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Abstract

The rapid emergence of coronavirus disease 2019 (COVID-19) as a global pandemic
affecting millions of individuals globally has necessitated sensitive and high-throughput
approaches for the diagnosis, surveillance and for determining the genetic epidemiology
of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves
multiplex-PCR, barcoding and sequencing of samples for high-throughput detection and
deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752
clinical samples in duplicates, amounting to a total of 1536 samples which could be
sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis
suggests a high concordance between technical duplicates and a high concordance of
detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An
in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-
CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could
detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive
and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a
confirmatory test. The sequencing approach also enabled insights into the evolution and
genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a
total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in
India. This study also revealed 1,143 unique single nucleotide variants and added a
total of 73 novel variants identified for the first time. To the best of our knowledge, this is
the first report of the COVIDSeq approach for detection and genetic epidemiology of
SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high
sensitivity assay for detection of SARS-CoV-2, with an additional advantage of enabling
genetic epidemiology of SARS-CoV-2.
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Introduction

Coronavirus Disease 2019 (COVID-19) has emerged as a global epidemic affecting
millions of individuals globally and imposes a huge burden on the socio-economic
welfare and healthcare systems of nations. At present the need for assays for rapid
detection for diagnosis and surveillance, understanding the genetic epidemiology and
evolution of the virus would be central for managing the spread of the epidemic (J. Lu et
al., 2020; Meredith et al., 2020). The advantage of quick sequencing of the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) genome led to the development of
polymerase chain reaction (PCR) based diagnostic assays that leveraged rapid
identification of infected individuals to get fast medical support or quantization essential
to both patient management and incidence tracking (Wu et al., 2020). Identification of
early imported cases in France helped to prevent immediate secondary transmission
(Bernard Stoecklin et al., 2020). Singapore’s enhanced surveillance and containment
strategy also led to the suppressed expansion of SARS-CoV-2 (de Lusignan et al.,
2020). On similar grounds, The Royal College of General Practitioners (RCGP)
Research and Surveillance Centre (RSC) have rapidly expanded their national
surveillance system to combat SARS-CoV-2 (Ng et al., 2020). Coupled with a highly
accurate and high-throughput method of detection, this approach will become more
effective in dealing with COVID-19.

A number of approaches have been widely used for the detection of SARS-CoV-2 from
clinical samples. Some of these approaches have also been adapted to enable higher
throughputs. These methods are majorly subdivided into antigen-antibody based
serological assays, nucleic acid based amplification assays and sequencing based
assays. While serological assays are rapid detection tests, they have low sensitivity and
specificity (Déhla et al., 2020). Nucleic acid based amplification such as Real-Time PCR
(RT-PCR) has been the gold standard in detection and diagnosis, but a negative RT-
PCR does not eliminate the possibility of infection in clinically suspected cases (Wang
et al., 2020). Such results should be carefully interpreted to avoid false negative
reporting (Kucirka et al., 2020). Moreover, these tests have been developed for

diagnostic purposes and do not provide much information on the nature of the virus, its
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genetic information and evolutionary pattern. In this regard, recently developed Next
generation sequencing based methods are potentially a good alternative for detection of
SARS-CoV-2 (‘First NGS-based COVID-19 diagnostic’, 2020).

The rapid advancement of Next generation sequencing technology and analysis
methods has enabled understanding the genetic makeup of SARS-CoV-2 and
interpreting its evolutionary epidemiology. Viral RNA sequencing from the initial cluster
of cases deciphered the full genome sequence of SARS-CoV-2 (Zhu et al., 2020). This
led to other sequencing based studies for detailed genomic characterization of the virus
(R. Lu et al, 2020). Combined genetic and epidemiological studies have been
suggested to provide insights into spread of the infection, evolutionary patterns and
genetic diversity of the virus (J. Lu et al.,, 2020; Meredith et al., 2020), for further
assisting in effective management and preventive measures. Genomic surveillance
coupled with agent-based modelling in Australia has been observed as an excellent
approach to investigate and regulate COVID-19 transmission (Rockett et al., 2020).
Towards these efforts, several openly available databases have also been developed
such as the Global Initiative on Sharing All Influenza Data (GISAID) that facilitates rapid
and open sharing of SARS-CoV-2 genome sequences (Shu and McCauley, 2017).
Thus, along with detection, sequencing based methods may also provide an added
advantage of understanding the genetic epidemiology of the outbreak.

