

1 Insights into the genomic evolution of insects from cricket 2 genomes

3 Guillem Ylla^{1*}, Taro Nakamura^{1,2}, Takehiko Itoh³, Rei Kajitani³, Atsushi Toyoda^{4,5}, Sayuri
4 Tomonari⁶, Tetsuya Bando⁷, Yoshiyasu Ishimaru⁶, Takahito Watanabe⁶, Masao Fuketa⁸, Yuji
5 Matsuoka^{6,9}, Austen A. Barnett^{1,10}, Sumihare Noji⁶, Taro Mito^{6*}, Cassandra G. Extavour^{1,11*}

6

7 1. Department of Organismic and Evolutionary Biology, Harvard University,
8 Cambridge MA, USA

9 2. Current address: National Institute for Basic Biology, Okazaki, Japan

10 3. School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan

11 4. Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan

12 5. Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan

13 6. Department of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan

14 7. Graduate School of Medicine, Pharmacology and Dentistry, Okayama University,
15 Okayama, Japan

16 8. Graduate School of Advanced Technology and Science, Tokushima University,
17 Tokushima, Japan

18 9. Current address: Department of Biological Sciences, National University
19 of Singapore, Singapore

20 10. Current address: Department of Natural Sciences, DeSales University, Center Valley
21 PA, USA

22 11. Department of Molecular and Cellular Biology, Harvard University, Cambridge MA,
23 USA

24

25 * correspondence to guillemyllabou@gmail.com, mito.taro@tokushima-u.ac.jp and
26 extavour@oeb.harvard.edu

27

28 **Abstract**

29

30 Most of our knowledge of insect genomes comes from Holometabolous species, which
31 undergo the complete metamorphosis and have genomes under 2Gb with little signs of DNA
32 methylation. In contrast, Hemiemetabolous insects undergo the ancestral incomplete
33 metamorphosis and have larger genomes with high levels of DNA methylation.
34 Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have
35 some of the largest insect genomes. What drives the evolution of these unusual insect
36 genome sizes, remains unknown. Here we report the sequencing, assembly and annotation
37 of the 1.66-Gb genome of the Mediterranean field cricket *Gryllus bimaculatus*, and the
38 annotation of the 1.60-Gb genome of the Hawaiian cricket *Laupala kohalensis*. We compare
39 these two cricket genomes with those of 14 additional insects, and find evidence that
40 hemimetabolous genomes expanded due to transposable element activity. Based on the ratio
41 of observed to expected CpG sites, we find higher conservation and stronger purifying
42 selection of methylated genes than non-methylated genes. Finally, our analysis suggests an
43 expansion of the *pickpocket* class V gene family in crickets, which we speculate might play a
44 role in the evolution of cricket courtship, including their characteristic chirping.

45

46 Introduction

47 Much of what we know about insect genome structure and evolution comes from
48 examination of the genomes of insects belonging to a single clade, the Holometabola. This
49 group includes species such as flies and beetles, and is characterized by undergoing
50 complete, or holometabolous, metamorphosis, in which the product of embryogenesis is a
51 larva, which then undergoes an immobile stage called a pupa or chrysalis, during which the
52 larval body plan is abandoned and the new, adult body plan is established. Following the
53 pupal stage, the adult winged insect emerges¹. This clade of insects includes nearly 90% of
54 extant described insect species². Members of this clade have become prominent model
55 organisms for laboratory research, including the genetic model *Drosophila melanogaster*.
56 Thus, a large proportion of our knowledge of insect biology, genetics, development, and
57 evolution is based on studies of this clade.

58 Before the evolution of holometabolous metamorphosis, insects developed through
59 incomplete or hemimetabolous metamorphosis. This mode of development is characterized
60 by a generation of the final adult body plan during embryogenesis, followed by gradual
61 physical growth of the hatchling through nymphal stages until the last transition to the
62 sexually mature, winged adult, without major changes in body plan from hatchling to adult¹.
63 Many extant species maintained this presumed ancestral type of metamorphosis, including
64 crickets, cockroaches, and aphids. Among hemimetabolous insects, most of our current
65 genomic data is from the order Hemiptera (true bugs), which is the sister group to the
66 Holometabola. For the remaining 15 hemimetabolous orders, genomic data remain scarce.

67 Based on data available to date, genome size and genome methylation show unexplained
68 variation across insects. While most holometabolan species have relatively small genomes
69 (0.2-1.5 pg), hemimetabolous species, and specifically polyneopterans (a taxon comprising
70 10 major hemimetabolous orders of winged insects with fan-like extensions of the hind
71 wings), display a much larger range of genome sizes (up to 8 pg)³. This has led to the
72 hypothesis that there is a genome size threshold at 2 pg (~2 Gb) for holometabolan insect
73 genomes³. Studying genome size evolution the polyneopterans order Orthoptera (crickets,
74 grasshoppers, locusts, and katydids) offers a valuable opportunity to investigate potential
75 mechanisms of genome size evolution, as it includes species that have similar predicted gene
76 counts, but have genomes ranging from 1.25 Gb to 16.56 Gb⁴. With respect to the level of CpG
77 DNA methylation, only a few holometabolous species display evidence of genome wide DNA
78 methylation at CpG sites, whereas 30 out of 34 studied polyneopteran species do^{5,6}. However,
79 the role of DNA methylation in polyneopteran species, and why it appears to have been lost
80 in many holometabolans, is not clear.

81 Here, we present the 1.66-Gb genome assembly and annotation of *G. bimaculatus*
82 (Orthoptera), commonly known as the two-spotted cricket, a name derived from the two
83 yellow spots found on the base of the forewings of this species (**Figure 1A**). We also report
84 the first genome annotation for a second cricket species, the Hawaiian cricket *Laupala*

85 *kohalensis*, whose genome assembly was recently made public⁷. *G. bimaculatus* has been
86 widely used as a laboratory research model for decades, in scientific fields including
87 neurobiology and neuroethology^{8,9}, evo-devo¹⁰, developmental biology¹¹, and
88 regeneration¹². Technical advantages of this cricket species as a research model include the
89 fact that *G. bimaculatus* does not require cold temperatures or diapause to complete its life
90 cycle, it is easy to rear in laboratories since it can be fed with generic insect or other pet
91 foods, it is amenable to RNA interference (RNAi) and targeted genome editing¹³, stable
92 germline transgenic lines can be established¹⁴, and it has an extensive list of available
93 experimental protocols ranging from behavioral to functional genetic analyses¹⁵.

94 Comparing the two cricket genomes annotated here, with those of 14 other insect species,
95 allowed us to identify three interesting features of these cricket genomes, some of which may
96 relate to their unique biology. First, the differential transposable element (TE) composition
97 between the two cricket species suggests abundant TE activity since they diverged from a
98 last common ancestor, which our results suggest occurred circa 89.2 million years ago (Mya).
99 Second, based on gene CpG depletion, an indirect but robust method to identify typically
100 methylated genes^{5,16}, we find higher conservation of typically methylated genes than of non-
101 methylated genes. Finally, our gene family expansion analysis reveals an expansion of the
102 *pickpocket* class V gene family in the lineage leading to crickets, which we speculate might
103 play a relevant role in cricket courtship behavior, including their characteristic chirping.

104 **Results**

105 ***Gryllus bimaculatus* genome assembly**

106 We sequenced, assembled, and annotated the 1.66-Gb haploid genome of the white eyed
107 mutant strain¹² of the cricket *G. bimaculatus* (**Figure 1A**). 50% of the genome is contained
108 within the 71 longest scaffolds (L50), the shortest of them having a length of 6.3 Mb (N50),
109 and 90% of the genome is contained within 307 scaffolds (L90). In comparison to other
110 polyneopteran genomes, our assembly displays high quality in terms of contiguity (N50 and
111 L50), and completeness (BUSCO scores) (**Supplementary Table 1**). Notably, the complete
112 BUSCO scores¹⁷ of this genome assembly at the arthropod and insect levels are 98.50%
113 (C:98.5% [S:97.2%, D:1.3%], F:0.4%, M:1.1%, n:1066) and 97.00% (C:97.0% [S:95.2%,
114 D:1.8%, F:0.8%, M:2.2%, n:1658] respectively, indicating high completeness of this genome
115 assembly (**Table 1**). The low percentage of duplicated BUSCO genes (1.31%-1.81%)
116 suggests that putative artifactual genomic duplication due to mis-assembly of heterozygotic
117 regions is unlikely.

118

119 **Table 1:** *Gryllus bimaculatus* genome assembly statistics.

Number of Scaffolds	47,877
---------------------	--------

Genome Length (nt)	1,658,007,496
Genome Length (Gb)	1.66
Avg. scaffold size (Kb)	34.63
N50 (Mb)	6.29
N90 (Mb)	1.04
L50	71
L90	307
Complete BUSCO Score - Arthropoda	98.50%
Complete BUSCO Score - Insecta	97.00%

120

121 **Annotation of two cricket genomes**

122 The publicly available 1.6-Gb genome assembly of the Hawaiian cricket *L. kohalensis*⁷,
123 although having lower assembly quality scores (N50=0.58 Mb, L90 = 3,483) than that of *G.*
124 *bimaculatus*, scores high in terms of completeness, with BUSCO scores of 99.3% at the
125 arthropod level and 97.80% at the insect level (**Supplementary Table 1**).

126 Using three iterations of the MAKER2 pipeline¹⁸, in which we combined *ab-initio* and
127 evidence-based gene models, we annotated the protein-coding genes in both cricket
128 genomes (**Supplementary Figures 1 & 2**). We identified 17,871 coding genes and 28,529
129 predicted transcripts for *G. bimaculatus*, and 12,767 coding genes and 13,078 transcripts for
130 *L. kohalensis* (**Table 2**).

131 To obtain functional insights into the annotated genes, we ran InterProScan¹⁹ for all
132 predicted protein sequences and retrieved their InterPro ID, PFAM domains, and Gene
133 Ontology (GO) terms (**Table 2**). In addition, we retrieved the best significant BLASTP hit
134 (E-value < 1e-6) for 70-90% of the proteins. Taken together, these methods predicted
135 functions for 75% and 94% of the proteins annotated for *G. bimaculatus* and *L. kohalensis*
136 respectively. We created a novel graphic interface through which interested readers can
137 access, search, BLAST and download the genome data and annotations
138 (<http://gbimaculatusgenome.rc.fas.harvard.edu>).

139

140 **Table 2:** *Genome annotation summary for the crickets G. bimaculatus and L. kohalensis*

	<i>G. bimaculatus</i>	<i>L. kohalensis</i>
Annotated Protein-Coding Genes	17,871	12,767

Annotated Transcripts	28,529	13,078
% With InterPro ID	59.56%	72.52%
% With GO-terms	38.66%	47.03%
% With PFAM motif	62.44%	76.59%
% With significant BLASTP hit	73.64%	93.23%
Complete BUSCO-proteome Score – Insecta	90.50%	87.20%
Repetitive content	33.69%	35.51%
TE content	28.94%	34.50%
GC level	39.93%	35.58%

141 **Abundant Repetitive DNA**

142 We used RepeatMasker²⁰ to determine the degree of repetitive content in the cricket
143 genomes, using specific custom repeat libraries for each species. This approach identified
144 33.69% of the *G. bimaculatus* genome, and 35.51% of the *L. kohalensis* genome, as repetitive
145 content (**Supplementary File 1**). In *G. bimaculatus* the repetitive content density was
146 similar throughout the genome, with the exception of scaffolds shorter than 1Mb (L90),
147 which make up 10% of the genome and have a high density of repetitive content and low
148 gene density (**Figure 1B**). Because the repetitive content makes genome assemblies more
149 challenging, as observed for the shortest scaffolds of *G. bimaculatus*, we cannot rule out the
150 possibility that the lower contiguity of the *L. kohalensis* genome could lead us to
151 underestimate its repetitive content. This caveat notwithstanding, we observed that
152 transposable elements (TEs) accounted for 28.94% of the *G. bimaculatus* genome, and for
153 34.50% of the *L. kohalensis* genome. Although the overall proportion of genome made up of
154 TEs was similar between the two cricket species, the proportion of each specific TE class
155 varied greatly (**Figure 1C**). In *L. kohalensis* the most abundant TE type was long interspersed
156 elements (LINEs), accounting for 20.21% of the genome and 58.58% of the total TE content,
157 while in *G. bimaculatus* LINEs made up only 8.88% of the genome and 30.68% of the total TE
158 content. The specific LINE subtypes LINE1 and LINE3 appeared at a similar frequency in both
159 cricket genomes (<0.5%), while the LINE2 subtype was over five times more represented in
160 *L. kohalensis*, covering 10% of the genome (167 Mb). On the other hand, DNA transposons
161 accounted for 8.61% of the *G. bimaculatus* genome, but only for 3.91% of the *L. kohalensis*
162 genome.

163 **DNA methylation**

164 CpG depletion, calculated as the ratio between observed versus the expected incidence of a
165 cytosine followed by a guanine (CpG_{o/e}), is considered a reliable indicator of DNA
166 methylation. This is because spontaneous C to T mutations occur more frequently on

167 methylated CpGs than unmethylated CpGs¹⁶. Thus, genomic regions that undergo
168 methylation are eventually CpG-depleted. We calculated the CpG_{0/e} value for each predicted
169 protein-coding gene for the two cricket species. In both species, we observed a clear bimodal
170 distribution of CpG_{0/e} values (**Figure 2A**). One interpretation of this distribution is that the
171 peak corresponding to lower CpG_{0/e} values contains genes that are typically methylated, and
172 the peak of higher CpG_{0/e} contains genes that do not undergo DNA methylation. Under this
173 interpretation, some genes have non-random differential DNA methylation in crickets. To
174 quantify the genes in the two putative methylation categories, we set a CpG_{0/e} threshold as
175 the value of the point of intersection between the two normal distributions (**Figure 2A**).
176 After applying this cutoff, 44% of *G. bimaculatus* genes and 45% of *L. kohalensis* genes were
177 identified as CpG-depleted.

