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Abstract (limit 150-250) - 150 23 

Transcriptomic studies of bulk neural tissue homogenates from persons with 24 

schizophrenia and controls have identified differentially expressed genes in multiple brain 25 

regions. However, the brain’s heterogeneous nature prevents identification of relevant cell 26 

types. This study analyzed single-nuclei transcriptomics of ~275,000 nuclei from frozen human 27 

postmortem dorsolateral prefrontal cortex samples from males with schizophrenia (n = 12) and 28 

controls (n = 14). 4,766 differential expression events were identified in 2,994 unique genes in 29 

16 of 20 transcriptomically-distinct cell populations. ~96% of differentially expressed genes 30 

occurred in five neuronal cell types, and differentially expressed genes were enriched for genes 31 

associated with schizophrenia and bipolar GWAS loci. Downstream analyses identified cluster-32 

specific enriched gene ontologies, KEGG pathways, and canonical pathways. Additionally, 33 

microRNAs and transcription factors with overrepresented neuronal cell type-specific targets 34 

were identified. These results expand our knowledge of disrupted gene expression in specific 35 

cell types and permit new insight into the pathophysiology of schizophrenia.  36 

 37 

Introduction (limit 1500; article excluding abstract 3500) - 478 38 

 Schizophrenia is a chronic psychotic illness affecting ~1% of the population worldwide. 39 

Transcriptomic studies utilizing bulk homogenates of frozen human postmortem brain tissue 40 

from persons with schizophrenia and controls have identified differentially expressed genes 41 

(DEGs) in the amygdala1, hippocampus2, 3, superior temporal gyrus4, anterior cingulate cortex5, 42 

6, and dorsolateral prefrontal cortex (dlPFC)7, 8, with the largest study identifying ~4,800 DEGs 43 

associated with schizophrenia in the dlPFC9. However, the heterogenous cellular composition of 44 

the bulk homogenates prevents identification of the specific cell types in which relevant genes 45 

are differentially regulated and expressed. Two studies used laser capture microdissection 46 

followed with transcriptomic analysis by microarray to elucidate the effect of schizophrenia on 47 

the transcriptome of individual neural cell types. Examination of layer 3 and 5 pyramidal neurons 48 
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in the dlPFC identified ~1,400 DEGs10 in the context of schizophrenia, whereas a study of 49 

parvalbumin positive (PVALB+) interneurons in the dlPFC identified ~900 DEGs11. A substantial 50 

portion of the DEGs identified in these studies were not detected in previous examinations of 51 

bulk homogenates of the same brain regions, suggesting that examination of transcriptomic 52 

changes associated with schizophrenia at the level of neural cellular subpopulations is 53 

necessary to fully appreciate the neuropathophysiology of the disorder10, 11.  54 

 55 

Laser capture microdissection studies of human postmortem brain tissue are limited by 56 

their ability to examine a small number of cell types in a targeted fashion, relatively low 57 

throughput, and the pooling of cells, which loses the variability of the transcriptome between 58 

cells and may collapse transcriptomically-distinct subpopulations. Recent advances in single 59 

nuclei RNA sequencing (snRNAseq) allow for simultaneous transcriptomic profiling of 60 

thousands of nuclei, across all neural cell types in frozen human postmortem brain homogenate, 61 

with simultaneous indexing of transcripts at the sample, nucleus, and individual transcript level 62 

(unique molecular identifier, UMI). The utility of this approach for human postmortem study is 63 

supported by evidence suggesting that single cells and their nuclei have similar transcriptomes, 64 

with ~98% of transcripts having the same relative levels12. snRNAseq has identified cell type-65 

specific transcriptomic changes in human postmortem brain samples from Alzheimer’s 66 

disease13, autism14, multiple sclerosis15, and major depressive disorder16.  67 

 68 

  In this study, we performed snRNAseq of ~275,000 nuclei from dlPFC of individuals with 69 

schizophrenia (n = 12) and controls (n = 14). We chose to examine the dlPFC due to the 70 

evidence of dlPFC dysfunction in schizophrenia17. We identified 4,766 DEGs in 16 of 20 71 

