut microbiome studies (Supplemental Fig. 10)°2°°, the
342  first continuous score was IBD-specific and corresponded roughly to more extreme disease-
343  associated dysbiosis in CD and UC populations (Fig. 5d). This is evidenced by the taxa with
344  highest weights in the scores’ consensus loading vector (Fig. 5¢), which included taxa
345  differentially abundant between IBD and control populations (Fig. 3). The score was consistent
346  both within CD and UC while also further differentiating IBD, non-IBD control, and healthy
347  populations (Fig. 5d, Supplemental Fig. 13), even though it was identified unsupervisedly only
348 from diseased subsets. The composition of the score and its population structure are also

349  consistent with our recent definition of dysbiotic gut microbiome configurations corresponding with
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350 multi’omic perturbations during IBD activity’. Together with the supervised meta-analysis results
351 above, these unsupervised population structure findings confirm that there are no detectable
352  discrete subtypes of the gut microbiome in IBD even among ~5,000 combined samples, while
353 showing a single continuously variable gradient of microbiome changes reproducibly present

354  during more dysbiotic diseases.

355 Discussion

356  Here, we provide a novel framework for microbial community meta-analysis and apply it to the
357 first large-scale integration of over 5,100 amplicon profiles of the stool and mucosal microbiomes
358 in IBD. This identified a significantly reproducible gradient in the gut microbiome indicative of
359 increasing dysbiosis in subsets of patients. The study also showed no evidence of additional
360  population structure, such as microbiome-driven discrete disease subtypes, within CD or UC. The
361 increased power provided by meta-analysis supported many of the taxonomic associations
362  previously ascribed to IBD (e.g. Faecalibacterium, Ruminococcus, Enterobacteriaceae) while
363 uncovering new associations (Turicibacter, Acinetobacter) not confidently associated with
364 inflammation by other populations or data types. Almost all effects were exhibited similarly using
365  either stool or mucosal profiling, with a small number of exceptions showing significant
366 differentiation (e.g. Dehalobacterium). Novel disease-treatment response interactions were
367  observed (e.g. steroids on Enterobacteriaceae). Finally, the meta-analysis framework developed
368 for the study, MMUPHiIn, has been extensively evaluated and its performance for batch effect
369 removal, supervised meta-analysis of exposures and covariates, and unsupervised population
370  structure discovery validated on a variety of simulated microbial community types. It is extensible
371  to integration of microbial community taxonomic or functional profiles from other data types (e.g.

372  metagenomic sequencing) or environments.
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373  However, all microbial community meta-analyses should be approached with caution, since in
374  many cases unwanted sources of technical variation between studies (i.e. batch effects) are so

375 large as to potentially mask biological signals even after correction*®-"

(Supplemental Notes).
376  Reducing inter-study variation in microbial community profiles is challenging relative to other
377 'omics data types due to 1) the extreme heterogeneity of microbes within most communities
378  (exacerbating both technical and biological differences), and 2) feature zero-inflation arising from
379  both biological and technical reasons'%2. Notably, despite these challenges, MMUPHin was able
380 to meta-analyze amplicon profiles in this study both to associate microbial shifts with disease
381  outcome, to associate them with treatment-specific differences, and to identify a single pattern of
382  typical microbial variation within IBD. While previous efforts have developed IBD dysbiosis scores
383 by contrasting patients with control groups’®, this pattern of microbial variation was present

384  specifically within IBD patients (both CD and UC), and in agreement with supervised methods,

385 captured several classes of microbial functional responses in the gut (Supplemental Note).

386  The IBD gut microbiome particularly stands to benefit from meta-analysis, as have other multiply-
387 sampled conditions such as colorectal cancer***, in order to identify ecological and
388  microbiological changes during the disease that are reproducible across populations. We consider
389 this study based on 16S rRNA gene sequencing to be a proof of concept, able to achieve
390 unprecedented power due to the number of amplicon profiled samples available, but with greater
391 precision possible in future work using e.g. metagenomic and other ‘omics technologies. This also
392 enabled comparison of responses in the stool versus mucosal microbiomes, the latter of which
393  are not amenable to metagenomic profiling from biopsies; these were in overall good agreement,
394  but the few areas of significantly differential responses to inflammation are likely of particular
395 immunological interest. The large sample and population sizes also provide some confidence in
396 ruling out discrete, microbially-driven population subtypes as an explanation for CD and UCs’

397 clinical heterogeneity. Instead, the work identified a single consistent axis of gradient microbial
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398 change corresponding to increasing departures from “normal” microbiome configurations”°.

399 This pattern of consistent microbial dysbiosis can continue to be explored in further work on its
400 functional, immunological, and clinical consequences. Overall, this study represents one of the
401 firstlarge-scale, methodologically appropriate, targeted meta-analysis of the IBD microbiome, and
402 the corresponding methodology and its implementation are freely available for future meta-

403 analyses of human-associated and environmental microbial populations.