178 A GO enrichment analysis of the genes above and below the CpG_{0/e} threshold defined above
179 revealed clear differences in the predicted functions of genes belonging to each of the two
180 categories. Strikingly, however, genes in each threshold category had functional similarities
181 across the two cricket species (**Figure 3**). Genes with low CpG_{0/e} values, which are likely
182 those undergoing methylation, were enriched for functions related to DNA replication and
183 regulation of gene expression (including transcriptional, translational, and epigenetic
184 regulation), while genes with high CpG_{0/e} values, suggesting little or no methylation, tended
185 to have functions related to metabolism, catabolism, and sensory systems.

186 To assess whether the predicted distinct functions of high- and low- CpG_{0/e} value genes were
187 specific to crickets, or were a potentially more general trend of insects with DNA methylation
188 systems, we analyzed the predicted functions of genes with different CpG_{0/e} values in the
189 honeybee *Apis mellifera*, the first insect for which evidence for DNA methylation was
190 robustly described and studied^{21,22}, and the thrips *Frankliniella occidentalis*. We found that
191 in both *F. occidentalis* and *A. mellifera*, CpG-depleted genes were enriched for similar
192 functions as those observed in cricket CpG-depleted genes (**Figure 3 and Supplementary**
193 **Figure 3**). Specifically, 23GO terms were significantly enriched in all four studied insects,
194 and 15 additional GO terms were significantly enriched in the three hemimetabolous insects.
195 In the same way, high CpG_{0/e} genes in all four insects were enriched for similar functions (8
196 GO-terms commonly enriched in all insects; **Supplementary Figure 3**).

197 Additionally, we observed that the proportion of species-specific genes was higher within
198 the high CpG_{0/e} peak for all four insects (**Figure 2C**). In contrast, 86-96% of the genes
199 belonging to the low CpG_{0/e} peak had an orthologous gene in at least one of the other studied
200 insect species. Furthermore, we observed 2,182 orthogroups whose members always
201 belonged to the low CpG_{0/e} peak in all four species, and 728 orthogroups whose members
202 always belonged to the high CpG_{0/e} peak, indicating that orthologous genes are likely to share
203 methylation state across these four insect species (**Figure 2B and Supplementary Figure**
204 **4**). Interestingly, 666 genes belonged to the low CpG_{0/e} peak in the three hemimetabolous

205 species (*G. bimaculatus*, *L. kohalensis*, and *F. occidentalis*), but to the high CpG_{0/e} peak in the
206 holometabolous *A. mellifera*.

207 Taken together, these results suggest that genes that are typically methylated tend to be
208 more conserved across species, which could imply low evolutionary rates and strong
209 selective pressure. To test this hypothesized relationship between low CpG_{0/e} and low
210 evolutionary rates, we compared the dN/dS values of 1-to-1 orthologous genes belonging to
211 the same CpG_{0/e} peak between the two cricket species. We found that CpG-depleted genes in
212 both crickets had significantly lower dN/dS values than non-CpG-depleted genes (p-
213 value<0.05; **Figure 2D**), consistent with stronger purifying selection on CpG-depleted genes.

214 **Phylogenetics and gene family expansions**

215 To study the genome evolution of these cricket lineages, we compared the two cricket
216 genomes with those of 14 additional insects, including members of all major insect lineages
217 with special emphasis on hemimetabolous species. For each of these 16 insect genomes, we
218 retrieved the longest protein per gene and grouped them into orthogroups (OGs), which we
219 called “gene families” for the purpose of this analysis. The 732 OGs containing a single
220 protein per insect, namely single copy orthologs, were used to infer a phylogenetic tree for
221 these 16 species. The obtained species tree topology was in accordance with the currently
222 understood insect phylogeny²³. Then, we used the Misof et al. (2014) dated phylogeny to
223 calibrate our tree on four different nodes, which allowed us to estimate that the two cricket
224 species diverged circa 89.2 million years ago.

225 Our gene family expansion/contraction analysis using 59,516 OGs identified 18 gene families
226 that were significantly expanded (p-value<0.01) in the lineage leading to crickets. In
227 addition, we identified a further 34 and 33 gene family expansions specific to *G. bimaculatus*
228 and *L. kohalensis* respectively. Functional analysis of these expanded gene families
229 (**Supplementary File 2**) revealed that the cricket-specific gene family expansions included
230 *pickpocket* genes, which are involved in mechanosensation in *Drosophila melanogaster* as
231 described in the following section.

232

233 **Expansion of *pickpocket* genes**

234 In *D. melanogaster*, the complete *pickpocket* gene repertoire is composed of 6 classes
235 containing 31 genes. We found cricket orthologs of all 31 *pickpocket* genes across seven of
236 our OGs, and each OG predominantly contained members of a single *pickpocket* class. We
237 used all the genes belonging to these 7 OGs to build a *pickpocket* gene tree, using the
238 predicted *pickpocket* orthologs from 16 insect species (**Figure 3; Supplementary Table 2**).
239 This gene tree allowed us to classify the different *pickpocket* genes in each of the 16 species.

240 One orthogroup, which contained eight members of the *pickpocket* gene family of *D.*
241 *melanogaster*, appeared to be significantly expanded to 14 or 15 members in crickets.

242 Following the classification of *pickpocket* genes used in *Drosophila spp.*²⁴ we determined that
243 the specific gene family expanded in crickets was *pickpocket* class V (**Figure 3**). In *D.*
244 *melanogaster* this class contains eight genes: *ppk* (*ppk1*), *rpk* (*ppk2*), *ppk5*, *ppk8*, *ppk12*,
245 *ppk17*, *ppk26*, and *ppk28*²⁴. Our analysis suggests that the class V gene family contains 15
246 and 14 genes in *G. bimaculatus* and *L. kohalensis* respectively. In contrast, their closest
247 analyzed relative, the locust *Locusta migratoria*, has only five such genes.

248

249 The *pickpocket* genes in crickets tended to be grouped in genomic clusters (**Figure 1B**). For
250 instance, in *G. bimaculatus* nine of the 15 class V *pickpocket* genes were clustered within a
251 region of 900Kb, and four other genes appeared in two groups of two. In the *L. kohalensis*
252 genome, although this genome is more fragmented than that of *G. bimaculatus*
253 (**Supplementary Table 1**), we observed five clusters containing between two and five genes
254 each.

255 In *D. melanogaster*, the *pickpocket* gene *ppk1* belongs to class V and is involved in functions
256 related to stimulus perception and mechanotransduction²⁵. For example, in larvae, this gene
257 is required for mechanical nociception²⁶, and for coordinating rhythmic locomotion²⁷. *ppk* is
258 expressed in sensory neurons that also express the male sexual behavior determiner *fruitless*
259 (*fru*)²⁸⁻³⁰.

260 To determine whether *pickpocket* genes in crickets are also expressed in the nervous system,
261 we checked for evidence of expression of *pickpocket* genes in the publicly available RNA-seq
262 libraries for the *G. bimaculatus* prothoracic ganglion⁹. This analysis detected expression (>20
263 transcripts per kilobase million, TPMs) of five *pickpocket* genes, four of them belonging to
264 class V, in the *G. bimaculatus* nervous system. In the same ganglionic RNA-seq libraries, we
265 also detected the expression of *fru* (**Supplementary Table 3**). Out of the four *pickpocket*
266 genes, only one was detected in embryonic RNA-seq libraries. All four genes together with
267 *fru* were detected in wild type leg transcriptomes, and their expression was found to be
268 higher than wild type in a transcriptome from regenerating legs (**Supplementary Table 4**).

269

270 **Discussion**

271 **The importance of cricket genomes**

272 Sequencing and analyzing genomes from underrepresented clades allow us to get a more
273 complete picture of genome diversity across the tree of life, and can provide insights
274 regarding their evolution. Since the first sequenced insect genome, that of *D. melanogaster*,
275 was made publicly available in 2000³¹, the field of holometabolous genomics has flourished,
276 and this clade became the main source of subsequent genomic information for insects. The
277 first hemimetabolous genome was not available until ten years later, with the publication of

278 the genome sequence and annotation of the Pea aphid (*Acyrtosiphon pisum*)³². When even
279 more recently, polyneopteran genome sequences became available³³⁻³⁶, some of their
280 distinct characteristics, such as their length and DNA methylation profiles, began to be
281 appreciated. Genome data are also very important as they can help establish an animal
282 species as tractable experimental models. *G. bimaculatus* is a common laboratory research
283 animal used in neuroethology, developmental and regeneration biology studies^{12,15}. It is our
284 hope that the availability of the annotated genome presented here will encourage other
285 researchers to adopt this cricket as a model organism, and facilitate development of new
286 molecular genetic manipulation tools.

287 Moreover, we note that crickets are currently in focus as a source of animal protein for
288 human consumption and for vertebrate livestock. Crickets possess high nutritional value,
289 having a high proportion of protein for their body weight (>55%), and containing the
290 essential linoleic acid as their most predominant fatty acid³⁷⁻³⁹. Specifically, the cricket *G.*
291 *bimaculatus* has traditionally been consumed in different parts of the world including
292 northeast Thailand, which recorded 20,000 insect farmers in 2011⁴⁰. Studies have reported
293 no evidence for toxicological effects related to oral consumption of *G. bimaculatus* by
294 humans^{41,42}, neither were genotoxic effects detected using three different mutagenicity
295 tests⁴³. A rare but known health risk associated with cricket consumption, however, is
296 sensitivity and allergy to crickets^{44,45}. Nevertheless, not only is the cricket *G. bimaculatus*
297 considered generally safe for human consumption, several studies also suggest that
298 introducing crickets into one's diet may confer multiple health benefits⁴⁶⁻⁴⁸. Crickets might
299 therefore be part of the solution to the problem of feeding a worldwide growing population
300 in a sustainable way. However, most of the crops and livestock that humans eat have been
301 domesticated and subjected to strong artificial selection for hundreds or even thousands of
302 years to improve their characteristics most desirable for humans, including size, growth rate,
303 stress resistance, and organoleptic properties⁴⁹⁻⁵². In contrast, to our knowledge, crickets
304 have never been selected based on any food-related characteristic. The advent of genetic
305 engineering techniques has accelerated domestication of some organisms⁵³. These
306 techniques have been used, for instance, to improve the nutritional value of different crops,
307 or to make them tolerant to pests and climate stress^{49,54}. Crickets are naturally nutritionally
308 rich³⁹, but in principle, their nutritional value could be further improved, for example by
309 increasing vitamin content or Omega-3 fatty acids proportion. In addition, other issues that
310 present challenges to cricket farming could potentially be addressed by targeted genome
311 modification, which can be achieved in *G. bimaculatus* using Zinc finger nucleases, TALENs,
312 or CRISPR/Cas9. These challenges include sensitivity to common insect viruses, aggressive
313 behavior resulting in cannibalism, complex mating rituals, and relatively slow growth rate.

314

315 Comparing cricket genomes to other insect genomes

316 The annotation of these two cricket genomes was done by combining *de novo* gene models,
317 homology-based methods, and the available RNA-seq and ESTs. This pipeline allowed us to
318 predict 17,871 genes in the *G. bimaculatus* genome, similar to the number of genes reported
319 for other hemimetabolous insect genomes including the locust *L. migratoria* (17,307)³³ and
320 the termites *Cryptotermes secundus* (18,162)⁵⁵, *Macrotermes natalensis* (16,140)³⁶ and
321 *Zootermopsis nevadensis*, (15,459)³⁵. The slightly lower number of protein-coding genes
322 annotated in *L. kohalensis* (12,767) may be due to the lesser amount of RNA-seq data
323 available for this species, leading to higher assembly fragmentation, which challenges gene
324 annotation. Nevertheless, the BUSCO scores are similar between the two crickets, and the
325 proportion of annotated proteins with putative orthologous genes in other species (proteins
326 with significant BLAST hits; see methods) for *L. kohalensis* is higher than for *G. bimaculatus*.
327 This suggests the possibility that we may have successfully annotated most conserved genes,
328 but that highly derived or species-specific genes might be missing from our annotations.

329

330 TEs and genome size evolution

331 Approximately 35% of the genome of both crickets corresponds to repetitive content. This
332 is substantially less than the 60% reported for the genome of *L. migratoria*³³. This locust
333 genome is one of the largest sequenced insect genomes to date (6.5 Gb) but has a very similar
334 number of annotated genes (17,307) to those we report for crickets. We hypothesize that the
335 large genome size difference between these orthopteran species is due to the TE content,
336 which has also been correlated with genome size in multiple eukaryote species^{56,57}.

337 Furthermore, we hypothesize that the differences in the TE composition between the two
338 crickets are the result of abundant and independent TE activity since their divergence
339 around 89.2 Mya. This, together with the absence of evidence for large genome duplication
340 events in this lineage, leads us to hypothesize that the ancestral orthopteran genome was
341 shorter than those of the crickets studied here (1.6 Gb for *G. bimaculatus* and 1.59 Gb for *L.*
342 *kohalensis*) which are in the lowest range of orthopteran genome sizes⁵⁸. In summary, we
343 propose that the wide range of genome sizes within Orthoptera, reaching as high as 8.55 Gb
344 in the locust *Schistocerca gregaria*, and 16.56 Gb in the grasshopper *Podisma pedestris*^{4,59}, is
345 likely due to TE activity since the time of the last orthopteran ancestor. These observations
346 are consistent with the results reported by Palacios-Gimenez, et al.⁶⁰ of massive and
347 independent recent TE accumulation in four chromosome races of the grasshopper
348 *Vandiemenella viatica*.

349 There is a clear tendency of polyneopteran genomes to be much longer than those of the
350 holometabolous genomes (**Figure 4**). Two currently competing hypotheses are that (1) the
351 ancestral insect genome was small, and was expanded outside of Holometabola, and (2) the

352 ancestral insect genome was large, and it was compressed in the Holometabola³. Our
353 observations are consistent with the first of these hypotheses.