transcriptomically-distinct cell populations. ~96% of the DEGs occurred in five neuronal cell 72 

types. The DEGs were enriched for genes associated with schizophrenia GWAS loci and 73 

overrepresented in gene ontologies and KEGG pathways previously associated with the 74 
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pathophysiology of schizophrenia. Canonical pathway analysis identified cluster-specific 75 

alterations in metabolic and cell signaling pathways, and microRNA, transcription factor, and 76 

upstream regulator analyses identified putative regulators of cluster-specific DEG. Taken 77 

together, the results of this study help elucidate the cell type-specific transcriptomic and 78 

neurobiological changes that underlie schizophrenia.  79 

 80 

Materials and Methods - 1036 81 

Brain Samples 82 

This study was approved by the University of Pennsylvania Institutional Review Board. 83 

Fresh frozen postmortem dlPFC tissue from male individuals with schizophrenia (n = 14) and 84 

controls (n =14) were obtained from the Douglas-Bell Canada Brain Bank at McGill University, 85 

the Human Brain and Spinal Fluid Resource Center at UCLA and the New South Wales Brain 86 

Tissue Resource Center. Schizophrenia cases were individuals who were clinically diagnosed 87 

with schizophrenia using DSM-IV criteria and controls were individuals without history of 88 

psychiatric disease who died of non-central nervous system-related reasons. All reported age, 89 

sex, ethnicity, postmortem interval, and prefrontal cortex pH data are based on associated 90 

medical records (Supplementary Table 1). Gray matter samples from the dlPFC were dissected 91 

by trained neuroanatomists at their respective brain banks. 92 

 93 

10x Library Preparation, Sequencing, and Quality Control 94 

Nuclei were isolated from frozen postmortem dlPFC (~30mg) using a modified version of 95 

a previously described protocol16 (see Supplemental Methods). Microfluidics capture and 96 

sequencing library preparation was performed with the 10x Genomics Chromium Single Cell 3’ 97 

GEM, Library and Gel Bead Kit v3.0 at the Children’s Hospital of Philadelphia Center for Applied 98 
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Genomics per manufacturer’s instructions. To achieve a target capture of ~10,000 nuclei per 99 

sample, ~20,000 nuclei per sample were loaded. Libraries were sequenced in pools of eight on 100 

Illumina NovaSeq 6000 S2 flow cells. Pools contained schizophrenia and control samples, to 101 

minimize any batch effects. CellRanger version 3.1 was used to align reads to the hg38 pre-102 

mRNA transcriptome.  Filtered read count matrices for all subjects and nuclei were merged into 103 

a single Seurat object for subsequent quality control and clustering using Seurat version 3.1. 104 

For initial quality control assessment, the distributions of the numbers of genes and UMIs were 105 

determined. Nuclei with the lowest 1% of genes (< 470 genes) were removed, as they were 106 

unlikely to be informative in downstream analyses.  Likewise, nuclei in the top 1% of UMI count 107 

(UMI > 60,335) were removed to reduce the presence of multiplets in downstream analyses. 108 

Finally, nuclei with >10% of reads from mitochondrial genes were excluded and mitochondrial 109 

transcripts were removed from the dataset18. 110 

 111 

Calculation of PCs, Clustering, and Cell Type Annotation 112 

Transcript counts were normalized to 10,000 counts per subject and scaled.  Variably 113 

expressed genes were identified with the FindVariableFeatures function in Seurat using the 114 

mean.var.plot selection method and analyzing only genes with mean scaled expression 115 

between 0.003 and 2.  These parameters identified 2,486 highly variable genes, which were 116 

used to generate principal components (PCs). Clustering was performed in Seurat using the first 117 

50 PCs.  Initial clustering was performed at a resolution of 0.25. Two schizophrenia samples did 118 

not cluster with the other 26 samples and were removed as outliers. The dataset was 119 

reclustered and two cell populations with low mean UMIs were removed.  Six clusters with 120 

>90% of nuclei coming from f2 subjects were also removed, with remaining clusters having 121 

