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Abstract

Whereas extracellular vesicle (EV) eesch has become mononplace in different
biomedical fields, this field of research is siillits infancy in mycology. Here we provide a
robust set of data regarding the structural andpositional aspects of EVs isolated from the
fungal pathogenic speci€¥yptococcus neoformans, C. deneoformans and C. deuter ogattii.
Using cutting-edge methodological approaches incfydryogenic electron microscopy and
cryogenic electron tomography, proteomics, and feytometry, we revisited cryptococcal
EV features and suggest a new EV structural madekhich the vesicular lipid bilayer is
covered by mannoprotein-based fibrillar decoratlegring the capsule polysaccharide as its
outer layer. About 10% of the EV population is devof fibrillar decoration, adding another
aspect to EV diversity. By analyzing EV protein g@arfrom the three species, we
characterized the typica&ryptococcus EV proteome. It contains several membrane-bound
protein families, including some Tsh proteins begra SUR7/Pall motif. The presence of
known protective antigens on the surfaceCofptococcus EVs, resembling the morphology
of encapsulated virus structures, suggested theiengal as a vaccine. Indeed, mice
immunized with EVs obtained from an acapsularneoformans mutant strain rendered a
strong antibody response in mice and significarglplonged their survival uporC.
neoformans infection.

Keywords: Cryptococcus, fungal infections, extracellular vesicles, mannogires, vaccine,
Cryo-EM
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1. Introduction

All living organisms release lipid bilayer-delimiteparticles defined as extracellular
vesicles (EVs) (Deatherage and Cookson 2012, WiandrThéry 2019). EV size ranges from
20 nm to close to one micrometer in diameter. Immalian cells, two major classes of EVs
have been defined, microvesicles and exosomesydisgato their size and cellular origin
(Meldolesi 2018, van Niel et al. 2018). In thesgamisms, a large body of literature describes
how EVs participate in intercellular signaling with and in organism-to-organism
communication, including carcinogenesis and ho#itgmen interactions (Xu et al. 2018,
Shopova et al. 2020). In fungi, the first report fahgal EVs was published in 2007
(Rodrigues et al. 2007), and, since then, thesterce has been reported in many species of
pathogenic and nonpathogenic fungi (Rizzo et €2020

By analogy with mammalian EVs, it has been hypageesthat fungal EVs could also
participate in many biological processes (Rodrigaad Casadevall 2018). Indeed, some
reports indicate their relevance in diverse medrasirelated to fungal pathophysiology, such
as antifungal resistance and biofilm formation (ecat al. 2018, Zarnowski et al. 2018),
transfer of virulence-associated molecules and matidn of host cells (Oliveira et al. 2010,
Vargas et al. 2015, Rizzo et al. 2017, Bielskal.e2@l8, Souza et al. 2019, Hai et al. 2020),
cell wall remodeling and biogenesis (Zhao et all®0Rizzo et al. 2020), among others
(Bielska and May 2019, Rizzo et al. 2020). Nevdett®e the molecular mechanisms
implicated in these exchanges of information, a#i a® the genetics regulating fungal EV
biogenesis and release, remain elusive.

As with their mammalian, bacterial and plant coymaets, fungal EVs have been
shown to contain proteins, pigments, nucleic acmislysaccharides, lipids, among other
molecules (Eisenman et al. 2009, Vallejo et al.2@a Silva et al. 2015, Rodrigues et al.
2015, Joffe et al. 2016, Rayner et al. 2017, Resl.e2021). Besides the claudin-like Sur7
family proteins, recently suggested as EV proteamkars inCandida albicans (Dawson et al.
2020), no other fungal EV specific molecular markas been reported. Indeed, kgorious
and inefficient EV isolation protocols that haveebeised until recently have strongly limited
the knowledge on their composition. Additional Hesd regarding purification methods
potentially affect an accurate vesicular composélocharacterization (Théry et al. 2018),
including potential carryover contaminants suchpestein aggregates (Chiou et al. 2018).
Regarding EV morphological diversity, previous stisdhave reported the heterogeneity of
fungal EV size, as recently reviewed (Bielska andyM2019). However, single particle

analyzers such as the widely used NanoparticleKingcAnalysis (NTA) and most common
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flow cytometers cannot reliably evaluate partidesaller than 100 nm in diameter (Maas et
al. 2015, Théry et al. 2018, Chiang and Chen 20hle et al. 2020). Overall, although a
considerable number of fungal EV-related studiegehaeen published in recent years, our
knowledge of fungal EV structure and compositiomaes limited, which prevents further

robust analysis of their functions.

Seven species of pathoger@cyptococcus have been describdtiagen et al. 2015).
Whereas species belonging to theeformans clade (C. neoformans and C. deneofor mans)
typically affect immunocompromised patients, spetielonging to theattii clade C. gattii,

C. deuterogattii, C. tetragattii, C. decagattii, and C. bacillisporus) are often primary
pathogens and can cause aggressive pulmonaryiamecas well as meningoencephalitis
(Kwon-Chung et al. 2014, Rajasingham et al. 20&rpdn et al. 2019C. neoformans has
historically been one of the most studied fungiareing EV biology (Rodrigues et al. 2007,
Bielska and May 2019, Rizzo et al. 2020). Howetlez, only structural analyses of EVs from
this organism are now very outdated and technalogised have shown tremendous
improvements since then (Emelyanov et al. 2020 |&ebal. 2020).

To date,Cryptococcus EV proteomic approaches have identified 92 and @#0geins,
with very poor overlap and no evaluation of thdduadance or enrichment (Rodrigues et al.
2008, Wolf et al. 2014). Finally, although the @mt model of fungal EV structure contains
proteins located on the vesicular surface (by a@yalwith the mammalian EV structures
(Emelyanov et al. 2020, Noble et al. 2020)), maxpeeimental evidence is necessary to
identify these putative membrane-associated mascudince many immunogenic proteins
are often found to be associated with EVs, theociree potential has been explored mostly
for bacterial and parasitic infections (Coakleyagt 2017, Wang et al. 2018), and more
recently also for fungal infections (Colombo et2019, Vargas et al. 2020).

In the present study, we used the recently destniretocol (Reis et al. 2019) to
obtain EV-enriched samples fro@ryptococcus, together with cutting edge methodological
approaches to revis@ryptococcus EV structure, cargo, and their biological funcioiere
we report a detailed analysis of three speci@s ngoformans, C. neoformans and C.
deuterogattii) for which both a good genome annotation and RN4-8ata were available
(Janbon et al. 2014, Gonzalez-Hilarion et al. 2@®hs Ferrareze et al. 2021). We produced
a robust set of data containing cryo-electron nsicopy (cryo-EM) and cryo-electron
tomography (cryo-ET) proteomics, and nanoscale figtometry analysis, suggesting a new

EV structural model, in addition to a list of crgpbccal EV protein markers. Our results led
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us to further evaluate the EV biological roles inrine models, emphasizing their potential

use as an anti-cryptococcosis vaccine.

2. Material and Methods

Strainsand media

The wild type strains used in the study w€reneoformans strain KN9%;, C. deneofor mans
strain JEC21C. deuterogattii strain R265C. albicans strain SC5314, anfl cerevisiae strain
S288C The C. neoformans strain NE367 NMIATa cap594::NAT) has been previously
described (Moyrand et al. 2007)he strainsMATa vepld::NAT (CNAG_03223),MATa
hoc34::NAT (CNAG_00158), MATa alg34::NAT (CNAG_05142), MATa ktr34::NAT
(CNAG_03832) have been constructed in the Hitenidadlab (UCSF, USA) and obtained
from the Fungal Genetic Stock Center. To constrtiie strains NE1281 MATa
mp884::NEO) and NE1469 NIATa vepla::NAT mp884::NEO), we replaced the entire
CNAG_00776 KMP88) CDS by the NEO marker in the strains KN9%nd MATa
veplAa::NAT, respectively. We here followed the previouslyaliged CRISPR CAS9 method
(Fan and Lin 2018). The plasmid pPZP-NEO1 usedrtplify the NEO selective marker was
kindly provided by Dr. Joseph Heitman (Duke Univg)s The deletion cassettes was
constructed using a strategy previously applietlléorospora crassa (Collopy et al. 2010).
The transformants were then screened for homologadagration, as previously described
(Moyrand et al. 2007). Two representatives indepatig obtained mutant strains were
stocked at -80°C. All primer sequences used areiged in Table S1. All strains were taken
from the G. Janbon laboratory collection at -80p{ated on yeast extract-peptone-dextrose
(YPD) and incubated at 30°C for 48h before eacleexpent.

