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Abstract (limit 150-250) - 150

Transcriptomic studies of bulk neural tissue homogenates from persons with
schizophrenia and controls have identified differentially expressed genes in multiple brain
regions. However, the brain’s heterogeneous nature prevents identification of relevant cell
types. This study analyzed single-nuclei transcriptomics of ~275,000 nuclei from frozen human
postmortem dorsolateral prefrontal cortex samples from males with schizophrenia (n = 12) and
controls (n = 14). 4,766 differential expression events were identified in 2,994 unique genes in
16 of 20 transcriptomically-distinct cell populations. ~96% of differentially expressed genes
occurred in five neuronal cell types, and differentially expressed genes were enriched for genes
associated with schizophrenia and bipolar GWAS loci. Downstream analyses identified cluster-
specific enriched gene ontologies, KEGG pathways, and canonical pathways. Additionally,
microRNAs and transcription factors with overrepresented neuronal cell type-specific targets
were identified. These results expand our knowledge of disrupted gene expression in specific

cell types and permit new insight into the pathophysiology of schizophrenia.

Introduction (limit 1500; article excluding abstract 3500) - 478

Schizophrenia is a chronic psychotic iliness affecting ~1% of the population worldwide.
Transcriptomic studies utilizing bulk homogenates of frozen human postmortem brain tissue
from persons with schizophrenia and controls have identified differentially expressed genes
(DEGs) in the amygdala’, hippocampus? 3, superior temporal gyrus*, anterior cingulate cortex®
6, and dorsolateral prefrontal cortex (dIPFC)” 8, with the largest study identifying ~4,800 DEGs
associated with schizophrenia in the dIPFC®. However, the heterogenous cellular composition of
the bulk homogenates prevents identification of the specific cell types in which relevant genes
are differentially regulated and expressed. Two studies used laser capture microdissection
followed with transcriptomic analysis by microarray to elucidate the effect of schizophrenia on
the transcriptome of individual neural cell types. Examination of layer 3 and 5 pyramidal neurons
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in the dIPFC identified ~1,400 DEGs'? in the context of schizophrenia, whereas a study of
parvalbumin positive (PVALB+) interneurons in the dIPFC identified ~900 DEGs''. A substantial
portion of the DEGs identified in these studies were not detected in previous examinations of
bulk homogenates of the same brain regions, suggesting that examination of transcriptomic
changes associated with schizophrenia at the level of neural cellular subpopulations is

necessary to fully appreciate the neuropathophysiology of the disorder'® ',

Laser capture microdissection studies of human postmortem brain tissue are limited by
their ability to examine a small number of cell types in a targeted fashion, relatively low
throughput, and the pooling of cells, which loses the variability of the transcriptome between
cells and may collapse transcriptomically-distinct subpopulations. Recent advances in single
nuclei RNA sequencing (snRNAseq) allow for simultaneous transcriptomic profiling of
thousands of nuclei, across all neural cell types in frozen human postmortem brain homogenate,
with simultaneous indexing of transcripts at the sample, nucleus, and individual transcript level
(unique molecular identifier, UMI). The utility of this approach for human postmortem study is
supported by evidence suggesting that single cells and their nuclei have similar transcriptomes,
with ~98% of transcripts having the same relative levels'?. snRNAseq has identified cell type-
specific transcriptomic changes in human postmortem brain samples from Alzheimer’s

disease’®, autism'#, multiple sclerosis'®, and major depressive disorder®.

In this study, we performed snRNAseq of ~275,000 nuclei from dIPFC of individuals with
schizophrenia (n = 12) and controls (n = 14). We chose to examine the dIPFC due to the
evidence of dIPFC dysfunction in schizophrenia'”. We identified 4,766 DEGs in 16 of 20
transcriptomically-distinct cell populations. ~96% of the DEGs occurred in five neuronal cell
types. The DEGs were enriched for genes associated with schizophrenia GWAS loci and

overrepresented in gene ontologies and KEGG pathways previously associated with the
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pathophysiology of schizophrenia. Canonical pathway analysis identified cluster-specific
alterations in metabolic and cell signaling pathways, and microRNA, transcription factor, and
upstream regulator analyses identified putative regulators of cluster-specific DEG. Taken
together, the results of this study help elucidate the cell type-specific transcriptomic and

neurobiological changes that underlie schizophrenia.

