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Abstract:

Cell and molecular biology analyses of sporadic Alzheimer’s disease brain are confounded by
clinical variability, ageing and genetic heterogeneity. Therefore, we used single-nucleus RNA
sequencing to characterize cell composition and gene expression in the cerebral cortex in early-
onset, monogenic Alzheimer’s disease. Constructing a cellular atlas of frontal cortex from 8
monogenic AD individuals and 8 matched controls, provided insights into which neurons
degenerate in AD and responses of different cell types to AD at the cellular and systems level.
Such responses are a combination of positively adaptive and deleterious changes, including
large-scale changes in synaptic transmission and marked metabolic reprogramming in neurons.
The nature and scale of the transcriptional changes in AD emphasizes the global impact of the

disease across all brain cell types.

One Sentence Summary: Alzheimer’s disease brain atlas provides insights into disease

mechanisms

Main Text:

While many genetic and non-genetic Alzheimer’s disease risk factors have been identified, a
unified understanding of cellular and molecular pathogenesis in the disease is lacking (/).
Monogenic AD provides a defined genetic starting point for studies of disease pathogenesis,
circumventing the variation introduced by the genetic heterogeneity (2, 3) and co-morbidities of
sporadic, late-onset disease (4, 5). Mutations in amyloid protein precursor (APP) and presenilin-

1 (PSENTI) genes cause autosomal dominant forms of early-onset Alzheimer disease (5—8). These
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genes encode for a protease and one of its substrates, and act in a common pathogenic pathway
(9). Given the early onset of monogenic AD (4, 5), comparisons with age-matched controls

reduces the impact of age as a confounding factor for interpreting cellular changes (10—12).

We analyzed gene expression in single nuclei from post-mortem frontal cortex (Brodmann area
9) of 8 individuals with monogenic AD carrying PSEN! Intron4, M1461 or APP V717 mutations,
and 8 age- and gender-matched controls (Fig. 1A, Data S1). Neuronal and non-neuronal/glial
nuclei were separated by FACS, enabling equal representation of neurons and glial cells in the
dataset (NeuN"* and NeuN" respectively; Fig. S1, A to D). Droplet-based single-nucleus RNA
sequencing (snRNA-seq; see Methods for details) was carried out separately for neuronal and
glial nuclei. A two-step process using cell types of human middle temporal gyrus from snRNA-
seq data generated by the Allen Institute for Brain Science as a reference (/3) resulted in a final
dataset of 89,325 high confidence nuclei (64,408 from controls and 24,917 from monogenic
AD), which was used for all subsequent analyses. Consistent with previous studies of sporadic
(8) and monogenic AD (4, 5), nuclear sorting identified a marked reduction in the number of
neurons (NeuN™) in monogenic AD patients with PSEN1 or APP mutations (Fig. 1B; Fig. S1, B
and C) (14, 15). The neuronal nuclei from non-demented control brains had a higher mRNA
content compared to glial nuclei (/3, 16) (Fig. 1C and Fig. S1, E and F). In contrast we found
that there was a marked reduction in the mRNA content of neuronal and glial nuclei from
monogenic AD cortex, compared with their counterparts in non-demented controls (Fig. 1C and

Fig. S1, E and F).

Previous studies of sporadic AD brain identified loss of excitatory neurons from the cerebral

cortex, most notably from entorhinal cortex early in the disease (/7-20). To determine the degree
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of selective neuronal vulnerability in monogenic AD, we compared the proportions of the 10
types of excitatory and 10 types of inhibitory neurons, and 6 glial cell types in the monogenic
AD frontal cortex with that of non-demented controls (Fig. 1D-G). For broad categories of
neuronal types, we found that both excitatory and inhibitory neurons were significantly reduced
in AD (Fig. 1E). In contrast, the proportions of glial cells were not significantly different,
although there was a relative increase in both astrocytes and oligodendrocytes, most probably
reflecting the loss of neurons (Fig. 1E). While excitatory neurons were broadly lost from the AD
cortex, certain classes of excitatory neurons were disproportionately reduced, most notably
classes of layer 3/4 (ExcB1) and layer 4-6 neurons (ExcB4; Fig. 1F). In contrast, almost all
subtypes of interneurons were significantly reduced in the frontal cortex of monogenic AD
patients (Fig. 1G). These findings were confirmed by cell counting in tissue sections from the
same monogenic AD and control individuals (Fig. 1, H and I), with, for example, one of the most
abundant interneuron subtypes (Parvalbumin®, PVALB) reduced by 62% in AD cortex (Fig. 11).
The large-scale loss of inhibition due to interneuron degeneration would be expected to impair
excitation:inhibition balance, leading to epilepsy. This is consistent with the high incidence of
seizures observed in monogenic AD (4, 5, 21-24), with five of the AD patients studied here
manifesting seizures and/or myoclonus, and with the hypothesis that seizures may occur before

widespread neurodegeneration and even before clinical symptoms of dementia (25).

