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ABSTRACT

To fully utilize the advances in omics technologies and achieve a more comprehensive understanding of human diseases, novel
computational methods are required for integrative analysis for multiple types of omics data. We present a novel multi-omics
integrative method named Multi-Omics gRaph cOnvolutional NETworks (MORONET) for biomedical classification. MORONET
jointly explores omics-specific learning and cross-omics correlation learning for effective multi-omics data classification. We
demonstrate that MORONET outperforms other state-of-the-art supervised multi-omics integrative analysis approaches from
a wide range of biomedical classification applications using mRNA expression data, DNA methylation data, and miRNA
expression data. Furthermore, MORONET is able to identify important biomarkers from different omics data types that are
related with the investigated diseases.

Introduction

The rapid advancement in high-throughput technologies have enabled the collection of various types of "omics" data at
an unprecedented detailed level. Genome-wide data for different molecular processes, such as mRNA expression, DNA
methylation, and microRNA (miRNA) expression, can be acquired for the same set of samples, resulting in multiple omics
(multi-omics) data. While each omics technology itself can only capture part of the biological complexity in the investigated
problem, the integration of multiple types of omics data is needed to provide a more comprehensive view of the underlying
biological processes. For human diseases, existing studies have demonstrated that incorporating data from multiple omics
technologies can improve the accuracy of predicting patient clinical outcomes performances comparing to using a single type
of omics data1–7. Therefore, there is a strong motivation for integrative analysis methods to take advantage of the interactions
and complementary information of multi-omics data.

A great number of methods have been proposed over the years for multi-omics data integration for a variety of problems.
However, most existing research efforts focus on unsupervised multi-omics data integration without the additional information
of sample labels. With the rapid development of personalized medicine, curated datasets with detailed annotations that
characterize the phenotypes or traits of the samples are becoming more widely available. Therefore, there is an increasing
interest in supervised multi-omics integration methods that can perform prediction on new samples, as well as identifying
disease related biomarkers. Early attempts of supervised data integration for biomedical classification problems include direct
concatenation of different types of omics data to learn the classification model5. Ensemble-based strategies have also been
explored to integrate the predictions of the classifiers, each trained on one type of omics data individually1. However, these
methods failed to consider the correlations among different omics data types and could be biased towards certain type of omics
data. Recently, more supervised multi-omics integration methods have been proposed by exploiting the interactions across
different omics data types. For example, van de Wiel et al.6 introduced an adaptive group-regularized ridge regression method
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that incorporated methylation microarray data and curated annotations of methylation probes for cervical cancer diagnostic
classification. Singh et al.4 proposed DIABLO (Data Integration Analysis for Biomarker discovery using Latent cOmponents)
by extending the sparse generalized canonical correlation analysis to a supervised framework, which could seek common
information across multiple omics types while discriminating between different phenotypic groups.

With the continuous advancement of deep learning in various tasks, more and more multi-omics integration methods
based on deep learning have been proposed to take advantage of the high learning capability and flexibility of deep neural
networks2, 8–10. For example, Huang et al.2 integrated the features of mRNA expression and miRNA expression, along with
additional clinical information at hidden layers for better prognosis prediction in breast cancer. However, these existing methods
are based on fully-connected networks, which did not exploit the correlations between patients effectively through patient
similarity networks. Moreover, while current deep learning based methods integrate different omics data at the input space8, 10

or the learned feature space2, 9, different omics data types could provide unique characteristics at the high-level label space.
Therefore, it is crucial to utilize the correlations across different classes and different omics data types to further boost the
learning performance.

To this end, we introduce MORONET, a multi-omics data analysis framework for classification tasks in biomedical applica-
tions. MORONET unifies omics-specific learning with multi-omics integrative classification at the label space. Specifically,
MORONET utilizes Graph Convolutional Networks (GCN) for omics-specific learning. Comparing to the fully-connected
neural networks, GCN can take advantage of both the omics features and the correlations among patients described by the patient
similarity networks for better classification performance. While GCN has been utilized in unsupervised and semi-supervised
settings, in this work, we extend the usage of GCN to supervised classification tasks on multi-omics data. MORONET also
utilizes View Correlation Discovery Network (VCDN) for multi-omics integrative classification. VCDN can exploit the higher-
level cross-omics correlations in the label space, as different omics data types could provide unique class-level distinctiveness.
Therefore, it is crucial to explore the cross-omics label correlations to improve model performances on multi-omics data. While
original form of VCDN was designed for samples with two views11, we further generalize it to accommodate three types of
omics data: mRNA expression, DNA methylation, and miRNA expression. To the best of our knowledge, MORONET is the
first supervised multi-omics integrative method for effective class prediction on new samples that not only utilizes GCN for
omics data learning but also explores the cross-omics correlations at the label space. We demonstrate the capabilities and
versatility of MORONET through a wide range of biomedical classification applications, including Alzheimer’s disease patient
classification, tumor grade classification in low grade glioma, kidney cancer type classification, and breast invasive carcinoma
subtype classification. We also showed the necessity of integrating multiple omics data types and the importance of combining
both GCN and VCDN for multi-omics data classification through comprehensive ablation studies. Moreover, we demonstrated
that MORONET is capable of identifying important omics signatures and biomarkers that are related to diseases of interests.

Results
Framework of MORONET
We introduce MORONET, a novel supervised multi-omics integration framework for a wide range of biomedical classification
tasks (Figure 1). After pre-processing and feature pre-selection to remove noise and redundant features, we first use GCN to
learn the classification task with each omics data type individually. Specifically, for each type of omics data, we construct a
weighted patient similarity network using cosine similarity. Taking the input of both the omics features and the corresponding
patient similarity network, GCN is trained for each omics data type to generate initial predictions of class labels. A major
advantage of GCN is that they can take both the omics data and the correlations between patients for better prediction. Then,
initial predictions generated by each omics-specific GCN were further utilized to produce the cross-omics discovery tensor,
which reflects the cross-omics label correlations. Finally, the cross-omics discovery tensor is reshaped to a vector and forwarded
to VCDN for final label prediction. VCDN can effectively integrate initial predictions from each omics-specific networks by
explores the latent correlations across different omics data types in the higher-level label space. MORONET is an end-to-end
model and omics-specific GCN and VCDN are trained alternatively until convergence. To this end, the final prediction is
based on both effective omics-specific predictions generated by GCN and the learned cross-omics label-correlation knowledge
generated by VCDN. To the best of our knowledge, MORONET is the first method to combine GCN and VCDN for effective
multi-omics integration in biomedical data classification applications.