Materials and Methods - 1036

Brain Samples

This study was approved by the University of Pennsylvania Institutional Review Board.
Fresh frozen postmortem dIPFC tissue from male individuals with schizophrenia (n = 14) and
controls (n =14) were obtained from the Douglas-Bell Canada Brain Bank at McGill University,
the Human Brain and Spinal Fluid Resource Center at UCLA and the New South Wales Brain
Tissue Resource Center. Schizophrenia cases were individuals who were clinically diagnosed
with schizophrenia using DSM-1V criteria and controls were individuals without history of
psychiatric disease who died of non-central nervous system-related reasons. All reported age,
sex, ethnicity, postmortem interval, and prefrontal cortex pH data are based on associated
medical records (Supplementary Table 1). Gray matter samples from the dIPFC were dissected

by trained neuroanatomists at their respective brain banks.

10x Library Preparation, Sequencing, and Quality Control

Nuclei were isolated from frozen postmortem dIPFC (~30mg) using a modified version of
a previously described protocol'® (see Supplemental Methods). Microfluidics capture and
sequencing library preparation was performed with the 10x Genomics Chromium Single Cell 3’

GEM, Library and Gel Bead Kit v3.0 at the Children’s Hospital of Philadelphia Center for Applied
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99  Genomics per manufacturer’s instructions. To achieve a target capture of ~10,000 nuclei per
100 sample, ~20,000 nuclei per sample were loaded. Libraries were sequenced in pools of eight on
101  lllumina NovaSeq 6000 S2 flow cells. Pools contained schizophrenia and control samples, to
102  minimize any batch effects. CellRanger version 3.1 was used to align reads to the hg38 pre-
103  mRNA transcriptome. Filtered read count matrices for all subjects and nuclei were merged into
104  asingle Seurat object for subsequent quality control and clustering using Seurat version 3.1.
105  For initial quality control assessment, the distributions of the numbers of genes and UMIs were
106  determined. Nuclei with the lowest 1% of genes (< 470 genes) were removed, as they were
107  unlikely to be informative in downstream analyses. Likewise, nuclei in the top 1% of UMI count
108 (UMI > 60,335) were removed to reduce the presence of multiplets in downstream analyses.
109  Finally, nuclei with >10% of reads from mitochondrial genes were excluded and mitochondrial

110  transcripts were removed from the dataset'®.
111

112  Calculation of PCs, Clustering, and Cell Type Annotation

113 Transcript counts were normalized to 10,000 counts per subject and scaled. Variably
114  expressed genes were identified with the FindVariableFeatures function in Seurat using the

115  mean.var.plot selection method and analyzing only genes with mean scaled expression

116  between 0.003 and 2. These parameters identified 2,486 highly variable genes, which were

117  used to generate principal components (PCs). Clustering was performed in Seurat using the first
118 50 PCs. Initial clustering was performed at a resolution of 0.25. Two schizophrenia samples did
119  not cluster with the other 26 samples and were removed as outliers. The dataset was

120  reclustered and two cell populations with low mean UMIs were removed. Six clusters with

121 >90% of nuclei coming from <2 subjects were also removed, with remaining clusters having

122 <30% of nuclei coming from <2 subjects. Major cell types and neuronal subtypes were identified

123 using known cell type markers and methods described in Nagy et al.’® (see Supplemental
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124  Methods). Two clusters with mixed cell type markers were removed for a final total of 20

125 clusters.