354

355 **DNA Methylation**

356 Most holometabolan species, including well-studied insects like *D. melanogaster* and
357 *Tribolium castaneum*, do not perform DNA methylation, or they do it at very low levels^{6,61}.
358 The honeybee *A. mellifera* was one of the first insects for which functional DNA methylation
359 was described²¹. Although this DNA modification was initially proposed to be associated
360 with the eusociality of these bees²², subsequent studies showed that DNA methylation is
361 widespread and present in different insect lineages independently of social behavior⁵. DNA
362 methylation also occurs in other non-insect arthropods⁶².

363 While the precise role of DNA methylation in gene expression regulation remains unclear,
364 our analysis suggests that cricket CpG-depleted genes (putatively hypermethylated genes)
365 show signs of purifying selection, tend to have orthologs in other insects, and are involved in
366 basic biological functions related to DNA replication and the regulation of gene expression.
367 These enriched functions are in agreement with previous observations that DNA methylated
368 genes in arthropods tend to perform housekeeping functions^{6,63}. These predicted functions
369 differ from those of the non-CpG depleted genes (putatively hypomethylated genes), which
370 appear to be involved in signaling pathways, metabolism, and catabolism. These predicted
371 functional categories may be conserved from crickets over circa 345 million years of
372 evolution, as we also detect the same pattern in the honeybee and a thrips species.

373 Taken together, these observations suggest a potential relationship between DNA
374 methylation, sequence conservation, and function for many cricket genes. Nevertheless,
375 based on our data, we cannot determine whether the methylated genes are highly conserved
376 because they are methylated, or because they perform basic functions that may be regulated
377 by DNA methylation events. In the cockroach *Blattella germanica*, DNA methyltransferase
378 enzymes and genes with low CpG_{0/e} values show an expression peak during the maternal to
379 zygotic transition⁶⁴, and functional analysis has shown that the DNA methyltransferase 1 is
380 essential for early embryo development in this cockroach⁶⁵. These results in cockroaches,
381 together with our observations, leads us to speculate that at least in Polyneopteran species,
382 DNA methylation might contribute to the maternal zygotic transition by regulating essential
383 genes involved in DNA replication, transcription, and translation.

384 ***pickpocket* gene expansion**

385 The *pickpocket* genes belong to the Degenerin/epithelial Na⁺ channel (DEG/ENaC) family,
386 which were first identified in *Caenorhabditis elegans* as involved in mechanotransduction²⁵.
387 The same family of ion channels was later found in many multicellular animals, with a
388 diverse range of functions related to mechanoreception and fluid-electrolyte homeostasis⁶⁶.

389 Most of the information on their roles in insects comes from studies in *D. melanogaster*. In
390 this fruit fly, *pickpocket* genes are involved in neural functions including NaCl taste⁶⁷,
391 pheromone detection⁶⁸, courtship behavior⁶⁹, and liquid clearance in the larval trachea⁶⁶.

392 In *D. melanogaster* adults, the abdominal ganglia mediate courtship and postmating
393 behaviors through neurons expressing *ppk* and *fru*²⁸⁻³⁰. In *D. melanogaster* larvae, *ppk*
394 expression in dendritic neurons is required to control the coordination of rhythmic
395 locomotion²⁷. In crickets, the abdominal ganglia are responsible for determining song
396 rhythm⁷⁰. Moreover, we find that in *G. bimaculatus*, both *ppk* and *fru* gene expression are
397 detectable in the adult prothoracic ganglion. These observations suggest the possibility that
398 class V *pickpocket* genes could be involved in song rhythm determination in crickets through
399 their expression in abdominal ganglia.

400 This possibility is consistent with the results of multiple quantitative trait locus (QTL)
401 studies done in cricket species from the genus *Laupala*, which identified genomic regions
402 associated with mating song rhythm variations and female acoustic preference⁷¹. The 179
403 scaffolds that the authors reported being within one logarithm of the odds (LOD) of the seven
404 QTL peaks, contained five *pickpocket* genes, three of them from class V and two from class
405 IV. One of the two class IV genes also appears within a QTL peak of a second experiment^{7,72}.
406 Xu and Shaw⁷³ found that a scaffold in a region of LOD score 1.5 of one of their minor linkage
407 groups (LG3) contains *slowpoke*, a gene that affects song interpulse interval in *D.*
408 *melanogaster*, and this scaffold also contains two class III *pickpocket* genes (**Supplementary**
409 **Table 5**).

410 In summary, the roles of *pickpocket* genes in controlling rhythmic locomotion, courtship
411 behavior, and pheromone detection in *D. melanogaster*, their appearance in genomic regions
412 associated with song rhythm variation in *Laupala*, and their expression in *G. bimaculatus*
413 abdominal ganglia, lead us to speculate that the expanded *pickpocket* gene family in cricket
414 genomes could be playing a role in regulating rhythmic wing movements and sound
415 perception, both of which are necessary for mating¹⁵. We note that Xu and Shaw⁷³
416 hypothesized that song production in crickets is likely to be regulated by ion channels, and
417 that locomotion, neural modulation, and muscle development are all involved in singing⁷³.
418 However, further experiments, which could take advantage of the existing RNAi and genome
419 modification protocols for *G. bimaculatus*¹³, will be required to test this hypothesis.

420

421 In conclusion, the *G. bimaculatus* genome assembly and annotation presented here is a
422 source of information and an essential tool that we anticipate will enhance the status of this
423 cricket as a modern functional genetics research model. This genome may also prove useful
424 to the agricultural sector, and could allow improvement of cricket nutritional value,
425 productivity, and reduction of allergen content. Annotating a second cricket genome, that of
426 *L. kohalensis*, and comparing the two genomes, allowed us to unveil possible

427 synapomorphies of cricket genomes, and to suggest potentially general evolutionary trends
428 of insect genomes.

429

430 **Materials and Methods**

431 **DNA isolation**

432 The *G. bimaculatus* white-eyed mutant strain was reared at Tokushima University, at 29±1
433 °C and 30-50% humidity under a 10-h light, 14-h dark photoperiod. Testes of a single male
434 adult of the *G. bimaculatus* white-eyed mutant strain were used for DNA isolation and short-
435 read sequencing. We used DNA from testes of an additional single individual to make a long
436 read PacBio sequencing library to close gaps in the genome assembly. Because sex
437 differentiation in the cricket *G. bimaculatus* is determined by the XX/XO system⁷⁴, genomic
438 DNA extracted from males contains the full set of chromosomes; males were therefore
439 chosen for genomic DNA isolation.

440

441 **Genome Assembly**

442 Paired-end libraries were generated with insert sizes of 375 and 500 bp, and mate-pair
443 libraries were generated with insert sizes of 3, 5, 10, and 20kb. Libraries were sequenced
444 using the Illumina HiSeq 2000 and HiSeq 2500 sequencing platforms. This yielded a total of
445 127.4 Gb of short read paired-end data, that was subsequently assembled using the *de novo*
446 assembler Platanus (v. 1.2.1)⁷⁵. Scaffolding and gap closing were performed using total 138.2
447 Gb of mate-pair data. A further gap closing step was performed using long reads generated
448 by the PacBio RS system. The 4.3 Gb of PacBio subread data were used to fill gaps in the
449 assembly using PBjelly (v. 15.8.24)⁷⁶.

450

451 **Repetitive Content Masking**

452 We generated a custom repeat library for each of the two cricket genomes by combining the
453 outputs from homology-based and *de novo* repeat identifiers, including the LTRdigest
454 together with LTRharvest⁷⁷, RepeatModeler/RepeatClassifier
455 (www.repeatmasker.org/RepeatModeler), MITE tracker⁷⁸, TransposonPSI
456 (<http://transposonpsi.sourceforge.net>), and the databases SINEBase⁷⁹ and RepBase⁸⁰. We
457 removed redundancies from the library by merging sequences that were greater than 80%
458 similar with usearch⁸¹, and classified them with RepeatClassifier. Sequences classified as
459 “unknown” were searched with BLASTX against the 9,229 reviewed proteins of insects from
460 UniProtKB/Swiss-Prot. Those sequences with a BLAST hit (E-value < 1e-10) against a

461 protein not annotated as a transposase, transposable element, copia protein, or transposon
462 were removed from the custom repeat library. The custom repeat library was provided to
463 RepeatMasker version open-4.0.5 to generate the repetitive content reports, and to the
464 MAKER2 pipeline to mask the genome.

465 **Protein-Coding Genes Annotation**

466 We performed genome annotations through three iterations of the MAKER2 (v2.31.8)
467 pipeline¹⁸ combining *ab-initio* gene models and evidence-based models. For the *G.*
468 *bimaculatus* genome annotation, we provided the MAKER2 pipeline with the 43,595 *G.*
469 *bimaculatus* nucleotide sequences from NCBI, an assembled developmental transcriptome
470 ⁸², an assembled prothoracic ganglion transcriptome⁹, and a genome-guided transcriptome
471 generated with StringTie⁸³ using 30 RNA-seq libraries (accession numbers: DRA011174 and
472 DDBJ DRA11117) mapped to the genome with HISAT2⁸⁴. As alternative ESTs and protein
473 sequences, we provided MAKER2 with 14,391 nucleotide sequences from *L. kohalensis*
474 available at NCBI, and an insect protein database obtained from UniProtKB/Swiss-Prot⁸⁵.

475 For the annotation of the *L. kohalensis* genome, we ran the MAKER2 pipeline with the 14,391
476 *L. kohalensis* nucleotide sequences from NCBI, the assembled *G. bimaculatus* developmental
477 and prothoracic ganglion transcriptomes described above, and the 43,595 NCBI nucleotide
478 sequences. As protein databases, we provided the insect proteins from UniProtKB/Swiss-
479 Prot plus the proteins that we annotated in the *G. bimaculatus* genome.

480 For both crickets, we generated *ab-initio* gene models with GeneMark-ES⁸⁶ in self-training
481 mode, and with Augustus⁸⁷ trained with BUSCO v3¹⁷. After each of the first two MAKER2
482 iterations, additional gene models were obtained with SNAP⁸⁸ trained with the annotated
483 genes.

484 Functional annotations were obtained using InterProScan¹⁹, which retrieved the
485 InterProDomains, PFAM domains, and GO-terms. Additionally, we ran a series of BLAST
486 rounds from more specific to more generic databases, to assign a descriptor to each
487 transcript based on the best BLAST hit. The first round of BLAST was against the reviewed
488 insect proteins from UniProtKB/Swiss-Prot. Proteins with no significant BLAST hits (E-value
489 < 1e-6) went to a second round against all proteins from UniProtKB/TrEMBL, and those
490 without a hit with E-value<1e-6 were used in the final round of BLAST against all proteins
491 from UniProtKB/Swiss-Prot.

492 A detailed pipeline scheme is available in **Supplementary Figures 1 & 2**, and the
493 annotation scripts are available on GitHub
494 (https://github.com/guillemylla/Crickets_Genome_Annotation).

495

496 Quality Assessment

497 Genome assembly statistics were obtained with assembly-stats (<https://github.com/sanger-pathogens/assembly-stats>). BUSCO (v3.1.0)¹⁷ was used to assess the level of completeness
498 of the genome assemblies ('-m geno') as well as that of the gene annotations ('-m prot') at
499 both arthropod ('arthropoda_odb9') and insect ('insecta_odb9') levels.
500

501 CpG_{0/e} Analysis

502 We used the genome assemblies and their gene annotations from this study for the two
503 cricket species, and retrieved publicly available annotated genomes from the other 14 insect
504 species (**Supplementary Table 1**). The gene annotation files (in gff format) were used to
505 obtain the amino-acid and CDS sequences for each annotated protein-coding gene per
506 genome using gffread, with options “-y” and “-x” respectively. The CpG_{0/e} value per gene was
507 computed as the observed frequency of CpGs (f_{CpG}) divided by the product of C and G
508 frequencies (f_C and f_G) $f_{CpG}/f_C \cdot f_G$ in the longest CDS per gene for each of the 16 studied insects.
509 CpG_{0/e} values larger than zero and smaller than two were retained and represented as
510 density plots (**Figures 2 & 4**).

511 The distributions of gene CpG_{0/e} values per gene of the two crickets, the honeybee *A.*
512 *mellifera*, and the thrips *F. occidentalis*, were fitted with a mixture of normal distributions
513 using the mixtools R package⁸⁹. This allowed us to obtain the mean of each distribution, the
514 standard errors, and the interception point between the two distributions, which was used
515 to categorize the genes into low CpG_{0/e} and high CpG_{0/e} bins. For these two bins of genes, we
516 performed a GO-enrichment analysis (based on GO-terms previously obtained using
517 InterProScan) of Biological Process terms using the TopGO package⁹⁰ with all genes as
518 universe, minimum node size of 10, the weight01 algorithm and the Fisher statistic. The GO
519 terms with a p-value<0.05 were considered significantly enriched. Those GO terms
520 significantly enriched in at least one gene set are shown in **Supplementary Figure 3**, and a
521 subset of them with p-value<0.0001 are shown in **Figure 3**. In both figures, the size of the
522 circle represents the percentage of enriched genes inside the set compared to all genes with
523 the given GO term.

524 For each of the genes belonging to low and high CpG_{0/e} categories in each of the four insect
525 species, we retrieved their orthogroup identifier from our gene family analysis, allowing us
526 to assign putative methylation status to orthogroups in each insect. Then we used the UpSet
527 R package⁹¹ to compute and display the number of orthogroups exclusive to each
528 combination as an UpSet plot.

529 dN/dS Analysis

530 We first aligned the longest predicted protein product of the single-copy-orthologs of all
531 protein-coding genes between the two crickets (N=5,728) with MUSCLE (v3.8.31). Then, the
532 amino-acid alignments were transformed into codon-based nucleotide alignments using the

533 Pal2Nal software⁹². The resulting codon-based nucleotide alignments were used to calculate
534 the pairwise dN/dS for each gene pair with the yn00 algorithm implemented in the PAML
535 package⁹³. Genes with dN or dS >2 were discarded from further analysis. The Wilcoxon-
536 Mann-Whitney statistical test was used to compare the dN/dS values between genes with
537 high and low CpG_{0/e} values in both insects.