EV isolation, labelling and proteinase K treatment

EV purification was based on the recently publispeatocol (Reis et al. 2019) with
some modifications. One loop of cells was inocwateto 10 mL of liquid YPD and
incubated at 30°C for 24h with shaking (150 rpmgli€were washed twice with 10 ml of
sterile water, counted and diluted to a densitg.6fx 10 cells/mL in water. Aliquots of 300
pL of the cellular suspension were spread ontohgyiat dextrose (SD) solid medium plates
and incubated for 24 h at 30°C to reach cell camte. The cells were recovered from each

plate with a 10 pL inoculation loop and transfertedan ultracentrifugation tube containing
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159 10 mL 0.22 pm-filter sterile of 0.01 M PBS. Celler® homogenized and collected by
160  centrifugation at 5,000 x g for 15 min atl@. Supernatants were collected and centrifuged
161 again at 15,000 x g for 15 min af!€ to eliminate cellular debris. The resting suptmts

162  were filtered through 0.45um syringe filters antifadentrifuged at 100,000 x g for 1h at 4°C
163  (SW41 Ti swinging-bucket rotor, Beckman CoulterheTsupernatant was discarded and the
164 pellet suspended in 0.22 pum-pore filtered or 0.02-pore filtered (for Flow Cytometry
165 analysis) PBS for immediately use or stored atG8fast further experiments. The amount of
166  total sterol in the EV samples was measured byAtimplex™ Red Cholesterol Assay Kit
167  (ThermoFisher, A12216) and adjusted for the subsatoexperiments.

168 EVs were labelled either with the Concanavalin Aor{8) - Alexa Fluor™ 488
169  conjugated, or with the Alexa 488 labelled anti-GXiMnoclonal antibody 18B7 (Casadevall
170 et al. 1992), a kind gift of Oscar Zaragoza. Then&acstock solution (5mg/mL) was
171 previously centrifuged at 13.000 x rpm for 2 mim,arder to eliminate possible aggregates,
172 and diluted to 500 pg/mL in filtered PBS. In 1.5 ®ppendorf tubes, 5 pL of ConA (500
173  pg/mL), together with 5 uL EV suspension were auld tfinal volume of 100 uL filtered
174 PBS. The tubes were incubated for 1 h at 30°C, madéation and protected from light.
175  After incubation, 10 mL of 0.02 um-pore filtered $Bvere added to the EV suspension and
176  then submitted to ultracentrifugation for 1 h a@ WO x g at 4°C. The supernatant was again
177  discarded and pellets suspended in 300 pL of Ompare filtered before being transferred
178 to BD Trucount™ Tubes (BD Biosciences) and procdeeFlow Cytometry analysis. A
179  similar protocol was applied for the EV labellingthwthe Alexa 488 labelled anti-GXM
180  monoclonal antibody 18B7, which was diluted 20 srbefore adding to EV suspension.

181 EV proteinase K treatment was performed followirtge tpreviously described
182  protocol (Yang et al. 2021) with some modificatioBsiefly, proteinase K was added to the
183  EV suspension (0.17 pg of sterol) to a final com@ion of 2 mg/mL in 0.02 pm-pore
184 filtered PBS. After proteolysis for 1h at 55°C undagitation (300 rpm), the enzymatic
185  reaction was stopped by the proteinase inhibitoSPNIL mM) for 20 min at RT. Proteinase
186 K treated EVs were finally submitted to ConA labwjl ultracentrifuge washed as described
187  before and analyzed by flow cytometry. Control abods included untreated EVs and EVs
188  incubated only with PMSF.

189

190  Flow cytometry

191 EVs were analyzed and sorted on a cell sorter M@¥dtrios (Beckman Coulter)

192  equipped with an EQ module specifically developedetect nanoparticles and with 488 nm

6
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and 561 nm lasers at 200 mW. The sorting was chotg with a 7Qum nozzle at a pressure
of 60 PSI and a differential pressure with the dangb 0.3-0.4 PSI. The sheath liquid NaCl
0.9% (REVOL, France) was filtered on a 0.4 filter. The analyses were on the SSC
parameter of laser 561, with threshold set to @012 order to have maximum 300 eps. An
M2 mask was added in front of the FSC. All SSC &®C parameters are viewed in
logarithmic mode. The calibration of the machineswarried out using Megamix-Plus SSC
beads from BioCytex. We used the Trucount™ Tubewtmalize the EV counting for ConA
labelling, and the fluorescence of the Mabl8B7 aheka 488 conjugated, and beads
Trucount™ was measured on parameter 488-513/26.tr@@orronditions including
ultracentrifuge washed PBS, previously incubateith WionA were used to evaluate the PBS
associated noise and to normalize labelling peacmst Flow Cytometry data were analyzed
by FlowJo V10 Software.

Nanoparticletracking analysis (NTA)

Quantitative determination of EV size distributias performed by NTA, in addition
to microscopic methods. Protocols that were regepstablished for the analysis of
cryptococcal EVs were used (Reis et al. 2019).fBrialtracentrifugated pellets were 20- to
50-fold diluted in filtered PBS and measured wittie optimal dilution range of 9 x 1@o
2.9 x 10 particles/mL on an LM10 nanoparticle analysis systcoupled with a 488-nm laser
and equipped with an SCMOS camera and a syringep fivialvern Panalytical, Malvern,
United Kingdom). The data were acquired and andlymeng the NTA 3.0 software (Malvern

Panalytical).

Cryo-EM and cryo-ET

EVs (4uL) were spotted on glow-discharged lacedy1(S166-3, EMS) and cryo-
fixed by plunge freezing at -180°C in liquid ethamging a Leica EMGP (Leica, Austria).
Grids were observed either with Tecnai F20, orTikaios (Thermo Fisher Scientific). The
Tecnai F20 (Thermo Fisher Scientific) was operatmd@00kV and images were acquired
under low-dose conditions using the software EPWbe(ino Fisher Scientific) and a direct
detector Falcon Il (Thermo Fisher Scientific).

Cryo-electron tomography was performed using 5 notefn-A gold particles (UMC,
Utrecht). These were mixed with the sample to sasviducial markers for subsequent image
alignment. EV sample (4L) was applied to glow discharged Lacey grids (S26&MS)

prior plunge-freezing (EMGP, Leica). Initial bi-dctional tilt series acquired using a

7
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TECNAI F20 transmission electron microscope (FE@mted at 200kV under parallel beam
conditions using a Gatan 626 side entry cryoholdée SerialEM software (Mastronarde
2005, Schorb et al. 2019) was used to automatieatyuire images every 2° over a +45°
range using a Falcon 1l direct detector with a psize of 2 A, using a total dose of 180
electrons per A2. At least 100 EV cryo-EM imagetaated from TECNAI F20 were used for
measuring EV diameter and decoration thicknessilish type (WT) and mutant strains. For
each EV, an average of three different measuremeets used to calculate the diameter
(delimited by the lipid bilayer) and the decoratthitkness.

Dose-symmetric tilt series were collected on a 30Tkan Krios (Thermo Scientific)
transmission electron microscope equipped with anfum LS imaging filter (Gatan, slit
with 2007eV), single-tilt axis holder and K3 direct electrdatector (Gatan). Tilt series with
an angular increment of 2° and an angular rang60f were acquired with the Tomography
software (Thermo Scientific). The total electrorsélavas between 120 and 150 electrons per
A2 and the pixel size at 3.88\. Dose symmetric tilt series were saved as sepatatks of
frames and subsequently motion-corrected and okexafrom —-60° to +60° using IMOD'’s
function align frames (Mastronarde and Held 201ith whe help of a homemade bash script.