126

127 Differential Gene Expression Analysis

128 Count data were normalized to one million reads, extracted from Seurat, and converted
129  to log2 counts per million (cpm). Metadata and cpm were merged to form a SingleCellAssay
130  object for each cluster. Genes expressed in <20% of the nuclei in a cluster were excluded from
131  downstream analyses. Differential expression analysis between cases and controls was

132 performed using the MAST R package?® by fitting the following linear mixed model:

133

134  m <- zlm(~casestatus + gdr + age + sex + batch + (1|subject), sca, parallel = TRUE, method =

135  "glmer", ebayes = FALSE, silent=TRUE)

136

137  Case status, age, the capture and sequencing batch, and the number of genes detected in each
138  nucleus (gdr) were included as fixed effects. Subject was included as a random effect to

139  account for correlations between the nuclei coming from a single person. To optimize the

140 random and fixed effects coefficients in the penalized iteratively reweighted least squares step,
141  the integer scalar in the Ime4 R package was set equal to zero, as previously described'

142 (https://github.com/DmitryVel/KriegsteinLab/blob/master/snRNAseq DGE.R). Likelihood Ratio

143  Test was performed in MAST to test for differences between the model with and without
144  schizophrenia case status, identifying gene expression differences associated with

145  schizophrenia. DEGs were defined as those that were a) statistically significant after multiple
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146  testing correction with false discovery rate (FDR) = 0.1 and b) had at least a 10% difference in

147  expression between case and controls (log: fold change 20.14).

148

149  Overrepresentation of GWAS loci

150 To determine if schizophrenia, bipolar disorder, and Alzheimer’s disease GWAS loci
151  were overrepresented in cluster-specific DEGs, MAGMA 2! was used to identify significant
152  genes using GWAS summary statistics. Cluster-specific overrepresentation of GWAS loci was
153  determined by performing a hypergeometric test using the overlapping list of genes that were

154  checked for differential expression in each cluster and were significant by MAGMA analysis.

155

156 Enrichment Analysis with FUMA

157 Overrepresentation of brain expressed genes was determined by comparing cluster-
158  specific DEGs to brain region-specific transcriptome data from the Genotype-Tissue Expression
159  (GTEXx) project (v8)?2 using FUMA?2 23_ Similarly, overrepresentation of brain expressed genes
160  throughout the human life span was determined by comparing cluster-specific DEGs to the

161  BrainSpan transcriptomics data 2*. Identification of gene ontologies, KEGG pathways,

162  transcription factor targets, and microRNA targets that were significantly overrepresented in

163  cluster-specific DEGs was analyzed using FUMA and data from the Molecular and Signatures
164  Database (MsigDB) v7.0 25. For all analyses, all genes, except the MHC region, from Ensembl
165  v92 were used for the gene background and all results were corrected for multiple testing using

166  a Bonferroni correction (a=0.05).

167

168 Canonical pathways and upstream requlators
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169 Canonical pathway and upstream regulator analysis was conducted using Ingenuity

170  Pathway Analysis?®. DEGs from each of the primary neuronal clusters were analyzed

171  independently using the Core Analysis function and a list of DEG Ensembl IDs, MAST raw p-
172 values, FDR corrected p-values (i.e. g-values), and log: fold change. The analyses from the five
173  clusters were compared using the Compare Analyses function. P-values were calculated using
174  aright-tailed Fisher’'s exact test and corrected for multiple testing using a Benjamini-Hochberg

175  correction (a=0.1).

176

177  Statistics

178 Statistical calculations were performed with SPSS (v24).
179

180 Results - 1100

181 Single nuclei RNA sequencing and identification of cell types

182 To better understand the effects of schizophrenia on the neural transcriptome, we

183  utilized snRNAseq to profile dIPFC nuclei from frozen human postmortem brain samples from
184 12 individuals with schizophrenia and 14 controls (Supplementary Table 1). Schizophrenia and
185  control groups did not differ in mean age, postmortem interval, or pH (Supplementary Table 1
186  and Supplementary Fig. 1). snRNAseq was performed using the 10x Genomics platform and
187  sequenced to an average depth of ~492 million reads per sample. We initially identified 361,681
188  nuclei, with average medians of ~2,987 genes and ~6,886 UMI per nucleus (Supplementary
189  Table 2). The number of sequencing reads per sample, number of nuclei per sample, average
190 sequencing reads per nuclei per sample, median genes per nuclei per sample, and median UMI
191  per nuclei per sample were consistent between schizophrenia and control groups