Datasets
To demonstrate the effectiveness of MORONET, we applied the proposed method on four different biomedical classification
tasks using four different datasets: ROSMAP for Alzheimer’s disease (AD) patients versus normal control (NC) classification,
LGG for grade classification in Low Grade Glioma (LGG), KIPAN for kidney cancer type classification, and BRCA for Breast
Invasive Carcinoma (BRCA) subtype classification. Among these tasks, kidney cancer type classification is the simplest task
and serves more as a proof-of-concept experiment for multi-class applications, since the differences among chromophobe renal
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Figure 1. Illustration of MORONET. MORONET combines GCN for multi-omics specific learning and VCDN for
multi-omics integration. For concise illustration, an example of one patient is chosen to demonstrate the VCDN component for
multi-omics integration after omics-specific learning. Pre-processing is first performed on each omics data type to remove noise
and redundant features. Omics-specific GCN learns class prediction using omics features and the corresponding patient
similarity network generated from the omics data. Cross-omics discovery tensor is calculated from initial predictions from
GCN and forwarded to VCDN for final prediction. MORONET is an end-to-end model and all networks are trained jointly.

cell carcinoma (KICH), clear renal cell carcinoma (KIRC), and papillary renal cell carcinoma (KIRP) can be clearly observed
in the omics data. The details of the datasets are listed in Table 1. Specifically, ROSMAP is composed of ROS and MAP, both
are longitudinal clinical-pathologic cohort studies of AD from Rush University12, 13. The ROSMAP dataset was acquired from
AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.org/)14. AD patients and normal control
subjects were selected for the classification task in our experiment. Omics data of LGG, KIPAN, and BRCA, as well as the
grade information of LGG patients were acquired from The Cancer Genome Atlas Program (TCGA) through Broad GDAC
Firehose (https://gdac.broadinstitute.org/). PAM50 breast cancer subtypes of TCGA BRCA patients15, 16 were
acquired through TCGAbiolinks17. Three types of omics data (i.e. mRNA expression data, DNA methylation data, and miRNA
expression data) were used for classification to provide comprehensive and complementary information about the diseases.
Only subjects with matched mRNA expression, DNA methylation, and miRNA expression data were included in our study.

Table 1. Summary of datasets

Dataset Categories Number of features
mRNA DNA methylation miRNA

ROSMAP NC: 169, AD: 182 55889 23788 309
LGG Grade 2: 246, Grade 3: 264 20531 20114 548

KIPAN KICH: 66, KIRC: 318, KIRP: 274 20531 20111 445

BRCA Normal: 115, Basal: 131, Her2: 46, 20531 20106 503LumA: 436, LumB: 147

Multi-omics classification performance evaluation
In this section, we compared the classification performance of MORONET with existing supervised multi-omics integration
algorithms, as well as performing comprehensive ablation studies to demonstrate the necessity of different components in
MORONET. To compare the effectiveness of different multi-omics integration methods, we randomly selected 30% of the
samples in a dataset as the test set and the remaining 70% of the samples as the training set. The test set was constructed by
preserving the class distribution in the original dataset. To evaluate the performance of the compared methods, we calculated
accuracy (ACC) and F1 score (F1) of the classification results. Weighted average of F1 score by support for each label was
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used to account for label imbalance. For binary classification tasks, Area Under the Receiver Operating Characteristic Curve
(AUC) was also reported. We evaluated all the methods on five different randomly generated training and test splits and the
mean and standard deviation of the evaluation metrics across these five experiments were reported.

Table 2. Classification results on ROSMAP dataset

Method ACC F1 AUC

KNN 66.79 ± 5.70 66.76 ± 5.67 71.38 ± 6.71
SVM 77.92 ± 0.75 77.92 ± 0.76 77.97 ± 0.78

LASSO 70.19 ± 3.51 70.02 ± 3.41 78.13 ± 3.86
RF 70.38 ± 3.41 70.17 ± 3.19 76.66 ± 2.66
NN 68.30 ± 5.71 68.21 ± 5.70 74.20 ± 4.88

GRridge 76.79 ± 2.64 76.76 ± 2.65 84.63 ± 3.97
block_plsda 75.28 ± 1.39 75.23 ± 1.36 83.92 ± 1.54
block_splsda 76.42 ± 2.46 76.38 ± 2.46 83.89 ± 2.58

NN_NN 79.62 ± 2.64 79.53 ± 2.69 84.61 ± 2.13
NN_VCDN 79.25 ± 2.98 79.21 ± 3.00 83.91 ± 3.67
GCN_NN 81.32 ± 3.29 81.31 ± 3.28 86.80 ± 2.17

MORONET 82.45 ± 2.20 82.41 ± 2.21 87.34 ± 2.18

Table 3. Classification results on LGG dataset

Method ACC F1 AUC

KNN 73.07 ± 3.24 73.07 ± 3.24 80.06 ± 3.10
SVM 74.38 ± 2.39 74.37 ± 2.38 74.36 ± 2.36

LASSO 76.47 ± 1.55 76.46 ± 1.56 83.66 ± 2.52
RF 74.77 ± 2.50 74.71 ± 2.48 81.77 ± 1.52
NN 72.55 ± 3.28 72.53 ± 3.27 78.76 ± 2.80

GRridge 70.59 ± 1.31 70.53 ± 1.25 77.42 ± 1.72
block_plsda 73.73 ± 3.39 73.56 ± 3.45 81.65 ± 2.33
block_splsda 78.95 ± 2.24 78.90 ± 2.24 85.86 ± 1.82