404 Methods

405 MMUPHin: a uniform statistical framework for meta-analysis of microbial community

406 studies

407 We developed MMUPHIn (Meta-analysis Methods with a Uniform Pipeline for Heterogeneity in
408 microbiome studies) as a framework for meta-analysis of microbial community studies using
409 taxonomic, functional, or other abundance profiles. It includes components for batch effect
410 adjustment, differential abundance testing, and unsupervised discrete and continuous population

411  structure discovery.

412 Batch adjustment

413  For microbial community batch correction, we extended the batch correction method developed
414  for gene expression data in ComBat'® with an additional component to allow for the zero inflated
415  nature of microbial abundance data. In our model, sample read countY was modelled with respect

416  to both batch variable and biologically relevant covariate(s) X:

417 Yl]p = exp{ﬁpXi]-' + O-p(yip + 6ip€ijp)} X Iijp


https://doi.org/10.1101/2020.08.31.261214
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.261214; this version posted August 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

418  Where i indicates batch/study, j indicates sample, and p indicates feature. y;,, and §;,, are batch-
419  specific location and scale parameters. g, is a feature-specific standardization factor. ,, are
420  covariate-specific coefficients, and ¢;;,, is an independent error term following a standard normal
421 distribution. I;;, is a binary (0, 1) zero-count indicator, to allow for zero inflation of features. As in

422  ComBat, y;;, and §;, are modelled with normal and inverse-gamma priors, respectively.

t15

423  Hyperparameters are estimated with empirical Bayes estimators as in ComBat'™. The posterior

*
15

424  means, y*_ and §*,

» p» along with standard frequentist estimates ,and &, are used to provide

425 batch-corrected count data:

~ Yiip — BpXii' — V" Gy
426 Y'”p = e.XP{ 0 pa/::]\ wer

+ BpXij'} X Lijp
w

427  Per-sample feature counts are then re-normalized to keep sample read depth unchanged post-
428  correction. In practice, the user provides sample microbial abundance table (Y), batch/study
429 information, and optionally any other covariates X that are potentially confounded with batch but
430 encode important biological information. MMUPHin outputs an adjusted profile Y that is corrected

431  for the effect of batches but retains the effects of X (if provided).

432 Meta-analysis differential abundance testing

433  For meta-analytical differential abundance testing, after batch correction, MMUPHin first performs
434  multivariate linear regression within individual studies using previously validated data
435 transformation and modelling combinations appropriate for microbial community profiles
436  (MaAsLin2%). This yields study-specific, per-feature differential abundance effects estimations
437 EL;, where i indicates study and p indicates feature. These are then aggregated into meta-
438 analysis effect size with fixed/random effects modelling as implemented in the metafor R

439  package*:
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—

440 Bip = Bp + €ip + €ip

441 B, is the overall differential abundance effect of feature p. €, is per-study measurement error,
442  and ey, is study-specific random effects term (not present in fixed-effect models). In practice, the
443  user provides a microbial community profile, study design (batch) information, the main exposure
444  variable of interest, and optional additional covariates. If any meta-analyzed studies include
445  repeated measures (e.g. longitudinal designs), then random covariates can also be provided and
446  will be modelled for such studies. MMUPHin then performs MaAsLin2 regression modelling within
447  each study and aggregates effect sizes of the exposure variable /Z; across studies using the
448  resulting random/fixed effects model. The estimated overall effect, B;, is reported as the overall

449  differential abundance effect for feature p.

450 Unsupervised discrete structure discovery

451  For unsupervised discrete (i.e. cluster) structure discovery of a single study, again after batch
452  correction, MMUPHiIn uses average prediction strength*', an established clustering strength
453  metric, to measure the existence of reproducible clusters among meta-analyzed datasets. Briefly,
454  for each individual dataset, the metric randomly and iteratively divides samples into “training” and
455  “validation” subsets. In each iteration, clustering is first performed on the training samples, across
456  arange of cluster numbers k, yielding (for a specific k) training sample clusters A4, Axz, ..., Akk-
457  Note that Ay, Akz, ..., Axx jointly forms a partition of the testing sample indices. The same
458 clustering analysis is then performed on the validation samples, and the resulting partition of
459 sample space provides classification membership potentially different from clustering

460 memberships Agq, Aga, ..., Axk- Prediction strength for kclusters is defined as
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461  ps(k)
1
462 = min ——— 2 I[{validation samples j and j' are classified to the same group according to training samg
1<Il<k Ng1 (nkl - 1)

JEJIEAR

463 i.e. the minimum (across validation clusters) proportion of same-cluster sample pairs also being
464 classified as the same group by training samples. ny; = |Ax;|, or the number of test samples in

465 the [th cluster.

466  Average prediction strength is the average of prediction strengths across randomization iterations.
467 Intuitively, it characterizes the degree of agreement between the clustering structures in randomly
468  partitioned validation and training subsets; if k is appropriately describing the true number of
469  discrete clusters in the dataset, then average prediction strength should be close to one (training

470 and validation samples agree most of the time).