In the present study, we describe the application of the COVIDSeq protocol recently
approved by the US FDA for clinical use. This protocol envisages high-throughput
detection and genetic epidemiology of SARS-CoV-2 isolates using a multiplex PCR
amplicon based enrichment followed by barcoding with a throughput of 1536 samples in
a single sequencing run using NovaSeq S4 flow cell. Our analysis suggests that
COVIDSeq protocol could be a sensitive approach for detection with additional insights
offered through genetic epidemiology with respect to the genetic lineages. To the best
of our knowledge this is the first real-life evaluation of COVIDSeq protocol.
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Materials and Methods

Patients and Samples

The study was approved by the Institutional Human Ethics Committee (IHEC No. Dated
CSIR-IGIB/IHEC/2020-21/01).  Samples from nasal, nasopharyngeal, and
oropharyngeal swabs were obtained according to the standard protocol and collected in
3 ml sterile viral transport medium (VTM) tube or 1ml of TRIzol reagent (Invitrogen). All
the samples were transported to the laboratory at a cold temperature (2-8°C) within 72

hours post collection, and stored at -80°C till further used.

RNA Isolation

RNA extraction was carried out in a pre-amplification environment with Biosafety level 2
(BSL-2) facility. RNA isolation was done using four different methods. For manual RNA
extraction, a total of 140 ul of the VTM medium was used; prior to isolation, the VTM
samples were subjected to heat inactivation at 50°C for 30 minutes. After heat
inactivation, the RNA was extracted from 140 ul of VTM samples using QIAamp® Viral
RNA Mini kit (QIAGEN) as per the manufacturer's instructions. For automated magnetic
bead based extraction method, 200 pl of VTM was transferred to a 96-well deep well
cartridge plate supplied with the kit (VN143), and extraction was performed on
Nextractor® NX-48S instrument (Genolution Inc.) as instructed by the manufacturer.
After bead based capture and washing process the RNA sample was eluted in 40 pl of
the elution buffer. For RNA isolation using Trueprep AUTO v2 universal cartridge based
sample prep device, (Molbio Diagnostics Pvt. Ltd.) 500 pl of the VTM was added to the
2.5 ml of lysis buffer provided with the kit. After pipette mixing, 3 ml of the mixture was
dispensed in the provided cartridge; the final RNA was eluted in 50 pl of elution buffer.
For RNA from TRIzol reagent, the tubes containing swabs were vortexed briefly. The
overall content of the TRIzol tube was transferred into 1.5 ml tube, followed by the
addition of 200 ul of chloroform and mixed by inverting the tubes several times. After 5
minutes of incubation, the 1.5 ml tubes were centrifuged for 15 minutes at 12,000 RPM
at 4°C. The upper clear aqueous layer which contains the RNA was transferred to new
tubes. An equal amount of isopropanol was added to the tubes containing the RNA.
Contents of the tubes were mixed by inverting the tubes several times and tubes were
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incubated for 10 minutes on ice followed by centrifugation for 10 minutes at 12,000
RPM at 4°C. The supernatant was discarded and the RNA pellet was dissolved in 30 pl
of RNase-free water after 2 ethanol washes. TURBO DNase (Ambion, Applied
Biosystems) treatment was given to the isolated RNA to remove genomic DNA
contamination in the samples followed by RNA purification using the phenol/chloroform

method.

Real Time PCR for SARS-CoV-2

To detect SARS-CoV-2 viral infection, one-step Real-Time PCR assay was performed
using STANDARD M nCoV Real-Time detection kit (SD Biosensor, Korea), targeting the
nCoV2 specific ORF1ab (RdRp) and pan-sarbeco specific E genes on LightCycler® 480
System (Roche) and ABI 7500 Fast DX (Applied Biosystems) as per the manufacturer’s

instructions.