NN_NN 73.73 ± 2.16 73.58 ± 2.16 78.78 ± 2.52
NN_VCDN 72.94 ± 3.45 72.74 ± 3.45 77.61 ± 4.10
GCN_NN 78.95 ± 1.72 78.91 ± 1.71 85.84 ± 1.80

MORONET 79.48 ± 2.36 79.46 ± 2.37 85.43 ± 2.29

Table 4. Classification results on KIPAN dataset

Method ACC F1

KNN 96.77 ± 0.94 96.76 ± 0.94
SVM 99.09 ± 0.87 99.09 ± 0.87

LASSO 97.17 ± 0.40 97.16 ± 0.41
RF 97.88 ± 0.59 97.87 ± 0.59
NN 98.59 ± 0.20 98.58 ± 0.21

GRridge 99.49 ± 0.32 99.49 ± 0.32
block_plsda 95.25 ± 0.82 95.23 ± 0.82
block_splsda 94.95 ± 0.45 94.93 ± 0.45

NN_NN 99.80 ± 0.40 99.80 ± 0.40
NN_VCDN 99.60 ± 0.59 99.59 ± 0.59
GCN_NN 99.70 ± 0.25 99.69 ± 0.25

MORONET 99.80 ± 0.25 99.80 ± 0.25

Table 5. Classification results on BRCA dataset

Method ACC F1

KNN 74.22 ± 2.63 72.56 ± 2.90
SVM 74.68 ± 1.14 73.78 ± 0.87

LASSO 77.19 ± 1.05 75.51 ± 0.81
RF 71.48 ± 1.68 69.55 ± 1.74
NN 73.61 ± 1.49 72.56 ± 1.51

GRridge 75.21 ± 2.17 74.04 ± 2.37
block_plsda 64.41 ± 0.66 52.58 ± 0.94
block_splsda 64.26 ± 0.68 51.87 ± 1.11

NN_NN 77.11 ± 1.58 76.35 ± 1.55
NN_VCDN 77.49 ± 1.57 76.88 ± 1.53
GCN_NN 80.00 ± 1.14 79.49 ± 1.19

MORONET 80.61 ± 0.54 79.97 ± 1.50
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MORONET outperformed existing supervised multi-omics integration methods in various classification tasks
We compared the classification performance of MORONET with the following eight existing classification algorithms: 1)
K-nearest neighbor classifier (KNN): label predictions were made by voting of k-nearest neighbors in the training data. We
set k = 5 in all experiments. 2) Support vector machine classifier (SVM). 3) Linear regression trained with L1 regularization
(LASSO). In LASSO, an individual model was trained to predict the probability of each class, and the class predicted with
the highest probability was selected as the final class label prediction for the entire model. 4) Random forest classifier (RF).
5) Fully-connected neural network classifier (NN): deep fully-connected neural network with three layers trained with cross
entropy loss. 6) Adaptive group-regularized ridge regression (GRridge)6: Implementation in the GRridge R package was used.
7) block_plsda: multi-omics integration with projection to latent structures models with discriminant analysis. Block_plsda
integrates multiple types of omics data measured on the same samples to classify a discrete outcome. Block_plsda is one of
the supervised analysis methods included in DIABLO4. 8) block_splsda: block_plsda with additional sparse regularization,
which can select relevant features from each dataset. It is also a supervised analysis method within DIABLO. Implementations
in the mixOmics R package18 were used for block_plsda and block_splsda. Block_plsda and block_splsda represent the
state-of-the-art approaches for supervised multi-omics integration and classification. KNN, SVM, LASSO, and NN were
trained with direct concatenation of multi-omics data as input. All methods were trained with the same pre-processed data. The
classification results for ROSMAP, LGG, KIPAN, and BRCA are shown in Tables 2-5, respectively.

From Tables 2-5, we observed that MORONET outperformed the compared multi-omics integration methods in most
classification tasks. The only exception was in LGG grade classification, where block_splsda yielded slightly higher AUC score
than MORONET. However, MORONET achieved better performance in LGG grade classification when evaluated through ACC
and F1 score. Moreover, MORONET consistently outperformed the state-of-the-art supervised multi-omics integration methods
(block_plsda and block_splsda) in all the other tasks, which demonstrated the superiority of multi-omics data classification
capability by combining GCN for omics-specific learning and VCDN for multi-omics integration. Comparing with existing
methods, while MORONET yielded the best results in simple tasks like kidney cancer type classification, its significant
advantages were demonstrated in more difficult applications such as AD patient classification and BRCA subtype classification,
demonstrating the superior learning capability of MORONET. Interestingly, although deep learning based methods have
shown great promises in classification applications, the deep learning based method NN did not show obvious improvements
comparing with other shallow methods. This suggests that proper design of deep learning algorithms specific to supervised
multi-omics integration applications is required to achieve superior classification performance.

MORONET outperformed its variations in various classification tasks
MORONET combines omics-specific learning via GCN with cross-omics correlation learning using VCDN for effective
multi-omics data classification. GCN can learn from both features and the graph structure of the training data, which explicitly
takes advantage of the correlations among the training samples comparing to the commonly used fully-connected neural
networks. VCDN is designed to learn the higher-level intra-view and cross-view correlations in the label space in multi-view
learning problems, which can boost the performance of multi-omics integration. To demonstrate the necessity of GCN and
VCDN for effective multi-omics data classification, we performed extensive ablation studies of our proposed method where
three additional variations of MORONET were compared. 1) NN_NN: Fully-connected neural networks with the same number
of layers and the same dimensions of hidden layers as MORONET was used for omics-specific classification learning. A
neural network with the same structure as VCDN was used for multi-omics integration. However, instead of constructing the
cross-omics discovery tensor, label distribution from each omics data type was directly concatenated to a longer vector as the
input of the multi-omics integration network. 2) NN_VCDN: The omics-specific classification component was the same as
NN_NN without utilizing GCN. The multi-omics integration component utilized VCDN, which was the same as MORONET.
3) GCN_NN: The omics-specific classification component utilized GCN, which was the same as MORONET. The multi-omics
integration part was the same as NN_NN without VCDN.

