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Abstract 

The rapid emergence of coronavirus disease 2019 (COVID-19) as a global pandemic 

affecting millions of individuals globally has necessitated sensitive and high-throughput 

approaches for the diagnosis, surveillance and for determining the genetic epidemiology 

of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves 

multiplex-PCR, barcoding and sequencing of samples for high-throughput detection and 

deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752 

clinical samples in duplicates, amounting to a total of 1536 samples which could be 

sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis 

suggests a high concordance between technical duplicates and a high concordance of 

detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An 

in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-

CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could 

detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive 

and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a 

confirmatory test. The sequencing approach also enabled insights into the evolution and 

genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a 

total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in 

India. This study also revealed 1,143 unique single nucleotide variants and added a 

total of 73 novel variants identified for the first time. To the best of our knowledge, this is 

the first report of the COVIDSeq approach for detection and genetic epidemiology of 

SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high 

sensitivity assay for detection of SARS-CoV-2, with an additional advantage of enabling 

genetic epidemiology of SARS-CoV-2.  
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Introduction 

Coronavirus Disease 2019 (COVID-19) has emerged as a global epidemic affecting 

millions of individuals globally and imposes a huge burden on the socio-economic 

welfare and healthcare systems of nations. At present the need for assays for rapid 

detection for diagnosis and surveillance, understanding the genetic epidemiology and 

evolution of the virus would be central for managing the spread of the epidemic (J. Lu et 

al., 2020; Meredith et al., 2020). The advantage of quick sequencing of the severe acute 

respiratory syndrome coronavirus 2  (SARS-CoV-2) genome led to the development of 

polymerase chain reaction (PCR) based diagnostic assays that leveraged rapid 

identification of infected individuals to get fast medical support or quantization essential 

to both patient management and incidence tracking (Wu et al., 2020). Identification of 

early imported cases in France helped to prevent immediate secondary transmission 

(Bernard Stoecklin et al., 2020). Singapore9s enhanced surveillance and containment 

strategy also led to the suppressed expansion of SARS-CoV-2 (de Lusignan et al., 

2020). On similar grounds, The Royal College of General Practitioners (RCGP) 

Research and Surveillance Centre (RSC) have rapidly expanded their national 

surveillance system to combat SARS-CoV-2 (Ng et al., 2020). Coupled with a highly 

accurate and high-throughput method of detection, this approach will become more 

effective in dealing with COVID-19. 

 
A number of approaches have been widely used for the detection of SARS-CoV-2 from 

clinical samples. Some of these approaches have also been adapted to enable higher 

throughputs. These methods are majorly subdivided into antigen-antibody based 

serological assays, nucleic acid based amplification assays and sequencing based 

assays. While serological assays are rapid detection tests, they have low sensitivity and 

specificity (Döhla et al., 2020). Nucleic acid based amplification such as Real-Time PCR 

(RT-PCR) has been the gold standard in detection and diagnosis, but a negative RT-

PCR does not eliminate the possibility of infection in clinically suspected cases (Wang 

et al., 2020). Such results should be carefully interpreted to avoid false negative 

reporting (Kucirka et al., 2020). Moreover, these tests have been developed for 

diagnostic purposes and do not provide much information on the nature of the virus, its 
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genetic information and evolutionary pattern. In this regard, recently developed Next 

generation sequencing based methods are potentially a good alternative for detection of 

SARS-CoV-2 (8First NGS-based COVID-19 diagnostic9, 2020).  
 
The rapid advancement of Next generation sequencing technology and analysis 

methods has enabled understanding the genetic makeup of SARS-CoV-2 and 

interpreting its evolutionary epidemiology. Viral RNA sequencing from the initial cluster 

of cases deciphered the full genome sequence of SARS-CoV-2 (Zhu et al., 2020). This 

led to other sequencing based studies for detailed genomic characterization of the virus 

(R. Lu et al., 2020). Combined genetic and epidemiological studies have been 

suggested to provide insights into spread of the infection, evolutionary patterns and 

genetic diversity of the virus (J. Lu et al., 2020; Meredith et al., 2020), for further 

assisting in effective management and preventive measures. Genomic surveillance 

coupled with agent-based modelling in Australia has been observed as an excellent 

approach to investigate and regulate COVID-19 transmission (Rockett et al., 2020). 