471  We additionally generalized this metric to meta-analysis settings, where we aimed to quantify the
472  agreement of clustering structures between studies. In the meta-analytical setting, generalized

473  prediction strength for cluster number kin study iwith validation study i’ is

474 gps;i (k)

1

475 = min ——— 2 I{validation samples i'j and i'j" are classified to the same group according to study i]
1=tk Ny (Mg — 1) i
L

476  Where Ay;; indicates the [-th cluster membership in study i, when cluster number is specified as
477  k; ng; = |Agi|- The average generalized prediction in study i for cluster number k is then defined
478 as the average of gps;;, (k) across all i’ # i, i.e., all validation studies (instead of iterations of
479 randomized partitions). Similar to the single study prediction strength, it describes the

480 generalizability of clustering structure in study i in external validation studies.
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Unsupervised continuous structure discovery

We extended our previous work in cancer gene expression subtyping® to perform unsupervised
continuous structure discovery in microbial community profiles. Complementary to discrete cluster
discovery, the goal is to identify strong feature covariation signals (gradients) that are reproducible
across studies. This is carried out by performing principal component analysis individually in
microbiome studies and constructing a network of correlated PCA loading vectors, to identify
loadings that are consistently present across studies. In detail, given a collection of training
microbial abundance datasets, our method takes the following steps (visualized in Supplemental

Fig. 4):

1. For each dataset i, PCA is performed on normalized and arcsin square root-transformed
microbial abundance data. Given a user-specified threshold on variance explained, we
record its top PC loading vectors, wiy, wip, ..., w;;,, Where J; is the smallest number of top
loading vectors that jointly explain percentage of variability in the dataset past a
customizable threshold 0 < threshold, < 1 (default to 80%).

2. For two PC loadings from different datasets w;; and w;,;,, similarity is quantified with the

absolute value of cosine coefficient®®

|cos < w;j,wy,j, > |. This yields a network of PC
loading vectors associated by weighted edgesw;; and w;, ;,, retaining edges only if their
weight surpasses a customizable similarity threshold ( [cos < w;j,wyj, > | >
thresholdg, 0 < thresholds<1).

3. In the resulting network, we perform community detection® to identify densely connected
modules of PCs. Each module by definition consists of PCs from different datasets that
are similar to each other - whether or not they occur in the same order or with similar

percent variance explained - and which thu represent strong feature covariation signals

that are recurrent in studies.
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505 4. For a module k containing PC set M,, its consensus vector W, is calculated as the
506 average of sign-corrected loading vectors in M, i.e., W :=W. Note that the
507 average is taken not over the original loading vectors w;;, but rather their sign-corrected
508 versions w;,. Specifically, the signs of each w;; in M, are corrected so that all of the
509 loading vectors have positive cosine coefficients.

510 5. The module-wide consensus vectors W, represent strong, mutually independent, and
511 reproducible covariation signals across the microbial datasets; they are used to identify
512 continuously varying gradients in microbial abundance profiles that represent reproducible
513 population structures. Specifically, given a sample with normalized and transformed
514 microbial abundance measurements x, its continuous score for module k is defined as
515 x'Wy, as in regular PCA.

516 6. If additional studies are available, the reproducibility of each W,.can be further examined
517 by correlating W, with the top PC loadings in each such validation study. For each
518 additional study, W, is considered to be validated in that dataset if its absolute cosine
519 coefficient with at least one of the dataset’s top PCs surpasses the coefficient similarity
520 cutoff thresholdg; the number of top PCs to consider in the validation dataset loadings is
521 determined with the same cutoff threshold,,.

522  Simulation validation of MMUPHin

523  We performed extensive simulation studies (Fig. 2, Supplemental Fig. 5-8, Supplemental Table
524  2) to validate the performance of each component of MMUPHiIn. In all cases these employed
525 realistic microbial abundance profiles generated using SparseDOSSA
526  (http://huttenhower.sph.harvard.edu/sparsedossa). This is a model of microbial community
527  structure using a set of zero-inflated log-normal distributions fit to selected training data, in this

528 case drawn from the IBD gut microbiome®. Controlled microbial associations with simulated
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529  covariates can then (optionally) be spiked in. Note that although the assumed null distributions in
530 MMUPHin and SparseDOSSA are the same (zero-inflated log normal), the models of effects for
531 batch and biological variables are substantially different: MMUPHiIn assumes exponentiated

532 effects, while SparseDOSSA assumes re-standardized linear effects.