From Tables 2-5, we observed that MORONET outperformed its three variations in ablation studies for most classification
tasks. In the LGG grade classification, GCN_NN yielded slightly higher AUC score than MORONET, while MORONET
achieved better ACC and F1 score. One possible reason of the similar performance between GCN_NN and MORONET in this
task could be due to the fact that it was a binary classification problem, where the contribution of cross-view correlation in
the label space might be limited as the number of distinct labels were limited to two. Specifically, GCN_NN and MORONET
shared the same structure for multi-omics integration component except that the input dimensions were different. For binary
classification problems, the input dimension for the multi-omics integration component in GCN_NN was 2×3 = 6, while
the input dimension for the same component in MORONET was 23 = 8. While VCDN can effectively utilize the cross-view
correlation in the label space, such advantage can be limited when the number of distinct labels was small. Nevertheless,
exploring cross-view correlations was still essential to multi-omics classification as we observed that MORONET outperformed
GCN_NN in most binary classification tasks and in all multi-class classification tasks under different evaluation metrics.
Moreover, we observed that MORONET consistently outperformed NN_VCDN in all classification tasks, which demonstrated
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that the classification performance can be improved by not only learning from the omics features, but also learning from the
patient correlations and the topological structures of the training samples through GCN. Another interesting observation was
that while MORONET consistently outperformed NN_NN, both NN_VCDN and GCN_NN failed to consistently outperformed
NN_NN in all the tasks, which suggested that GCN and VCDN need to be combined and trained jointly in order to achieve
superior results for multi-omics classification tasks.

To further demonstrate the necessity of integrating multiple types of omics data to boost the classification performance
in biomedical applications, we compared the final classification performance of MORONET with the classification results
of each omics data type produced by omics-specific GCN before integration. The results are shown in Figure 2. From
Figure 2, we observed that by exploring the cross-omics label correlations through VCDN, the classification performance
was consistently improved by integrating classification results of multiple omics data types. Specifically, for classification on
ROSMAP, LGG, and BRCA, results produced by MORONET are significantly better than any of the single-omics classification
results. For KIPAN, while results of MORONET were slightly better than only using DNA methylation data, MORONET was
able to produce more consistent results with the standard deviation of ACC and F1 score greatly reduced through multi-omics
integration.
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Figure 2. Performance comparison of multi-omics data classification via MORONET and single-omics data classification via
GCN. GCN_mRNA, GCN_meth, and GCN_miRNA refers to single-omics data classification via GCN with mRNA expression
data, DNA methylation data, and miRNA expression data, respectively.

Important biomarkers identified by MORONET
Identifying biomarkers is essential to interpreting the results in biomedical applications and understanding the underlying
biology of the problems. There have been extensive studies of interpreting feature importance for neural networks over the years.
Since the input of MORONET is scaled to [0,1] during pre-processing, we can remove the signal from a feature by setting it to
zero. Therefore, the importance of a feature to the classification task can be measured by the extent of performance drop after
the feature is set to zero. This approach has been widely adopted for feature importance ranking and feature selection in neural
networks2, 19–21. Based on this approach, we analyzed the contribution of each feature in all types of omics data by assigning
the feature as zero and calculated the classification performance decrease on the test set comparing to using all the features.
Features with the largest performance drop were considered to be the most important ones. We used AUC to measure the
performance drop for binary classification tasks and ACC for multi-class classification tasks. We selected the top 50 important
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features for each omics data type, and the features that were selected in more than three out of five repeated experiments in a
dataset were reported. As mentioned in the previous section, the KIPAN dataset served as a proof-of-concept experiment for
multi-class applications, and therefore was excluded from detailed biomarker identification analysis. For ROSMAP, LGG, and
BRCA dataset, the identified mRNA expression, DNA methylation, and miRNA expression features are shown in in Tables 6-8
for further discussion.

MORONET identified biomarkers related to Alzheimer’s disease from ROSMAP dataset
For AD patient classification, 25 mRNA expression features, 8 DNA methylation features, and 25 miRNA expression features
were identified by MORONET (Table 6). Specifically, genes identified by the mRNA expression data and genes corresponding
to the identified DNA methylation features have been found associated with AD. For example, for identified mRNA expression
features, Wang et al.22 found that the loss of kinesin-1 KIF5A isoform was a primary neuronal pathology in AD. They
discovered that KIF5A deficiency was a novel mechanism of AD-relevant axonal mitochondrial traffic abnormalities and
suggested a potential therapeutic treatment of AD by protecting the KIF5A function. Brock et al.23 found that PRTN3
expression level was significantly decreased in the occipital lobe of the brains with AD. Higher expression level of HSPB2 was
also discovered to be associated with faster cognitive decline in Alzheimer’s dementia24. Petyuk et al.25 identified HSPA2 as
an important regulator of late-onset Alzheimer’s disease processes. Moreover, microRNAs identified by the proposed algorithm
were also found to be related to AD. For example, miR-885-5p and miR-143 were significantly down-regulated in the sera from
the AD patients compared to negative controls26, 27. The abnormal expression of miR-34a was suggested to contribute to the
progression of AD by affecting the expression level of BCL228. Lau et al.29 identified that decrease of miR-132 expression in
AD brains was most notable in neurons displaying Tau hyper-phosphorylation and suggested that miR-132 contributes to AD
progression. Expression level of miR-132 was also reported to be correlated with insoluble tau and cognitive impairment30.