Initial image shifts were estimated using IMOD’s\d@tion tiltxcorr. Alignments were
further optimized in IMOD using the tracing of 30-gold fiducials across the tilt series. The
fiducial models gave an overall of a fiducial eramound 6 + 2.7 A. In cases of a higher error,
local alignments were taken into consideratiorfutther correct the sample’s beam induced
motion observed. Three-dimensional reconstructivese calculated in IMOD by weighted
back projection using the SIRT-like radial filter énhance contrast and facilitate subsequent

segmentation analysis.

EV-modeling and analysis of tomographic data

Tomograms were displayed and analyzed using theo8dmterface of IMOD
(Kremer et al. 1996). EVs were modeled with marzding of their great circle prior the use
of the spherical interpolator of IMOD. If the eliipal contours calculated could not follow the
vesicular membrane adequately, further manual rigaevas used before re-applying the
interpolator. This involved tracing of membraneamthe poles of the vesicles where the
membrane information could still be followed. Teakiate and assign diameters to a total of
434 C. neoformans regular vesicles, located in 39 tomograms, theevalf the perimeter of
the spheroid’s great circle was extracted usingrtfuelinfo function of IMOD, from the same

initial manually traced contours used for modellifig display in 3D the vesicle contour data

8
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261 were meshed using the imodmesh function of IMODe Phojections of the 3D spheroidal
262 models were displayed and rotated to study theig@@metry.

263 For the evaluation of the decoration thicknessulagvesicles were analyzed by
264 manually measuring the outer EV diameter (delimitgdthe fibrillar decoration) and the
265 inner diameter (delimited by the lipid bilayer)yess the longest axis of the vesicle. The final
266  calculation of the decoration thickness was thetraghbion of the inner diameter from the
267  outer diameter, divided by two. For the modelinghaf fibrillar decoration, the IMOD surface
268 models were imported to UCSF Chimera (Petterseal. €2004). The models were used as
269 masks to extract a slab of data around their caueface, corresponding to the decoration.
270  The thickness of the slab used refers to the meduevprovided by the aforementioned
271 manual analysis. Iso-surface representation oflde®ration and final 3D data visualization
272 of the models performed with UCSF Chimera (Petteeteal. 2004).

273

274  Immunization assays

275  The animal experiments were approved by the etlimalmittee for animal experimentation
276  Comité d’Ethique en Experimentation Animale (CETB#oject license number 2013-0055).
277  Six-week old female BALB/c mice (Janvier Labs) wersed for immunization study. The
278 amount of EVs, in protein concentration, was deteech by BCA method prior to
279  immunization. Following, three intraperitoneal ictiens (fixing protein concentration in the
280 EVs to either 1 or 10 pg and suspending in A0D®BS) at 15-day intervals were given to the
281  mice. The control group of mice was injected oniyhwPBS. Blood was collected from the
282  submandibular veins of the mice three days afterlélst immunization and just before the
283  fungal infection and tested for antibody respongs&estern blot. Briefly, the EVs-associated
284  proteins were separated on 12% SDS-PAGE, and eldotied to nitrocellulose membrane.
285 By Western blotting, using the mouse sera at @itutl:1000 and anti-mouse IgG antibody
286 conjugated to peroxidase (Sigma Aldrich), the auib response specific to the EV-
287 associated proteins was examined. Once the antilbesiyonse was confirmed, all the
288 immunized and control mice were challenged intralimsaround one month from the last
289  immunization, with 1 x 1bcells of C. neoformans wild-type strain, and their body weights
290 and survival were monitored until all mice succurhlte the infection. The immunization
291  assay was performed in two biological replicates.

292

293  Vesicledenaturation and protein digestion
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294 EVs proteins were solubilized in urea 8 M, Tris 106 pH 7.5, 5 mM tris (2-
295 carboxyethyl) phosphine (TCEP) for 20 min at 23®amples were sonicated using a
296 Vibracell 75186 and a miniprobe 2 mm (Amp 80% /IseulO off 0.8, 3 cycles). Proteins
297  were then alkylated with 20 mM iodoacetamide forn3i@d at room temperature in the dark.
298  Subsequently, LysC (Promega) was added for thiediigestion step (protein to Lys-C ratio =
299  80:1) for 3h at 30°C. Then samples were dilutedrdtovl M urea with 200 mM Tris pH 7.5,
300 and trypsin (Promega) was added to the sampleatioaof 50:1 for 16h at 37°C. Proteolysis
301 was stopped by adding Formic acid (FA) to a firalaentration of 1 % (vol/vol). Resulting
302 peptides were desalted using Sep-Pak SPE cart(Migeers) according to manufactures
303 instructions.

304
305 LC-MSMSof tryptic digest
306 LC-MS/SM analysis of trypsin-digested proteins (mbgs) was performed on an

307 Orbitrap Q Exactive Plus mass spectrometer (Thefisber Scientific, Bremen) coupled to
308 an EASY-nLC 1200 (Thermo Fisher Scientific). A hemade column was used for peptide
309 separation [g 40 cm capillary column picotip silica emitter {p5 um diameter filled with
310 1.9 um Reprosil-Pur Basic {gHD resin, (Dr. Maisch GmbH, Ammerbuch-Entringen,
311  Germany)]. It was equilibrated and peptide was éobith solvent A (0.1 % FA) at 900 bars.
312 Peptides were separated at 250 nL.miReptides were eluted using a gradient of sol@ent
313 (ACN, 0.1% FA) from 3% to 22 % in 160 min, 22% t@% in 70 min, 50% to 90% in 5 min
314 (total length of the chromatographic run was 25@ micluding high ACN level step and
315 column regeneration). Mass spectra were acquirethia-dependent acquisition mode with
316 the XCalibur 2.2 software (Thermo Fisher Scientifiremen) with automatic switching
317 between MS and MS/MS scans using a top-10 methddl. sigectra were acquired at a
318 resolution of 70000 (ayz 400) with a target value of 3 x &@ns. The scan range was
319 limited from 300 to 1700wz Peptide fragmentation was performed using higmergy
320 collision dissociation (HCD) with the energy set2at NCE. Intensity threshold for ions
321  selection was set at 1 x%li@ns with charge exclusion of z = 1 and z > 7. M&MS spectra
322 were acquired at a resolution of 17500 i@z 400). Isolation window was set at 1.6 Th.
323  Dynamic exclusion was employed within 45 s.

324

325 Data processing

326 Data were searched using MaxQuant (version 1.8 1.6.6.0) (Cox and Mann
327 2008, Tyanova et al. 2016) using the Andromedackeangine (Cox et al. 2011) against
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home-made databases. The following databases e &orC. neoformans KN99a, C.
deneoformans JEC21 andC. deuterogattii R265 we used the recently updated proteomes
(Wallace et al. 2020, Grohs Ferrareze et al. 202hg following search parameters were
applied: carbamidomethylation of cysteines wasaseta fixed modification, oxidation of
methionine and protein N-terminal acetylation wse¢ as variable modifications. The mass
tolerances in MS and MS/MS were set to 5 ppm and@0 respectively. Maximum peptide
charge was set to 7 and 7 amino acids were reqaseaiinimum peptide length. A false
discovery rate of 1% was set up for both proteid peptide levels. The iIBAQ intensity was

used to estimate the protein abundance within pkafBchwanhdusser et al. 2011).

Statistical analysis

All statistical analyses were performed using GRgih Prism 8 software (GraphPad
Software Inc.). Data sets were tested for normatridution using Shapiro-Wilk or
Kolmogorov-Smirnov normality tests. In the casewhich the data passed the normality test,
they were further analyzed using the unpaired Sitsl¢ test or ordinary one-way ANOVA.
When at least one data set was nonnormally dis&éthuwe used the nonparametric
Kolmogorov-Smirnov or Kruskal-Wallis test. For themparison of the survival curves, we

used the Logrank (Mantel-Cox) test.