For the analysis of gene expression changes and their relevance to AD pathogenesis, we focused
on those alterations shared between PSENI and APP AD. To interrogate the biological relevance
of changes in gene expression in each cell type, we analyzed not only individual genes exhibiting

the strongest differences in gene expression in each cell type between monogenic AD and non-
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demented controls, but also functional groups (Fig. 2A and 3, A to C; Fig. S5 to S8; Data S2 and
S3). Down-regulation of gene expression dominates in many cell types, including excitatory
neurons, inhibitory neurons, oligodendrocytes and oligodendrocyte precursor cells (Fig. S5, A, C
and E). Notably amongst functional categories, many genes encoding pre- and post-synaptic
proteins involved in synaptic transmission were down-regulated in both excitatory and inhibitory
neurons (Fig. 2A; Fig. S6B). Furthermore, both inhibitory and excitatory neurotransmitter
receptors were downregulated in expression, as were genes required for GABA production in
interneurons. Therefore, in addition to neuron loss, reduced expression of synapse and
neurotransmission genes may contribute to declining neurological function and to the

development of epilepsy in monogenic AD.

In addition to defects in neurotransmission, differential gene expression pointed to a marked
switch in neuronal metabolism. A large number of genes encoding multiple elements of the
mitochondrial electron transport chain, as well as a number of enzymes required for the Krebs
cycle, were downregulated in monogenic AD neurons (Fig. 2B and Fig. S6B). This was seen
across multiple neuronal types and indicates widespread mitochondrial dysfunction and defects
in oxidative phosphorylation in neurons. Accompanying this was an upregulation of genes
involved in glycolysis, many of which are known HIF-1 targets (Fig 2B, Fig S6B and Data S3).
Reduced expression of electron transport chain complexes and changes in activity of Krebs cycle
enzymes have both previously been noted in AD neurons (26—28), and the upregulation of
glycolysis genes is consistent with functional imaging evidence for a relative increase in aerobic
glycolysis in sporadic AD (29). The combination of both reduced oxidative phosphorylation and

increased glycolysis is reminiscent of metabolic reprogramming observed in cancer (30) and
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during immune cell activation (37), which is typically associated with increased metabolic
demands. Since mitochondrial dysfunction and oxidative damage are thought to be early events
in AD (32), it is possible that the shift to glycolysis is required to meet the neurons’ metabolic
needs and as a protective mechanism to generate antioxidants. It will be important to determine
whether mitochondrial dysfunction or oxidative stress are the primary drivers of metabolic
reprogramming in monogenic AD, and more importantly whether this is a protective or

pathological process.

To determine possible links between monogenic and sporadic AD, we examined the cellular
expression of sporadic AD GWAS-associated genes (2, 3) in monogenic AD patients. Mapping
the set of 37 currently known sporadic AD GWAS-associated genes (2, 3), as well as APP and
PSEN1/2, to our dataset, we found that almost all were expressed in at least one cell type in
monogenic AD or non-demented controls (Fig. 2C), with many expressed in neurons. Of note,
nine AD GWAS genes show significant changes in at least two neuronal subtypes in monogenic
AD. This includes genes that are up-regulated (Fig. 2D), despite the overall reduction in gene
expression in the monogenic AD cortex (Fig. SSA). For instance, clusterin (CLU), the tau kinase
PTK2B (33), the APP-processing regulator ABCA7 (34) and the regulator of intracellular
trafficking BIN1 were all upregulated in neurons (Fig. 2D). Conversely, SORLI1, an intracellular
sorting receptor for APP (35), the endocytosis regulator PICALM, the transmembrane protein
CNTNAP2 and the transcription factor MEF2C were down-regulated in neurons (Fig. 2D). The
net consequence of these changes is a mixture of protective and pathogenic effects. For example,
increasing clusterin levels could potentially be a response to endolysosomal dysfunction (9, 36),

and would be predicted to support increased flux through that system. In contrast, reducing

6


https://doi.org/10.1101/2020.07.14.202317
http://creativecommons.org/licenses/by/4.0/

10

15

20

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.202317; this version posted July 14, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

SORLI1 levels would accelerate pathogenesis, as loss of function SORLI mutations are

themselves causal for monogenic AD (37).