Towards these efforts, several openly available databases have also been developed 

such as the Global Initiative on Sharing All Influenza Data (GISAID) that facilitates rapid 

and open sharing of SARS-CoV-2 genome sequences (Shu and McCauley, 2017). 

Thus, along with detection, sequencing based methods may also provide an added 

advantage of understanding the genetic epidemiology of the outbreak. 

 
In the present study, we describe the application of the COVIDSeq protocol recently 

approved by the US FDA for clinical use. This protocol envisages high-throughput 

detection and genetic epidemiology of SARS-CoV-2 isolates using a multiplex PCR 

amplicon based enrichment followed by barcoding with a throughput of 1536 samples in 

a single sequencing run using NovaSeq S4 flow cell. Our analysis suggests that 

COVIDSeq protocol could be a sensitive approach for detection with additional insights 

offered through genetic epidemiology with respect to the genetic lineages. To the best 

of our knowledge this is the first real-life evaluation of COVIDSeq protocol. 
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Materials and Methods 

Patients and Samples  

The study was approved by the Institutional Human Ethics Committee (IHEC No. Dated 

CSIR-IGIB/IHEC/2020-21/01). Samples from nasal, nasopharyngeal, and 

oropharyngeal swabs were obtained according to the standard protocol and collected in 

3 ml sterile viral transport medium (VTM) tube or 1ml of TRIzol reagent (Invitrogen). All 

the samples were transported to the laboratory at a cold temperature (2-8°C) within 72 

hours post collection, and stored at -80°C till further used. 

  
RNA Isolation 

RNA extraction was carried out in a pre-amplification environment with Biosafety level 2 

(BSL-2) facility. RNA isolation was done using four different methods. For manual RNA 

extraction, a total of 140 μl of the VTM medium was used; prior to isolation, the VTM 

samples were subjected to heat inactivation at 50°C for 30 minutes. After heat 

inactivation, the RNA was extracted from 140 μl of VTM samples using QIAamp® Viral 

RNA Mini kit (QIAGEN) as per the manufacturer's instructions. For automated magnetic 

bead based extraction method, 200 μl of VTM was transferred to a 96-well deep well 

cartridge plate supplied with the kit (VN143), and extraction was performed on 

Nextractor® NX-48S instrument (Genolution Inc.) as instructed by the manufacturer. 

After bead based capture and washing process the RNA sample was eluted in 40 μl of 

the elution buffer. For RNA isolation using Trueprep AUTO v2 universal cartridge based 

sample prep device, (Molbio Diagnostics Pvt. Ltd.) 500 μl of the VTM was added to the 

2.5 ml of lysis buffer provided with the kit. After pipette mixing, 3 ml of the mixture was 

dispensed in the provided cartridge; the final RNA was eluted in 50 μl of elution buffer. 

For RNA from TRIzol reagent, the tubes containing swabs were vortexed briefly. The 

overall content of the TRIzol tube was transferred into 1.5 ml tube, followed by the 

addition of 200 μl of chloroform and mixed by inverting the tubes several times. After 5 

minutes of incubation, the 1.5 ml tubes were centrifuged for 15 minutes at 12,000 RPM 

at 4°C. The upper clear aqueous layer which contains the RNA was transferred to new 

tubes. An equal amount of isopropanol was added to the tubes containing the RNA. 

Contents of the tubes were mixed by inverting the tubes several times and tubes were 
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incubated for 10 minutes on ice followed by centrifugation for 10 minutes at 12,000 

RPM at 4°C. The supernatant was discarded and the RNA pellet was dissolved in 30 μl 

of RNase-free water after 2 ethanol washes. TURBO DNase (Ambion, Applied 

Biosystems) treatment was given to the isolated RNA to remove genomic DNA 

contamination in the samples followed by RNA purification using the phenol/chloroform 

method. 

 
Real Time PCR for SARS-CoV-2 

To detect SARS-CoV-2 viral infection, one-step Real-Time PCR assay was performed 

using STANDARD M nCoV Real-Time detection kit (SD Biosensor, Korea), targeting the 

nCoV2 specific ORF1ab (RdRp) and pan-sarbeco specific E genes on LightCycler® 480 

System (Roche) and ABI 7500 Fast DX (Applied Biosystems) as per the manufacturer9s 

instructions. 