538 Gene Family Expansions and Contractions

539 Using custom Python scripts (see
540 https://github.com/guillemylla/Crickets_Genome_Annotation) we obtained the longest
541 predicted protein product per gene in each of the 16 studied insect species and grouped them
542 into orthogroups (which we also refer to herein as “gene families”) using OrthoFinder
543 v2.3.3⁹⁴. The orthogroups (OGs) determined by OrthoFinder that contained a single gene per
544 insect, namely putative one-to-one orthologs, were used for phylogenetic reconstruction.
545 The proteins within each orthogroup were aligned with MUSCLE⁹⁵ and the alignments
546 trimmed with GBlocks (-t=p -b4=5 -b5=a)⁹⁶. The trimmed alignments were concatenated
547 into a single meta-alignment that was used to infer the species tree with FastTree2
548 (FastTreeMP –gamma)⁹⁷.

549 To calibrate the species tree, we used the “chronos” function from the R package ape v5.3⁹⁸,
550 setting the common node between Blattodea and Orthoptera at 248 million years (my), the
551 origin of Holometabola at 345 my, the common node between Hemiptera and Thysanoptera
552 at 339 my, and the ancestor of hemimetabolous and holometabolous insects (root of the tree)
553 at between 385 and 395 my. These time points were obtained from a phylogeny published
554 that was calibrated with several fossils²³.

555 The gene family expansion/contraction analysis was done with the CAFE software⁹⁹. We ran
556 CAFE using the calibrated species tree and the table generated by OrthoFinder with the
557 number of genes belonging to each orthogroup in each insect. Following the CAFE manual,
558 we first calculated the birth-death parameters with the orthogroups having less than 100
559 genes. We then corrected them by assembly quality and calculated the gene expansions and
560 contractions for both large (>100 genes) and small (\leq 100) gene families. This allowed us to
561 identify gene families that underwent a significant (p-value <0.01) gene family expansion or
562 contraction on each branch of the tree. We proceeded to obtain functional information from
563 those families expanded on our branches of interest (i.e. the origin of Orthoptera, the branch
564 leading to crickets, and the branches specific to each cricket species.). To functionally
565 annotate the orthogroups of interest, we first obtained the *D. melanogaster* identifiers of the
566 proteins within each orthogroup, and retrieved the FlyBase Symbol and the FlyBase gene
567 summary per gene using the FlyBase API¹⁰⁰. Additionally, we ran InterProScan on all the
568 proteins of each orthogroup and retrieved all PFAM motifs and the GO terms together with
569 their descriptors. All of this information was summarized in tabulated files (**Supplementary**
570 **File 2**), which we used to identify gene expansions with potentially relevant functions for
571 insect evolution.

572 ***pickpocket* gene family expansion**

573 Among the expanded gene families in crickets, we identified an orthogroup containing seven
574 out of the eight *D. melanogaster* *pickpocket* class V genes, leading us to interpret that the
575 *pickpocket* class V was significantly expanded in crickets. Subsequently, we retrieved the 6
576 additional orthogroups containing the complete set of *pickpocket* genes in *D. melanogaster*,
577 and we assigned to each orthogroup the *pickpocket* class to which most of its *D. melanogaster*
578 genes belonged according to Zelle and colleagues²⁴ (**Supplementary Table 2**). The protein
579 sequences of all the members of the seven *Pickpocket* orthogroups were aligned with
580 MUSCLE, and the *pickpocket* gene tree obtained with FastTree2 (FastTreeMP --gamma). The
581 tips of the tree were colored based on the orthogroup to which they belong. A subset of the
582 tree containing all the orthogroups that compose the entire *pickpocket* class V family was
583 displayed as a circular cladogram (**Figure 3**), revealing an independent expansion of this
584 family in *T. castaneum*.

585 To check for evidence of expression *pickpocket* genes in the cricket nervous system, we used
586 the 21 RNA-seq libraries from prothoracic ganglion⁹ of *G. bimaculatus* available at NCBI GEO
587 (PRJNA376023). Reads were mapped against the *G. bimaculatus* genome with RSEM¹⁰¹ using
588 STAR¹⁰² as the mapping algorithm, and the number of expected counts and TPMs were
589 retrieved for each gene in each library. The TPMs of the *pickpocket* genes and *fruitless* are
590 shown in **Supplementary Table 3**. Genes with a sum of more than 20 TPMs across all
591 samples were considered to be expressed in *G. bimaculatus* prothoracic ganglion. We further
592 analyzed the *pickpocket* expression in the aggregated embryo RNA-seq dataset
593 (DRA011174) and normal and regenerating legs RNA-seq dataset¹⁰³ (DRR001985,
594 DRR001986), using the same methodology.

595 **Acknowledgments**

596 This work was supported by Harvard University and MEXT KAKENHI (No. 221S0002;
597 26292176; 17H03945). The computational infrastructure in the cloud used for the genome
598 analysis was funded by AWS Cloud Credits for Research. The authors are grateful to Hiroo
599 Saito for his support in the management of a genome data server at Tokushima University.

600 **Author contributions statement**

601 GY, SN, TM and CE designed experiments; TI and AT conducted sequencing by HiSeq and
602 assembling short reads using the Platanus assembler; ST, YI, TW, MF and YM performed DNA
603 isolation, gap closing of contigs and manual annotation; GY, TN, ST, TB and AAB conducted
604 all other experiments and analyses; TM and CE funded the project; GY and CE wrote the
605 paper with input from all authors.

606 **Data availability**

607 The genome sequencing reads, RNA-seq reads, and the genome assembly for *Gryllus*
608 *bimaculatus* were submitted to DDBJ and to NCBI under the accession number
609 (PRJDB10609). The genome assembly and annotations can also be accessed and browsed at
610 <http://gbimaculatusgenome.rc.fas.harvard.edu>.

611 **Code availability**

612 The scripts used for genome annotation and analysis are available at GitHub
613 (https://github.com/guillemylla/Crickets_Genome_Annotation).

614 **Competing interests**

615 The authors declare no competing interests.

616 **References**

617

- 618 1 Belles, X. in *Encyclopedia of Life Sciences* 1-11 (John Wiley & Sons, Ltd, Chichester,
619 2011).
- 620 2 Engel, M. S. & Grimaldi, D. A. in *Nature* Vol. 427 627-630 (2004).
- 621 3 Gregory, T. R. Genome size and developmental complexity. *Genetica* **115**, 131-146,
622 doi:10.1023/a:1016032400147 (2002).
- 623 4 Camacho, J. P. *et al.* A step to the gigantic genome of the desert locust: chromosome
624 sizes and repeated DNAs. *Chromosoma* **124**, 263-275, doi:10.1007/s00412-014-
625 0499-0 (2015).
- 626 5 Bewick, A. J., Vogel, K. J., Moore, A. J. & Schmitz, R. J. in *Molecular Biology and
627 Evolution* Vol. 34 654-665 (2016).
- 628 6 Provataris, P., Meusemann, K., Niehuis, O., Grath, S. & Misof, B. Signatures of DNA
629 Methylation across Insects Suggest Reduced DNA Methylation Levels in
630 Holometabola. *Genome Biol Evol* **10**, 1185-1197, doi:10.1093/gbe/evy066 (2018).
- 631 7 Blankers, T., Oh, K. P., Bombarely, A. & Shaw, K. L. in *Genetics* Vol. 209 1329-1344
632 (Genetics, 2018).
- 633 8 Huber, F., Moore, T. E. T. E. & Loher, W. Cricket behavior and neurobiology. 565
634 (1989).
- 635 9 Fisher, H. P. *et al.* in *PLoS ONE* Vol. 13 (ed Silvana Allodi) e0199070 (Public Library
636 of Science, 2018).
- 637 10 Kainz, F., Ewen-Campen, B., Akam, M. & Extavour, C. G. Notch/Delta signalling is not
638 required for segment generation in the basally branching insect *Gryllus bimaculatus*.
639 *Development* **138**, 5015-5026, doi:10.1242/dev.073395 (2011).
- 640 11 Donoughe, S. & Extavour, C. G. in *Developmental Biology* Vol. 411 140-156
641 (Academic Press, 2015).
- 642 12 Mito, T. & Noji, S. in *CSH protocols* Vol. 2008 pdb.em0110 (Cold Spring Harbor
643 Laboratory Press, 2008).
- 644 13 Kulkarni, A. & Extavour, C. G. in *Evo-Devo: Non-model Species in Cell and
645 Developmental Biology* Vol. 68 183-216 (Springer, 2019).
- 646 14 Shinmyo, Y. *et al.* in *Development, Growth and Differentiation* Vol. 46 343-349 (John
647 Wiley & Sons, 2004).
- 648 15 Wilson Horch, H., Mito, T., Popadić, A., Ohuchi, H. & Noji, S. in *The Cricket as a Model
649 Organism: Development, Regeneration, and Behavior* (eds Hadley Wilson Horch *et
650 al.*) 1-376 (Springer Japan, Tokyo, 2017).
- 651 16 Bird, A. P. in *Nucleic Acids Research* Vol. 8 1499-1504 (1980).

652 17 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. in
653 *Bioinformatics* Vol. 31 3210-3212 (Oxford University Press, 2015).
654 18 Holt, C. & Yandell, M. in *BMC Bioinformatics* Vol. 12 491 (BioMed Central, 2011).
655 19 Jones, P. *et al.* in *Bioinformatics* 1-5 (2014).
656 20 Smit, A., Hubley, R. & Gruen, P. *RepeatMasker Open-4.0. RepeatMasker Open-4.0.7.*
657 (2015).
658 21 Wang, Y. *et al.* in *Science* Vol. 314 645-647 (2006).
659 22 Elango, N., Hunt, B. G., Goodisman, M. A. D. & Yi, S. V. in *Proceedings of the National
660 Academy of Sciences of the United States of America* Vol. 106 11206-11211 (National
661 Academy of Sciences, 2009).
662 23 Misof, B. *et al.* in *Science* Vol. 346 763-767 (2014).
663 24 Zelle, K. M., Lu, B., Pyfrom, S. C. & Ben-Shahar, Y. in *G3: Genes, Genomes, Genetics* Vol.
664 3 441-450 (Genetics Society of America, 2013).
665 25 Adams, C. M. *et al.* in *The Journal of Cell Biology* Vol. 140 143-152 (Rockefeller
666 University Press, 1998).
667 26 Zhong, L., Hwang, R. Y. & Tracey, W. D. in *Current Biology* Vol. 20 429-434 (2010).
668 27 Ainsley, J. A. *et al.* in *Current Biology* Vol. 13 1557-1563 (Cell Press, 2003).
669 28 Häsemeyer, M., Yapici, N., Heberlein, U. & Dickson, B. J. in *Neuron* Vol. 61 511-518
670 (Cell Press, 2009).
671 29 Rezával, C. *et al.* in *Current Biology* Vol. 22 1155-1165 (Elsevier, 2012).
672 30 Pavlou, H. J. & Goodwin, S. F. in *Current opinion in neurobiology* Vol. 23 76-83
673 (Elsevier, 2013).
674 31 Adams, M. D. *et al.* in *Science* Vol. 287 2185-2195 (2000).
675 32 Elsik, C. G. The pea aphid genome sequence brings theories of insect defense into
676 question. *Genome Biol* **11**, 106, doi:10.1186/gb-2010-11-2-106 (2010).
677 33 Wang, X. *et al.* in *Nature communications* Vol. 5 2957 (Nature Publishing Group,
678 2014).
679 34 Harrison, M. C. *et al.* Hemimetabolous genomes reveal molecular basis of termite
680 eusociality. *Nat Ecol Evol* **2**, 557-566, doi:10.1038/s41559-017-0459-1 (2018).
681 35 Terrapon, N. *et al.* in *Nat Commun* Vol. 5 3636 (Nature Publishing Group, 2014).
682 36 Poulsen, M. *et al.* in *Proceedings of the National Academy of Sciences of the United
683 States of America* Vol. 111 14500-14505 (National Academy of Sciences, 2014).
684 37 Kouřimská, L. & Adámková, A. in *NFS Journal* Vol. 4 22-26 (Elsevier, 2016).
685 38 Van Huis, A. *et al.* *Edible insects: future prospects for food and feed security.* (Food
686 and agriculture organization of the United Nations (FAO), 2013).
687 39 Ghosh, S., Lee, S.-M., Jung, C. & Meyer-Rochow, V. Nutritional composition of five
688 commercial edible insects in South Korea. *Journal of Asia-Pacific Entomology* **20**,
689 686-694 (2017).
690 40 Hanboonsong, Y., Jamjanya, T. & Durst, P. B. in *Office* 69 (Food and Agriculture
691 Organization of the United Nations, Regional Office for Asia and the Pacific, 2013).
692 41 Ryu, H. Y. *et al.* in *Toxicological Research* Vol. 32 159-173 (Korean Society of
693 Toxicology, 2016).
694 42 Ahn, M. Y., Han, J. W., Kim, S. J., Hwang, J. S. & Yun, E. Y. in *Toxicological Research* Vol.
695 27 231-240 (2011).
696 43 Mi, Y. A. *et al.* in *Journal of Toxicology and Environmental Health - Part A* Vol. 68
697 2111-2118 (2005).
698 44 Pener, M. P. in *Journal of Orthoptera Research* Vol. 25 91-95 (2016).
699 45 Ribeiro, J. C., Cunha, L. M., Sousa-Pinto, B. & Fonseca, J. in *Molecular Nutrition and
700 Food Research* Vol. 62 1700030 (2018).
701 46 Ahn, M. Y., Hwang, J. S., Yun, E. Y., Kim, M. J. & Park, K. K. in *Toxicological Research*
702 Vol. 31 173-180 (Korean Society of Toxicology, 2015).
703 47 Park, S. A., Lee, G. H., Lee, H. Y., Hoang, T. H. & Chae, H. J. in *Food Science and
704 Nutrition* Vol. 8 402-409 (2019).
705 48 Hwang, B. B. *et al.* in *Nutrients* Vol. 11 857 (2019).
706 49 Thrall, P. H., Bever, J. D. & Burdon, J. J. Evolutionary change in agriculture: the past,
707 present and future. *Evol Appl* **3**, 405-408, doi:10.1111/j.1752-4571.2010.00155.x
708 (2010).
709 50 Yamasaki, M. *et al.* A large-scale screen for artificial selection in maize identifies
710 candidate agronomic loci for domestication and crop improvement. *Plant Cell* **17**,
711 2859-2872, doi:10.1105/tpc.105.037242 (2005).