Table 6. Important omics biomarkers identified in ROSMAP dataset

Omics data type Biomarkers

mRNA expression (25) MEIS3, PPDPF, APLN, CSRP1, CCDC69, KIF5A, ISYNA1, AC131056.3,
PRTN3, NPNT, HSPB2, HSPA2, AC243964.2, MID1IP1, SLC5A11, KIF5B,
DOCK5, AL590617.2, SLC6A12, AC091180.2, AC105942.1, SAMD4A,
NRIP2, PADI2, CDK2AP1

DNA methylation (8) ALS2CR11, DISP1, SERPINI1, KIAA1267, KLHL21, CRMP1, MAMSTR,
LOC84931

miRNA expression (25) hsa-miR-885-5p, hsa-miR-132, hsa-miR-143, hsa-miR-34a, hsa-miR-146b-5p,
hsa-miR-129-3p, hsa-miR-129-5p, hsa-miR-517c, hsa-miR-548a-3p, hsa-miR-
145, hsa-miR-448, hsa-miR-203, hsa-miR-362-3p, hsa-miR-98, hsa-miR-377,
hsa-miR-34b, hsa-miR-24, hsa-miR-577, hsa-miR-369-3p, hsa-miR-484, hsa-
miR-432, hsa-miR-660, hsa-miR-126, hsa-miR-150, hsa-let-7i

MORONET identified biomarkers related to tumor grade in LGG from LGG dataset
For LGG grade classification, 24 mRNA expression features, 16 DNA methylation features, and 24 miRNA expression features
were identified by MORONET (Table 7). For genes of the identified mRNA expression features and genes corresponding
to the identified DNA methylation features, we applied ToppGene Suite31 for gene set functional enrichment analysis to
determine if genes identified by MORONET are biologically meaningful. ToppGene finds biological annotations such as Gene
Ontology (GO) items that are significant in a set of genes and multiple-testing corrections are applied to the reported p values.
For genes identified in mRNA expression features, they are significantly enriched with GO biological process terms such
as nuclear division (GO:0000280, p = 6.149E− 8), DNA repair (GO:0006281, p = 6.149E− 8), cell cycle (GO:0007049,
p = 6.149E − 8), and DNA metabolic process (GO:0006259, p = 9.262E − 8). For genes identified in DNA methylation
features, significantly enriched biological processes included keratinocyte differentiation (GO:0030216, p = 5.608E−3) and
epidermal cell differentiation (GO:0009913, p = 8.185E−3). These biological processes are highly related to the development
and the aggressiveness of cancer. Cancer is a disease of inappropriate cell proliferation, which results from the failure of the
proper regulation of the cell cycle machinery32. Moreover, cell differentiation is strongly associated with the aggressiveness of
the cancer, as poorly differentiated or undifferentiated cancer cells look and behave very differently from normal cells. Tumours
with poorly differentiated or undifferentiated cancer cells tend to grow more aggressively with a higher risk of metastasis than
tumours with well-differentiated cancer cells. Cell differentiation and the speed of cell proliferation and division are the most
important factors in tumor grading, which is also consistent with the classification task of LGG tumor grades.
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Besides biomarkers related to tumor grading, genes related to glioma were also identified by MORONET. For example,
MKI67 and IGFBP2 were demonstrated as important biomarkers for determining the prognosis of glioma patients33, 34. MKI67
is one of the most widely used malignancy markers in cancer pathology35, 36 while IGFBP2 also have critical contribution to
glioma development. Expression of IGFBP2 in gliomas was found correlated to the histological grade of the tumor37. Wang et
al.38 also discovered that IGFBP2 could contributes to glioma progression and tumor cell invasion in part by enhancing MMP-2
gene transcription. Identified miRNA expression features have also been demonstrated to be involved in the regulation of glioma
progression. For example, miR-383 was suggested to play the role of tumor suppressor in glioma cells by downregulating
CCND1 expression39. Downregulation of miR-383 was suggested to enhance glioma cell invasive ability by participating in the
regulation of constitutive IGF1R signaling activation40. Moreover, miR-10b was also found associated with glioma pathological
grade and malignancy, as well as promoting glioma cell invasion by targeting HOXD1041.

Table 7. Important omics biomarkers identified in LGG dataset

Omics data type Biomarkers

mRNA expression (24) ITPRIPL1, AURKB, MCM2, CDC45, TEF, FANCA, DTL, BRIP1, MKI67,
POC1A, PLAT, GSG2, ZNF367, SSTR1, POLQ, TACC3, FANCC, TTK, TK1,
KIAA0101, RAD51, CHAF1A, IGFBP2, KIF4A

DNA methylation (16) IL32, IQCF5, OR51A7, TGM3, BASE, SPRR1B, SPRR2D, OR8G1, FAM71F1,
MIR298, C3orf22, INHBE, AQP10, SFTPB, OR13C3, REG3G

miRNA expression (24) hsa-mir-383, hsa-mir-10b, hsa-mir-329-1, hsa-mir-491, hsa-mir-508, hsa-mir-
29c, hsa-mir-184, hsa-mir-21, hsa-mir-128-2, hsa-mir-128-1, hsa-mir-218-2,
hsa-mir-1296, hsa-mir-129-1, hsa-mir-27a, hsa-mir-488, hsa-mir-9-3, hsa-mir-
193a, hsa-mir-767, hsa-mir-770, hsa-mir-103-1, hsa-mir-876, hsa-mir-885, hsa-
mir-196b, hsa-mir-23a

MORONET identified biomarkers related to BRCA subtypes from BRCA dataset
For BRCA PAM50 subtype classification, 35 mRNA expression features, 25 DNA methylation features, and 31 miRNA
expression features were identified (Table 8). A lot of well-known breast cancer genes were identified by mRNA expression
data. For example, enrichment analysis results produced by ToppGene showed that identified genes by mRNA expression
data were significantly associated with breast adenocarcinoma (p = 4.665E−3), including 5 well-known breast cancer genes
(AR42, 43, ERBB444, FOXA142, 45–47, BCL248, 49, and TFF150) according to the DisGeNET knowledge platform51. Specifically,
Ni et al.42 found AR highly expressed in ER–/HER2+ breast tumors and also identified important collaboration between
AR and FOXA1 in transcriptional activation of AR target genes in ER–/HER2+ breast cancer cells. High expression levels
of FOXA1 were observed in ER+ breast cancers45. FOXA1 was also found correlated with LumA breast cancer and was
identified as a significant prognosis predictor in patients with ER+ tumors46, 47. Genes identified by mRNA expression data
were also significantly enriched in molecular functions such as sequence-specific DNA binding (GO:0043565, p = 4.422E−3),
transcription regulatory region DNA binding (GO:0044212, p = 4.422E − 3), and regulatory region nucleic acid binding
(GO:0001067, p = 4.422E−3), which is consistent with the important role of transcriptional regulation in different breast
cancer subtypes. Moreover, genes related to BRCA were also identified by DNA methylation data. For example, higher
expression levels of LRRC25 were reported to be suggestively associated with increased risk of breast cancer52. SOSTDC1
expression was found reduced in breast cancer compared to normal breast tissue, and high SOSTDC1 expression levels were
found correlated with increased survival in breast cancer patients53. BRCA-related miRNAs were also identified by MORONET.
For example, Yang et al. showed that miR-223 can promote the invasion of breast cancer cells via the Mef2c-β -catenin
pathway54. Expression levels of miR-204 were found to have lower expression levels in breast cancer tissues than in the
adjacent normal breast tissues55. Shen et al.56 discovered that miR-204 can regulate the biological behavior of breast cancer
cells through directly targeting FOXA1. Moreover, for breast cancer PAM50 subtype related miRNA differential expression
analysis, miR-223 was found downregulated in LumB breast cancers and miR-204 was found upregulated in normal breast
cancers57.