 
Library preparation and sequencing 

The libraries were prepared using Illumina COVIDSeq protocol (Illumina Inc, USA). The 

first strand synthesis was carried out in Biosafety level 2 (BSL-2) plus environment 

following standard protocols. The synthesized cDNA was amplified using a multiplex 

polymerase chain reaction (PCR) protocol, producing 98 amplicons across the SARS-

CoV-2 genome (https://artic.network/). The primer pool additionally had primers 

targeting human RNA, producing an additional 11 amplicons. The PCR amplified 

product was later processed for tagmentation and adapter ligation using IDT for Illumina 

Nextera UD Indexes Set A, B, C, D (384 indexes, 384 samples). Further enrichment 

and cleanup was performed as per protocols provided by the manufacturer (Illumina 

Inc). All samples were processed as batches in a 96-well plate that consisted of one of 

COVIDSeq positive control HT (CPC HT) and one no template control (NTC); these 96 

libraries were pooled together in a tube. Pooled samples were quantified using Qubit 

2.0 fluorometer (Invitrogen Inc.) and fragment sizes were analyzed in Agilent Fragment 

analyzer 5200 (Agilent Inc). The pooled library was further normalized to 4nM 

concentration and 25 μl of each normalized pool containing index adapter set A, B, C, 

and D were combined in a new microcentrifuge tube to a final concentration of 100pM 

and 120pM. For sequencing, pooled libraries were denatured and neutralized with 0.2N 
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NaOH and 400mM Tris-HCL (pH-8). Replicas of each 384 sample pools were loaded 

onto the S4-flow cell following NovaSeq-XP workflow as per the manufacturer's 

instructions (Illumina Inc). Dual indexed single end sequencing with 36bp read length 

was carried out on NovaSeq 6000 platform. 

 
Data Processing 

The raw data generated in binary base call (BCL) format from NovaSeq 6000 was 

processed using DRAGEN COVIDSeq Test Pipeline (Illumina Inc.) on the Illumina 

DRAGEN v3.6 Bio-IT platform as per standard protocol. The analysis involves sample 

sheet validation, data quality check, FASTQ generation, and SARS-CoV-2 detection 

when at least 5 SARS-CoV-2 probes are detected. Further samples with SARS-CoV-2 

and at least 90 targets detected were processed for alignment, variant calling and 

consensus sequence generation. 

 
For in-depth analysis, we additionally analysed the data using a custom pipeline. This 

included demultiplexing the raw data to FASTQ files using bcl2fastq (v2.20) followed by 

quality assessment of the FASTQ files using Trimmomatic (v0.39) (Bolger, Lohse and 

Usadel, 2014). An average base quality of Q30 and read length cut-off of 30 bps were 

used for trimming, apart from the adapter sequences. We followed a recently published 

protocol to perform reference-based assembly (Poojary et al., 2019). As per protocol, 

the trimmed reads were aligned to the human reference genome (GRCh38 / hg38) and 

SARS-CoV-2 Wuhan-Hu-1 reference genome (NC_045512.2) using HISAT2-2.1 (Kim, 

Langmead and Salzberg, 2015). The reads mapped to hg38 were further discarded and 

the unaligned reads were extracted using samtools (v 1.10) (Li et al., 2009). The 

unaligned reads were further mapped to the Wuhan Hu-1 genome and the alignment 

statistics were evaluated (Wu et al., 2020). The data was merged for duplicates for the 

variant calling and consensus sequence generation. Variant calling was performed 

using VarScan (v2.4.4) for samples with genome coverage greater than 99% (Koboldt 

et al., 2009). Samtools (v 1.10) (Li et al., 2009), bcftools (v 1.10.2), and seqtk (version 

1.3-r114) (Shen et al., 2016) were used to generate the consensus sequence. We have 

also evaluated the correlation coefficient with p-value < 0.01 between the duplicates 

total reads and genome coverage.  
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Annotation of Genetic Variants and Comparison with existing datasets 