192  (Supplementary Fig. 2). RIN value was unavailable for all samples, so RNA quality was

193  evaluated by examining sequencing-derived surrogates of RNA quality from CellRanger. RNA
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194  quality did not differ between schizophrenia and control groups, with no difference in the fraction
195 of reads mapped confidently to the genome, intergenic regions, exonic regions, intragenic

196  regions, or the transcriptome (all Mann-Whitney U p-values >0.28; Supplementary Table 3).

197  After quality control measures were applied, we identified 273,050 high confidence nuclei:

198 145,120 from control samples and 127,930 from schizophrenia samples. These nuclei were

199  used for all further analyses.

200

201 To identify nuclei from transcriptomically-distinct cellular populations, we used the

202  snRNAseq counts for nuclei from all individuals to perform unbiased clustering using Seurat?”,
203  and 20 cellular clusters were identified (Fig. 1a and Supplementary Fig. 3). Clusters were

204  annotated by expression of known cellular subtype markers and all major neural cell types were
205 identified (Fig. 1a-b). The schizophrenia and control groups were consistent for the number of
206  nuclei from major cell types (Fig. 1¢) and the number of nuclei per cluster (Fig. 1d & 1e).

207  Excitatory neuron (ExNeuro) and inhibitory neuron (InNeuro) clusters were further annotated
208  using known markers for cortical layers and defined subpopulations (Fig. 1b and Supplemental
209 Fig. 4a-b).

210

211 Differential expression

212 Cell type-specific changes in nuclear transcript levels were compared between the

213 schizophrenia and control groups using a hurdle model, a linear mixed model, in MAST?. 4,766
214  differential expression events were identified in 2,994 unique DEGs (g-value <0.1; expression
215  change 210%; Supplementary Table 4). DEGs were detected in 16 of 20 cellular clusters, with
216 35.3% of differential expression events being upregulation and 64.7% downregulation (Fig. 2a).
217  The number of DEGs per cluster was unrelated to the number of nuclei per cluster (r(18)=0.16,
218  p=0.50, Pearson’s Correlation; Supplementary Fig. 5). Of the unique DEGs, 96.2% occurred in
219  five neuronal cell types (primary neuronal cell types), including four clusters of ExNeuro (cluster

9
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220 10 layer 5 HTR2C+ ExNeuro, cluster 12 layer 5 ExNeuro, cluster 13 layer 4/5 ExNeuro, and
221  cluster 14 layer 2/3 ExNeuro) and a PVALB+ InNeuro cluster (cluster 3; Fig. 2b).
222

223 DEGs associated with GWAS loci

224 MAGMA was used to determine if cell type-specific DEGs were enriched for genes
225 identified in GWAS of schizophrenia?® or bipolar disorder?®, because previous studies identified
226  substantial heritability overlap®°. Schizophrenia GWAS loci-associated genes were

227  overrepresented in four of five primary neuronal cell types, with cluster 12 also showing

228  overrepresentation of bipolar disorder GWAS genes (Fig. 2c and Supplementary Table 5).
229  Supporting the specificity of these observations, no enrichment was detected for Alzheimer’s
230 disease GWAS genes (Fig. 2c and Supplementary Table 5). Similarly, cell type-specific DEGs
231 were enriched for GWAS Catalog genes for schizophrenia in cluster 3 PVALB+ InNeuro and
232 cluster 13 layer 4/5 ExNeuro and for bipolar disorder in cluster 10 layer 5 HTR2C+, cluster 12
233 layer 5, and cluster 13 layer 4/5, and cluster 14 layer 2/3 ExNeuro (Supplementary Table 6).
234