3. Results

- Diversity of cryptococcal EVs

Several groups have performed morphological studiesungal EVs by electron
microscopy (Rodrigues et al. 2007, Oliveira et2809, Rayner et al. 2017, Bleackley et al.
2020). However, most of these studies used sangddion-dehydration procedures for
transmission electron microscopy (TEM), which cdero affect the size and morphology of
EVs (Van Der Pol et al. 2010, Chiang and Chen 20C8o-EM imaging on rapidly-frozen
samples at low temperature could potentially rediezraple damaging and artifacts caused by
the addition of heavy metals, dehydration, or foatsteps (Orlov et al. 2017, Chiang and
Chen 2019). Indeed, diverse morphologies of EV&/ddrfrom even a single mammalian cell
type have been clearly revealed under cryo-EM (8adieal. 2017). We therefore used cryo-

EM and cryo-ET to analyze EVs purified fra@nneoformans, in their near-native state.

11
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Based on the optimized version of the EV purificatprotocol recently described by
Reis and collaborators (Reis et al. 2019), we isdl&Vs fromC. neoformans reference
strain KN9%, cultured on synthetic dextrose solid medium fdh,2in order to limit the
carryover of potential contaminants. Cryo-ET tonamgs allowed us to analyze 533 single
vesicles, which were characterized according tw therphological aspects in regular (round-
bilayered vesicles) and irregular (not rounded, dmi- multilayered vesicles) categories.
Although a large proportion (81.4%) of the obseri#us had the typical round shape, 18.6%
corresponded to irregular morphologies. Among thempbserved examples of multilayered
vesicles, long tubular, flat, short tubular andceilneous morphologi€gig. S1; Table S2).
However, it remains to be determined whether EMb wiegular morphologies are produced
biologically or they appear as a consequence gbtiigication method.

Cryo-EM analysis showed a considerable polymorplo$iaVs, with the two leaflets
of the typical vesicular membrane readily visilde dll EVs observed, and a few unstructured
aggregates, thus confirming the quality of our prapon (Fig. 1A). In C. neoformans,
among the regular vesicles, only 10.8% appeardadte a smooth surfa¢€ig. 1B and 1C);
the majority of regular EVs (89.2%) were decoratgith a fibrillar structure anchored to the
lipid bilayer (Fig. 1D and 1E). Strikingly, regardless of the morphology, the migjoof EVs
analyzed (88.6%) appeared to be coated with thislléir material. We used cryo-ET to
prepare a three-dimensional surface model of ths, E¥ing IMOD (Mastronarde and Held
2017) and UCSF Chimera (Pettersen et al. 2004 utilner visualize their structure and
fibrillar decoration (Fig. 1F to 1H).

Additional aspects of. neoformans EV diversity, such as the distribution of size and
decoration, were analyzed. NTA analyses showeameter size distribution from 80 to 500
nm and revealed a major peak of vesicle detectigha 150-nm-diameter ranfféig. 2A), in
line with previous findings (Reis et al. 2019). \Aleo analyzed the EV diameter frequency
distribution by cryo-EM from 434-single regular EdptureqFig. 2B). The size distribution
of vesicles tracked with NTA was different from tHistribution of vesicles observed with
cryo-EM, which revealed a wider range of EV diameige, ranging from as small as 10 nm
to 500 nm(Fig. 2C; Video S1). Notably, smaller vesicles (< 100 nm) comprisekigher
proportion of vesicles captured by cryo-EM than NVA. Although cryo-EM has some
statistical limitations, it nonetheless confirm® tknown bias of NTA towards larger EVs
(Bachurski et al. 2019).

Analysis of the EV size according to the presencabsence of the surface decoration

revealed a different frequency distributi¢fig. 2D), with nondecorated EVs showing a
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significantly smaller size distributiorp (= 0.01, using nonparametric Kolmogorov-Smirnov
test) compared to the decorated offeg. 2E). Additionally, the analysis of the vesicular
decoration in 105 single regular EVs revealed logimeity in their thickness, ranging from 5
to 23 nm with the average value close to 16(Rig. 2F). There was no correlation between
vesicular diameter size and decoration thicknesdndicated by linear regression analysis
(Fig. 2G). Therefore, the presence or absence of decoratiohewen its thickness, does not
depend on the size and shape of the EVs, revealpgviously unknown aspect of fungal EV

diversity.

We analyzed EVs from two other pathogenic speciés Coyptococcus, C.
deneoformans strain JEC21 an@. deuterogattii strain R265. As expected, cryo-EM revealed
a similar structure of the EV population in theetCryptococcus species, the majority of
EVs being decorated i@. deneoformans (72.4 %) andC. deuterogattii (81.4 %)(Table S2).

In contrastC. deuterogattii EVs appeared to be smaller (median size = 48 har) those of
C. neoformans (median size = 67 nm) ar@@l deneoformans (median size = 70 nnffig. 3A).
In addition, the thickness of decoration is smaiteC. deneoformans and C. deuterogattii
than inC. neoformans (Fig. 3B), suggesting a tight genetic control of these EVictral
propertieqFig. 3C, Fig. S2).

- Cryptococcus EVs structural analysis

C. neoformans is an encapsulated microorganism, and its capsutestly composed
of the polysaccharide glucuronoxylomannan (GXM)créical virulence factor of this
pathogenic yeast (O'Meara and Alspaugh 2012). GXid Ieen previously shown to be
exported by EVs (Rodrigues et al. 2007). Therefae reasoned that the fibrillar decoration
observed around the vesicles could be composeXd.®Ve thus incubate€. neoformans
EVs with the Alexa 488 labelled anti-GXM monocloraitibody 18B7 (Casadevall et al.
1992), and analyzed the EV suspension by flow cgtoyn More than 70% of the EVs
obtained from the wild-type strain were recognibgdhis antibody(Fig. 4A), suggesting that
mostC. neoformans EVs are covered to some extent with GXM or deiest thereof. While,
EVs obtained from the acapsular mutant straimp94) (Moyrand et al. 2007) showed
negligible labelling (2.33%), following the same peximental approach(Fig. 4B).
Nevertheless, cryo-EM observationaaip594 EVs revealed similar fibrils as observed in the
wild type EVs (Fig. 4B). Moreover, cryo-EM analysis of EVs purified froeap594

suggested a similar percentage of decorated EVSY%91 Overall, these data suggest that,
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even though GXM covers mo&. neoformans EVs, the visible fibrillar structures around
them are not GXM-based. Cryo-EM analysis of EVsaot#td fromC. albicans SC5314 and
S. cerevisiae S288C grown on SD medium showed a similar fibridlecoration observed
aroundCryptococcus EVs (Fig. 4C), reinforcing the notion that this structure is XM-
based, since neither of these two yeasts can synghihis capsular polysaccharide.

We then reasoned that EV decoration could be prdtased and therefore performed
proteomic analyses to further explore this novelghl vesicular feature. Two proteomic
analyses o€. neoformans EVs have been reported previously (Rodrigues. X418, Wolf et
al. 2014) wherein the authors identified 92 and P0@teins associated with EVs .
neoformans, respectively. However, neither quantitative narighment of EV-associated
proteins was performed in these two studies. Thezefwe performed EV proteomic
characterization, together with an enrichment aslyn order to distinguish the proteins
associated with EVs, from those related to poterdary-over aggregates, inevitably
contaminating EV preparations.

In fungi, and more specifically i€ryptococcus, the relationship between RNA and
protein abundances has been reported as neardy,lihge to the relatively minor contribution
of posttranscriptional regulations to protein abamze (Wallace et al. 2020). We thus used
cellular RNA abundance at 30°C, exponential ph&¥allace et al. 2020), as a proxy for
cellular protein abundance, and for normalizatibie\d proteome dataC. neoformans EVs
proteomic analysis was performed in experimeniali¢ate that produced a common list
containing 1847 proteinéTl able S3). Proteins were ranked according to their prevalence
the sample evaluating the average intensity-balssolae quantification (IBAQ) value of the
three replicates. We then used the gene expreksiehas evaluated by RNA-seq analysis to
calculate an enrichment coefficient comparing thxpeeted value in the cells with the
observed one in EVs. We thus identified 39 noosdmal proteins which were present both
within the 100 most prevalent EV proteins overalil dhe 100 most enriched proteifisble
$4). We considered these proteins as EV-associatadips. Only 9 out of these 39 proteins
were reported in previous proteomic analysis, ermsigiray the necessity for proteomic data
enrichment analysis. Of note, our study and thagaighed before used different culture
media, and distinct protocols of EV isolation, whimight also explain the differences in
protein composition that were presently observed.