712 51 Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally
713 selected trophic interactions. *Annu Rev Entomol* **60**, 35-58, doi:10.1146/annurev-
714 ento-010814-020601 (2015).

715 52 Gepts, P. Crop domestication as a long-term selection experiment. *Plant breeding*
716 reviews **24**, 1-44 (2004).

717 53 Chen, K. & Gao, C. Targeted genome modification technologies and their applications
718 in crop improvements. *Plant Cell Reports* **33**, 575-583, doi:10.1007/s00299-013-
719 1539-6 (2014).

720 54 Qaim, M. The Economics of Genetically Modified Crops. *Annual Review of Resource*
721 *Economics* **1**, 665-694, doi:10.1146/annurev.resource.050708.144203 (2009).

722 55 Harrison, M. C. *et al.* Hemimetabolous genomes reveal molecular basis of termite
723 eusociality. *Nature ecology & evolution*, doi:10.1038/s41559-017-0459-1 (2018).

724 56 Kidwell, M. G. in *Genetica* Vol. 115 49-63 (Kluwer Academic Publishers, 2002).

725 57 Chénais, B., Caruso, A., Hiard, S. & Casse, N. in *Gene* Vol. 509 7-15 (Elsevier, 2012).

726 58 Hanrahan, S. J. & Johnston, J. S. in *Chromosome research : an international journal on*
727 *the molecular, supramolecular and evolutionary aspects of chromosome biology* Vol.
728 19 809-823 (2011).

729 59 Westerman, M., Barton, N. & Hewitt, G. M. Differences in DNA content between two
730 chromosomal races of the grasshopper *Podisma pedestris*. *Heredity* **58**, 221-228
731 (1987).

732 60 Palacios-Gimenez, O. M. *et al.* Comparative analysis of morabine grasshopper
733 genomes reveals highly abundant transposable elements and rapidly proliferating
734 satellite DNA repeats. *BMC Biology* **18**, doi:10.1186/s12915-020-00925-x (2020).

735 61 Lyko, F., Ramsahoye, B. H. & Jaenisch, R. DNA methylation in *Drosophila*
736 *melanogaster*. *Nature* **408**, 538-540, doi:10.1038/35046205 (2000).

737 62 Thomas, G. W. C. *et al.* Gene content evolution in the arthropods. *Genome Biol* **21**, 15,
738 doi:10.1186/s13059-019-1925-7 (2020).

739 63 Lewis, S. H. *et al.* Widespread conservation and lineage-specific diversification of
740 genome-wide DNA methylation patterns across arthropods. *PLoS Genet* **16**,
741 e1008864, doi:10.1371/journal.pgen.1008864 (2020).

742 64 Ylla, G., Piulachs, M.-D. & Belles, X. in *iScience* Vol. 4 164-179 (Elsevier, 2018).

743 65 Ventós-Alfonso, A., Ylla, G., Montañes, J.-C. & Belles, X. DNMT1 promotes genome
744 methylation and early embryo development in cockroaches. *iScience*, 101778,
745 doi:10.1016/j.isci.2020.101778 (2020).

746 66 Liu, L., Johnson, W. A. & Welsh, M. J. in *Proceedings of the National Academy of*
747 *Sciences of the United States of America* Vol. 100 2128-2133 (National Academy of
748 Sciences, 2003).

749 67 Lee, M. J. *et al.* in *Molecules and cells* Vol. 40 787-795 (Korean Society for Molecular
750 and Cellular Biology, 2017).

751 68 Averhoff, W. W., Richardson, R. H., Starostina, E., Kinser, R. D. & Pikielny, C. W. in
752 *Proceedings of the National Academy of Sciences of the United States of America* Vol.
753 73 591-593 (National Academy of Sciences, 1976).

754 69 Lu, B., LaMora, A., Sun, Y., Welsh, M. J. & Ben-Shahar, Y. in *PLoS Genetics* Vol. 8 (ed
755 Miriam B. Goodman) e1002587 (Public Library of Science, 2012).

756 70 Jacob, P. F. & Hedwig, B. in *Behavioural Brain Research* Vol. 309 51-66 (Elsevier,
757 2016).

758 71 Blankers, T., Oh, K. P. & Shaw, K. L. in *Genes* Vol. 9 346 (Multidisciplinary Digital
759 Publishing Institute, 2018).

760 72 Shaw, K. L. & Lesnick, S. C. in *Proceedings of the National Academy of Sciences* Vol.
761 106 9737-9742 (National Academy of Sciences, 2009).

762 73 Xu, M. & Shaw, K. L. in *Genetics* Vol. 211 1089-1104 (2019).

763 74 Yoshimura, A., Nakata, A., Mito, T. & Noji, S. in *Cytogenetic and Genome Research* Vol.
764 112 329-336 (2006).

765 75 Kajitani, R. *et al.* Efficient de novo assembly of highly heterozygous genomes from
766 whole-genome shotgun short reads. *Genome Res* **24**, 1384-1395,
767 doi:10.1101/gr.170720.113 (2014).

768 76 English, A. C. *et al.* Mind the gap: upgrading genomes with Pacific Biosciences RS
769 long-read sequencing technology. *PLoS One* **7**, e47768,
770 doi:10.1371/journal.pone.0047768 (2012).

771 77 Ellinghaus, D., Kurtz, S. & Willhoeft, U. in *BMC Bioinformatics* Vol. 9 18 (BioMed
772 Central, 2008).

773 78 Crescente, J. M., Zavallo, D., Helguera, M. & Vanzetti, L. S. in *BMC Bioinformatics* Vol.
774 19 348 (BioMed Central, 2018).

775 79 Vassetzky, N. S. & Kramerov, D. A. in *Nucleic acids research* Vol. 41 D83-89 (Oxford
776 University Press, 2013).

777 80 Bao, W., Kojima, K. K. & Kohany, O. in *Mobile DNA* Vol. 6 11 (BioMed Central, 2015).

778 81 Edgar, R. C. in *Bioinformatics* Vol. 26 2460-2461 (2010).

779 82 Zeng, V. *et al.* in *PLoS ONE* Vol. 8 (ed Peter K. Dearden) e61479 (Public Library of
780 Science, 2013).

781 83 Pertea, M. *et al.* in *Nature Biotechnology* Vol. 33 290-295 (Nature Publishing Group,
782 2015).

783 84 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low
784 memory requirements. *Nature Methods*, doi:10.1038/nmeth.3317 (2015).

785 85 UniProt, C. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res* **47**,
786 D506-D515, doi:10.1093/nar/gky1049 (2019).

787 86 Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O. & Borodovsky, M. in *Genome
788 Research* Vol. 18 1979-1990 (Cold Spring Harbor Laboratory Press, 2008).

789 87 Stanke, M. & Waack, S. in *Bioinformatics* Vol. 19 ii215-ii225 (2003).

790 88 Korf, I. in *BMC Bioinformatics* Vol. 5 59 (BioMed Central, 2004).

791 89 Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. in *Journal of Statistical
792 Software* Vol. 32 1-29 (2009).

793 90 Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. *R
794 package version 2.36.0* (2019).

795 91 Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. in *IEEE Transactions on
796 Visualization and Computer Graphics* Vol. 20 1983-1992 (Europe PMC Funders,
797 2014).

798 92 Suyama, M., Torrents, D. & Bork, P. in *Nucleic Acids Research* Vol. 34 W609-W612
799 (2006).

800 93 Yang, Z. in *Molecular Biology and Evolution* Vol. 24 1586-1591 (2007).

801 94 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
802 comparative genomics. *Genome Biol* **20**, 238, doi:10.1186/s13059-019-1832-y
803 (2019).

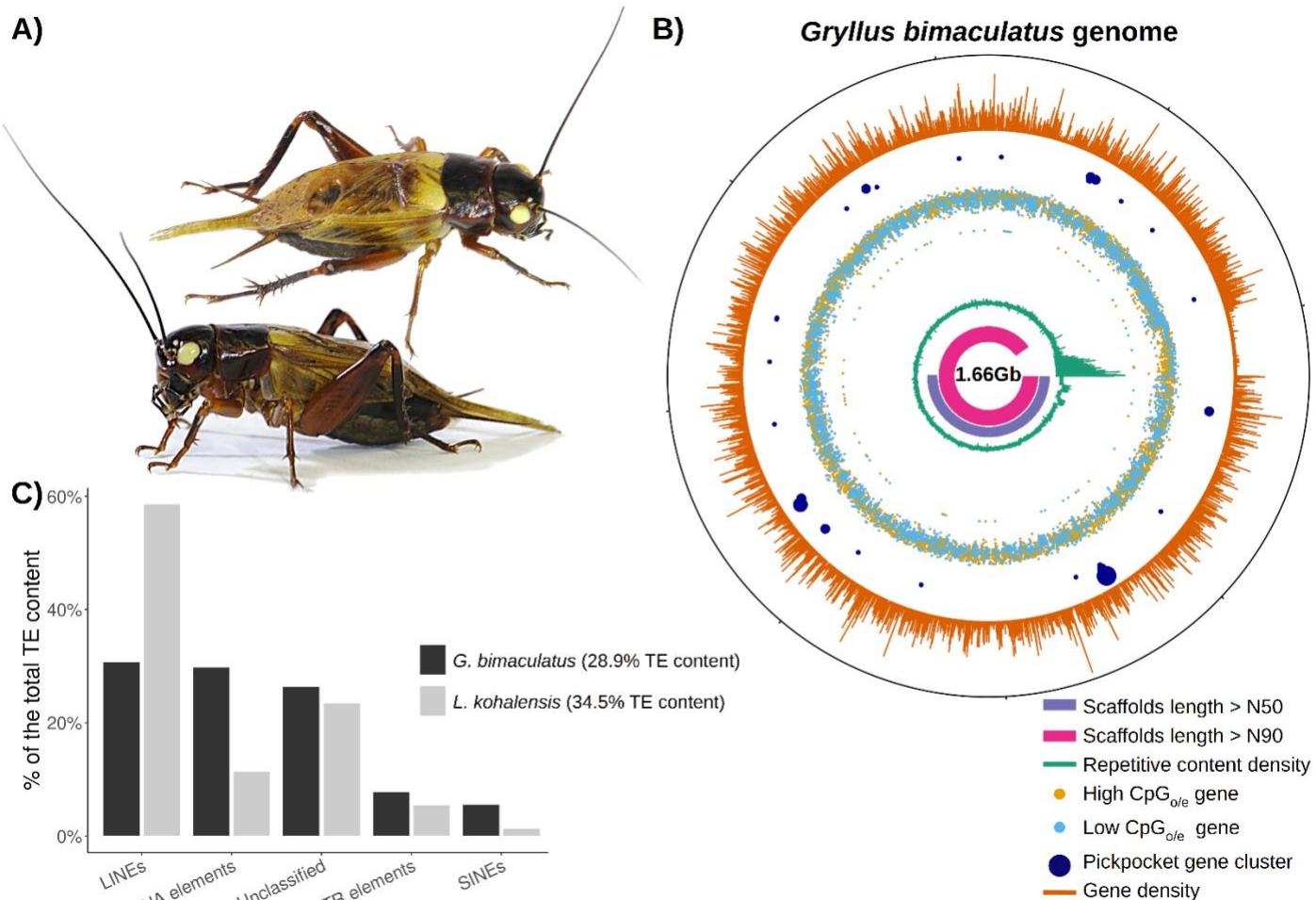
804 95 Edgar, R. C. in *Nucleic Acids Research* Vol. 32 1792-1797 (Oxford University Press,
805 2004).

806 96 Castresana, J. in *Molecular Biology and Evolution* Vol. 17 540-552 (2000).

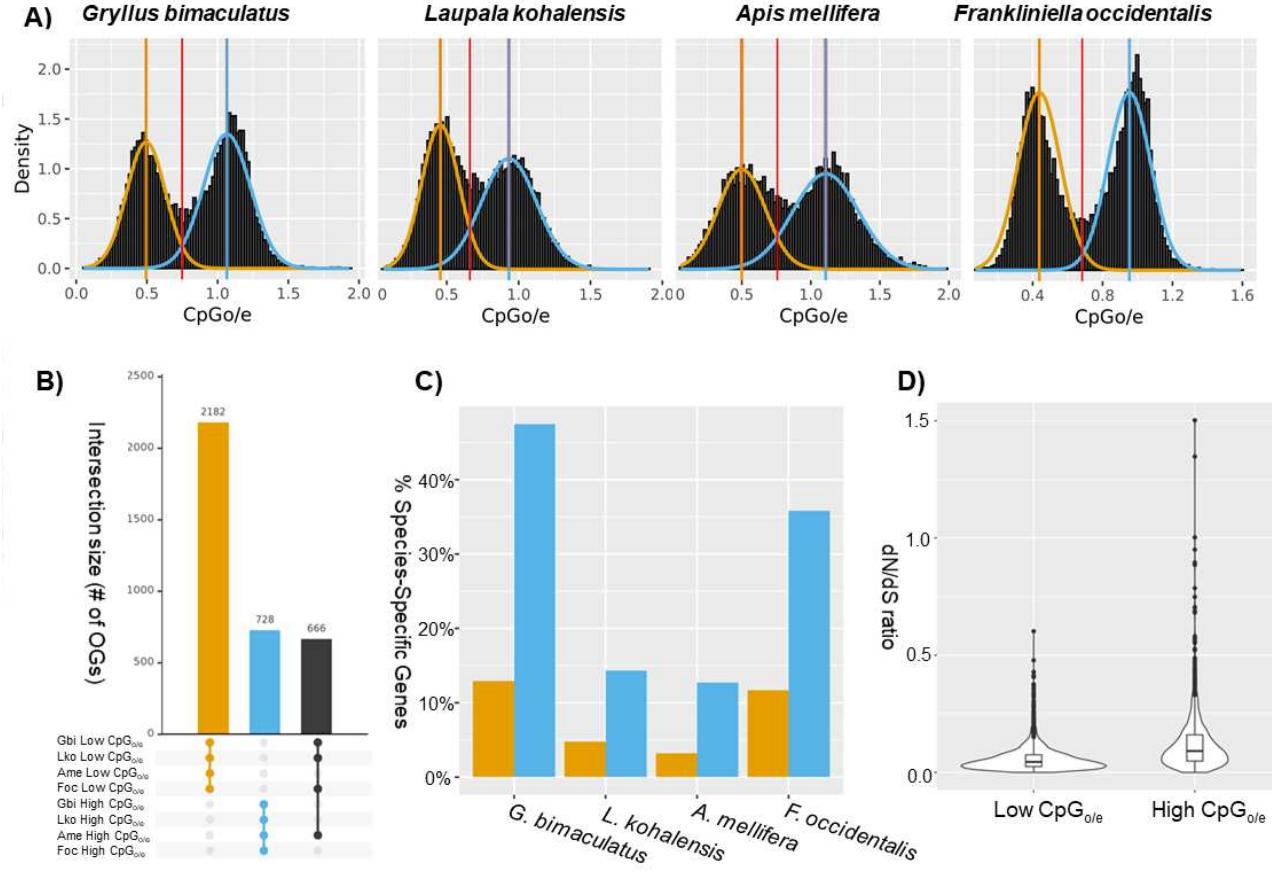
807 97 Price, M. N., Dehal, P. S. & Arkin, A. P. in *PLoS ONE* Vol. 5 (ed Art F. Y. Poon) e9490
808 (Public Library of Science, 2010).