The variants were systematically annotated using ANNOVAR (Wang, Li and 

Hakonarson, 2010). Annotations on genomic loci and functional consequences of the 

protein were retrieved from RefSeq. Custom databases were created for annotations on 

functional consequences, potential immune epitopes, protein domains and evolutionary 

conservation scores. Genomic loci associated with common error prone sites and 

diagnostic primer/probe regions were manually curated and were systematically 

converted to datatables compatible with ANNOVAR for added annotation options. All 

the filtered variants were checked with other viral genomes submitted from India and 

worldwide. Genomes with alignment percentage of at least 99 and gap percentage < 1 

were filtered as high quality. A total of 1372 high quality genomes from India out of 1888 

submitted till July 28, 2020 were included in the analysis. Similarly global genomes 

submitted till August 07, 2020 were included, accounting to 29177 high quality genomes 

out of a total of 79764 genomes submitted. Details of the samples, originating and 

submitting laboratories are listed in Supplementary Table 1a. Mutation information 

provided by Nextstrain (Hadfield et al., 2018) till August 08, 2020 was also used for 

comparison. 

 
Phylogenetic Analysis  

A total of 495 samples that had at least 99% genome coverage were considered for this 

analysis, along with the dataset of SARS-CoV-2 genomes from India deposited in 

GISAID. The sample names and the name of the originating and submitting institutions 

are listed in Supplementary Table 1b. We followed a previously described protocol for 

phylogenetic clustering (Jolly and Scaria, 2020 under review). A total of 26 COVIDSeq 

genomes having Ns > 5% were removed from the analysis. Genomes from GISAID 

having Ns > 5% and ambiguous dates of sample collection were also excluded from the 

analysis. The phylogenetic network was built using the analysis protocol for SARS-CoV-

2 genomes provided by Nextstrain (Hadfield et al., 2018). The genome sequences were 

aligned using MAFFT to the reference genome and problematic variant positions were 

masked (Katoh and Toh, 2008). A raw phylogenetic tree was constructed using IQTREE 
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and the raw tree was refined to construct a molecular-clock phylogeny, infer mutations, 

and identify clades (Nguyen et al., 2015). The resulting phylogenetic tree was viewed 

using Auspice, an interactive visualization web-application provided by Nextstrain. 

Lineages were also assigned to the genomes using the Phylogenetic Assignment of 

Named Global Outbreak LINeages (PANGOLIN) package (Rambaut et al., 2020). The 

phylogenetic distribution of the lineages was visualized and annotated using iToL 

(Letunic and Bork, 2016). 

 
Comparison of RT-PCR test with the sequencing based COVIDSeq test 

Initially, all the samples underwent RT-PCR based screening for the presence of SARS-

CoV-2 RNA. Out of these 752 samples, 655 (87.1%) samples were RT-PCR positive, 

43 (5.7%) were pan-sarbeco, 35 (4.6%) were inconclusive and 19 (2.5%) were 

negative. We compared the sample type (e.g. positive, pan-sarbeco, inconclusive and 

negative) WGS output and calculated percent of genome covered, sensitivity, 

specificity, accuracy, precision and gain of detection rate. The methodology adopted in 

this study has been represented in Figure 1. 
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Figure 1. Schematic summarising the sampling, library preparation, sequencing and 

analysis employed in this study. 
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Results 

The sample panel consisted of a total of 752 samples. Among these, 655 (87.1%) were 

SARS-CoV-2 positive on RT-PCR as per the diagnostic guidelines laid out by the Indian 

Council for Medical Research (ICMR). We included 19 samples that were RT-PCR 

negative (2.5%) and 43 samples (5.7%) were categorised as pan-sarbeco, since they 

were positive for the E gene primers only. A total of 35 samples (4.6%) were considered 

inconclusive as the samples had one of the two genes (i.e. ORF1ab gene) tested 

positive. Apart from this, the sequencing panel consisted of 8 CPC HT and 8 NTC as 

internal process controls making total samples to 768. The quality of the pooled library 

was checked by agarose gel electrophoresis and fragment analyzer which showed the 

fragment size to be around 300bp. The panel was sequenced in technical duplicates 

making it a total of 1536 samples in total. The sequencing was performed for 36 cycles. 