533  Specifically, SparseDOSSA models null microbial feature abundances using a zero-inflated log-

534  normal distribution:
535 log(Yiy) ~ N(up,0%,) X Bernoulli(m,)

536  This is the same initial distributional assumption as the MMUPHin batch correction model, when
537  there are no batch or covariates effects. However, for spiked-in associations with metadata (batch,
538  biological variables, etc.), SparseDOSSA uses a different model. Given a simulated, pre-spiking-

539 in feature count vector Y, with mean y,," and standard error g,” , as well as a metadata variable

540  vector X with mean u* and standard error ¢*, the post-spiked-in feature count is set to:

541 T = T 0 + ¢ x B 4 4 ¥))

542  where ¢ is a configurable spike-in strength parameter. By this definition, microbial features post-
543  spike-in have the same mean and approximately the same variance as before, the only difference
544  being the added association with the metadata variable(s) used. This is to ensure the counts of
545 the modified feature are not dominated by the values of the target covariate, but instead
546  distributed similarly to real data. The SparseDOSSA association model thus differs from
547  MMUPHIn’s model in two substantial ways: i) MMUPHIn’s associations are defined within the
548 exponentiated component and are thus better described as a multiplicative effect, whereas
549  SparseDOSSA’s effects are directly applied on untransformed data, and ii) SparseDOSSA

550 additionally ensures realistic data generation with the re-standardization procedure.
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551  Thus, the only component of the SparseDOSSA model that requires fitting to training data is the
552  aforementioned zero-inflated log-normal null distribution. In our analysis, this was always PRISM®,
553  while other parameters were specified across a wide range of combinations to simulate different
554  application scenarios. These include the effect sizes of the associated batch and biological
555  variables (i.e. the ¢ parameter), number of batches, sample sizes, as well as dimensionality (both
556  the total number of features and the percentage of features randomized to be associated with
557  batch/biological variables). For each combination of simulation parameters, we performed 20
558 random replications (i.e. running simulation/evaluation with the same parameters but different

559 random seeds). Supplemental Table 2 presents the full list of parameter combinations.

560 Evaluating batch adjustment

561 For evaluation of MMUPHiIn’s batch effect adjustment component, we simulated metadata that
562 included batch (with varying total batch numbers 2, 4, 6, 8), a binary positive control (simulated
563  “biological” covariate), continuous positive control (“biological”), and negative control (binary, and
564  guaranteed to be non-associated with microbial features) variables. Microbial abundance data
565 was simulated to be associated with the batch and the two positive control variables at varying
566  effect sizes (1, 2, 5, 10 for batch variable and fixed at 10 for positive control variables), but not
567  with the negative control variable. We additionally varied the number of samples per batch (20 to
568 simulate multiple-batches in a single study scenario, 100 to simulate meta-analysis with moderate
569  sized studies and 500 to simulate large meta-analysis), total number of microbial features (n=200
570 and 1000), as well as the percentage of features associated with metadata (5%, 10%, and 20%)

571 (Supplemental Table 2).

572  Performance of batch correction methods was quantified by omnibus associations (PERMANOVA
573 R2)between the simulated microbial abundance data with the batch and positive control variables,

574  before and after batch correction. For ComBat'® and our method, batch correction was performed
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575 with both positive control variables as well as the negative control variable as covariates.
576  MMUPHiIn successfully reduced the confounding batch effect, but retained the effect of positive
577  control variables, and did not inflate the effect of negative control variable (Fig. 2a, Supplemental

578  Fig. 5).

579 Evaluating meta-analytic differential abundance testing

580  We evaluated false positive rates (FPR) in particular for meta-analytic feature association testing,
581  specifically the null case in which there are no associations between microbial features and
582 covariates, but false associations can arise in the presence of batch effects with unbalanced
583  distribution of covariate values across studies (Fig. 2b). For simulation, we generated a binary
584  covariate unevenly distributed between two “studies” at varying levels of disparity (Supplemental
585 Table 2). Microbial abundance data was simulated to be associated only with the two studies and
586  not with the covariate (i.e. study confounded null data), with varying strengths of batch effect (from
587 0 to 10). The number of samples per batch varied between 100 and 500 to, again, simulate
588  moderate- and large-sized meta-analysis. Lastly, we varied total number of microbial features and

589 the percentage of features associated with metadata as above.

590 FPRs were calculated as the percentage of simulated microbial features with nominal p-values <
591  0.05 for associations with the exposure variable. Four data normalization and analysis regimes
592  were evaluated (Fig. 2c, Supplemental Fig. 6): a) naive MaAsLin2 model on the study effect
593 confounded null data (without explicitly modelling the batches), b) the quantile normalization
594  procedure, paired with two-tailed Wilcoxon tests, as proposed in ¢, c) BDMMA as proposed in *°,
595  with the default 1,0000 total MCMC sampling and 5,000 burn-in, d) the complete MMUPHin meta-
596  analysis model for the batch corrected data as described above. Note that due to its computational
597  cost we were only able to evaluate the Dirichlet-multinomial regression model on a subset of

598  parameter combinations, namely number of samples per batch = 100, number of features = 200,
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599  and percent of associated microbes = 5%. These parameters roughly agree with those used in

600 the simulation analysis in the method’s original publication®.