<30% of nuclei coming from f2 subjects. Major cell types and neuronal subtypes were identified 122 

using known cell type markers and methods described in Nagy et al.19 (see Supplemental 123 
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Methods). Two clusters with mixed cell type markers were removed for a final total of 20 124 

clusters. 125 

 126 

Differential Gene Expression Analysis  127 

 Count data were normalized to one million reads, extracted from Seurat, and converted 128 

to log2 counts per million (cpm).  Metadata and cpm were merged to form a SingleCellAssay 129 

object for each cluster.  Genes expressed in <20% of the nuclei in a cluster were excluded from 130 

downstream analyses.  Differential expression analysis between cases and controls was 131 

performed using the MAST R package20 by fitting the following linear mixed model:  132 

 133 

m <- zlm(~casestatus + gdr + age + sex + batch + (1|subject), sca, parallel = TRUE, method = 134 

"glmer", ebayes = FALSE, silent=TRUE) 135 

 136 

Case status, age, the capture and sequencing batch, and the number of genes detected in each 137 

nucleus (gdr) were included as fixed effects.  Subject was included as a random effect to 138 

account for correlations between the nuclei coming from a single person. To optimize the 139 

random and fixed effects coefficients in the penalized iteratively reweighted least squares step, 140 

the integer scalar in the lme4 R package was set equal to zero, as previously described14 141 

(https://github.com/DmitryVel/KriegsteinLab/blob/master/snRNAseq_DGE.R). Likelihood Ratio 142 

Test was performed in MAST to test for differences between the model with and without 143 

schizophrenia case status, identifying gene expression differences associated with 144 

schizophrenia.  DEGs were defined as those that were a) statistically significant after multiple 145 
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testing correction with false discovery rate (FDR) = 0.1 and b) had at least a 10% difference in 146 

expression between case and controls (log2 fold change g0.14).  147 

 148 

Overrepresentation of GWAS loci 149 

 To determine if schizophrenia, bipolar disorder, and Alzheimer’s disease GWAS loci 150 

were overrepresented in cluster-specific DEGs, MAGMA 21 was used to identify significant 151 

genes using GWAS summary statistics. Cluster-specific overrepresentation of GWAS loci was 152 

determined by performing a hypergeometric test using the overlapping list of genes that were 153 

checked for differential expression in each cluster and were significant by MAGMA analysis.  154 

 155 

Enrichment Analysis with FUMA 156 

 Overrepresentation of brain expressed genes was determined by comparing cluster-157 

specific DEGs to brain region-specific transcriptome data from the Genotype-Tissue Expression 158 

(GTEx) project (v8)22 using FUMA22, 23. Similarly, overrepresentation of brain expressed genes 159 

throughout the human life span was determined by comparing cluster-specific DEGs to the 160 

BrainSpan transcriptomics data 24. Identification of gene ontologies, KEGG pathways, 161 

transcription factor targets, and microRNA targets that were significantly overrepresented in 162 

cluster-specific DEGs was analyzed using FUMA and data from the Molecular and Signatures 163 

Database (MsigDB) v7.0 25. For all analyses, all genes, except the MHC region, from Ensembl 164 

v92 were used for the gene background and all results were corrected for multiple testing using 165 

a Bonferroni correction (α=0.05).  166 

 167 

Canonical pathways and upstream regulators 168 
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 Canonical pathway and upstream regulator analysis was conducted using Ingenuity 169 

Pathway Analysis26. DEGs from each of the primary neuronal clusters were analyzed 170 

independently using the Core Analysis function and a list of DEG Ensembl IDs, MAST raw p-171 

values, FDR corrected p-values (i.e. q-values), and log2 fold change. The analyses from the five 172 

clusters were compared using the Compare Analyses function. P-values were calculated using 173 

a right-tailed Fisher’s exact test and corrected for multiple testing using a Benjamini-Hochberg 174 

correction (α=0.1). 175 

 176 

Statistics 177 

 Statistical calculations were performed with SPSS (v24).  178 

 179 

Results – 1100 180 

Single nuclei RNA sequencing and identification of cell types 181 

 To better understand the effects of schizophrenia on the neural transcriptome, we 182 

utilized snRNAseq to profile dlPFC nuclei from frozen human postmortem brain samples from 183 