Library preparation and sequencing

The libraries were prepared using Illlumina COVIDSeq protocol (lllumina Inc, USA). The
first strand synthesis was carried out in Biosafety level 2 (BSL-2) plus environment
following standard protocols. The synthesized cDNA was amplified using a multiplex
polymerase chain reaction (PCR) protocol, producing 98 amplicons across the SARS-
CoV-2 genome (https://artic.network/). The primer pool additionally had primers
targeting human RNA, producing an additional 11 amplicons. The PCR amplified
product was later processed for tagmentation and adapter ligation using IDT for lllumina
Nextera UD Indexes Set A, B, C, D (384 indexes, 384 samples). Further enrichment
and cleanup was performed as per protocols provided by the manufacturer (lllumina
Inc). All samples were processed as batches in a 96-well plate that consisted of one of
COVIDSeq positive control HT (CPC HT) and one no template control (NTC); these 96
libraries were pooled together in a tube. Pooled samples were quantified using Qubit
2.0 fluorometer (Invitrogen Inc.) and fragment sizes were analyzed in Agilent Fragment
analyzer 5200 (Agilent Inc). The pooled library was further normalized to 4nM
concentration and 25 ul of each normalized pool containing index adapter set A, B, C,
and D were combined in a new microcentrifuge tube to a final concentration of 100pM
and 120pM. For sequencing, pooled libraries were denatured and neutralized with 0.2N
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NaOH and 400mM Tris-HCL (pH-8). Replicas of each 384 sample pools were loaded
onto the S4-flow cell following NovaSeq-XP workflow as per the manufacturer's
instructions (lllumina Inc). Dual indexed single end sequencing with 36bp read length
was carried out on NovaSeq 6000 platform.

Data Processing

The raw data generated in binary base call (BCL) format from NovaSeq 6000 was
processed using DRAGEN COVIDSeq Test Pipeline (lllumina Inc.) on the lllumina
DRAGEN v3.6 Bio-IT platform as per standard protocol. The analysis involves sample
sheet validation, data quality check, FASTQ generation, and SARS-CoV-2 detection
when at least 5 SARS-CoV-2 probes are detected. Further samples with SARS-CoV-2
and at least 90 targets detected were processed for alignment, variant calling and

consensus sequence generation.

For in-depth analysis, we additionally analysed the data using a custom pipeline. This
included demultiplexing the raw data to FASTQ files using bcl2fastq (v2.20) followed by
quality assessment of the FASTQ files using Trimmomatic (v0.39) (Bolger, Lohse and
Usadel, 2014). An average base quality of Q30 and read length cut-off of 30 bps were
used for trimming, apart from the adapter sequences. We followed a recently published
protocol to perform reference-based assembly (Poojary et al., 2019). As per protocol,
the trimmed reads were aligned to the human reference genome (GRCh38 / hg38) and
SARS-CoV-2 Wuhan-Hu-1 reference genome (NC_045512.2) using HISAT2-2.1 (Kim,
Langmead and Salzberg, 2015). The reads mapped to hg38 were further discarded and
the unaligned reads were extracted using samtools (v 1.10) (Li et al., 2009). The
unaligned reads were further mapped to the Wuhan Hu-1 genome and the alignment
statistics were evaluated (Wu et al., 2020). The data was merged for duplicates for the
variant calling and consensus sequence generation. Variant calling was performed
using VarScan (v2.4.4) for samples with genome coverage greater than 99% (Koboladt
et al., 2009). Samtools (v 1.10) (Li et al., 2009), bcftools (v 1.10.2), and seqtk (version
1.3-r114) (Shen et al., 2016) were used to generate the consensus sequence. We have
also evaluated the correlation coefficient with p-value < 0.01 between the duplicates
total reads and genome coverage.
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Annotation of Genetic Variants and Comparison with existing datasets