235 Overrepresentation of brain expressed and developmental genes

236 Comparison of cluster-specific DEGs to brain region-specific transcriptomic data from
237  GTEx shows substantial overrepresentation of up and down regulated DEGs throughout the
238  brain for the primary neuronal clusters (Fig. 2d and Supplementary Table 7). Intriguingly, when
239  compared to BrainSpan transcriptomic data, overrepresentation of cluster-specific DEGs was
240  concentrated at eight to thirteen post-conception weeks and two years of age (Fig. 2e and

241 Supplementary Table 8), suggesting a putative neurodevelopmental relevance.

242

243 Gene Ontologies and KEGG pathways

244 To understand the neurobiological consequences of the DEGs in the primary neuronal
245  clusters, FUMA was used to identify gene ontologies (GO; Supplementary Tables 9) and KEGG

10
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246  pathways (Supplementary Tables 10) in which DEGs from each cell cluster were over- or under-
247  represented. GO and KEGG analysis identified cluster-specific representation changes of DEGs
248  in ontologies and pathways previously associated with the pathophysiology of schizophrenia,
249 including those related to mitochondrial function. These results suggest that cluster-specific

250 DEGs may underlie some cell type-specific neurobiological changes associated with

251  schizophrenia neuropathophysiology.

252

253  Canonical Pathways

254 To identify metabolic and cell signaling pathways that are likely to be altered in the

255  primary neuronal clusters, canonical pathway analysis was performed with Ingenuity Pathway
256  Analysis (IPA) using the cluster-specific DEGs. Shared and unique canonical pathways were
257  identified for the primary neuronal clusters (Supplementary table 11). The top five shared

258  canonical pathways for the primary neuronal clusters, as determined by p-value, are presented
259 in Fig. 3a. While the primary neuronal clusters shared predicted disruptions of pathways, the
260 DEGs underlying the effect for each cellular cluster were a combination of shared and unique
261  DEGs (Fig. 3b and Supplementary table 11). These results suggest that a combination of

262  shared and cluster-specific transcriptome alterations drive overall pathway dysfunction.

263

264 Upstream transcription factors, microBNAs. and requlatory networks

265 To identify putative mechanisms for the alterations in gene expression observed in the
266  primary neuronal clusters, we assessed overrepresentation of transcription factor

267  (Supplementary table 12) and microRNA (Supplementary table 13) targets among cluster-

268  specific DEGs. Unique transcription factor and microRNA targets were identified for each of the
269  primary neuronal clusters, suggesting potential cell type-specific mechanism for transcriptional
270  dysregulation. Additionally, a subset of transcription factors and microRNAs had significantly
271  overrepresented targets across the primary neuronal clusters, suggesting a potential shared

11
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272  etiology. Unique and shared putative upstream regulatory networks were also identified for all
273 clusters (Supplementary table 14). The top five shared upstream network master regulators for
274  the primary neuronal clusters, as determined by p-value, are presented in Fig. 4a. These

275  predictions were driven by shared and cluster-specific DEGs (Fig. 4b). These results are

276  supported by the direct detection of predicted alterations for a portion of the upstream

277  regulators. For example, DDX5 function was predicted to be inhibited in four of five primary

278  neuronal clusters (Fig. 4a) and DDX5 was found to be significantly downregulated in both

279  cluster 3 PVALB+ InNeuro and cluster 13 layer 4/5 ExNeuro (Supplementary table 14).