12 individuals with schizophrenia and 14 controls (Supplementary Table 1). Schizophrenia and 184 

control groups did not differ in mean age, postmortem interval, or pH (Supplementary Table 1 185 

and Supplementary Fig. 1). snRNAseq was performed using the 10x Genomics platform and 186 

sequenced to an average depth of ~492 million reads per sample. We initially identified 361,681 187 

nuclei, with average medians of ~2,987 genes and ~6,886 UMI per nucleus (Supplementary 188 

Table 2). The number of sequencing reads per sample, number of nuclei per sample, average 189 

sequencing reads per nuclei per sample, median genes per nuclei per sample, and median UMI 190 

per nuclei per sample were consistent between schizophrenia and control groups 191 

(Supplementary Fig. 2). RIN value was unavailable for all samples, so RNA quality was 192 

evaluated by examining sequencing-derived surrogates of RNA quality from CellRanger. RNA 193 
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quality did not differ between schizophrenia and control groups, with no difference in the fraction 194 

of reads mapped confidently to the genome, intergenic regions, exonic regions, intragenic 195 

regions, or the transcriptome (all Mann-Whitney U p-values >0.28; Supplementary Table 3). 196 

After quality control measures were applied, we identified 273,050 high confidence nuclei: 197 

145,120 from control samples and 127,930 from schizophrenia samples. These nuclei were 198 

used for all further analyses.  199 

 200 

 To identify nuclei from transcriptomically-distinct cellular populations, we used the 201 

snRNAseq counts for nuclei from all individuals to perform unbiased clustering using Seurat27, 202 

and 20 cellular clusters were identified (Fig. 1a and Supplementary Fig. 3). Clusters were 203 

annotated by expression of known cellular subtype markers and all major neural cell types were 204 

identified (Fig. 1a-b). The schizophrenia and control groups were consistent for the number of 205 

nuclei from major cell types (Fig. 1c) and the number of nuclei per cluster (Fig. 1d & 1e). 206 

Excitatory neuron (ExNeuro) and inhibitory neuron (InNeuro) clusters were further annotated 207 

using known markers for cortical layers and defined subpopulations (Fig. 1b and Supplemental 208 

Fig. 4a-b).  209 

 210 

Differential expression 211 

  Cell type-specific changes in nuclear transcript levels were compared between the 212 

schizophrenia and control groups using a hurdle model, a linear mixed model, in MAST20. 4,766 213 

differential expression events were identified in 2,994 unique DEGs (q-value <0.1; expression 214 

change g10%; Supplementary Table 4). DEGs were detected in 16 of 20 cellular clusters, with 215 

35.3% of differential expression events being upregulation and 64.7% downregulation (Fig. 2a). 216 

The number of DEGs per cluster was unrelated to the number of nuclei per cluster (r(18)=0.16, 217 

p=0.50, Pearson’s Correlation; Supplementary Fig. 5). Of the unique DEGs, 96.2% occurred in 218 

five neuronal cell types (primary neuronal cell types), including four clusters of ExNeuro (cluster 219 
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10 layer 5 HTR2C+ ExNeuro, cluster 12 layer 5 ExNeuro, cluster 13 layer 4/5 ExNeuro, and 220 

cluster 14 layer 2/3 ExNeuro) and a PVALB+ InNeuro cluster (cluster 3; Fig. 2b).  221 

 222 

DEGs associated with GWAS loci 223 

MAGMA was used to determine if cell type-specific DEGs were enriched for genes 224 

identified in GWAS of schizophrenia28 or bipolar disorder29, because previous studies identified 225 

substantial heritability overlap30. Schizophrenia GWAS loci-associated genes were 226 

overrepresented in four of five primary neuronal cell types, with cluster 12 also showing 227 

overrepresentation of bipolar disorder GWAS genes (Fig. 2c and Supplementary Table 5). 228 

Supporting the specificity of these observations, no enrichment was detected for Alzheimer’s 229 

disease GWAS genes (Fig. 2c and Supplementary Table 5). Similarly, cell type-specific DEGs 230 

were enriched for GWAS Catalog genes for schizophrenia in cluster 3 PVALB+ InNeuro and 231 

cluster 13 layer 4/5 ExNeuro and for bipolar disorder in cluster 10 layer 5 HTR2C+, cluster 12  232 

layer 5, and cluster 13 layer 4/5, and cluster 14 layer 2/3 ExNeuro (Supplementary Table 6).  233 