Discussion
The rapid advancement of omics technologies has enabled personalized medicine at molecular level with unprecedented details.
With the ability of measuring the same set of samples with multiple omics technologies, integration of multiple omics data
types is needed to provide a more comprehensive view of human diseases as each technology itself can only characterize part
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Table 8. Important omics biomarkers identified in BRCA dataset

Omics data type Biomarkers

mRNA expression (35) NUP93, MLPH, MIA, SLC7A8, REEP6, PSAT1, AR, NOSTRIN, BCL11A,
TTC36, XBP1, KIAA1370, ENO1, ERBB4, YBX1, LOC84856, MAPT, MI-
CALL1, FABP7, FOXA1, FAM171A1, ESYT3, EN1, CHEK1, CENPN, BCL2,
B3GNT5, ACADSB, ABCC8, PTX3, EFCAB12, SUV39H2, SIDT1, TFF1,
UGT8

DNA methylation (25) P2RY11, ASF1A, ACSM2A, MFI2, LRRC25, FAM57A, TAS2R13, FRMPD1,
SOSTDC1, GOSR1, LOC727677, RARG, RALB, CST7, IGFALS, ESYT2,
MIR563, MIR1280, TF, AGR3, PCMT1, TMPRSS5, KCTD3, C22orf31,
LRRC47

mRNA expression (31) hsa-mir-223, hsa-mir-204, hsa-mir-27a, hsa-mir-155, hsa-mir-29c, hsa-mir-532,
hsa-mir-224, hsa-mir-505, hsa-mir-944, hsa-mir-182, hsa-mir-17, hsa-mir-381,
hsa-mir-502, hsa-mir-500a, hsa-mir-495, hsa-mir-452, hsa-mir-1301, hsa-mir-
130a, hsa-mir-142, hsa-mir-3613, hsa-mir-221, hsa-mir-146a, hsa-mir-301a,
hsa-mir-195, hsa-mir-19b-1, hsa-mir-222, hsa-mir-24-2, hsa-mir-378, hsa-let-7i,
hsa-mir-590, hsa-mir-101-2

of the underlying biology. Previously, labeled biomedical data have been scarce as manually collecting and annotating data are
highly expensive and time consuming. Consequently, most existing multi-omics integration methods focus on unsupervised
methods without additional phenotypic information and extracting biological insights from the identified clusters of samples.
However, thanks to the rapid development of omics technologies and personalized medicine, labeled omics datasets with
detailed annotations are becoming available at an unprecedented volume and speed. Therefore, it has become more and more
important to take advantage of these labeled omics data to better predict essential phenotypes or traits (e.g., disease diagnosis,
grading of tumors, and cancer subtypes) on new samples.

To this end, we propose MORONET, a novel supervised multi-omics integration method for biomedical classification tasks
based on deep multi-view learning. We consider each omics data type as a view of the samples. We utilized GCN for omics-
specific learning and VCDN for multi-omics integration at the high-level label space. We demonstrated that MORONET could
outperform state-of-the-art supervised multi-omics integration methods in a variety of biomedical classification applications,
such as AD patient classification, tumor grade classification in LGG, kidney cancer type classification, and BRCA PAM50
subtype classification.

Through rigorous ablation studies, we demonstrated that both GCN and VCDN are essential to effective multi-omics data
classification. Comparing to fully-connected networks, GCN can utilize both the features and the graphical structures of the
data. Such graphical structure is important for biological data given the extensive interactions among genes and molecules.
In MORONET, by constructing the patient similarity networks from omics data, both the omics features and the correlation
between samples can be explicitly and simultaneously utilized through GCN. While commonly-used fully-connected networks
can only be trained on structured data, GCN can also generalize neural networks to work on arbitrarily structured graphs. This
suggests that our GCN-based method is flexible and can be generalized to include more types of information to boost the
classification performance in the future. Comparing with traditional applications of GCN, which are either learning embeddings
of graphs in an unsupervised fashion or learning to propagate labels from labeled samples to unlabeled samples in the graph
in an semi-supervised fashion, MORONET further extend the use of GCN to supervised learning for better classification of
multi-omics data on new samples. To the best of our knowledge, our method is one of the first methods to explore GCN
in supervised multi-omics integration for classification tasks. We also demonstrated that VCDN can effectively classify
multi-omics data by integrating the omics-specific classification produced by GCN at the label space. Comparing to directly
concatenating class distributions predicted by GCN, VCDN can effectively explore the cross-omics correlations in the label
space to boost the multi-omics data classification performance. Comparing to the original application of VCDN on human
action recognition tasks11, which only considered data with two views, we further extended it to accommodate multiple omics
data types.