The variants were systematically annotated using ANNOVAR (Wang, Li and
Hakonarson, 2010). Annotations on genomic loci and functional consequences of the
protein were retrieved from RefSeq. Custom databases were created for annotations on
functional consequences, potential immune epitopes, protein domains and evolutionary
conservation scores. Genomic loci associated with common error prone sites and
diagnostic primer/probe regions were manually curated and were systematically
converted to datatables compatible with ANNOVAR for added annotation options. All
the filtered variants were checked with other viral genomes submitted from India and
worldwide. Genomes with alignment percentage of at least 99 and gap percentage < 1
were filtered as high quality. A total of 1372 high quality genomes from India out of 1888
submitted till July 28, 2020 were included in the analysis. Similarly global genomes
submitted till August 07, 2020 were included, accounting to 29177 high quality genomes
out of a total of 79764 genomes submitted. Details of the samples, originating and
submitting laboratories are listed in Supplementary Table 1a. Mutation information
provided by Nextstrain (Hadfield et al., 2018) till August 08, 2020 was also used for

comparison.

Phylogenetic Analysis

A total of 495 samples that had at least 99% genome coverage were considered for this
analysis, along with the dataset of SARS-CoV-2 genomes from India deposited in
GISAID. The sample names and the name of the originating and submitting institutions
are listed in Supplementary Table 1b. We followed a previously described protocol for
phylogenetic clustering (Jolly and Scaria, 2020 under review). A total of 26 COVIDSeq
genomes having Ns > 5% were removed from the analysis. Genomes from GISAID
having Ns > 5% and ambiguous dates of sample collection were also excluded from the
analysis. The phylogenetic network was built using the analysis protocol for SARS-CoV-
2 genomes provided by Nextstrain (Hadfield et al., 2018). The genome sequences were
aligned using MAFFT to the reference genome and problematic variant positions were

masked (Katoh and Toh, 2008). A raw phylogenetic tree was constructed using IQTREE
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and the raw tree was refined to construct a molecular-clock phylogeny, infer mutations,
and identify clades (Nguyen et al., 2015). The resulting phylogenetic tree was viewed
using Auspice, an interactive visualization web-application provided by Nextstrain.
Lineages were also assigned to the genomes using the Phylogenetic Assignment of
Named Global Outbreak LINeages (PANGOLIN) package (Rambaut et al., 2020). The
phylogenetic distribution of the lineages was visualized and annotated using iToL
(Letunic and Bork, 2016).

Comparison of RT-PCR test with the sequencing based COVIDSeq test

Initially, all the samples underwent RT-PCR based screening for the presence of SARS-
CoV-2 RNA. Out of these 752 samples, 655 (87.1%) samples were RT-PCR positive,
43 (5.7%) were pan-sarbeco, 35 (4.6%) were inconclusive and 19 (2.5%) were
negative. We compared the sample type (e.g. positive, pan-sarbeco, inconclusive and
negative) WGS output and calculated percent of genome covered, sensitivity,
specificity, accuracy, precision and gain of detection rate. The methodology adopted in
this study has been represented in Figure 1.
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Figure 1. Schematic summarising the sampling, library preparation, sequencing and
analysis employed in this study.
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Results

The sample panel consisted of a total of 752 samples. Among these, 655 (87.1%) were
SARS-CoV-2 positive on RT-PCR as per the diagnostic guidelines laid out by the Indian
Council for Medical Research (ICMR). We included 19 samples that were RT-PCR
negative (2.5%) and 43 samples (5.7%) were categorised as pan-sarbeco, since they
were positive for the E gene primers only. A total of 35 samples (4.6%) were considered
inconclusive as the samples had one of the two genes (i.e. ORF1ab gene) tested
positive. Apart from this, the sequencing panel consisted of 8 CPC HT and 8 NTC as
internal process controls making total samples to 768. The quality of the pooled library
was checked by agarose gel electrophoresis and fragment analyzer which showed the
fragment size to be around 300bp. The panel was sequenced in technical duplicates
making it a total of 1536 samples in total. The sequencing was performed for 36 cycles.
The runtime of the sequencer was 11 hours. Sequencing generated a total of 705.64 Gb
of data with 86.90% cluster passing filter and 95.62% above the quality cutoff of QC30.
Sequencing generated on an average of approximately 8.4 million reads for the 1,536
samples.