601  We also evaluated the computational costs of quantile normalization, BDMMA, and MMUPHin
602 (Supplemental Fig. 6). For this, the same subset of 20 replications (batch effect 0, exposure
603 imbalance 0, number of samples per batch 100, and number of features 200) were ran through
604 the three methods under the same computation environment (single core Intel(R) Xeon(R) CPU

605 E5-2680 v2 @ 2.80GHz).

606 Evaluating unsupervised discrete structure discovery

607 To simulate microbial abundance data with known discrete clustering structure, we again used
608 the simulation model above, with microbial feature associations added both with a discrete “batch”
609 variable and a discrete clustering variable, at varying number of batches (2, 4, 6, 8), number of
610 clusters (3, 4, 5, 6), as well as effect size of association (0 to 10 for batch, fixed at 10 for cluster).
611 For the evaluation of MMUPHIn’s unsupervised methods (both here and during continuous
612  population structure discovery below), we fixed the number of samples per batch at 500, the
613  number of total features at 1,000, and the percent of associated features at 20%. These were
614  guided by the fact that the underlying unsupervised methods (clustering, PCA) require larger
615 sample sizes for good performance even without batch confounding, and are generally only

616  practical with higher feature dimensions (Supplemental Table 2).

617  Performance of clustering was evaluated as the percentage of replicates in which the right number
618  of synthetically defined underlying clusters was identified using prediction strength, across
619 technical replicates for a fixed combination of simulation parameters. That is, the number of
620 clusters within a simulation was identified as that which maximized prediction strength. This was
621 compared to the “truth” (i.e. the known simulation parameter) and counted as a success only if

622 the two agreed. The percentage of success for a given parameter combination across the 20
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623 random replications was used as the evaluation metric for model performance. We compared the
624  performance of clustering before and after MMUPHin batch correction (Fig. 2e, Supplemental
625 Table 7). Note that batch correction is modelled only using the batch variable and specifically not
626 including the cluster variable as a covariate in the batch correction model above, as the underlying

627  cluster structure is unknown in non-synthetic unsupervised analyses settings.

628 Evaluating unsupervised continuous structure discovery

629 To simulate microbial abundance data with known continuously variable population structure, we
630 spiked in feature associations with both a simulated batch covariate (4, 6, 8) and a continuously
631  varying gradient (uniformly distributed between -1 and 1), at varying number of batches and effect
632  size of both associations (as above). The number of samples per batch, total number of microbial
633 features, and the percentage of features associated were fixed at the same values as above

634 (Supplemental Table 2).

635 Performance of continuous structure discovery analysis was evaluated as the Spearman
636  correlation between the known simulated gradient score and the strongest continuously valued
637  population structure as identified by MMUPHin’s continuous structure discovery method (above).
638 We again compared the performance of continuous score discovery on the batch confounded and
639  batch corrected data (Fig. 2g, Supplemental Fig. 8). Note that, as above, batch correction is
640 again modelled only using the batch variable and does not have any access to the synthetic
641  continuous gradient, as any underlying continuous population structure is unknown during

642  unsupervised analyses settings.
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643  Collection and uniform processing of ten IBD microbiome studies employing 16S rRNA

644 gene sequencing

645 Study inclusion and raw sequence data

646  We curated 10 published 16S rRNA gene sequencing (abbreviated 16S) gut microbiome studies
647  of IBD for meta-analysis (Table 1, Supplemental Table 1). Demultiplexed raw sequences were
648  either downloaded from EBI (Jansson-Lamendella and Herfarth) or available locally as previously
649 generated (other eight studies). Metadata were obtained either directly from the sequence
650 repository/manuscript (Herfarth, Jasson-Lamendella, HMP2, MucosallBD, PROTECT, RISK), or
651  from collaborators (BIDMC-FMT, CS-PRISM, LSS-PRISM, Pouchitis). This resulted in a total of

652 5,151 samples and 2,179 subjects available prior to processing and quality control.

653 Metadata curation

654 We manually curated subject- and sample-specific metadata across studies to ensure

655 consistency. Variables collected and curated include:

656 e Disease (CD, UC, control), universally available.

657 e Type of controls (non-IBD, healthy). Control information was available directly for CS-
658 PRISM, Jansson-Lamendella, and Pouchitis, inferred from study design described in
659 manuscript for Herfarth, HMP2, MucosallBD, and RISK (all non-IBD controls), and not
660 applicable for BIDMC-FMT, LSS-PRISM, and PROTECT (only has IBD subjects).

661 e Sample type (biopsy, stool), universally available.

662 e Body site of biopsy sample collection (ileum, colon, rectum), with more detailed
663 classifications recorded separately in case of need. Mappings for the relevant datasets

664 are:
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665 o CS-PRISM: terminal ileum, neo-ileum, pouch are aggregated as ileum; cecum,
666 ascending/left-sided colon, transverse colon, descending/right-sided colon,
667 sigmoid colon were aggregated as colon; rectum classification was kept
668 unchanged.