To further explore how conserved the EV proteirgoaaicros<Cryptococcus species
is, we proceeded with the same strategy to charaetéhe EV-associated proteins in two

other cryptococcal specie§,. deneoformans (strain JEC21) andC. deuterogattii (strain
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R265). We identified 38 and 48 EV-associated pnstefor C. deneoformans and C.
deuterogattii, respectively(Table S3; Table $4). Overall, 71 EV-associated proteins were
identified, 37 in at least two species, and 17 esthdry all the three speciésig. 5A and B),
supporting a conserved profile of the EV-associgiamteins acros€ryptococcus species,
and the robustness of our analyses. Several faligporoteins appeared to be typical of
Cryptococcus EVs. The major one was the Chitin deactelylase fa@adly (Baker et al. 2011),
composed of three members present among the 17s&\¢iated proteins identified in all
three Cryptococcus species analyzed. Some other families like thatwet glyoxal oxidase
(Gox proteins), or the Ricin-type beta-trefoil iaciomain-containing protein (Ril), have one
member common to all three species EVs (i.e. GoxPRill) whereas the other members are
found in only two species (Ril2 and Ril3) or areajfic of one species EVs (Gox1 and Gox3)
(Fig. 5C). We also identified three tetraspanin membran¢epr® containing a SUR7/Pall
family motif. Tshl and Tsh2 shared 32% identitytireir amino acid sequence. Tshl is
present in bottC. neoformans andC. deneoformans EVs whilst Tsh2 was identified in both
C. neoformans and C. deuterogattii. The third Sur7/Pall protein shares very littlesence
homology beyond the SUR7 motif and is exclusiveCtaleuterogattii. Two Sur7 proteins
have been recently identified i@. albicans EVs, suggesting that they might represent a
common EV marker present in fungal EVs (Dawson.2@20). Finally, two members of the
previously described pr4/barwin domain Blp protieimily (Chun et al. 2011) were present in
C. neoformans and C. deuterogattii EVs but not inC. deneoformans. Similarly, the two
ferroxidase Cfo proteins (Jung et al. 2008) werewshto be associated only with tig2
deuterogattii EVs but not in the two other species.

Several enzymes associated with polysaccharideadation and modifications were
present irCryptococcus EVs. Some of these proteins are specific to oeeisp but others are
present in two or all three EV proteomes. For imsta identification within th€ryptococcus
EV core proteins of Gasl (a 1,3-beta-glucanosydferase), Amyl (an alpha amylase),
Exg104 (a glucan 1,3-beta-glucosidase), Hep2 (atipetheparinase) together with the Gox,
Cda and Ril proteins suggest functions of EVs ill eall processes, as previously
hypothesized inS cerevisiae (Zhao et al. 2019). We also identified the BCSuicitlle
membrane protein (Bim1l), recently described adtecalr factor for cupper acquisition i@.
neoformans meningitis (Garcia-Santamarina et al. 2020). Fynaleveral of the EV proteins
identified here have no predicted function; we ¢fiere named them Vep (Vesicles enriched
protein). Bioinformatics analysis of the 71 EV-agated protein sequences suggested that

80% might be membrane-bound, 36 of them bearinigast one putative transmembrane
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domain as predicted by SignalP-5.0 (Almagro Armergteet al. 2019) and/or TMHMM v. 2.0
(Krogh et al. 2001), and 21 being putative GPIl-amet proteins as predicted by PredGPI
(Pierleoni et al. 2008), which is in good agreemaith putative protein-based decoration.
Reflecting the general specificities of these thpe#eomes, the GPI-anchor EV-proteomes of
C. neoformans and C. deneoformans are nearly identical, where& deuterogatii is more
diverse Fig. 5D).

Mature GPIl-anchored proteins can also be membraneeband are predicted to be
highly mannosylated irCryptococcus and other fungi (Levitz et al. 2001, de Groot et al
2003). We thus reasoned that these mannosylatégingonight represent the EV decorations
observed by cryo-EM. To test this hypothesis, wailrated EVs with ConA conjugated to
Alexa Fluor 488, and further analyzed by flow cy&ing. Our results demonstrated that over
98.5% of vesicles were recognized by this lectonficming the presence of mannosylated
proteins on the EV surfad€&ig. 6). Similarly, EVs obtained from acapsulzap594 mutant
strain also showed a high percentage of staini®gbf®). Accordingly, EV treatment with
proteinase K was associated with a nearly compdsie of ConA labelling of both WT and
cap5941 EVs (Fig. 7), overall suggesting that the outer vesicle ddmmranay be composed
primarily of mannoproteins.

Several genes have been implicated in protein gigaton in C. neoformans. For
instance ALG3 encodes a dolichyl-phosphate-mannose-depende/3mannosyltransferase,
deletion of which is associated with the productdrruncated protein-associated neulal
glycans and a reduction in virulence (Thak et @82®). Similarly,KTR3 andHOC3 encodes
al,2-mannosyltransferase and,6-mannosyltransferase, respectively, regulatiiglycan
structure and pathogenicity 6f neoformans (Lee et al. 2015). We reasoned that the deletion
of some of these genes could alter EV productiod stnucture. We first analyzed EV
production inalg34, hoc34, andktr34 strains by evaluating the quantity of sterol im &Y
preparations. We did not observe any significatgraation in EV production nor in the
percentage of ConA positive EVs in any of theseetilmh mutants Kig. 8A, 8B).
Nevertheless, the percentagealij34 EVs labelled by ConA was slightly reduc@elg. 8B)
and alg34 EV decorations were less thick than wild type E¥Ss, revealed by cryo-EM
observationKig. 8C, 8D; Table S2).

The two most abundar@. neoformans EV proteins, Mp88 and Vepl/CNAG_03223
are GPl-anchored and represent 23.7% of the tatahtified proteins. Mp88 is a
basidiomycete specific protein originally identtfias a majo€. neofor mans immunoreactive

mannoprotein stimulating T cell responses (Huan@le2002). Vepl (Vesicles Enriched
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531 Protein 1) is protein of unknown function sharing momology with anyC. albicans or S.
532  cerevisiae protein. In all thre€ryptococcus species, Mp88 (Huang et al. 2002) was the most
533 prevalent EV protein. I€. deuterogattii EVs, in which the Vepl protein is not present, @lp8
534 represents 35.4% of all EV proteins. We construdted corresponding single and double
535 mutant strains foMP88 andVEPL and tested their EVs for ConA binding. These niomst
536 did not strongly affect EV production althou®iP88 deletion was associated wighslight
537 increased production as compared to the wild typersFig. 8A). However, bothmp884
538 andmp884 vepla EVs displayed a limited but statistically signifitaeduction of the ConA-
539 bound EVs as compared to EVs from wild-type strétig. 8B). Accordingly, cryo-EM
540 analysis ofmp884 EVs revealed an associated reduction of the decorthicknessKig.8C,
541  8D) without any change in EV size distributidridg. 8C; Table S2; Fig. S2) suggesting that
542  cryptococcal EVs might bear a highly complex detiora probably formed from a dynamic
543  combination of mannoproteins.Combining all thestadae propose a model for cryptococcal

544  EV structure, in which, EVs are decorated by magladsd proteins and covered by GXM

545  (Fig.9).

546

547 - EVsfor immunization and protection against cryptococcal infection

548 Proteomic analysis of th@. neoformans EVs identified many immunogenic proteins,

549 including Mp88, the members of Gox and Cda famihesl some Vep proteins previously
550 tested as vaccine candidates against cryptococ(®gecht et al. 2017, Hester et al. 2020).
551 Moreover, some of these proteins were also fourttetenriched irC. deneoformans andC.