 234 

Overrepresentation of brain expressed and developmental genes 235 

 Comparison of cluster-specific DEGs to brain region-specific transcriptomic data from 236 

GTEx shows substantial overrepresentation of up and down regulated DEGs throughout the 237 

brain for the primary neuronal clusters (Fig. 2d and Supplementary Table 7). Intriguingly, when 238 

compared to BrainSpan transcriptomic data, overrepresentation of cluster-specific DEGs was 239 

concentrated at eight to thirteen post-conception weeks and two years of age (Fig. 2e and 240 

Supplementary Table 8), suggesting a putative neurodevelopmental relevance.  241 

 242 

Gene Ontologies and KEGG pathways 243 

To understand the neurobiological consequences of the DEGs in the primary neuronal 244 

clusters, FUMA was used to identify gene ontologies (GO; Supplementary Tables 9) and KEGG 245 
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pathways (Supplementary Tables 10) in which DEGs from each cell cluster were over- or under-246 

represented. GO and KEGG analysis identified cluster-specific representation changes of DEGs 247 

in ontologies and pathways previously associated with the pathophysiology of schizophrenia, 248 

including those related to mitochondrial function. These results suggest that cluster-specific 249 

DEGs may underlie some cell type-specific neurobiological changes associated with 250 

schizophrenia neuropathophysiology.  251 

 252 

Canonical Pathways  253 

 To identify metabolic and cell signaling pathways that are likely to be altered in the 254 

primary neuronal clusters, canonical pathway analysis was performed with Ingenuity Pathway 255 

Analysis (IPA) using the cluster-specific DEGs. Shared and unique canonical pathways were 256 

identified for the primary neuronal clusters (Supplementary table 11). The top five shared 257 

canonical pathways for the primary neuronal clusters, as determined by p-value, are presented 258 

in Fig. 3a. While the primary neuronal clusters shared predicted disruptions of pathways, the 259 

DEGs underlying the effect for each cellular cluster were a combination of shared and unique 260 

DEGs (Fig. 3b and Supplementary table 11). These results suggest that a combination of 261 

shared and cluster-specific transcriptome alterations drive overall pathway dysfunction.  262 

 263 

Upstream transcription factors, microRNAs, and regulatory networks 264 

 To identify putative mechanisms for the alterations in gene expression observed in the 265 

primary neuronal clusters, we assessed overrepresentation of transcription factor 266 

(Supplementary table 12) and microRNA (Supplementary table 13) targets among cluster-267 

specific DEGs. Unique transcription factor and microRNA targets were identified for each of the 268 

primary neuronal clusters, suggesting potential cell type-specific mechanism for transcriptional 269 

dysregulation. Additionally, a subset of transcription factors and microRNAs had significantly 270 

overrepresented targets across the primary neuronal clusters, suggesting a potential shared 271 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2020.07.29.227355doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227355
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

etiology. Unique and shared putative upstream regulatory networks were also identified for all 272 

clusters (Supplementary table 14). The top five shared upstream network master regulators for 273 

the primary neuronal clusters, as determined by p-value, are presented in Fig. 4a. These 274 

predictions were driven by shared and cluster-specific DEGs (Fig. 4b). These results are 275 

supported by the direct detection of predicted alterations for a portion of the upstream 276 

regulators. For example, DDX5 function was predicted to be inhibited in four of five primary 277 

neuronal clusters (Fig. 4a) and DDX5 was found to be significantly downregulated in both 278 

cluster 3 PVALB+ InNeuro and cluster 13 layer 4/5 ExNeuro (Supplementary table 14).  279 