The COVID-19 detection was performed using the DRAGEN COVIDSeq Test pipeline
that implements SARS-CoV-2 detection criteria of at least 5 SARS-CoV-2 targets to be
considered as positive. Out of the 1,504 samples, DRAGEN COVIDSeq Test pipeline
successfully annotated 1,352 samples. Further 136 samples were classified as
undetected, and 16 failed the internal quality check. This corresponds to 676 unique
samples in which SARS-CoV-2 was detected, 68 unique samples in which SARS-CoV2
was undetected and 8 unique samples which failed the assay. There was no
discordance in the annotations between any of the 752 sample duplicates considered,
suggesting a cent percent concordance in the detection. The total runtime for the
DRAGEN COVIDSeq pipeline was 374 minutes. The stepwise runtime is summarised in
Supplementary Table 2.

All samples were also further considered for in-depth alignment and on average 8.4
million raw reads were generated for 1,536 samples, which were trimmed at base
quality Q30 and read length of 30 bps that lead to an average of 7.9 million reads. The
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trimmed reads were further aligned to the human reference genome (GRCh38/hg38)
and SARS-CoV-2 genome (NC_045512.2). On an average we found 2.4 million human
reads with mapping percentage of 30.73% and 5.04 million SARS-CoV-2 reads with
mapping percentage of 63.89% respectively. The unmapped reads from the human
aligned files were extracted and mapped to the SARS-CoV-2 reference genome
(NC_045512.2) to increase its specificity and 4.4 million such reads (79.34%) mapped
to it with 6322X coverage. Figure 2 summarises the concordance of aligning reads as
well as genome coverage across the duplicates. The data has been summarized in the
Supplementary Table 3.

(A) Total Read Count (B) Genome Coverage
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Figure 2. Concordance in the aligning reads (A) and coverage (B) across the replicate
samples considered in the analysis.

The mean coverage was also plotted for all the samples across 98 PCR amplicons
covering the whole SARS-CoV-2 genome represented in Figure 3. The mean coverage
across the amplicons was ~14256x for the positive samples considered (706 samples
with genome coverage > 5%). We have found 20 amplicons had coverage +2 standard
deviations (SD) of this value, out of which 16 amplicons had coverage < 2 SD and 4
amplicons had > 2 SD.
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Figure 3. Mean coverage for the amplicons across the SARS-CoV-2 genome.

The technical duplicates had a correlation coefficient of 0.99 (p-value < 0.00001) for
reads and 0.984 (p-value < 0.00001) for the coverage.

For further genome assembly and variant calling, the alignment files were merged and
variants were called using VarScan. Only 495 samples that had at least 99% of the
genome covered were considered for variant call.

The analysis identified a total of 1,143 unique variants. 73 genetic variants were found
to be novel in comparison with other Indian and global genome data and were reported
for the first time. The median for the number of variants called were 12. The distribution
of the variants per genome is summarised in Figure 4A. Of the 1,143 unique variants, a
total of 1,104 variants were in the exonic region and 39 were in the downstream or
upstream region. Of the 1,104 exonic variants, 639 variants were non-synonymous
while 452 were synonymous. A total of 13 were found to be stopgain. The variant
annotation data is summarized in Figure 4B.
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Figure 4. Variant number per genome and their annotation (A) Distribution of variants in

the genomes with = 99% coverage (B) Summary of the variant annotations.

Analysis of frequency of the variants across the genomes revealed a total of 89 variants
that had a frequency = 1% and were polymorphic. The variants were also mapped
across the genes. The ORF1ab gene had the largest number of variants. Normalised for
the length of the genes, ORF3a gene had the highest number. Similarly for non-
synonymous variants ORF1ab gene had the highest number of variants and ORF3a

had the highest normalized for the length of the gene.