809 98 Paradis, E. & Schliep, K. in *Bioinformatics* Vol. 35 (ed Russell Schwartz) 526-528
810 (2019).

811 99 De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. in *Bioinformatics* Vol. 22 1269-
812 1271 (2006).

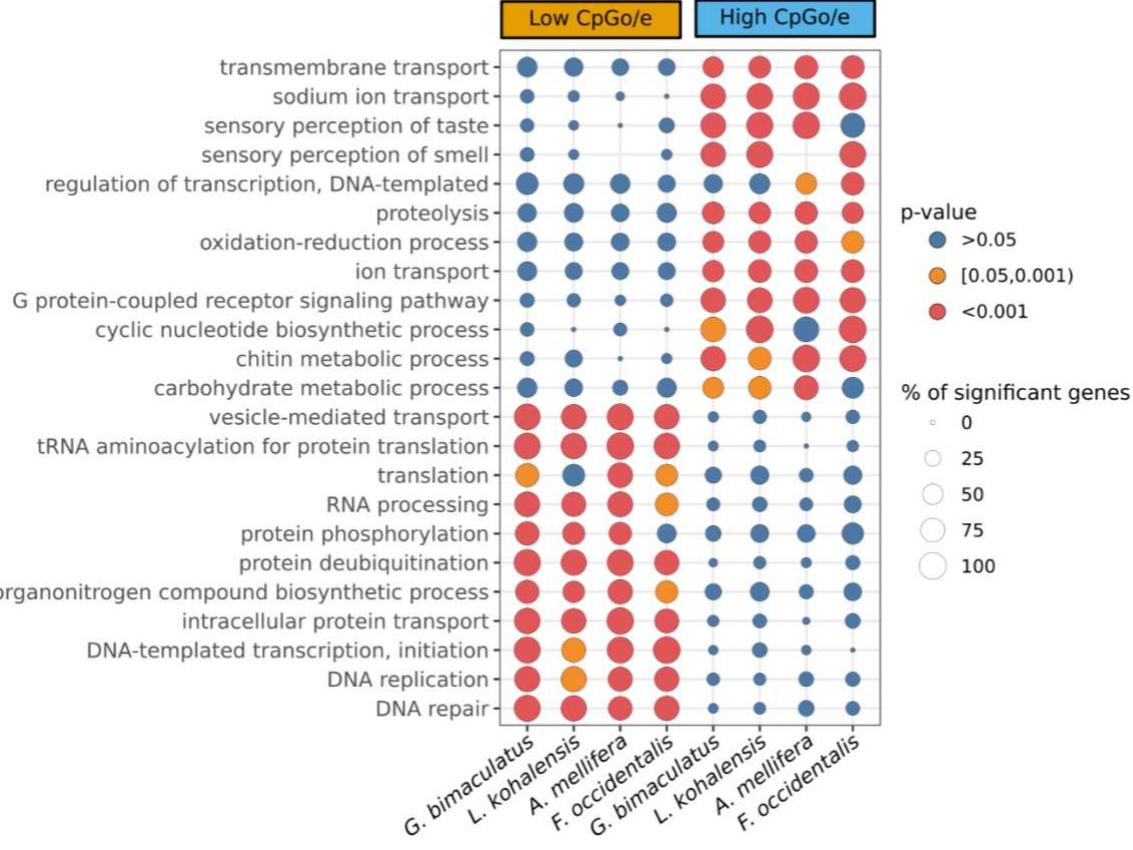

813 100 Thurmond, J. *et al.* FlyBase 2.0: the next generation. *Nucleic Acids Res* **47**, D759-
814 D765, doi:10.1093/nar/gky1003 (2019).

815 101 Li, B. & Dewey, C. N. in *BMC Bioinformatics* Vol. 12 323 (2011).


816 102 Dobin, A. *et al.* in *Bioinformatics* Vol. 29 15-21 (2013).

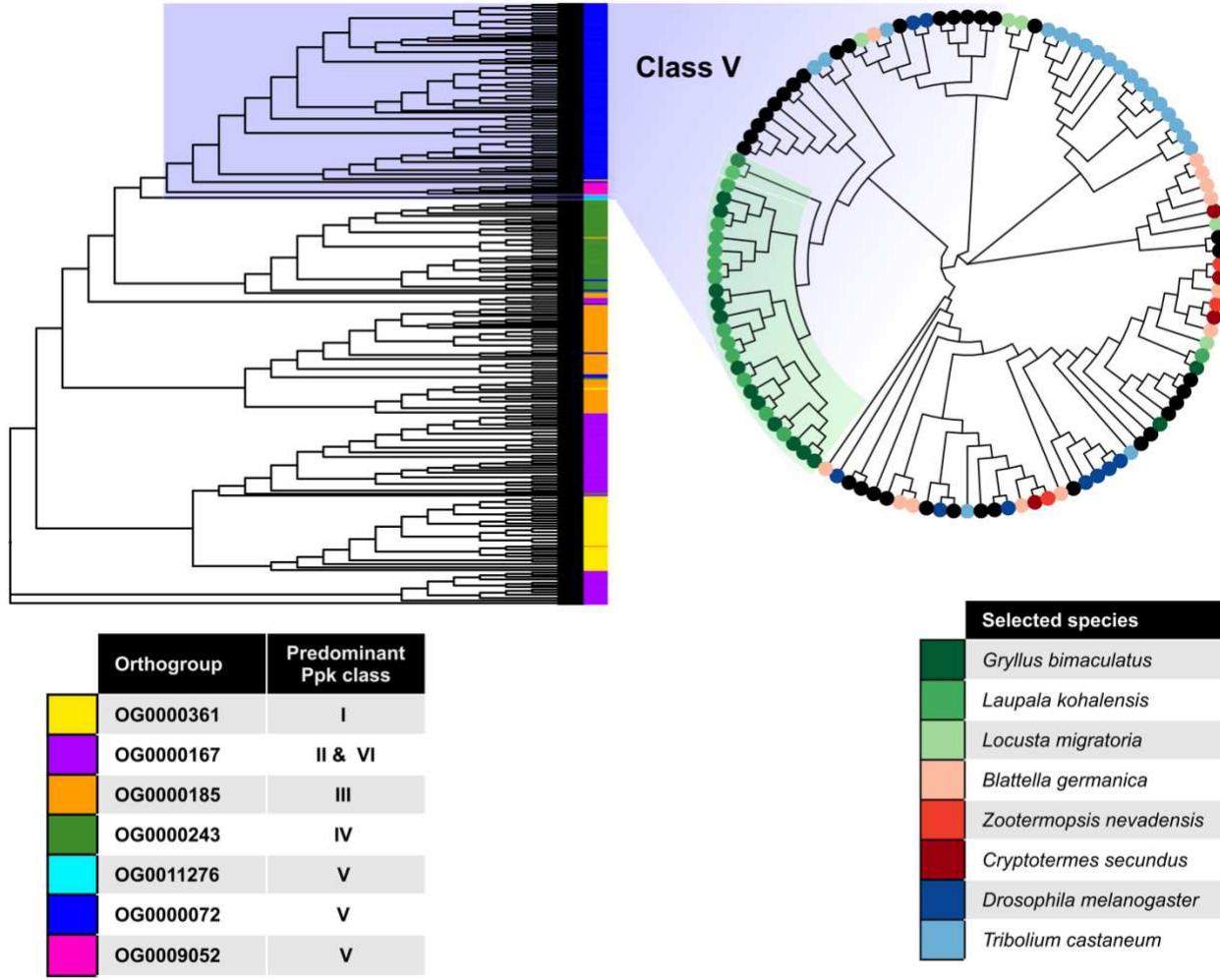
817 103 Bando, T. *et al.* Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling
818 during leg regeneration in the cricket *Gryllus bimaculatus*. *Development* **140**, 959-
819 964, doi:10.1242/dev.084590 (2013).

820

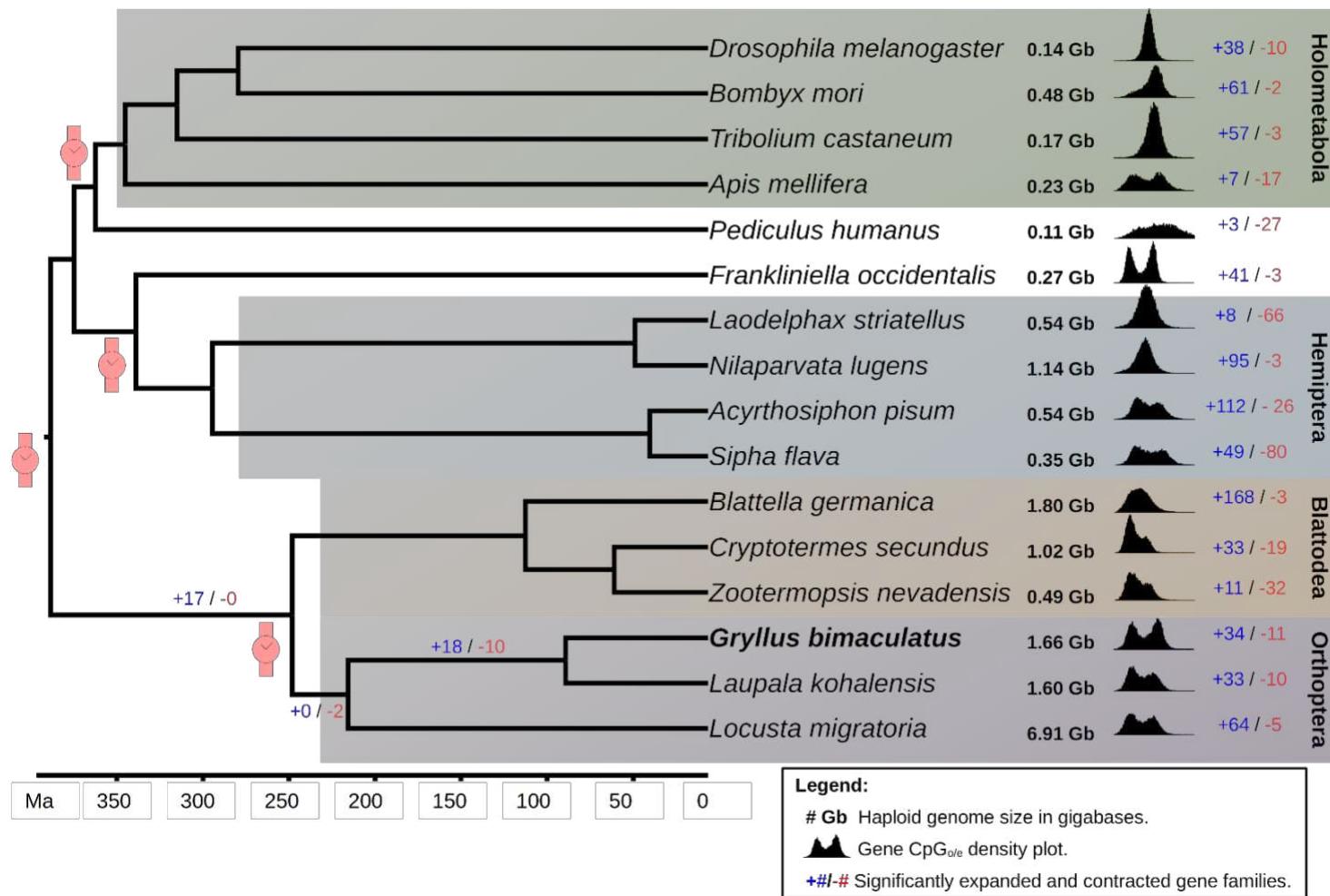


823 **Figure 1: The *G. bimaculatus* genome. A)** The cricket *G. bimaculatus* (top and side views of an adult male), commonly called the two-spotted cricket, owes its name to
 824 the two yellow spots on the base of the forewings. **B)** Circular representation of the *G. bimaculatus* genome, displaying the N50 (pink) and N90 (purple) scaffolds,
 825 repetitive content density (green), the high- (yellow) and low- (light blue) CpG_{0/e} value genes, *pickpocket* gene clusters (dark blue), and gene density (orange). **C)** The
 826 proportion of the genome made up of transposable elements (TEs) is similar between *G. bimaculatus* and *L. kohalensis* (28.9% and 34.5% respectively), but the specific
 827 TE family composition varies widely.