669 o HMP2: ileum classification kept unchanged; cecum, ascending/right-sided colon,
670 transverse colon, descending/left-sided colon, and sigmoid colon were aggregated
671 as colon.

672 o MucosallBD: all terminal ileum samples, aggregated to ileum.

673 o Pouchitis: terminal ileum, pouch, pre-pouch ileum aggregated as ileum; sigmoid
674 colon aggregated to colon.

675 o PROTECT: all rectum samples, classification kept unchanged.

676 o RISK: terminal ileum was aggregated to ileum; rectum kept unchanged.

677 e Montreal classifications:

678 o Location for CDs (L1, L2, L3, and possible combinations), available for BIDMC-
679 FMT, CS-PRISM, Herfarth, Jansson-Lamendella, LSS-PRISM, and Pouchitis.
680 o Behavior for CDs (B1, B2, and B3), available for CS-PRISM, Herfath, Jansson-
681 Lamendella, LSS-PRISM, Pouchitis, and RISK.

682 o Extent for UCs (E1, E2, and E3), available for CS-PRISM, Jansson-Lamendella,
683 LSS-PRISM, Pouchitis, and PROTECT.

684 e Age at sample collection (in years), available for BIDMC-FMT, CS-PRISM, Herfarth,
685 HMP2, LSS-PRISM, MucosallBD, Pouchitis, PROTECT, RISK.

686 e Age at diagnosis (in years). Directly available for CS-PRISM, HMP2, LSS-PRISM, and
687 Pouchitis, inferred as baseline age for PROTECT and RISK as these were new-onset
688 cohorts.

689 e Race (White, African American, Asian / Pacific Islander, Native American, more than one

690 race, others). Directly available for CS-PRISM, Herfarth, HMP2, PROTECT, and RISK,
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inferred from manuscript cohort description for Jansson-Lamendella (all Caucasian
cohort).

e Gender (male/female). Available for BIDMC-FMT, CS-PRISM, Herfarth, HMP2, Jansson-
Lamendella, LSS-PRISM, MucosallBD, Pouchitis, PROTECT,

e Treatment variables, including antibiotics, immunosuppressants, steroids, and 5-ASA.
These variables were encoded as yes/no to indicate, approximately, currently receiving
them at the time of sampling. Additional information such as specific medication or delivery
method was recorded separately if available in case of need. We note the potentially
confounding difference in studies’ definitions of treatment: for Pouchitis and PROTECT
authors defined antibiotics as receiving the treatment within the past month (30 days for
Pouchitis, 27 days for PROTECT), whereas for CS-PRISM, HMP2, LSS-PRISM, and RISK
such determination was not possible (antibiotics “yes” was defined as “currently taking”).
Likewise, we had no additional information to determine the time extent for the other three
treatments, beyond that according to metadata/publication, patients were “currently taking”
the treatment at sample collection.

For a comprehensive list of curation mapping schema, please refer to our metadata curation

repository: https://github.com/biobakery/ibd _meta analysis.

16S amplicon sequence bioinformatics and taxonomic profiling

Sequences were processed, per-cohort, with the published, standardized bioBakery workflow>®
using the UPARSE protocol® (version v9.0.2132-64bit). For all studies, demultiplexed sequences
were truncated at 200bp max length and filtered by maximum expected error of one®. Operational
taxonomic units (OTUs) were clustered at 97% identity and aligned using USEARCH with 97%
identity to the Greengenes database 97% reference OTUs (version 13.8)%° for taxonomy
assignment. The resulting Greengenes identifiers for OTUs were used as basis for matching

features (taxa) among cohorts.
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716  Quality control

717  Across samples, a median of 81.51% reads / sample passed quality control filtering and were
718  successfully assigned to OTUs with Greengenes identifiers (Supplemental Fig. 1). These 8,921
719  raw OTUs aggregated to a total of 1,122 genera prior to quality control. We retained taxa that
720  exceeded 5e-5 relative abundance with at least 10% prevalent in at least one study; this criterion
721 generally removes spurious OTU assignments while retaining rare organisms if confidently
722  present in at least one study. Lastly, we also removed low read depth samples with less than
723 3,000 total sequences, which retained 78.34%-100% samples per cohorts (Supplemental Table
724 1). The final resulting taxonomic profile, used for all further analysis, aggregated into 249 total
725  genera spanning 4,789 samples (OTUs unclassified under a particular taxonomy level were
726  aggregated as “unclassified” feature under that taxon, e.g. “Enterbacteriaceae unclassified”

727  accumulates all OTUs’ abundances under the family that could not be classified at the genus level.

728 Data availability

729  Quality controlled (truncated and filtered) sequences, Greengenes mapped OTU count profiles,
730 and curated sample metadata are available at the Human Microbial Bioactives Resource Portal

731 (http://portal.microbiome-bioactives.org).