One important hyper-parameter in MORONET is k, which determines the threshold of affinity values adaptively when
constructing the weighted patient similarity networks for omics-specific GCNs. In our applications, k represents the average
number of edges per patient that are retained in the patient similarity networks except self loops. Patient similarity networks
that faithfully capture the interactions between patients can boost the performance of GCN by providing additional information
of patient correlations. However, if k is set too small, the patient similarity network becomes too sparse and some important
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Figure 3. Performance of MORONET under different values of hyper-parameter k. The dashed lines represent the results
from the best performed existing multi-omics integration methods. MORONET consistently outperformed existing methods
under a wide range of k values.

patient interactions could be missed. On the other hand, if k is too large, the patient similarity network becomes too dense
and noise or artifacts of patient correlations might be included. Therefore, choosing a proper k value is important to the
performance of MORONET. However, a proper choice of k depends on the topological structure of data, which varies from
dataset to dataset. In our experiments, k is determined through cross-validation on the training data. To further demonstrate the
effects of hyper-parameter k on the performance of MORONET in both binary and multi-class classification tasks, we trained
MORONET under a wide range of k values using the ROSMAP dataset and BRCA dataset. Figure 3 shows the performance
of MORONET when k varies from 1 to 10, where the dashed lines represent the results from the best performed existing
multi-omics integration methods. From 3, we observed that the hyper-parameter k did influence the classification performance
of MORONET as the performance fluctuates with the changes of k. However, MORONET was robust to different values of k as
it consistently outperformed existing methods under a wide range of k values.

Conclusion
Integration of multiple types of omics data is essential to achieve a more comprehensive understanding of the underlying biology
in diseases. With the improvement in omics technologies and the wide availability of well-annotated omics datasets, there is a
need for classification methods utilizing multi-omics data to better predict important phenotypes or traits on new samples. In
this paper we introduce MORONET, a novel classification method for multi-omics data based on deep multi-view learning.
MORONET uses GCN for omics-specific classification learning, which can utilize both the omics features and the correlations
between samples. MORONET uses VCDN to explores cross-omics correlations in the label space for effective multi-omics
integration. MORONET demonstrated significant improvements in a wide range of multi-omics classification tasks for human
diseases, such as AD patient classification, tumor grade classification in LGG, kidney cancer type classification, and BRCA
PAM50 subtype classification, comparing to single-omics classification, existing state-of-the-art multi-omics classification
methods, and its own variations in ablation studies. MORONET also effectively identified meaningful genomic features in
each omics data type that showed strong association with the diseases of interest. Therefore MORONET is an innovative deep
learning based multi-omics classification algorithm with both superior performance and good interpretability.

Methods
Method overview
MORONET is a novel framework for a variety of biomedical classification tasks utilizing multi-omics data. The workflow of
MORONET can be summarized into three components (Figure 1): (1) Pre-processing. Pre-processing and feature pre-selection
were performed on each omics data types individually to remove noise, artifacts, and redundant features that may deteriorate
the performance of the classification tasks. (2) Omics-specific prediction via GCN. For each omics data type, a weighted
patient similarity network was constructed from the omics features. Then, a GCN was trained using both the omics features
and the corresponding patient similarity network for omics-specific class prediction. (3) Multi-omics integration via VCDN.
A cross-omics discovery tensor was calculated using the initial class predictions from all the omics-specific networks. A
VCDN was then trained with the cross-omics discovery tensor to produce final predictions. VCDN can effectively learn
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the intra-omics and cross-omics label correlations in the higher-level label space for better classification performance with
multi-omics data. MORONET is an end-to-end model, where both omics-specific GCN and VCDN are trained jointly. We
describe each component in detail in the following sections.

Pre-processing
To remove noise and experimental artifacts in the data and better interpret the results, proper pre-processing of omics
data is essential. First, for DNA methylation data, only probes corresponding to the coding region in Illumina Infinium
HumanMethylation27 BeadChip were retained for better interpretability. The number of features for each omics data type
is listed in Table 1. Then, we further filtered out features with no signal (zero mean value) and low variances. Specifically,
we applied different variance filtering thresholds for different types of omics data: 0.1 for mRNA expression data and 0.001
for DNA methylation data, since different omics data types came with different ranges. For miRNA expression data, we only
filtered out features with no variation (variance equals to zero) as the available features in the original datasets were limited due
to the small number of miRNAs. The same variance thresholds were used across all classification experiments.

Since each type of omics data could contain redundant features that might have negative effects on the classification
performance, we further pre-selected the omics features through statistical tests. For each classification task, ANOVA F-value
was calculated sequentially using the training data to evaluate whether a feature was significantly different across different
classes. False discovery rate (FDR) - controlling procedures were applied for multiple-testing compensation and the top 200
most significant features for each omics data type were selected. Finally, we individually scaled each type of omics data to
[0,1] through linear transformations for training MORONET.

GCN for omic-specific learning
We utilized GCN for omic-specific learning in MORONET, where a GCN is learned for each omics data type to perform
classification tasks. By viewing each sample as a node in the patient similarity network, the goal of each GCN is to learn a
function of features on a graph G = (V ,E ) to perform classification tasks by taking advantage of both the features of each
node and the relationships between nodes characterized by the graph G . Therefore, a GCN model takes the following two
inputs. One input is a feature matrix XXX ∈ Rn×d , where n is the number of nodes and d is the number of input features. The
other input is a description of the graph structure, which can be represented in the form of an adjacency matrix AAA ∈ Rn×n. A
GCN is built by stacking multiple convolutional layers. Specifically, each layer is defined as:

HHH(l+1) = f (HHH(l),AAA)

= σ(AAAHHH(l)WWW (l)),
(1)

where HHH(l) is the input of the l-th layer and WWW (l) is the weight matrix of the l-th layer. σ(·) denotes a non-linear activation
function. For effective training of GCN, following the procedure introduced in58 , we modify the adjacency matrix AAA as:

ÃAA = D̂DD
− 1

2 ÂAAD̂DD
− 1

2 = D̂DD
− 1

2 (AAA+ III)D̂DD
− 1

2 , (2)

where D̂DD is the diagonal node degree matrix of ÂAA and III is the identity matrix.
In MORONET, the original adjacency matrix AAA is constructed by calculating the cosine similarity between pairs of nodes,

and edges with cosine similarity larger than a threshold ε are retained. Specifically, the adjacency between node i and node j in
the graph, AAAi j, is calculated as:

AAAi j =

{
s(xxxi,xxx j), if i 6= j and s(xxxi,xxx j)≥ ε

0, otherwise
(3)

where xxxi and xxx j are the feature vectors of node i and node j, respectively. s(xxxi,xxx j) =
xxxi·xxx j

‖xi‖2‖x j‖2
is the cosine similarity between

node i and j. The threshold ε is determined given a parameter k, which represents the average number of edges per node that
are retained except self loops:

k = ∑
i, j,i6= j

I(s(xxxi,xxx j)≥ ε)/n, (4)

where I(·) is the indicator function and n is the number of nodes. The parameter k for generating the adjacency matrix in Eq. 4
is tuned over {1,2,5,10} through cross validation, and the same k value is adopted across all experiments on the same dataset.