To get an insight into the genetic epidemiology, the genomes were analyzed for their
phylogenetic distribution. Phylogenetic reconstruction was done for 2193 genomes,
including 469 genomes from this study and samples previously sequenced from Indian
laboratories. The genome Wuhan/WHO01 (EPI_ISL_406798) was used as the reference
for constructing the tree. The resulting phylogenetic tree suggests that out of 469
COVIDSeq genomes, 451 genomes (96%) fell into the A2a clade while 14 genomes
(3%) mapped to the I/A3i clade. A total of 4 genomes mapped to the B4 clade. The
phylogenetic clusters for the genomes are summarised in Figure 5. The distribution of
lineages assigned by PANGOLIN suggests a dominant occurrence of the lineages B.1
(n=286) and B.1.113 (n=134) as compared to other Indian genomes which show a
dominance of B.6 and B.1 lineages. We also found 2 lineages in our dataset, B.1.112
(n=8) and B.1.99 (n=1), which have not been previously reported from India. Figure 6

summarises the phylogenetic distribution of the lineages.
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Figure 5. Phylogenetic map of Indian SARS-CoV-2 genomes. 469 genomes reported
from this study are highlighted (A) and the proportion of the clades and lineages
representing the genomes (B)
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Figure 6. Phylogenetic distribution of lineages as annotated by PANGOLIN

The sensitivity of the assay was benchmarked across 649 RT-PCR as well as
COVIDSeq confirmed dataset. Analysis revealed the assay had a sensitivity of 97.53%
compared to RT-PCR. Since we had only 19 RT-PCR negative samples, we did not
assess the specificity of the assay. The comparison of RT-PCR with COVIDSeq assay
has been summarized in Supplementary 4a. Notwithstanding, the DRAGEN
COVIDSeq protocol identified SARS-CoV-2 in the samples which were negative for RT-
PCR for SARS-CoV-2. Additionally, SARS-CoV-2 was detected by the protocol in 21
samples which were inconclusive and 16 samples which were annotated pan-sarbeco.
We further analysed these samples in great detail to check whether multiple genomic
regions were covered in the sequencing experiments. Figure 7 summarises the
coverage plots across the genome for the 6 samples which were negative in RT-PCR
and detected by COVIDSeq pipeline. The coverage plots for the samples which were
inconclusive and pan-sarbeco in RT-PCR were detected by COVIDSeq assay
represented in Supplementary Figure 1.
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Figure 7. Coverage plot across the genome for samples which were negative on RT-
PCR assays in which the DRAGEN COVIDSeq Pipeline detected SARS-CoV-2.

Consistently, the samples have over 5% of the genomic region covered in the
COVIDSeq protocol suggesting that the protocol could provide for a potentially more
sensitive detection assay compared to RT-PCR.

Since the RNA samples were derived from multiple protocols for RNA extraction, we
could also get an insight into the compatibility of the protocols with the COVIDSeq test.
Of the samples which were SARS-CoV-2 positive on RT-PCR, 182 samples were
processed using QlAamp® Viral RNA Mini kit, 264 samples using Nextractor® NX-48S
(Genolution, Korea), 201 samples on Trueprep® AUTO v2 (Molbio Diagnostics Pvt.
Ltd.) and 8 samples using TRIzol based extraction method. Of these, COVIDSeq
detected SARS-CoV-2 in 168 of 182 samples (92.3%) from the QlAamp® extracted
samples, 263 of 264 samples (99.6%) from the bead based automated method using
Nextractor® NX-48S, 194 of 201 samples (96.5%) from the Truprep extraction method
and 7 of 8 samples (87.5%) from TRIzol based method suggesting compatibility with
different extraction methods. The details of the RT-PCR and COVIDSeq samples are
summarized in Supplementary Table 4b.
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Discussion and Conclusions

A number of high-throughput approaches have recently been employed for the
detection as well as sequencing of SARS-CoV-2, while RT-PCR based approaches are
widely considered as the gold-standard for detection. These include shotgun
approaches (Harilal et al., 2020), capture based (Wen et al., 2020; Xiao et al., 2020) as
well as amplicon based (Baker et al., 2020) approaches followed by Next Generation
Sequencing. Typically the multiplex barcoded library sequencing has been implemented
for sample numbers less than 96. A number of approaches have been suggested to
increase the throughput of sequencing using barcoded libraries (Palmieri et al., 2020;
Schmid-Burgk et al., 2020). There is a paucity of data on higher order multiplex

barcoding and sequencing approaches in clinical samples.