552  deuterogattii EVs (Mp88, Cdal, Cda2, Cda3, and Gox2), suggestiagsecretion of these
553 immunogenic molecules via EVs could be a consefrfeadure across different species.
554  Taking into account that cryptococcal EViave been shown to be immune modulators
555  (Freitas et al. 2019) and may impact the pathoplygy of the infection (Bielska et al. 2018,
556 Hai et al. 2020), we reasoned that EVs could bed uk® immunization against
557  cryptococcosis, avoiding the need for recombinaotgin purification and adjuvant usage.
558 The usage of fungal EVs has been previously sugdess a promising vaccine strategy
559 (Vargas et al. 2015, Colombo et al. 2019, Freitad.€2019, Vargas et al. 2020). However, to
560 date cryptococcal EVs have not been tested in mumiiection models.

561 In a pilot experiment, we obtained EVs frdbn neofor mans wild-type strain and the
562 acapsulacap59A mutant, used them to immunize BALB/c mice in twlfedent EV-protein
563 dosages (1 and 1@) via intraperitoneal injections; control groupsaiajected with only PBS

564  (four mice in each group). After three immunizasipranti-EV-antibody response was
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evaluated in the mouse sera. Regardless of therigincall the immunized mice produced
antibodies against vesicular proteins, as revdajéddestern Blo{Fig. 10A). Forty days after
the last immunization, mice were challenged intsafig with C. neoformans wild type strain

(1 x 10 yeasts per mouse), and their survival were maetqoost-infection.All EV-
immunized mice survived longer than the non-immedinnes and immunization with both
doses otap59A EVs statistically significantly prolonged the swai of the miceg(Fig. 10B)

To note, the total carbohydrate per 149 of EV-proteins were approximately 28 and 3
ug, respectively, for wild-type andap59A mutant, as analyzed by gas-chromatography
analyses (Richie et al. 2009). We then confirmési ibsult using a larger number of mice (10
mice per group). Since the highest dose of EVs flleenacapsular mutant rendered the best
protection, we decided to proceed only with EVsrflcap59A strain (10ug per mouse). After
immunizations with EVs, the anti-EV-antibody respenin the mice was analyzed; all
immunized mice produced antibodies against vesicutzleculegFig. 10C). Following, the
mice were challenged witB. neoformans wild type strain (1 x 1Dyeasts per mouse), and
their survival was monitored post-infection. EV-imnization led to a significant prolonged
survival ( = 0.0006)(Fig. 10D), thus confirming the promising potential usag&gtbased

protection againgCryptococcus.

4. Discussion

Studies on fungal EVs have gained much attentisimguwecent years (Rizzo et al. 2020).
Although data from both pathogenic and nonpathagspéecies highlight their importance in
diverse biological contexts, knowledge on fungalsE¥ still limited, mostly due to their
nanometer size and the technical hurdles intrintsicthe methods applied for their
characterization (Rizzo et al. 2020). Here we usetting edge technologies to revisit
Cryptococcus EVs. Our cryo-EM analysis produced an unprecestkegtiality of EV images
and resolved the fibrillar structure decoratiomasew aspect on fungal EVs.

Our hypothesis is that EV decoration is not capsptdysaccharide GXM-based but
mainly composed of mannoproteins. This is suppdrietivo independent experiments. First,
we demonstrated that although GXM most probablyosunds the vesicles, it is not necessary
for the presence of decoration. Thus, EVs produmedn acapsular strain f neoformans
are not bound by a GXM specific antibody yet stifiplay decoration. Secondlg, albicans
andS. cerevisiae EVs are also decorated, although none of thesgts/@aoduced a capsular

polysaccharide. Nonetheless, our study revealadttie deletion of single mannoproteins,
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such as the GPIl-anchored proteins Mp88 and Vep4 ,neasufficient to completely remove
the EV decoration, suggesting that this structuas k highly complex and dynamic
composition, including several mannoproteins.

Indeed, previous reports @ albicans showed that the role of GPl-anchored proteins
are redundant and single mutants mostly displayedmphenotypes, if any (Plaine et al.
2008). Interestingly, Johansson and coworkers pedd cryo-EM analysis oMalassezia
sympodialis EVs, demonstrating no (Johansson et al. 2018)eavidiecoration on their
surfaces (Johansson et al. 2018). Comparative geramalysis suggested that this lipophilic
pathogenic yeast, living on the skin (Theelen eR@l8), lacks the N-glycosylation pathway
and possesses only a very small number of GPl-anphateins (Gioti et al. 2013).
Accordingly, M. sympodialis cells lack the extensive mannan outer fibrillgrela which can
be easily observed at the surface of the cell afathost yeasts including. cerevisiae or C.
albicans (Gioti et al. 2013, Muszewska et al. 2017). Theefat is very tempting to
hypothesize that this absence of mannarid.igympodialis could explain the absence of EV
decoration, supporting the idea that EV decoraitio@ryptococcus species is mannoprotein-
based. Previous proteomic analysis of fungal EVentifled putative mannoproteins,
suggesting that this decoration is a common featfifeingal EVs (Bleackley et al. 2019,
Dawson et al. 2020, Karkowska-Kuleta et al. 2022zz& et al. 2020). Accordingly, flow
cytometry experiments showed thiatglabrata EVs can be labelled by ConA (Karkowska-
Kuleta et al. 2020). Putative fibril-like structsrédave also been reported at the surface of
Aspergillus fumigatus EVs produced during cell wall regeneration (Riezal. 2020).

In addition, we performed proteome analysis of Bxan S cerevisae and C.
albicans grown in the same conditions @syptococcus species, andonfirmed the presence
of number of cell wall and GPIl-anchored proteinghigir EVs (Vargas et al. 2015, Zhao et al.
2019, Dawson et al. 2020). We also confirmed tresgmce of diverse antigenic proteins
associated with EVs i@. albicans, reinforcing the notion that this feature mightébgeneral
aspect of pathogenic fungal EVEaple S5). Whereas the presence of decoration seems to be
a hallmark of fungal EV, it is not specific to thingdom (Macedo-da-Silva et al. 2021).
Although EVs bearing visible structures on therface have not been commonly reported, a
recent cryo-EM analysis of EVs derived from humaalst cell lines overexpressing
hyaluronan synthase 3-(HAS3) suggested the pres#ritteil-like structures on their vesicle
surface (Noble et al. 2020). Additionally, EVs frgmaliovirus-infected cells contain ‘protein

structures with globular heads on a stalk’ around membrane (Yang et al. 2020).
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Nevertheless, it is still unclear how often thisatfege is present among the whole EV
population, and what the composition of these serfdructures is.

Previous studies explored the size and morpholofjyfungal EVs, mostly by
techniques such as electron microscopy (TEM, SEMhamic light scattering (DLS), and
NTA (Albuquerque et al. 2008, Rodrigues et al. 2008If et al. 2014, Vargas et al. 2015,
Wolf et al. 2015, Bielska and May 2019). Here wewslthat cryptococcal EVs are more
heterogeneous than previously recognized in tefrsgze distribution and morphotypes. Our
cryo-EM analysis revealed that the peak of EV sdiz&ribution was smaller than 100 nm, and
substantially different from size distribution obsed by NTA and from that previously found
from C. neoformans and C. deuterogattii EVs using NTA and DLS approaches (100 to 300
nm) (Reis et al. 2019). Moreover, our study reeeaiot only the presence of regular EVs but
also tubular, flat, and multilayered EVs. Althougine different EV morphologies were
previously identified in many fungal pathogens (Aderque et al. 2008, Rodrigues et al.
2008, Tefsen et al. 2014, Vargas et al. 2015), sase&ular shapes found in this work have
not previously been reported. Thus, membrane tuttnletures (memtubs) budding from the
plasma membrane were found in the arbuscular fuRbiEphagus irregularis, suggesting
that different shapes of membranous structuresdcappear during fungal growth (Roth et al.
2019). Additionally, tubular and other morphologiegre also found in EV populations
obtained from human biological fluids (Arraud et2014, Emelyanov et al. 2020). Although
these data suggest that diverse structures couldakeof the native EV population, the
cellular origins of these structures are still umkm, and we cannot rule out the possibility of
them being artifacts resulted from the filtratioes of the commonly used EV isolation
protocols.