As in neuronal cells, all glial cell types had altered gene expression in monogenic AD (Fig. 3 and
S8). Microglia and astrocytes exhibited signs of activation due to inflammatory or damaging
stimuli (Fig. 3, A to C; Fig. S8, A and B). Specifically, APOE, SPP1 and complement CQ1 were
upregulated in microglia (38) and GFAP, CHI3L1 and GJA1 were upregulated in astrocytes (39—
41). In addition, microglia exhibited hallmarks of innate immune cell activation, with
upregulation of genes essential for antigen presentation, C1q components, and lysosome
components (Fig. 3, A and C; Fig. S8A). Astrocytes also demonstrated several signatures of
cellular stress, such as increased expression of molecular chaperones and metallothioneins, and

upregulation of lysosomal genes (Fig. 3, B and C; Fig. S8B).

The inflammatory response in monogenic AD was distinct from that in an individual with
intracerebral hemorrhage (ICH). For astrocytes and microglia, cells from the ICH cortex formed
specific clusters distinct from both monogenic AD and non-demented controls (Fig. 3, D and G).
ICH microglia expressed genes associated with acute activation, including SPP1, FTHI1 and
S100A11 (42) (Fig. 3E). The activation of monogenic AD microglia was distinct from that of
ICH (Fig. 3E; Data S4). In particular, the monogenic AD microglial phenotype was more similar
to the recently described human AD microglia phenotype (HAM; Fig. 3F) than to the murine
damage-associated microglia phenotype (DAM; Fig. 3F) (43). In contrast, ICH microglia were
more similar to murine DAM than human AD microglia (Fig. 3F). A similar trend is observed in

AD astrocytes, which have increased expression of a number of genes that have been identified
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in reactive astrocytes in mouse models of AD (Fig. 3, G to [; Data S4) (39). In contrast, reactive
astrocyte genes were expressed at a higher level in ICH astrocytes (Fig. 3I). Overall, we
conclude that microglia and astrocytes in the monogenic AD brain have an activation phenotype

that is disease-specific and distinct from acute activation due to brain hemorrhage.

To complement the analysis above that focused on intracellular signaling, we also studied how
changes in gene expression affect intercellular signaling in monogenic AD. To do so, we
analyzed co-expression of ligands and their cognate receptors across different cell types,
comparing AD and non-demented controls. This analysis revealed an overall decrease in
potential cell-cell signaling among neurons in monogenic AD (Fig. 4A; Fig. S9, A to D), but an
increase in neuron-microglia and neuron-astrocyte signaling (Fig. 4A; Fig. S9, A to D). Some
changes in neuron-glia signaling are likely to be positively adaptive to the ongoing disease
process and others deleterious (Fig. 4, B to D, Fig. S9, E to H). These include a positive adaptive
change in neuronal scavenging of granulins, with both upregulation of GRN expression by
microglia and increased neuronal expression of the SORT1 receptor (Fig. 4B). These changes
would increase neuronal accumulation of granulins, improving lysosomal function in PSEN/ and
APP mutant neurons, which is compromised by these mutations (9). Conversely, microglial
homeostasis via the chemokine CX3CL1 appears compromised by reduced expression in
neurons of both the ADAM chemokine processing enzymes (44) and the CX3CR1 receptor (Fig.
4C). Similarly, neuron-oligodendrocyte/astrocyte signaling via neuregulins is also compromised
in AD, with down-regulation of neuronal neuregulin expression and reduced expression of the
relevant receptor ERBB4 (45) in OPCs and oligodendrocytes and EGFR in astrocytes (46) (Fig.

4D).
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Single-cell analysis of the frontal cortex in monogenic AD led to a number of insights into the
molecular and cellular pathology of monogenic AD, conserved between patients carrying the
PSENI and APP mutations. First, we observed widespread degeneration of almost all classes of
inhibitory interneurons in monogenic AD, consistent with high incidence of epilepsy in the
patients. Second, we found that neuronal cells undergo metabolic reprogramming, similar to
cancer cells. Third, we observed both adaptive and deleterious changes in neuronal and glial cells
in monogenic AD patients. The presence of positive adaptive changes may explain the relatively
slow development of clinical symptoms over decades (9, 47-51), and may also point towards
resilience mechanisms that support survival of these neurons late in the disease process. In
addition to specific gene expression changes, the pervasive and global nature of the disease-
associated changes across multiple cell types, and almost all cells within each class, underlines
the global nature of the disease in its latter stages. As such, it is consistent with a disease process
that begins in early adulthood (52), and supports the hypothesis that successful treatments for
monogenic AD will likely need to be administered decades before the typical age at onset of