In the present report, we evaluated the COVIDSeq approach for high-throughput
detection of SARS-CoV-2 which uses multiplex PCR followed by barcoded libraries and
sequencing on a next-generation sequencing platform which envisages sequencing

1536 samples per flow cell. We analysed 752 clinical samples in technical duplicates.

Our analysis suggests a high concordance between technical duplicates and a high
concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR
approaches. Our comparative analysis of SARS-CoV-2 detection with RT-PCR and
COVIDSeq test showed that COVIDSeq test outperformed with increased sensitivity,
precision and accuracy. COVIDSeq protocol detected SARS-CoV-2 in samples
previously categorised as inconclusive (21/35), pan-sarbeco (16/43) and negative (6/19)
using RT-PCR assays suggesting a higher sensitivity of the sequencing based assay
compared to RT-PCR. This corresponded to an additional 43/97 samples and a
potential gain of 5.71% of samples of the whole dataset and 44.33% of the samples
which were considered inconclusive (N=97), suggesting that the sequencing approach
could be used as a potential orthogonal approach to confirm cases which are doubitful
or inconclusive in RT-PCR. Notwithstanding the advantage, 16 samples which were
annotated positive in RT-PCR were missed in the COVIDSeq approach. Our analysis

also suggests the protocol is compatible with different approaches for RNA isolation
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suggesting a wider applicability in clinical settings where pooling from different labs

becomes inevitable.

The COVIDSeq approach additionally provided insights into the genetic epidemiology
and evolution of the SARS-CoV-2 isolates. Phylogenetic analysis could be performed
for a significantly large number of genomes which gave insights into the prevalent
lineage/clades of the virus (Langat et al., 2017; Michie et al., 2020; Shakya et al., 2020).
This analysis also reports two lineages B.1.112 and B.1.99 for the first time in India.

Furthermore, a total of 1,143 unique variants were contributed by this analysis to the
global repertoire of genetic variants. As expected, a significant number of variants were
non-synonymous in nature (Kryazhimskiy, Bazykin and Dushoff, 2008; Tang et al.,
2020). The present analysis adds a total of 73 novel variants identified for the first time
in genomes. Apart from the throughput of sample analysis, the COVIDSeq approach is
also remarkable in terms of speed, with a sequencing time of 11 hours and analysis
timeline of 6 hours. Given that the NovaSeq 6000 sequencer used in the present study
can handle two S4 flow cells in parallel, this could be potentially scaled to a throughput
of 1536x2 samples that can be handled in parallel.

In conclusion, our analysis suggests that COVIDSeq is a high-throughput sequencing
based approach which is sensitive for detection of SARS-CoV-2. In addition, COVIDSeq
has an additional advantage of enabling genetic epidemiology of SARS-CoV-2.
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Supplementary Data

Supplementary Table 1a: GISAID acknowledgement table for global genomes used in
the study.

Supplementary Table 1b: GISAID acknowledgement table for Indian genomes used in
the study.

Supplementary Table 2: DRAGEN COVIDSeq Test Pipeline time summary for each

task.

Supplementary Table 3: Data summary of the COVIDSeq, RT-PCR and custom
pipeline analysis. NA- Not Applicable.

Supplementary Table 4a: Summary of the COVIDSeq assay comparison with RT-
PCR.

Supplementary Table 4b: Comparison of different RNA extraction methods and
detection of the SARS-CoV-2 with RT-PCR and COVIDSeq test.

Supplementary Figure 1: Coverage plots for 37 samples that were inconclusive and
pan-sarbeco by RT-PCR and detected positive for SARS-CoV-2 by sequencing.
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