828


829 **Figure 2: $CpG_{0/e}$ distribution across insects.** **A)** The distribution of $CpG_{0/e}$ values within
830 the CDS regions displays a bimodal distribution in the two crickets, as well as in the
831 honeybee *A. mellifera* and the thrips *F. occidentalis*. We modeled each peak with a normal
832 distribution and defined their intersection (red line) as a threshold to separate genes into
833 low- and high- $CpG_{0/e}$ value categories represented in yellow and blue color respectively.
834 **B)** UpSet plot showing the top three intersections (linked dots) in terms of the number of
835 orthogroups (OGs) commonly present in the same category (low- and high- $CpG_{0/e}$) across
836 the four insect species. The largest intersection corresponds to 2,182 OGs whose genes
837 have low $CpG_{0/e}$ in the four insect species, followed by the 728 OGs whose genes have high
838 $CpG_{0/e}$ levels in all four species, and 666 OGs whose genes have low $CpG_{0/e}$ in the three
839 hemimetabolous species and high $CpG_{0/e}$ in the holometabolous honeybee. Extended plot
840 with 50 intersections is shown in **Supplementary Figure 4**. **C)** Percentage of species-
841 specific genes within low $CpG_{0/e}$ (yellow) and high $CpG_{0/e}$ (blue) in each insect, indicating
842 that more such genes tend to have high $CpG_{0/e}$ values. **D)** One-to-one orthologous genes
843 with low $CpG_{0/e}$ values in both crickets have significantly lower dN/dS values than genes
844 with high $CpG_{0/e}$ values.

845


846 **Figure 3: Functional analysis of high- and low- CpG_{0/e} genes:** Enriched GO terms with a
847 p-value<0.00001 in at least one of the eight categories, which are high CpG_{0/e} and low
848 CpG_{0/e} genes of *G. bimaculatus*, *L. kohalensis*, *F. occidentalis*, and *A. mellifera*. The dot
849 diameter is proportional to the percentage of significant genes with the GO term within the
850 gene set. The dot color represents the p-value level: blue >0.05, orange [0.05, 0.001], red
851 <0.001. Extended figure with all significant GO terms (p-value<0.05) available as
852 **Supplementary Figure 3.**

853

854

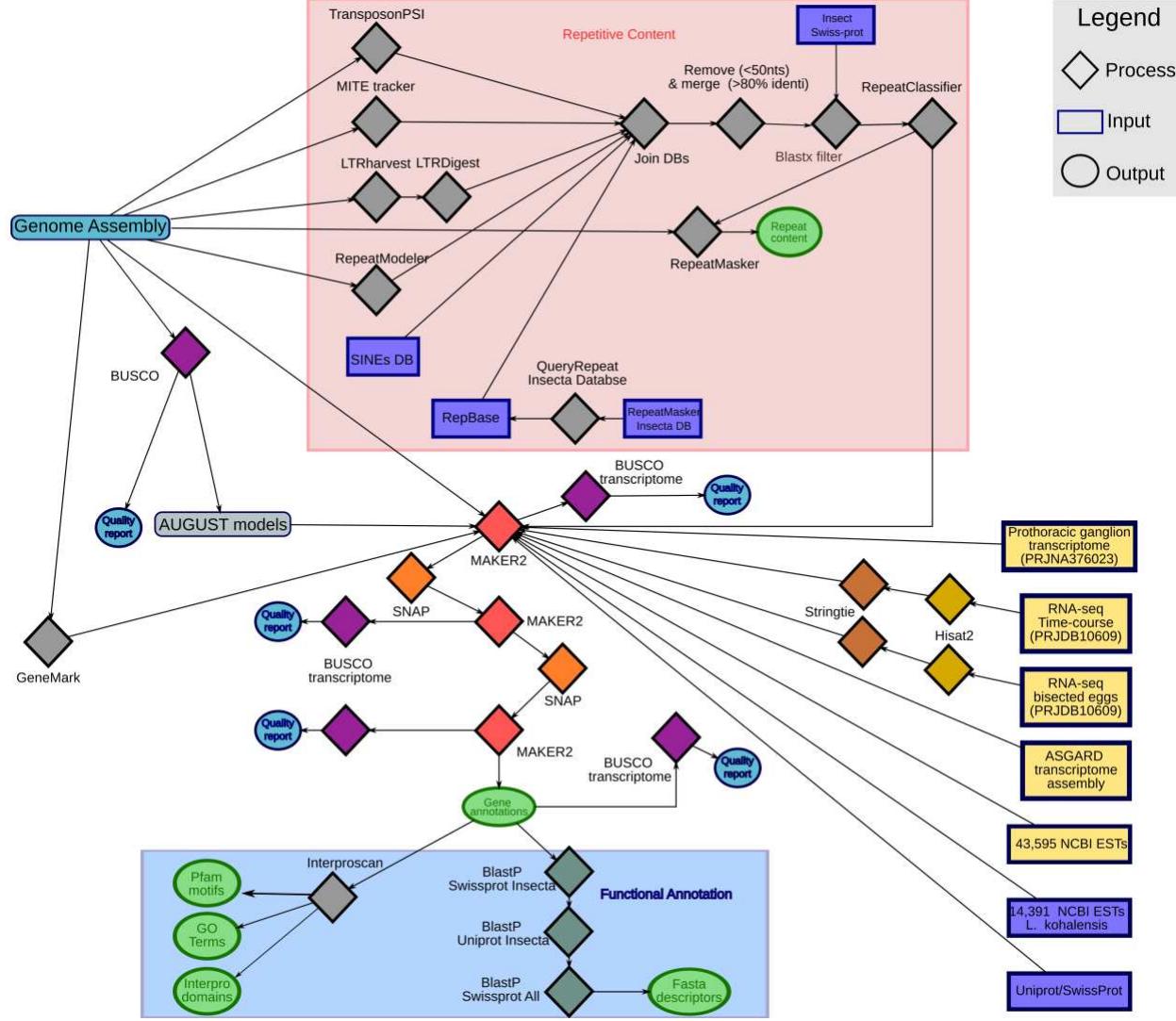
855 **Figure 4: The *pickpocket* gene family class V is expanded in crickets.** *pickpocket* gene
856 tree with all the genes belonging to the seven OGs that contain the *D. melanogaster*
857 *pickpocket* genes. All OGs predominantly contain members of a single *ppk* family. The
858 OG0000167 contains members of two *pickpocket* classes, II and VI. The orthogroup
859 OG0000072 containing most *pickpocket* class V genes (circular cladogram) was
860 significantly expanded in crickets relative to other insects.

863 **Figure 5: Cricket genomes in the context of insect evolution.** A phylogenetic tree including 16 insect species calibrated at four different time points (red watch
 864 symbols) based on Misof, et al.²³, suggests that *G. bimaculatus* and *L. kohalensis* diverged ca. 89.2 Mya. The number of expanded (blue text) and contracted (red text)
 865 gene families is shown for each insect, and for the branches leading to crickets. The density plots show the CpG_{0/e} distribution for all genes for each species. The genome
 866 size in Gb was obtained from the genome fasta files (Supplementary Table 1).

867 **Supplementary Materials**

868 **Supplementary Materials for**

869 **Insights into the genomic evolution of insect from Cricket**
870 **genomes**

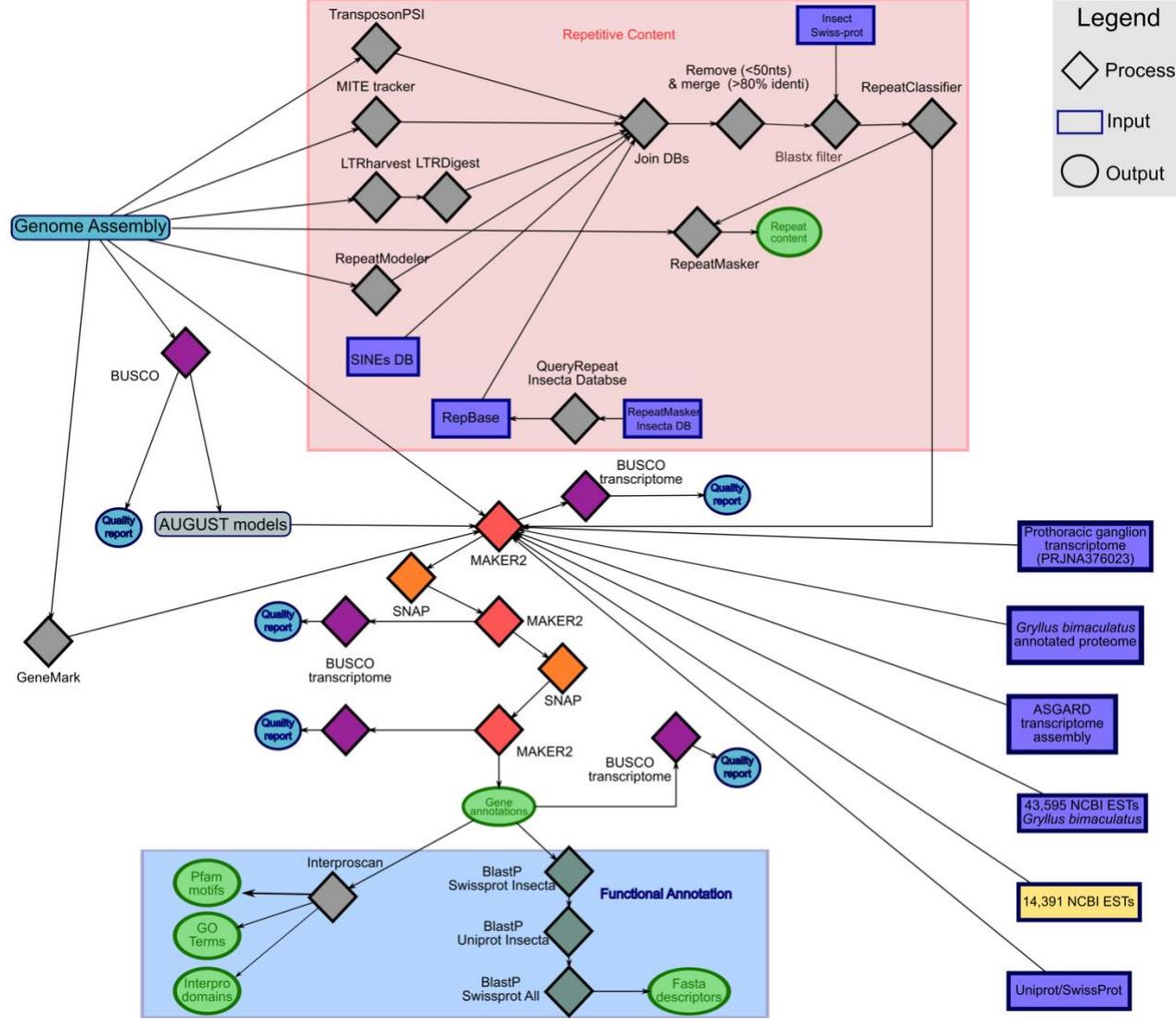

871 Guillem Ylla, Taro Nakamura, Takehiko Itoh, Rei Kajitani, Atsushi Toyoda, Sayuri Tomonari,
872 Tetsuya Bando, Yoshiyasu Ishimaru, Takahito Watanabe, Masao Fuketa, Yuji Matsuoka,
873 Austen A. Barnett, Sumihare Noji, Taro Mito, Cassandra G. Extavour

874

875 These Supplementary Materials consist of the following:

876

877 • Supplementary Figures 1 – 4 (this document)
878 • Supplementary File 1 (this document)
879 • Supplementary File 2 (“Supplementary_File_2.xls”)
880 • Supplementary Table 1 (“Supplementary_Table_1.xls”)
881 • Supplementary Table 2 (this document)
882 • Supplementary Table 3 and 4 (“Supplementary_Table_3-4.xls”)
883 • Supplementary Table 5 (this document)
884 • Supplementary References (this document)



885

886

887 **Supplementary Figure 1: Schematic of *G. bimaculatus* genome annotation pipeline.**

888 Rectangles represent data inputs: yellow rectangles represent *G. bimaculatus* data; purple
 889 rectangles represent data from other species or databases. Diamonds represent computational
 890 processes: gray diamonds indicate processes executed a single time; non-gray diamonds of the
 891 same color indicate the same process. Circles indicate outputs: blue circles indicate quality
 892 controls; green circles indicate annotations. Scripts available at GitHub
 893 https://github.com/guillemylla/Crickets_Genome_Annotation.

894

895

896 **Supplementary Figure 2: Scheme of *L. konaleensis* genome annotation pipeline.** All
897 symbols as per **Supplementary Figure 1**.