The runtime of the sequencer was 11 hours. Sequencing generated a total of 705.64 Gb 

of data with 86.90% cluster passing filter and 95.62% above the quality cutoff of QC30. 

Sequencing generated on an average of approximately 8.4 million reads for the 1,536 

samples. 

 

The COVID-19 detection was performed using the DRAGEN COVIDSeq Test pipeline 

that implements SARS-CoV-2 detection criteria of at least 5 SARS-CoV-2 targets to be 

considered as positive. Out of the 1,504 samples, DRAGEN COVIDSeq Test pipeline 

successfully annotated 1,352 samples. Further 136 samples were classified as 

undetected, and 16 failed the internal quality check. This corresponds to 676 unique 

samples in which SARS-CoV-2 was detected, 68 unique samples in which SARS-CoV2 

was undetected and 8 unique samples which failed the assay. There was no 

discordance in the annotations between any of the 752 sample duplicates considered, 

suggesting a cent percent concordance in the detection. The total runtime for the 

DRAGEN COVIDSeq pipeline was 374 minutes. The stepwise runtime is summarised in 

Supplementary Table 2. 

 
All samples were also further considered for in-depth alignment and on average 8.4 

million raw reads were generated for 1,536 samples, which were trimmed at base 

quality Q30 and read length of 30 bps that lead to an average of 7.9 million reads. The 
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trimmed reads were further aligned to the human reference genome (GRCh38/hg38) 

and SARS-CoV-2 genome (NC_045512.2). On an average we found 2.4 million human 

reads with mapping percentage of 30.73% and 5.04 million SARS-CoV-2 reads with 

mapping percentage of 63.89% respectively. The unmapped reads from the human 

aligned files were extracted and mapped to the SARS-CoV-2 reference genome 

(NC_045512.2) to increase its specificity and 4.4 million such reads (79.34%) mapped 

to it with 6322X coverage. Figure 2 summarises the concordance of aligning reads as 

well as genome coverage across the duplicates. The data has been summarized in the 

Supplementary Table 3. 

 

 
 
Figure 2. Concordance in the aligning reads (A) and coverage (B) across the replicate 

samples considered in the analysis. 

 
The mean coverage was also plotted for all the samples across 98 PCR amplicons 

covering the whole SARS-CoV-2 genome represented in Figure 3. The mean coverage 

across the amplicons was ~14256x for the positive samples considered (706 samples 

with genome coverage > 5%). We have found 20 amplicons had coverage ±2 standard 

deviations (SD) of this value, out of which 16 amplicons had coverage < 2 SD and 4 

amplicons had > 2 SD. 
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Figure 3. Mean coverage for the amplicons across the SARS-CoV-2 genome. 
 
The technical duplicates had a correlation coefficient of 0.99 (p-value < 0.00001) for 

reads and 0.984 (p-value < 0.00001) for the coverage.  

 

For further genome assembly and variant calling, the alignment files were merged and 

variants were called using VarScan. Only 495 samples that had at least 99% of the 

genome covered were considered for variant call. 

 

The analysis identified a total of 1,143 unique variants. 73 genetic variants were found 

to be novel in comparison with other Indian and global genome data and were reported 

for the first time. The median for the number of variants called were 12. The distribution 

of the variants per genome is summarised in Figure 4A. Of the 1,143 unique variants, a 

total of 1,104 variants were in the exonic region and 39 were in the downstream or 

upstream region. Of the 1,104 exonic variants, 639 variants were non-synonymous 

while 452 were synonymous. A total of 13 were found to be stopgain. The variant 

annotation data is summarized in Figure 4B. 
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Figure 4. Variant number per genome and their annotation (A) Distribution of variants in 

the genomes with ≥ 99% coverage (B) Summary of the variant annotations. 

 
Analysis of frequency of the variants across the genomes revealed a total of 89 variants 

that had a frequency ≥ 1% and were polymorphic. The variants were also mapped 

across the genes. The ORF1ab gene had the largest number of variants. Normalised for 

the length of the genes, ORF3a gene had the highest number. Similarly for non-

synonymous variants ORF1ab gene had the highest number of variants and ORF3a 

had the highest normalized for the length of the gene. 