clinical symptoms (4, 5).
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Fig. 1. Degeneration of both excitatory and inhibitory neurons in the monogenic AD cortex.
(A) Frontal cortex (Brodmann area 9, BA9) was analyzed by snRNAseq in 8 monogenic AD
patients and 8 matched non-demented controls. (B) Comparison of number of neurons (NeuN™)
and glia (NeuN") in control and AD cortex detected by FACS (**P < 0.01, two-sided Student’s t-
test). (C) Comparison of mRNA content per nucleus in control and AD. (**P < 0.01, ***P <
0.001; ns, not significant; Bonferroni-corrected two-sided Student’s t-test). (D) Mapping of cell
types (t-SNE projection of 89,325 nuclei). Cell types were annotated by similarity to the Allen
Institute cell type atlas. (E-G) Quantification of normalized numbers of major cell types (E),
excitatory (F) and inhibitory neuronal subtypes (G) in control and AD cortex (Mean £SEM; *P <
0.05, **P < 0.01, ***P < (0.001; ns, not significant; two-sided Student’s t-test). (H,I)
Immunostaining for phosphorylated tau and major classes of excitatory (TBR1, SATB2) and
inhibitory neurons (GAD1, PVALB) in the post-mortem cortex (H; arrowheads, examples of
neurons expressing each protein; scale bar, 100 um) and quantification (I; counts per 500 um
unit width of cortex). Three sections spanning the entire cortical thickness (diamonds) were
quantified per individual and then averaged (dots); (*P < 0.05, ***P < 0.001; ns, not significant;

two-sided Student’s t-test).
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Fig. 2. Differential gene expression in AD neurons.

(A) AD neurons downregulate gene expression networks and pathways required for both
excitatory and inhibitory neurotransmission. (B) Downregulation of elements of the citric acid
cycle and large numbers of genes required for the electron transport chain in AD neurons is
accompanied by upregulation of glycolysis genes and the HIF-1 pathway, indicative of metabolic
reprogramming. Heatmaps represent log-transformed fold differences in gene expression
between APP or PSEN1 AD and matched controls. Term enrichment (top) and the number
comparisons in which genes are significantly changed (heatmap, right) are shown. Diagram
below summarizes the net effect on neurotransmission. (C) Genes identified by GWAS as
contributing to risk of developing late-onset Alzheimer’s disease are expressed in many different
cell types in both non-demented individuals and monogenic AD. Log-transformed average gene
expression per cell type in nuclei from non-demented controls (upper) or AD cases (lower) are
shown. (D) Many AD GWAS genes that have altered expression in AD, compared with non-
demented controls, do so in neurons. Both up- and down-regulation of AD GWAS genes is
observed. Cell type-specific differential expression of AD GWAS genes in AD brains (log-

transformed fold change) is shown.
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Fig. 3. AD-specific phenotypic changes in microglia and astrocytes.

(A-C) Microglia and astrocytes display complex phenotypic changes in AD. For each cell type,
genes with the most significant changes in expression are shown, together with notable
functional categories enriched in each cell type. Log fold-change in expression are shown. Key
functional changes in AD in each cell type are summarized in cartoons in (C). (D) Microglia in
AD brain display a disease-specific phenotype, distinct form controls and acute activation due to
intracerebral hemorrhage, as illustrated by distribution of disease groups in two-dimensional (t-
SNE) projection. (E) Expression of genes defining different molecular states of microglia in
controls, monogenic AD and intracerebral hemorrhage (ICH). Dot size, percentage of nuclei with
non-zero expression; colors, scaled average expression. (F) The AD microglial gene expression
signature is more similar to that of human Alzheimer’s microglia (HAM) than murine damage-
associated microglia (DAM). (G-I) Astrocytes similarly demonstrate an AD-specific activated
phenotype, distinct from acute activation. Elements of previously described reactive astrocyte
phenotypes (Pan-reactive and A1-/A2-specific) are found in AD astrocytes, but to a lesser

degree than in acute activation due to brain hemorrhage (ICH).
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Fig. 4. Changes in neuron-glia crosstalk in monogenic AD are a combination of positively
adaptive and deleterious responses.

(A) Potential cell-cell interactions are reduced in AD, whereas as interactions involving either
microglia or astrocytes are increased in AD. Circos plots depicting the number of significant
potential intercellular molecular interactions in control (left) and monogenic AD (right). (B-D)
Examples of positively adaptive (B) and deleterious (C-D) changes in receptor-ligand
interactions between neurons and glia. Basal expression of relevant genes is shown as dot plots
(Dot size, percentage of nuclei with non-zero expression; colors, scaled average expression).
Heatmaps show log-transformed fold change between APP and PSEN1 and matched controls.
Differential expression in specific cell types of particular biological relevance is highlighted by

black boxes and the likely biological net effect summarized diagrammatically.
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