732  Applying MMUPHiIn to IBD gut microbiome meta-analysis

733  For the resulting collection of microbiome studies, batch and study effects was performed using
734  MMUPHiIn on both the genus level feature abundance profiles. For either taxonomic rank, batch
735 (i.e., sequencing run) effect correction was first performed within individual studies (when
736  batch/plate information was available, applicable to BIDMC-FMT, CS-PRISM, LSS-PRISM,
737  MucosallBD, and RISK). Microbial abundance profiles across all studies were then jointly

738  corrected for study effects, while modelling disease status (IBD or control), disease (CD or UC),
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739 and sample type (biopsy or stool) as covariates. Reduction of batch and study effects was

740  evaluated by PERMANOVA R2 (Fig. 3a).

741  Association analyses

742 Omnibus testing of microbial composition associations

743  We used PERMANOVA tests (2,000 permutations) as implemented in the R package vegan®
744  using Bray-Curtis dissimilarities for all omnibus association tests of overall microbial community
745  structure with covariates (Fig. 3a). Where appropriate, R2s were calculated conditioning on the
746  necessary covariates; specifically, CD/UC Montreal classifications were conditional on CD/UC
747  samples respectively, treatment was conditional on IBD status, biopsy location was conditional
748  onasample being a biopsy, and all covariates were conditional on being non-missing. Otherwise,
749  variables were tested marginally (that is, each as the sole variable in the model). Importantly, to
750  account for repeated measures within subjects for longitudinal studies, we adopted the blocked
751 permutation strategy as in °, where per-sample measurements (sample type, biopsy location,
752  treatment) were permuted within subjects, and per-subject measurements (disease,
753  demographics) were permuted along with subjects (but within cohorts, relevant for the all-cohorts
754  evaluation). For a full list of the model and permutation strategies that this resulted in for our
755  analysis, please refer to Supplemental Table 3. Finally, per-variable p-values were adjusted with

756  Benjamini-Hochberg false discovery rate control on a per-study basis.

757 Per-feature meta-analysis differential abundance testing

758  To identify microbial features individually significantly associated with one or more covariates, we
759  applied MMUPHiIn's differential abundance testing model as described above. Cohorts were first
760  stratified by sample type (biopsy or stool) and, where appropriate, diseases (CD or UC) prior to

761 model fitting. Arcsin square root-transformed genus level taxon abundances were tested for
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762  covariate associations in individual cohort strata with multivariate linear modelling (linear random
763  intercept model adopted for longitudinal studies). Covariates used for adjustment include age,
764  gender, and race for disease variables, and additionally disease status for treatment variables.
765  Effect sizes across cohort strata were aggregated with a random effects model with restricted
766  maximum likelihood estimation®*. P-values were FDR adjusted across features for each variable.
767  For the full list of models adopted as well as cohort stratification strategy, please refer to
768  Supplemental Table 3. Fig. 3b visualizes the aggregated meta-analysis effects; for individual

769  study results refer to Supplemental Table 4.

770 Testing for phenotypic severity within CD and UC patients

771  Meta-analytical testing of features associated with CD behavior and UC extent classifications
772  were performed with similar models (Supplemental Table 3). Specifically, within each study’s

773  CD patients, the tests for contrasts B2 versus B1 and B3 versus B1 are performed by

774 Relative abundance ~ 3, + ,I{subject is B2} 4+ additional covariates (subsetted to B1, B2 CDs)

775 Relative abundance ~ 3, + ,I{subject is B3} + additional covariates (subsetted to B1, B3 CDs)

776  The two B, coefficients, once aggregated with meta-analysis, were reported as the effect sizes
777  shown in Fig. 4a, along with their FDR corrected g-values (adjusted across features for each

778  test).

779 Relative abundance ~ S, + f1I{subject is B2 or B3} + f,I{subject is B3} + additional covariates

780 B, in this model corresponds to the effect of B3 in addition to the overall contrasts between B23
781  versus B1. The meta-analysis aggregated p-values of these effects were reported as the
782  differentiation between the most severe and “medium” severity phenotypes (vertical bars
783 indicating significance in Fig. 4a). Note that FDR adjustment of this effect was performed across

784  the subset of features with at least either B2 versus B1 or B3 versus B1 effect significant (i.e., the
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785  subset of features visualized in Fig. 4a). Equivalent models were adopted for contrasts between
786  extent categories of UC patients. Individual study results for the aggregated effects in Fig. 4a are

787  in Supplemental Table 5.