In this study, we demonstrated that the th@gptococcus species release both
decorated and undecorated EVs, adding anothergqusyiunappreciated aspect to fungal EV
diversity. As hypothesized before, this result atsmgests the existence of at least two
different pathways involved in EV biogenesis (Olrgeet al. 2010, Oliveira et al. 2013,
Bielska and May 2019, Rizzo et al. 2020). It isgrdfore, reasonable to hypothesize that
decorated EVs could be shed from the fungal plasrambrane, “stealing” cell membrane
proteins when they bud out. Interestingly, the detsnl EVs have larger size distribution than
the undecorated ones, in good agreement with wimatldvbe typical microvesicles in
mammals. In this hypothesis, the enrichment ofsgianin membrane proteins containing a
SUR7/Pall family motif might indicate that decomeVs could be specifically shed from the

Sur7 specialized plasma membrane domains. This Incod&l be extended to other fungi as
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Sur7 proteins have been recently identified as EdMgin markers irC. albicans and in the
wheat pathoged@ymoseptoria tritici (Dawson et al. 2020, Hill and Solomon 2020). Thiser
hypothesis, together with whether or not the smalledecorated EVs are a result of the
endosomal secretory pathways, thought to be exasdreang released by multivesicular
bodies (MVB), still needs to be further exploredterestingly, the characterization of
decorated and undecorated EVs as microvesiclegxambmes, respectively, has previously
been proposed (Noble et al. 2020). This hypothasisour current results are supported by a
recent study oA. fumigatus EVs in the absence of a cell wall. EVs were forraethe plasma
membrane level and they contained a number of @Easmmbrane proteins (Rizzo et al.
2020).

Our work suggests that cryptococcal EV cargo cast@roteins involved in diverse
biological processes, including Mp88 and member€adéd and Gox families, which have
been suggested as immunomodulators (Specht €1, Plester et al. 2020). Since the novel
surface structure on fungal EVs resolved by cryo4eSembles the spike complexes on viral
envelopes (Neuman et al. 2006, Zanetti et al. 2086)reasoned they may be useful as a
vaccine platform. Numerous efforts are underwaydtvelop vaccines against fungal
infections, although none have yet been approvetidman use (Nami et al. 2019). It was
previously shown that the pre-treatment @élleria mellonella larvae with fungal EVs
stimulated a protective response against a letialenge withC. albicans, C. neoformans or
A. fumigatus (Vargas et al. 2015, Colombo et al. 2019, Bratiel.e2020). More recently, it
was also demonstrated ti@talbicans EVs were also able to elicit a protective effegaiast
murine candidiasis (Vargas et al. 2020). Interghtin C. neoformans EVs show
immunoreactivity with sera from patients with crypbccosis, indicating that EV-associated
proteins are produced during cryptococcal infectiRodrigues et al. 2008). Prophylactic
immunization is one of the effective methods tovpreé cryptococcal infection, and several
cryptococcal antigens have been tested for theaicimation potential (Caballero Van Dyke
and Wormley 2018, Ueno et al. 2020). However,itheivo immunoregulatory role of EVs
have largely remained unknown (Robbins and Mog€lii4).

In our study, antibody responses in cryptococcalifBwunized mice indicate that the
EVs can elicit an adaptive immune response in theer@ce of any adjuvants or carriers,
unlike other antigenic proteins @fryptococcus (Specht et al. 2017). It is also important to
note that immunization usin@. neoformans heat-killed cells does not elicit protection in a
murine model of infection (Masso-Silva et al. 201BY-based vaccination data obtained by

other groups using an invertebrate model suggasirthate immunity might also be involved

21


https://doi.org/10.1101/2020.08.17.253716
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.253716; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

available under aCC-BY-NC-ND 4.0 International license.

(Vargas et al. 2015, Colombo et al. 2019). Bsyptococcus predominantly infects
immunocompromised hosts, it will be worth checkihg role of EVs in eliciting trained
immunity, wherein innate immune cells develop megmike response against an antigen
upon repeated exposure (Hole et al. 2019, Muldeal.e2019). The mechanisms, and the
responsible immune cell types leading to prolongediival in our murine infection model,
remain to be deciphered. Although EV immunizatiamswot sufficient to prevent death, we
believe that adjusting the antigens exposed on &Vase could potentially increase the
protective effect. In that sense, the fact that Bdm C. neoformans WT and the acapsular
mutant did not lead to the same level of proteciscem encouraging data.

Overall, the fantastic power of cryo-EM, togethdth several innovative analyses,
has enabled us to draw a new model of fungal EM$ r@wealed new aspects of their
diversity, suggesting different biosynthetic patig®aThis model supports new strategies to
construct vaccines against these too often negléctectious diseases. It also opens the door

to more questions concerning the origin and the dafungal EVs.
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Figureslegends

Figure 1. Cryo-électron microscopy analysis of C. neoformans extracellular vesicles

(EVS).

Cryo-EM analysis revealed a heterogeneous popaolaifovesicles with diverse structural
aspects, previously unappreciated in fungal EVs 8&)shown, the EVs were delimitated by
a lipid bilayer (B to E), which showed either nacdetion (in 10.8% vesicles, panels B and
C) or a fibrillar decoration (arrows) in 89.2% bkt EVs analyzed (panels D and E). Three-
dimensional organization of the fibrillar decorati¢yellow) on the membrane (purple) of
EVs as revealed by cryo-electron tomography aral), magnified in panels G and H. Full
surface representation models as seen from top @wSame models clipped with clipping
plane oriented perpendicular to line of sight (Bata presented in this figure have been
generated using images obtained using a Titan Kfidseermo Scientific) transmission

electron microscope.

Figure 2: Analysisof size and structural diversity of C. neoformans EVs.

NTA analysis of purified EVs revealed a size diaanetinging from 80 to 500 nm, with the
highest distribution around 150 nm (A). Frequenmsgridbution of EV diameters determined
by CryoEM, a total of 434 regular EVs were analyzétle analysis based on CryoEM
tomograms revealed a wider range of EV size digtiob, from 10 to 500 nm diameter, with
the highest relative frequency below 100 nm (B)yd2EM images exemplifying EV size
range. Scale bars corresponding to 100 nm (C).iEY/dsstribution according to the presence
or absence of surface decoration (D). Non-decor&¥d have a smaller diameter size
distribution compared to decorated ones (E). AnslgEdecoration thickness from Cryo-EM
images from 105 single EVs (F). Analysis of a pt#&mrelationship between decoration
thickness and EV diameter by linear regression [&}a presented in this figure have been
generated using images obtained using a Titan Kfidseermo Scientific) transmission
electron microscope. Error bars show means + Shnp&asize (n) is indicated and, in

brackets, the number of vesicles in that catedoay éxceeded 500 nm in size.

Figure 3: Comparative analysis of size and structural diversity of EVsin C. neoformans,
C. deneoformans and C. deuterogattii.
Analysis of EV diameters revealed a smaller siatrithution inC. deuterogattii strain R265

and C. deneoformans strain JEC21 than €. neoformans KN99q. The total numbers of
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1096 vesicles analyzed wer€. neoformans (n=143 for size and n=112 for decorationd,
1097  deneoformans (n= 90 for size and n=63 for decoratio@),deuterogattii (h= 115 for size and
1098  n=95 for decoration) (A). Analysis of the decoratitickness revealed a smaller distribution
1099 for C. deneoformans and C. deuterogattii compared withC. neoformans (B). lllustrative
1100 images of size and decoration of EVs obtained ftoenthree species. The data presented in
1101  this figure have been generated using images autaiising a TECNAI F20 transmission
1102  electron microscope (C). Error bars show means +SBle bars represent 100 nm.

1103

1104

1105  Figure4: Flow cytometry analysis of C. neoformans EVsincubated with monoclonal

1106  anti-GXM antibody.

1107  FACS analysis of wild type (WT) and the acapsc&p594 EVs in PBS or in the presence of
1108  the monoclonal antibody raised against the capgalsaccharide 18b7 (+ mAb anti-GXM)
1109 (A). The analysis revealed strong labelling of Wasicles (74.7%), compared to the weak
1110 labelling in the mutant (2.33%), (B). Despite thmportant labelling differenceC.
1111 neoformans WT andcap594 strains released EVs bearing similar surface @dicor, shown
1112 by the cryo-EM (arrows), as well as EVs obtaineohfrother fungal species such @s
1113  albicans andS cerevisiae (C). These cryo-EM data have been generated wsingCNAI
1114  F20 transmission electron microscope. Scale baresepts 100 nm. This experiment was
1115  repeated twice with similar results.