280

281  Discussion — 885

282 This study examined the transcriptome of ~275,000 single nuclei from the dIPFC of

283  persons with schizophrenia and controls. The median UMI and gene counts per nucleus were
284  approximately double those of three recent human postmortem cortical SnRNAseq studies,

285  although the ratio of median UMI count to median gene count was similar'4'6. Differences

286  between versions 2.0 and 3.0 of the 10x Genomics gene expression assay explain at least a
287  portion of our increased gene and UMI yield. The identification of 20 transcriptomically distinct
288  cellular clusters is consistent with other snRNAseq studies of human postmortem cortex'3 416
289  and the number of clusters per major cell type closely approximates those of a recent studies of
290 dIPFC, including identification of a single HTR2C+ cluster of pyramidal ExNeuro and two

291  PVALB-+ clusters of InNeuro'®. 4,766 differential expression events were detected in 16 of 20
292  cellular clusters, with ~96% of DEGs occurring in five neuronal cell types. Prior evidence

293  suggests that GWAS loci and gene sets associated with schizophrenia are primarily expressed
294  in alimited subset of neurons, including PVALB+ InNeuro and glutamatergic pyramidal

295  neurons®'. Similarly, GWAS loci-related genes were overrepresented in the DEGs of cluster 3
296  PVALB+ InNeuro and the cluster 10 layer 5 HTR2C+, cluster 12 layer 5, and cluster 14 layer 2/3
297  ExNeuro. Cluster 12 layer 5 ExNeuro also had an overrepresentation of bipolar disorder GWAS

12
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298 loci, fitting prior knowledge that schizophrenia and bipolar disorder share genetic risk loci. These
299  results support the hypothesis that common genetic variants associated with schizophrenia are
300 relevant in specific sets of neuronal cell types and schizophrenia-related transcriptomic

301 alterations are primarily limited to these cells. Several reports provide fairly consistent evidence
302 of presynaptic marker decreases for frontal cortical fast-spiking parvalbumin +- GABAergic

303 interneurons, coupled with increased postsynaptic GABAA receptors, both of which may be

304  consistent with partial loss of GABAergic inhibition of glutamatergic pyramidal neurons®? 33, The
305 large number of DEGs in both cell types provides support for dysfunction of a frontal cortex

306  GABAergic-glutamatergic circuit. No DEG occurred in more than five cellular clusters and that
307 no DEG was present in all the clusters of any multi-clustered major cell type underscores the
308 importance of utilizing single nuclei/single cell approaches to neural transcriptomics.

309

310 The substantial overrepresentation of cluster-specific DEGs during critical

311  neurodevelopmental timepoints, 8 to 13 post-conception weeks and 2 years of age (Fig. 2b)
312 supports hypotheses about schizophrenia as a neurodevelopmental disorder 343, Qur analyses
313 identified a substantial number of GO terms and KEGG and canonical pathways related to

314  energy metabolism and oxidative stress in the primary neuronal clusters and prior works have
315  hypothesized the prenatal and early developmental dysregulation of oxidative stress may play a
316  role in the development of schizophrenia, particularly in PVALB+ neurons (reviewed?’). Taken
317 together, these data suggest potential windows for PVALB+ InNeuro oxidative stress targeted
318 interventions.

319

320 Human postmortem studies are identifying increasing numbers of shared and brain

321  region-specific differentially expressed microRNAs that are associated with schizophrenia®?,

322 including a global increase in microRNA levels®. While the experimental approach of this study
323  was unable to directly detect alterations in microRNA expression, complementary approaches to

13
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324  identifying cell type-specific microRNA target overrepresentation yield overlapping predictions of
325  microRNAs known to regulate brain function. For example, miR-424 (aka miR-322) targets were
326  predicted to be overrepresented in the cluster 3 PVALB+ InNeuro and cluster 10 layer 5

327 HTR2C+ and cluster 13 layer 4/5 ExNeuro. miR-424 is known to regulate BDNF expression*°
328 and literature evidence supports a role for alterations in BDNF expression in schizophrenia

329 pathogenesis*'. Taken together, these data suggest that the neuronal cell type-specific

330  microRNA identified in this study may warrant further investigation.