788 Interaction effects testing

789  To test for interaction effects with sample type and diseases, we fit meta-analysis moderator

790 models® on the per cohort strata effects:

—

791 By = Bop + Pipl{cohort strata i is biopsy} + €;, + €;,

—

792 By = Bop + Bipl{cohort strataiis CD} + €;, + e

793  The moderator effects f;,, correspond to the interaction effect between the exposure under

794  evaluation (disease, treatment, etc.) with the moderator variable. Fig. 4b visualizes the two
795  example features, Dehalobacterium and Enterobacteriacea; al significant interactions as well as

796 individual study effects are in Supplemental Table 6.

797  Population structure analyses

798 Discrete structure discovery

799  We performed discrete subtype discovery (i.e. “enterotyping”®") in IBD, CD, and UC populations
800 across studies (longitudinal studies subsetted to baseline samples), using MMUPHin’s discrete
801  structure discovery component. Only studies with at least 33 samples were considered for
802 clustering analysis, as this was the sample size in the original enterotype paper®. Specifically,
803 clustering was performed on Bray-Curtis dissimilarity by the partition-around-medoid method as
804 implemented in R package cluster; the same method was adopted in previous enterotyping efforts
805 including the original enterotype paper?®*°. Clustering was evaluated with prediction strength and

806 validated externally with MMUPHin’s generalized prediction strength as described above. Across
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807 studies, we found no evidence to support a particular number of clusters within IBD, CD, or UC
808  populations (Fig. 5a, Supplemental Fig. 9), suggesting that the IBD microbiome does not have

809 discrete clusters.

810  We additionally extended our clustering evaluation analysis to other dissimilarity metrics (Jaccard,
811 root Jensen-Shannon divergence) and clustering strength measurements (Calinski-Harabasz
812  index, average silhouette width), which were also explored in previous efforts*’, Importantly, the
813  original enterotype paper adopted root Jensen-Shannon divergence and Calinski-Harabasz index
814  for cluster discovery. Across combinations of these additional dissimilarities and clustering

815  strength metrics, we also found no evidence to support discrete clusters (Supplemental Fig. 9).

816 Continuous structure discovery

817  Continuous structure discovery was performed with MMUPHin’s corresponding component. The
818  four largest studies (CS-PRISM, Pouchitis, PROTECT, RISK) were subsetted to baseline samples
819  (only relevant for PROTECT), stratified by CD/UC and biopsy/stool sample type, and used as the
820 training sets for MMUPHIn. The minimum variance explained threshold (threshold,) was set to
821  default (80%), but we varied the PC similarity (evaluated by absolute cosine coefficient)
822  cutoffthreshold; between 0.5 and 0.8 to assess the sensitivity of the two identified PC clusters in
823  Fig. 5b (corresponding to threshold; = 0.65). As we show in Supplemental Fig. 11, with a small
824  thresholdg(0.5) PC networks become denser, with the two PC clusters in Fig. 4b forming key
825 components of two larger clusters; when threshold; is large (0.8) the network is sparser, with
826  only the most highly similar nodes of the two clusters forming smaller communities. We thus
827  concluded that the two identified clusters in Fig. 5b were not sensitive to the cosine coefficient

828 threshold, as they were recurrently identified in both smaller and larger cutoff scenarios.
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829  Continuous structure validation

830 We validated the consistency of the two clusters’ corresponding continuous scores in all IBD
831  cohorts, non-IBD and healthy control samples, as well as a randomly permuted mock study (as a
832  negative control). The reproducibility of each continuous score within a study was defined as the
833 maximum absolute cosine coefficient between the score’s consensus loading (as provided by
834 MMUPHin) and the top three principal component loadings discovered independently within that
835  study. Note that the number of top principal components considered here was set to a fixed value
836 (three) instead of based on a percent variance cutoff as in the MMUPHin continuous structure
837  discovery stage. This is because in the two identified clusters in Fig. 5¢, the latest included node
838 was PC3. The randomly permuted study consisted of 473 samples (median validation data sets
839 sample size) randomly selected from the entire meta-analysis collection, but each sample’s
840  microbial abundance was independently permuted across features. This was to simulate a

841 “negative control” dataset where there should be no continuous population structures.

842  As we show in Supplemental Fig. 12, the dysbiosis score was well validated across studies,
843  except for healthy control samples and the negative control dataset. The Firmicutes-versus-
844  Bacteroidetes trade-off score, on the other hand, was reasonably well reproduced in all studies
845 and particularly well-established in healthy samples, but, again, was not significantly detected in

846  the negative control dataset.

847 Continuous score assignment

848  Assignment of continuous scores was straightforward given the two consensus loading vectors
849  provided by MMUPHin. Within each study, arcsin square root-transformed relative abundances
850 were centered per-feature, the transformed abundance matrix was then multiplied by each
851 consensus loading via dot product to generate per-sample continuous scores. These scores were

852  used for visualization as in Fig. 4d and Supplemental Fig. 10, as well as for testing the difference
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between CD, UC, non-IBD, and healthy control populations as in Supplemental Fig. 13 We
provide the two consensus loadings in Supplemental Table 7; interested researchers can follow

these steps to assign the two continuous scores in other datasets.
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