 
To get an insight into the genetic epidemiology, the genomes were analyzed for their 

phylogenetic distribution. Phylogenetic reconstruction was done for 2193 genomes, 

including 469 genomes from this study and samples previously sequenced from Indian 

laboratories. The genome Wuhan/WH01 (EPI_ISL_406798) was used as the reference 

for constructing the tree. The resulting phylogenetic tree suggests that out of 469 

COVIDSeq genomes, 451 genomes (96%) fell into the A2a clade while 14 genomes 

(3%) mapped to the I/A3i clade. A total of 4 genomes mapped to the B4 clade. The 

phylogenetic clusters for the genomes are summarised in Figure 5. The distribution of 

lineages assigned by PANGOLIN suggests a dominant occurrence of the lineages B.1 

(n=286) and B.1.113 (n=134) as compared to other Indian genomes which show a 

dominance of B.6 and B.1 lineages. We also found 2 lineages in our dataset, B.1.112 

(n=8) and B.1.99 (n=1), which have not been previously reported from India. Figure 6 

summarises the phylogenetic distribution of the lineages. 
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Figure 5. Phylogenetic map of Indian SARS-CoV-2 genomes. 469 genomes reported 

from this study are highlighted (A) and the proportion of the clades and lineages 

representing the genomes (B) 
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Figure 6. Phylogenetic distribution of lineages as annotated by PANGOLIN 
 
The sensitivity of the assay was benchmarked across 649 RT-PCR as well as 

COVIDSeq confirmed dataset. Analysis revealed the assay had a sensitivity of 97.53% 

compared to RT-PCR. Since we had only 19 RT-PCR negative samples, we did not 

assess the specificity of the assay. The comparison of RT-PCR with COVIDSeq assay 

has been summarized in Supplementary 4a. Notwithstanding, the DRAGEN 

COVIDSeq protocol identified SARS-CoV-2 in the samples which were negative for RT-

PCR for SARS-CoV-2. Additionally, SARS-CoV-2 was detected by the protocol in 21 

samples which were inconclusive and 16 samples which were annotated pan-sarbeco. 

We further analysed these samples in great detail to check whether multiple genomic 

regions were covered in the sequencing experiments. Figure 7 summarises the 

coverage plots across the genome for the 6 samples which were negative in RT-PCR 

and detected by COVIDSeq pipeline. The coverage plots for the samples which were 

inconclusive and pan-sarbeco in RT-PCR were detected by COVIDSeq assay 

represented in Supplementary Figure 1. 
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Figure 7. Coverage plot across the genome for samples which were negative on RT-

PCR assays in which the DRAGEN COVIDSeq Pipeline detected SARS-CoV-2. 

 
Consistently, the samples have over 5% of the genomic region covered in the 

COVIDSeq protocol suggesting that the protocol could provide for a potentially more 

sensitive detection assay compared to RT-PCR. 

 

Since the RNA samples were derived from multiple protocols for RNA extraction, we 

could also get an insight into the compatibility of the protocols with the COVIDSeq test. 

Of the samples which were SARS-CoV-2 positive on RT-PCR, 182 samples were 

processed using QIAamp® Viral RNA Mini kit, 264 samples using Nextractor® NX-48S 

(Genolution, Korea), 201 samples on Trueprep® AUTO v2 (Molbio Diagnostics Pvt. 

Ltd.) and 8 samples using TRIzol based extraction method. Of these, COVIDSeq 

detected SARS-CoV-2 in 168 of 182 samples (92.3%) from the QIAamp® extracted 

samples, 263 of 264 samples (99.6%) from the bead based automated method using 

Nextractor® NX-48S, 194 of 201 samples (96.5%) from the Truprep extraction method 

and 7 of 8 samples (87.5%) from TRIzol based method suggesting compatibility with 

different extraction methods. The details of the RT-PCR and COVIDSeq samples are 

summarized in Supplementary Table 4b. 
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Discussion and Conclusions 

A number of high-throughput approaches have recently been employed for the 

detection as well as sequencing of SARS-CoV-2, while RT-PCR based approaches are 

widely considered as the gold-standard for detection. These include shotgun 

approaches (Harilal et al., 2020), capture based (Wen et al., 2020; Xiao et al., 2020) as 

well as amplicon based (Baker et al., 2020) approaches followed by Next Generation 

Sequencing. Typically the multiplex barcoded library sequencing has been implemented 

for sample numbers less than 96. A number of approaches have been suggested to 

increase the throughput of sequencing using barcoded libraries (Palmieri et al., 2020; 

Schmid-Burgk et al., 2020). There is a paucity of data on higher order multiplex 

barcoding and sequencing approaches in clinical samples.  