898

899

900

901

902

903

904

905

906

907

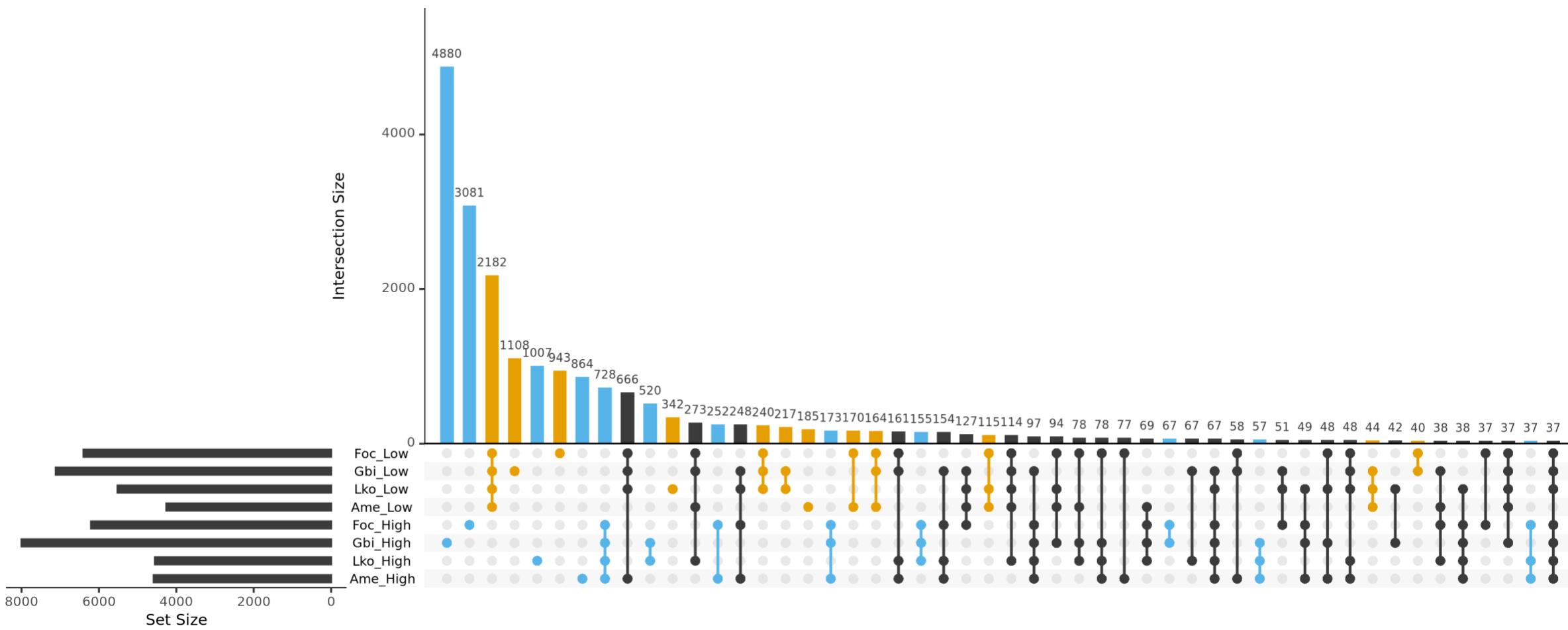
908

909

910

911

912


012

Supplementary Figure 3: Enriched GO-terms among genes with high or low CpGo/e levels.

This plot shows the enriched GO terms with $p\text{-value} < 0.05$ in at least one of the eight categories which are the high CpGo/e and low CpGo/e genes of *G. bimaculatus* (Gbi), *L. kohalensis* (Lko), *F. occidentalis* (Foc), and *A. mellifera* (Ame). The dot diameter is proportional the percentage of significant genes with the GO term within the gene set. The dot color represents the p -value level: blue > 0.05 , orange [0.05, 0.001], red < 0.001 .

928

929

930 **Supplementary Figure 4: UpSet plot of orthologous genes within the high and low CpG_{0/e} value categories.** Top 50 intersections of orthogroups (OGs) that are
 931 common across the eight different categories, which are the high CpG_{0/e} and low CpG_{0/e} genes for *G. bimaculatus* (Gbi), *L. kohaleensis* (Lko), *F. Occidentalis* (Foc), and
 932 *A. mellifera* (Ame). Blue color indicates OGs that contain genes that only belong to the high CpG_{0/e} peak, and yellow OGs contain genes that only belong to the low CpG_{0/e}
 933 peak.

934 **Supplementary File 1: RepeatMasker summaries.** Report of the repeat content in the
935 genomes of *G. bimaculatus* and *L. kohalensis* generated by RepeatMasker using custom
936 libraries.

Gryllus bimaculatus

```
=====
file name: Gbimaculatus_Gap_filled.fasta
sequences: 47877
total length: 1658007496 bp (1601517380 bp excl N/X-runs)
GC level: 39.93 %
bases masked: 558652201 bp ( 33.69 %)
=====
```

	number of elements*	length occupied	percentage of sequence
SINEs:	138895	26406967 bp	1.59 %
ALUs	6	9564 bp	0.00 %
MIRs	0	0 bp	0.00 %
LINEs:	454301	147302087 bp	8.88 %
LINE1	1803	826764 bp	0.05 %
LINE2	115576	32029561 bp	1.93 %
L3/CR1	18286	6358119 bp	0.38 %
LTR elements:	131656	36970251 bp	2.23 %
ERVL	92	44183 bp	0.00 %
ERVL-MaLRs	0	0 bp	0.00 %
ERV_classI	11451	2441461 bp	0.15 %
ERV_classII	980	401749 bp	0.02 %
DNA elements:	500741	142828465 bp	8.61 %
hAT-Charlie	11512	4094376 bp	0.25 %
TcMar-Trigger	2039	537995 bp	0.03 %
Unclassified:	367653	126552078 bp	7.63 %
Total interspersed repeats:	480059848 bp		28.95 %

Small RNA:	2562	1002728 bp	0.06 %
Satellites:	31087	7528498 bp	0.45 %
Simple repeats:	769175	77632578 bp	4.68 %
Low complexity:	85129	6215377 bp	0.37 %

<=====

Laupala kohalensis

```
=====
file name: GCA_002313205.1_ASM231320v1_genomic.fna
sequences: 148784
total length: 1595214429 bp (1563778341 bp excl N/X-runs)
GC level: 35.58 %
=====
```

bases masked: 566518287 bp (35.51 %)

	number of elements*	length occupied	percentage of sequence
<hr/>			
SINEs:	29510	7083717 bp	0.44 %
ALUs	304	101257 bp	0.01 %
MIRs	1248	430584 bp	0.03 %
LINEs:	1035151	322470849 bp	20.21 %
LINE1	941	367057 bp	0.02 %
LINE2	584526	167380843 bp	10.49 %
L3/CR1	10257	4624100 bp	0.29 %
LTR elements:	57347	29690552 bp	1.86 %
ERVL	231	43500 bp	0.00 %
ERVL-MaLRs	0	0 bp	0.00 %
ERV_classI	1821	585650 bp	0.04 %
ERV_classII	389	125302 bp	0.01 %
DNA elements:	189815	62384975 bp	3.91 %
hAT-Charlie	15008	5154516 bp	0.32 %
TcMar-Tigger	8896	2459752 bp	0.15 %
Unclassified:	409303	128822550 bp	8.08 %
Total interspersed repeats: 550452643 bp			
34.51 %			
Small RNA:	13816	3005585 bp	0.19 %
Satellites:	2088	882748 bp	0.06 %
Simple repeats:	307925	19782955 bp	1.24 %
Low complexity:	48386	2381730 bp	0.15 %
<hr/>			

938

939

940

941 **Supplementary File 2: Gene family expansions in crickets.** Gene families (Orthogroups)
942 significantly expanded in the lineage leading to crickets (tab 1), expanded in *G. bimaculatus*
943 (tab 2), and expanded in *L. kohalensis* (tab 3). For each expanded orthogroup (OG), we
944 report the expansion size as the number of genes gained, and the functional information
945 about the OG. The functional information consists of the list of PFAMs and GO terms
946 associated with the genes within the OG, and the list of *D. melanogaster* genes within the OG
947 with their FlyBase summaries.

948

949 *See file “Supplementary_File_2_GeneExpansions.xls”*

950

951 **Supplementary Table 1: Genome assembly information for the 16 insect genomes**
952 **analyzed.** For each genome, we show the database that the assembly was retrieved from,
953 the assembly file name, the accession code, the assembly statistics obtained with assembly-
954 stats software (<https://github.com/sanger-pathogens/assembly-stats>) and the BUSCO
955 v3.1.0 reports at Arthropoda and Insecta levels.

956

957 *See file “Supplementary_Table_1_GenomeStats.xls”*

958

959

960 **Supplementary Table 2:** The orthogroups (OG) containing the 31 *D. melanogaster*
961 *pickpocket* genes, with their FlyBase ID, symbol, and class according to Zelle et al. (2013).

962

OG	FlyBase ID	gene symbol	Zelle et al. (2013) class
OG0000361.fa	FBgn0034965	<i>ppk29</i>	I
OG0000361.fa	FBgn0039424	<i>ppk15</i>	I
OG0000361.fa	FBgn0051065	<i>ppk31</i>	I
OG0000361.fa	FBgn0053508	<i>ppk13</i>	I
OG0009052.fa	FBgn0032602	<i>ppk17</i>	V
OG0000185.fa	FBgn0039675	<i>ppk21</i>	III
OG0000185.fa	FBgn0039677	<i>ppk30</i>	III
OG0000185.fa	FBgn0039679	<i>ppk19</i>	III
OG0000185.fa	FBgn0065109	<i>ppk11</i>	IV
OG0000185.fa	FBgn0039676	<i>ppk20</i>	III
OG0000185.fa	FBgn0031802	<i>ppk7</i>	III
OG0000185.fa	FBgn0031803	<i>ppk14</i>	III
OG0000072.fa	FBgn0022981	<i>rpk / ppk2</i>	V
OG0000072.fa	FBgn0034730	<i>ppk12</i>	V
OG0000072.fa	FBgn0052792	<i>ppk8</i>	V
OG0000072.fa	FBgn0053289	<i>ppk5</i>	V
OG0000072.fa	FBgn0020258	<i>ppk / ppk1</i>	V
OG0000072.fa	FBgn0265001	<i>ppk18</i>	IV
OG0000072.fa	FBgn0030795	<i>ppk28</i>	V
OG0000072.fa	FBgn0035785	<i>ppk26</i>	V
OG0011276.fa	FBgn0035458	<i>ppk27</i>	IV
OG0000243.fa	FBgn0034489	<i>ppk6</i>	IV
OG0000243.fa	FBgn0039839	<i>ppk24</i>	IV
OG0000243.fa	FBgn0051105	<i>ppk22</i>	IV
OG0000243.fa	FBgn0065108	<i>ppk16</i>	IV
OG0000243.fa	FBgn0024319	<i>Nach / ppk4</i>	IV
OG0000167.fa	FBgn0050181	<i>ppk3</i>	II
OG0000167.fa	FBgn0053349	<i>ppk25</i>	II
OG0000167.fa	FBgn0065110	<i>ppk10</i>	II
OG0000167.fa	FBgn0085398	<i>ppk9</i>	II
OG0000167.fa	FBgn0030844	<i>ppk23</i>	VI

963

964

965 **Supplementary Table 3: *pickpocket* gene expression levels in the *G. bimaculatus***
966 **prothoracic ganglion.** Expression in TPMs of *fruitless* and *pickpocket* genes in each RNA-
967 seq library generated from adult male prothoracic ganglia previously generated by Fisher
968 and colleagues (2018). Genes with read sum across samples > 20 TPMs across samples are
969 highlighted.

970

971 **Supplementary Table 4: *pickpocket* gene expression levels in the *G. bimaculatus***
972 **embryo and regenerating legs.** Expression in TPMs of *fruitless* and *pickpocket* genes in
973 the aggregated embryo RNA-seq dataset, control legs and regenerating legs. Genes with
974 read sum across samples > 20 TPMs across samples in the prothoracic ganglion
975 (Supplementary Table 3) are highlighted.

976

977 See file “Supplementary_Table_3-4.xls”

978 **Supplementary Table 5: *pickpocket* genes present in previous QTL analyses examining the genetic basis for sound-based cricket courtship behavior**
 979 **variation.** Genomic position information for the *L. kohalensis* *pickpocket* genes found in linkage groups (LG) in previously published QTL analyses (Blankers, Oh & Shaw
 980 2018; Shaw & Lesnick, 2009) examining mating song rhythm variations and female acoustic preference in the genus *Laupala*.

981

Scaff names Shaw	Scaff Names NCBI							Ppk class	LG	proximity	LG	LG
		start	end	width	strand	Name						
Lko057S000409	NNCF01126148.1	1083057	1116038	32982	+	Lko_01144	Class IV	1	LOD1	1		
Lko057S000550	NNCF01126289.1	666338	667949	1612	-	Lko_06470	Class IV	3	LOD2			
Lko057S005538	NNCF01131273.1	20948	31450	10503	-	Lko_31867	Class V	4	LOD1			
Lko057S005538	NNCF01131273.1	6676	8154	1479	-	Lko_31866	Class V	4	LOD1			
Lko057S005538	NNCF01131273.1	43198	60736	17539	-	Lko_31869	Class V	4	LOD1			
Lko057S000206	NNCF01125945.1	353321	357106	3786	-	Lko_06341	Class III				3	
Lko057S000206	NNCF01125945.1	404113	432386	28274	-	Lko_06342	Class III				3	

982

983 **Supplementary References**

984

985 Blankers, T., Oh, K. P., Bombarely, A., & Shaw, K. L. (2018). The genomic architecture of a
986 rapid Island radiation: Recombination rate variation, chromosome structure, and
987 genome assembly of the Hawaiian cricket *Laupala*. In *Genetics* (Vol. 209, pp. 1329-
988 1344).

989

990 Blankers, T., Oh, K. P., & Shaw, K. L. (2018). The genetics of a behavioral speciation
991 phenotype in an Island system. In *Genes* (Vol. 9, pp. 346)

992

993 Fisher, H. P., Pascual, M. G., Jimenez, S. I., Michaelson, D. A., Joncas, C. T., Quenzer, E. D., ...
994 Horch, H. W. (2018). De novo assembly of a transcriptome for the cricket *Gryllus*
995 *bimaculatus* prothoracic ganglion: An invertebrate model for investigating adult
996 central nervous system compensatory plasticity. In *PLoS One* (Vol. 13, pp.
997 e0199070).

998

999 Shaw, K. L., & Lesnick, S. C. (2009). Genomic linkage of male song and female acoustic
1000 preference QTL underlying a rapid species radiation. In *Proceedings of the National
1001 Academy of Sciences* (Vol. 106, pp. 9737-9742).

1002

1003 Xu, M., & Shaw, K. L. (2019). The genetics of mating song evolution underlying rapid
1004 speciation: Linking quantitative variation to candidate genes for behavioral
1005 isolation. In *Genetics* (Vol. 211, pp. 1089-1104).

1006

1007 Zelle, K. M., Lu, B., Pyfrom, S. C., & Ben-Shahar, Y. (2013). The genetic architecture of
1008 degenerin/epithelial sodium channels in *Drosophila*. In *G3: Genes, Genomes, Genetics*
1009 (Vol. 3, pp. 441-450).

1010

1011

1012