 280 

Discussion – 885 281 

 This study examined the transcriptome of ~275,000 single nuclei from the dlPFC of 282 

persons with schizophrenia and controls. The median UMI and gene counts per nucleus were 283 

approximately double those of three recent human postmortem cortical snRNAseq studies, 284 

although the ratio of median UMI count to median gene count was similar14-16. Differences 285 

between versions 2.0 and 3.0 of the 10x Genomics gene expression assay explain at least a 286 

portion of our increased gene and UMI yield. The identification of 20 transcriptomically distinct 287 

cellular clusters is consistent with other snRNAseq studies of human postmortem cortex13, 14, 16 288 

and the number of clusters per major cell type closely approximates those of a recent studies of 289 

dlPFC, including identification of a single HTR2C+ cluster of pyramidal ExNeuro and two 290 

PVALB+ clusters of InNeuro16. 4,766 differential expression events were detected in 16 of 20 291 

cellular clusters, with ~96% of DEGs occurring in five neuronal cell types. Prior evidence 292 

suggests that GWAS loci and gene sets associated with schizophrenia are primarily expressed 293 

in a limited subset of neurons, including PVALB+ InNeuro and glutamatergic pyramidal 294 

neurons31. Similarly, GWAS loci-related genes were overrepresented in the DEGs of cluster 3 295 

PVALB+ InNeuro and the cluster 10 layer 5 HTR2C+, cluster 12 layer 5, and cluster 14 layer 2/3 296 

ExNeuro. Cluster 12 layer 5 ExNeuro also had an overrepresentation of bipolar disorder GWAS 297 
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loci, fitting prior knowledge that schizophrenia and bipolar disorder share genetic risk loci. These 298 

results support the hypothesis that common genetic variants associated with schizophrenia are 299 

relevant in specific sets of neuronal cell types and schizophrenia-related transcriptomic 300 

alterations are primarily limited to these cells. Several reports provide fairly consistent evidence 301 

of presynaptic marker decreases for frontal cortical fast-spiking parvalbumin +- GABAergic 302 

interneurons, coupled with increased postsynaptic GABAA receptors, both of which may be 303 

consistent with partial loss of GABAergic inhibition of glutamatergic pyramidal neurons32, 33. The 304 

large number of DEGs in both cell types provides support for dysfunction of a frontal cortex 305 

GABAergic-glutamatergic circuit. No DEG occurred in more than five cellular clusters and that 306 

no DEG was present in all the clusters of any multi-clustered major cell type underscores the 307 

importance of utilizing single nuclei/single cell approaches to neural transcriptomics.  308 

 309 

 The substantial overrepresentation of cluster-specific DEGs during critical 310 

neurodevelopmental timepoints, 8 to 13 post-conception weeks and 2 years of age (Fig. 2b) 311 

supports hypotheses about schizophrenia as a neurodevelopmental disorder 34-36. Our analyses 312 

identified a substantial number of GO terms and KEGG and canonical pathways related to 313 

energy metabolism and oxidative stress in the primary neuronal clusters and prior works have 314 

hypothesized the prenatal and early developmental dysregulation of oxidative stress may play a 315 

role in the development of schizophrenia, particularly in PVALB+ neurons (reviewed37). Taken 316 

together, these data suggest potential windows for PVALB+ InNeuro oxidative stress targeted 317 

interventions. 318 

 319 

 Human postmortem studies are identifying increasing numbers of shared and brain 320 

region-specific differentially expressed microRNAs that are associated with schizophrenia38, 321 

including a global increase in microRNA levels39. While the experimental approach of this study 322 

was unable to directly detect alterations in microRNA expression, complementary approaches to 323 
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identifying cell type-specific microRNA target overrepresentation yield overlapping predictions of 324 

microRNAs known to regulate brain function. For example, miR-424 (aka miR-322) targets were 325 

predicted to be overrepresented in the cluster 3 PVALB+ InNeuro and cluster 10 layer 5 326 

HTR2C+ and cluster 13 layer 4/5 ExNeuro. miR-424 is known to regulate BDNF expression40 327 

and literature evidence supports a role for alterations in BDNF expression in schizophrenia 328 

pathogenesis41. Taken together, these data suggest that the neuronal cell type-specific 329 

microRNA identified in this study may warrant further investigation.  330 

 331 

Several limitations of this study must be noted.  First, the relatively small number of 332 

postmortem samples analyzed increases the possibility that the subjects are not representative 333 

of the broader populations.  Replication in a larger sample, including female samples, will be 334 

essential for these results.  Second, schizophrenia patients frequently have comorbidities (e.g. 335 

smoking, obesity) that are less common in control individuals, presenting analytical confounds.  336 