331

332 Several limitations of this study must be noted. First, the relatively small number of

333  postmortem samples analyzed increases the possibility that the subjects are not representative
334  of the broader populations. Replication in a larger sample, including female samples, will be
335 essential for these results. Second, schizophrenia patients frequently have comorbidities (e.g.
336  smoking, obesity) that are less common in control individuals, presenting analytical confounds.
337  Similarly, schizophrenia patients usually have a history of chronic antipsychotic treatment,

338  whereas controls do not. Thus, it is impossible to know at present whether any of the identified
339  DEGs reflect causality or response to chronic pharmacotherapy. It may also be possible to

340  address this issue by studying postmortem brains of persons with schizophrenia who never had
341  antipsychotic treatment. However, at least in the United States, these patients are uncommon.
342  Third, transcriptome-based methods such as snRNAseq have the potential to miss relevant

343  genes that are regulated primarily at the level of translation or splicing, which may also help to
344  shape transcriptomic architecture and be relevant to schizophrenia pathology. Finally, this

345  project was limited to a single brain region from individuals over 18 years of age. Therefore,

346  spatial and temporal changes in gene expression occurring over the course of the disease

347  would not be identified in our analysis. The findings from this study of dIPFC cannot be

348  extrapolated to other areas of the brain, justifying the need for more comprehensive studies.
349  There is also substantial evidence for neurodevelopmental origins in schizophrenia®? 43,
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350 suggesting there are relevant transcriptomic differences between cases and controls before
351  adulthood. In summary, we have begun to characterize transcriptome alterations in

352 schizophrenia at the level of single neural cells and extension of this work may provide a new
353  Dbasis for the development of effective treatment strategies.

354

355 Availability of Data

356 Raw sequencing data and sample annotations are available at NCBI GEO accession #
357 GSE158516.
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557  Figure Legends

558 Fig. 1: snRNAseq and clustering. a The transcriptome profile of ~275,000 nuclei were utilized
559  for unbiased clustering and is presented as a uniform manifold approximation and projection
560 (UMAP) dimension reduction plot of all nuclei color coded by cluster. b Clusters were annotated
561  with genes known to be markers for major neural cell types. The size and color of dots is

562  proportional to the percentage of cells expressing the gene (Pct. Exp.) and the average

563  expression level of the gene (Avg. Exp.), respectively. The cluster numbers and colors are

564  matched to that of the UMAP. ¢ The proportion of major cell types between the schizophrenia
565  and control groups. d The proportion of schizophrenia and control nuclei in each cluster. The
566 labels and numbers correspond to those of the UMAP and dot plot. e Cluster contribution by
567 individual sample. Colors correspond to those of the UMAP and dot plot. Abbreviations:

568  somatostatin (SST), parvalbumin (PVALB), vasoactive intestinal peptide (VIP), synaptic vesicle
569  glycoprotein 2C (SV2C), reelin (RELN), nuclear receptor subfamily 4 group A member 2

570  (NR4A2), sulfatase 2 (SULF2), 5-hydroxytryptamine receptor 2C (HTR2C), cut like homeobox 2
571  (CUX2), oligodendrocyte precursor cells (OPC).

572

573  Fig. 2: Differential expression. a The number of up or down regulated genes by cell type. b
574  UpSet plot of the number of unique differentially expressed genes (DEGs) that are unique or
575 shared between the five neuronal cell clusters that encompass the majority (~96%) of all DEGs.
576 ¢ Overrepresentation of schizophrenia (SZ), bipolar disorder (BP), and Alzheimer’s disease

577  (AD) GWAS loci in primary neuronal clusters. d Heatmap of the overrepresentation of cluster-
578  specific DEGs throughout the brain. e Heatmap of the overrepresentation of cluster-specific
579  DEGs throughout the neural life span.

580
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581 Fig. 3: Canonical pathways. a Overrepresentation of cluster-specific DEGs in the top five

582  shared canonical pathways for the primary neuronal clusters. b Shared and unique cluster-

583  specific DEGs that underlie the oxidative phosphorylation canonical signaling pathway.

584

585 Fig. 4: Upstream regulators. a Overrepresentation of cluster-specific DEGs in the top five

586  predicted upstream master regulators. b Shared and unique cluster-specific DEGs that underlie
587  the prediction of DDX5 as an upstream regulator of cell type-specific DEGs.

588

589
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