1116

1117  Figure5: Analysisof Cryptococcus spp protein cargo.

1118 Venn diagram revealing shared and unique EV-aswatciproteins inC. neoformans, C.
1119  deneoformans, andC. deuterogattii. Seventeen proteins were identified to be assmtiaith
1120 EVs in all threeCryptococcus species (A).List of the gene loci and the corresponding
1121 proteins commonly found in EVs released by thedlsgecies, which could be considered as
1122 putative cryptococcal EV-protein markers (B). Mo§the proteins are predicted to be either
1123  GPl-anchored proteins, to contain a signal peptidéo possess other membrane domains,
1124  according to preGPI, signalP and TMHMM website,pesdively. Six protein families
1125 appeared to be typical @ryptococcus EVs, including the Chitin deacetylase family (Cda),
1126  the Ricin-type beta-trefoil lectin domain-contaigiprotein family (Ril), the putative glyoxal
1127  oxidase family (Gox), the tetraspanin membrane gimet containing a SUR7/Pall family
1128  motif (Tsh), the pr4/barwin domain protein famiBlg), and the multicopper oxidase (Cfo).

1129  Among these families, the proteins present intake species are shown in green, proteins
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1130 present in two species in orange and proteins preseonly one species in yellow (C). We
1131  also identify 21 putative GPIl-anchored proteinspesdicted by PredGPI, and 10 of them
1132 were present in all three species (D).

1133

1134  Figure 6. Flow cytometry analysis of C. neoformans EVs incubated with GFP-labelled
1135  ConA.

1136 FACS analysis of EVs obtained fro@ neoformans wild type andcap594 cells. EVs were
1137  incubated with ConA-Alexa Fluor 488 conjugated iecAfter ultracentrifuge washing, the
1138  EV pellets were mixed in BD Trucount tubes (BD Riesces), containing a known number
1139  of fluorescent beads as internal control. The nunob@vents for each reading was fixed to
1140 100,000 events and the percentage and intensit@oniA labeling were recorded. This
1141  experiment was repeated three times with similsults.

1142

1143  Figure7. EV proteinase K treatment reduces ConA binding.

1144  FACS analysis of EVs obtained froth neoformans WT andcap594 cells after proteinase K
1145 treatment. Proteinase K-treated EVs were submittedConA labelling, ultracentrifuge
1146  washed and analyzed by flow cytometry. EV pelle&senmixed in BD Trucount tubes (BD
1147  Biosciences), containing a known number of fluoeesdeads as an internal control. The
1148  number of events for each reading was fixed to Q@D,events and the percentage and
1149  intensity of ConA labeling were recorded. EVs teglatising the same protocol but omitting
1150 the enzyme were used as controls.

1151

1152 Figure 8. Analysis of C. neoformans mutant strain EVs.

1153  Evaluation of EV production by the different mutattains as estimated by the measure of
1154  the sterol concentration using the Amplex™ Red €$tefol Assay Kit (A). Impact of the
1155  different mutations on the percentage of ConA-leloelEVs as estimated through flow
1156  cytometry (B). Analysis of EV size diameter in thg884 and alg34 mutant strains as
1157  compared to the wild type (WT). The total numbevedicles analyzed were Wi = 143 for
1158  size and n = 112 for decoratiomp884 (n = 107 for size and n = 86 for decoratiady34 (n
1159 = 119 for size and n = 92 for decoration) (C). Assed of the decoration thickness revealed a
1160  smaller distribution associated wifkLG3 or MP88 deletions, as exemplified by illustrative
1161  images from the three strains (D). The cryo-EM iegawere obtained using a TECNAI F20

1162  transmission electron microscope. ConA labellind aterol measurements were done for at
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least three independent biological replicates Hoeos are represented as means + SD. Scale

bars represent 100 nm in C and 20 nm in D. (E)

Figure9: Modd of simplified molecular structure and composition of Cryptococcus EVs.

In accordance with previous reports and in thetlgflour data, a new model Gfyptococcus
EVs is suggested, where the outer layer is compasfethe capsular polysaccharide
glucuronoxylomannan (GXM), and the lipid bilayerdsvered by many proteins, including
mannoproteins, making the visible fibrillar strueturesolved by cryo-EM. Most of the
proteins are predicted to be GPIl-anchored, to aorgtasignal peptide or to possess other
membrane domains, according to preGPI, signalPTétdMM, respectively. Three proteins,
the hypothetical protein Cpcl, the putative V-typgPase (VmalO) and the Vep3 are
predicted to be soluble. It is still unclear if $keproteins are indeed inside the vesicular lumen
or linked to another transmembrane protein. Forpbfivation, the lipid content was not
explored, but previous works shown the presenstenbl, phospholipoids and sphingolipids.
Additionally, Cryptococcus EVs were also described to contain other cargagd) as RNA,

pigments, small molecules, and polysaccharidejdintg GXM, as detailed in plain text.

Figure 10. Vaccination assays using C. neoformans EVs.

Female 6-weeks old BALB/c mice were immunized with neoformans EVs via
intraperitoneal injection, followed by intranasafection with 1 x 16 yeasts of wild-type
(WT) C. neoformans, and the mouse survival was monitored. In thd fiikt experiment,
mice (n = 4 per group) were immunized with EVs frafd type orcap594 strain (1 and 10
ug in 100uL of PBS) and control mice were injected with 100PBS. Western Blot using
mouse sera against fungal EV confirmed that all imized mice produced antibodies against
EV proteins (A). All EV-immunized mice survived Iger than the non-immunized ones, but
the immunization wittcap594 EVs rendered a significantly prolonged mouse saii*p =
0.01) (B). For the second set of experiment, mice (L0 per group) were immunized with
EVs fromcap594 mutant strain (1ug/100uL in PBS) and control mice were injected with
100 uL PBS. Again, Western blot using mouse sera agdimsjal EVs confirmed that all
immunized mice produced antibodies against EV prst€). EV-immunized mice showed
significantly prolonged survival (f= 0.0006) compared to the non-immunized group (D).
Comparison of the survival curves was made by GPaghPrism 8, using the Log-rank
(Mantel-Cox) test.
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A

C. neoformans

C. deuterogattii

C. deneoformans

List of EV- enriched proteins shared by the three Cryptococcus spp.

C. deuterogattii

Protein name

Putative function

CNBG_1155
CNBG_3648
CNBG_3432
CNBG_9064
CNBG_5182
CNBG_3374
CNBG_1745
CNBG_4970

CNBG_5817

CNBG_4258
CNBG_9173
CNBG_5332
CNBG_4145
CNBG_5365
CNBG_0679
CNBG_0806
CNBG_5038

CNA07540
CNC06180
CNC03950
CND03490
CNE05040
CNC03380
CNF01800
CNN02260
CNJ03160
CNH02560
CNF01900
CNE03480
CNEO01150
CNE03150
CND02350
CND03580
CNNO01470

Mp88
Cpc1
Bim1

Gox2
Hep2
Cda1
Gas1

Ril1
Sso1
Vma10
Amy1
Vep3

Vep4
Cda3

Vepb

Mp98/Cda2

Exg104

Immunoreactive mannoprotein
DUF3759

BCS-inducible membrane protein
Chitin deacetylase
Glyoxaloxidase

Heparinase |I/Ill family protein
Chitin deacetylase

1,3-Beta-glucanosyltransferase

Ricin-type beta-trefoil lectin domain-containing
protein

t-SNARE complex subunit
V-type ATPase, G subunit
Alpha-amylase

NADH dehydrogenase
Glucan 1,3-beta-glucosidase
Hypothetical protein

Chitin deacetylase

Hypothetical protein

C. deneoformans

C. neoformans

C D

Gox1

JE88| [1sh2| [Blp2] |Cfor ]

(Goxa| [Tsh3 | [Bip | [croz|
Cda Ril Gox  Tsh Blp Cfo

Protein families

C. deuterogattii
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