 
In the present report, we evaluated the COVIDSeq approach for high-throughput 

detection of SARS-CoV-2 which uses multiplex PCR followed by barcoded libraries and 

sequencing on a next-generation sequencing platform which envisages sequencing 

1536 samples per flow cell. We analysed 752 clinical samples in technical duplicates. 

 
Our analysis suggests a high concordance between technical duplicates and a high 

concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR 

approaches. Our comparative analysis of SARS-CoV-2 detection with RT-PCR and 

COVIDSeq test showed that COVIDSeq test outperformed with increased sensitivity, 

precision and accuracy. COVIDSeq protocol detected SARS-CoV-2 in samples 

previously categorised as inconclusive (21/35), pan-sarbeco (16/43) and negative (6/19) 

using RT-PCR assays suggesting a higher sensitivity of the sequencing based assay 

compared to RT-PCR. This corresponded to an additional 43/97 samples and a 

potential gain of 5.71% of samples of the whole dataset and 44.33% of the samples 

which were considered inconclusive (N=97), suggesting that the sequencing approach 

could be used as a potential orthogonal approach to confirm cases which are doubtful 

or inconclusive in RT-PCR. Notwithstanding the advantage, 16 samples which were 

annotated positive in RT-PCR were missed in the COVIDSeq approach. Our analysis 

also suggests the protocol is compatible with different approaches for RNA isolation 
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suggesting a wider applicability in clinical settings where pooling from different labs 

becomes inevitable. 

 
The COVIDSeq approach additionally provided insights into the genetic epidemiology 

and evolution of the SARS-CoV-2 isolates. Phylogenetic analysis could be performed 

for a significantly large number of genomes which gave insights into the prevalent 

lineage/clades of the virus (Langat et al., 2017; Michie et al., 2020; Shakya et al., 2020). 

This analysis also reports two lineages B.1.112 and B.1.99 for the first time in India.  

 
Furthermore, a total of 1,143 unique variants were contributed by this analysis to the 

global repertoire of genetic variants. As expected, a significant number of variants were 

non-synonymous in nature (Kryazhimskiy, Bazykin and Dushoff, 2008; Tang et al., 

2020). The present analysis adds a total of 73 novel variants identified for the first time 

in genomes. Apart from the throughput of sample analysis, the COVIDSeq approach is 

also remarkable in terms of speed, with a sequencing time of 11 hours and analysis 

timeline of 6 hours. Given that the NovaSeq 6000 sequencer used in the present study 

can handle two S4 flow cells in parallel, this could be potentially scaled to a throughput 

of 1536x2 samples that can be handled in parallel. 

 
In conclusion, our analysis suggests that COVIDSeq is a high-throughput sequencing 

based approach which is sensitive for detection of SARS-CoV-2. In addition, COVIDSeq 

has an additional advantage of enabling genetic epidemiology of SARS-CoV-2.  
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Supplementary Data 

 

Supplementary Table 1a: GISAID acknowledgement table for global genomes used in 

the study. 

 

Supplementary Table 1b: GISAID acknowledgement table for Indian genomes used in 

the study. 

 

Supplementary Table 2: DRAGEN COVIDSeq Test Pipeline time summary for each 

task. 

 

Supplementary Table 3: Data summary of the COVIDSeq, RT-PCR and custom 

pipeline analysis. NA- Not Applicable. 

  

Supplementary Table 4a: Summary of the COVIDSeq assay comparison with RT-

PCR. 

 

Supplementary Table 4b: Comparison of different RNA extraction methods and 

detection of the SARS-CoV-2 with RT-PCR and COVIDSeq test. 

 

Supplementary Figure 1: Coverage plots for 37 samples that were inconclusive and 

pan-sarbeco by RT-PCR and detected positive for SARS-CoV-2 by sequencing. 
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