Similarly, schizophrenia patients usually have a history of chronic antipsychotic treatment, 337 

whereas controls do not. Thus, it is impossible to know at present whether any of the identified 338 

DEGs reflect causality or response to chronic pharmacotherapy. It may also be possible to 339 

address this issue by studying postmortem brains of persons with schizophrenia who never had 340 

antipsychotic treatment. However, at least in the United States, these patients are uncommon. 341 

Third, transcriptome-based methods such as snRNAseq have the potential to miss relevant 342 

genes that are regulated primarily at the level of translation or splicing, which may also help to 343 

shape transcriptomic architecture and be relevant to schizophrenia pathology. Finally, this 344 

project was limited to a single brain region from individuals over 18 years of age. Therefore, 345 

spatial and temporal changes in gene expression occurring over the course of the disease 346 

would not be identified in our analysis. The findings from this study of dlPFC cannot be 347 

extrapolated to other areas of the brain, justifying the need for more comprehensive studies. 348 

There is also substantial evidence for neurodevelopmental origins in schizophrenia42, 43, 349 
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suggesting there are relevant transcriptomic differences between cases and controls before 350 

adulthood. In summary, we have begun to characterize transcriptome alterations in 351 

schizophrenia at the level of single neural cells and extension of this work may provide a new 352 

basis for the development of effective treatment strategies.  353 

 354 
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Figure Legends 557 

Fig. 1: snRNAseq and clustering. a The transcriptome profile of ~275,000 nuclei were utilized 558 

for unbiased clustering and is presented as a uniform manifold approximation and projection 559 

(UMAP) dimension reduction plot of all nuclei color coded by cluster. b Clusters were annotated 560 

with genes known to be markers for major neural cell types. The size and color of dots is 561 

proportional to the percentage of cells expressing the gene (Pct. Exp.) and the average 562 

expression level of the gene (Avg. Exp.), respectively. The cluster numbers and colors are 563 

matched to that of the UMAP. c The proportion of major cell types between the schizophrenia 564 

and control groups. d The proportion of schizophrenia and control nuclei in each cluster. The 565 

labels and numbers correspond to those of the UMAP and dot plot. e Cluster contribution by 566 

individual sample. Colors correspond to those of the UMAP and dot plot. Abbreviations: 567 

somatostatin (SST), parvalbumin (PVALB), vasoactive intestinal peptide (VIP), synaptic vesicle 568 

glycoprotein 2C (SV2C), reelin (RELN), nuclear receptor subfamily 4 group A member 2 569 

(NR4A2), sulfatase 2 (SULF2), 5-hydroxytryptamine receptor 2C (HTR2C), cut like homeobox 2 570 

(CUX2), oligodendrocyte precursor cells (OPC).  571 

 572 

Fig. 2: Differential expression. a The number of up or down regulated genes by cell type. b 573 

UpSet plot of the number of unique differentially expressed genes (DEGs) that are unique or 574 

shared between the five neuronal cell clusters that encompass the majority (~96%) of all DEGs. 575 

c Overrepresentation of schizophrenia (SZ), bipolar disorder (BP), and Alzheimer’s disease 576 

(AD) GWAS loci in primary neuronal clusters. d Heatmap of the overrepresentation of cluster-577 

specific DEGs throughout the brain. e Heatmap of the overrepresentation of cluster-specific 578 

DEGs throughout the neural life span.  579 

 580 
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Fig. 3: Canonical pathways. a Overrepresentation of cluster-specific DEGs in the top five 581 

shared canonical pathways for the primary neuronal clusters. b Shared and unique cluster-582 

specific DEGs that underlie the oxidative phosphorylation canonical signaling pathway.  583 

 584 

Fig. 4: Upstream regulators. a Overrepresentation of cluster-specific DEGs in the top five 585 

predicted upstream master regulators. b Shared and unique cluster-specific DEGs that underlie 586 

the prediction of DDX5 as an upstream regulator of cell type-specific DEGs.  587 

 588 

 589 
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