Although GCN has been widely-utilized in unsupervised59–62 and semi-supervised58, 63–65 learning, in this paper, we further
extend the use of GCN for supervised classification tasks. For training data XXX tr ∈ Rntr×d , the corresponding adjacency matrix
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AAAtr ∈ Rntr×ntr can be calculated from Eq. 2. A graph convolutional network GCN(·) can be trained on XXX tr and AAAtr, where
ˆYYY tr = GCN(XXX tr,AAAtr) ∈ Rntr×c and the i-th row of ˆYYY tr represents the predicted label probability distribution of the i-th training

sample. c denotes the number of classes in the classification task. Therefore, both the features and the graphical structure of the
training data are utilized in learning the classification task.

For a new test sample xxxte ∈ Rd , we extend the data matrix to XXX =

[
XXX tr
xxxte

]
∈ R(Ntr+1)×d and generate the adjacency matrix

to AAA ∈ R(Ntr+1)×(Ntr+1) according to Eq. 2-3. The entries in the last row and last column of AAA are the only entries calculated
during testing and reflect the affinity between the test sample xxxte and the training samples XXX tr. Given XXX , AAA and the trained
GCN model GCN(·), we have ŶYY = GCN(XXX ,AAA) ∈ R(ntr+1)×c. The predicted label probability distribution for the test sample is
ˆyyyte = ŶYY ntr+1, which is the last row of ŶYY . To this end, both the features of the test sample and the correlations between the test

sample and the training samples are utilized in predicting the label of the new test sample xxxte.
To perform omic-specific classification, for the i-th omics data type, we construct a multi-layer GCN denote as GCNi(·) with

the output dimensionality of c. Given the training data of XXX (i)
tr ∈ Rntr×di and the corresponding adjacency matrix AAA(i)

tr ∈ Rntr×ntr

of the i-th omics data type, we use L2-norm loss to train the omic-specific GCN:

L(i)
c =

ntr

∑
j=1

∥∥∥ŷyy(i)j − yyy j

∥∥∥2

2
, (5)

where yyy ∈ Rc is the one-hot encoded label of the j-th training sample. ŷyy(i)j ∈ Rc is the predicted label distribution of the j-th

training sample by GCNi(·), which is the j-th row of the matrix ŶYY
(i)

= GCNi(XXX
(i)
tr ,AAA

(i)
tr ). In order to account for the label

imbalance in the training data, we further apply different weights on the losses of different classes in Eq. 5, where the weight of
a class is set to the inverse of its frequency in the training data.

VCDN for multi-omics integration
Existing methods utilizing multi-view data on biomedical classification tasks either directly concatenate features from different
views, or learn to fuse data from different views either by learning the weights of each view or fusing features from different
views in a low-level feature space4, 66–68. However, it is always challenging to align various views properly without causing
negative influence. On the other hand, VCDN11 is designed to learn the higher-level intra-view and cross-view correlations in
the label space, and has shown significantly improvements in human action recognition tasks. In MORONET, we utilize VCDN
to integrate different omics data types for classification. Moreover, while the original work of VCDN is designed for data with
two views11, we further extend it to accommodate multiple types of omics data.

Since mRNA expression data, DNA methylation data, and miRNA expression data are utilized in our experiments, for
simplicity, we demonstrate how to extend VCDN with three views. Extension to higher number of views can be performed
in a similar fashion. For the predicted label distribution of the j-th training sample from three different omics data types
ŷyy(i)j ∈ Rc, i = 1,2,3, we construct a cross-omics discovery tensor CCC j ∈ Rc×c×c, where each entry of CCC j is calculated as:

C j,abc = ŷ(1)j,a ŷ(2)j,b ŷ(3)j,c , (6)

where ŷ(i)j,x denotes the x-th entry of ŷyy(i)j . Then, the obtained tensor CCC j is reshaped to a c3 dimensional vector and forward to
VCDN(·) for the final prediction. VCDN(·) is designed as a two-layer fully-connected network with output dimension of c and
cross-entropy loss is utilized to train VCDN(·):

LVCDN =
ntr

∑
j=1

LCE(VCDN(CCC j),yyy j)

=
ntr

∑
j=1
− log(

eVCDN(CCC j)·yyy j

∑
k
i=1 eVCDN(CCC j)k

),

(7)

where LCE(·) represents the cross entropy loss function and VCDN(CCC j)k denotes the k-th element in the vector VCDN(CCC j)∈Rc.
To this end, VCDN(·) could reveal the latent cross-view label correlations and help to improve the learning performance. By
utilizing VCDN(·) to integrate initial predictions from different types of omics data, the final prediction made by MORONET
is based on both omics-specific predictions and the learned cross-omics label correlation knowledge.

In summary, in our experiments where three omics data types are used, the total loss function of MORONET can be written
as:

L =
3

∑
i=1

L(i)
c + γLVCDN , (8)
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where γ is a trade-off parameter between the omics-specific classification loss and the final classification loss from VCGN(·).
We set γ = 1 in all our experiments. MORONET is an end-to-end model and all networks are trained jointly. For training
MORONET, during one epoch in the training process, we first fix VCDN(·) and update GCNi(·), i = 1,2,3 for each omics data
type to minimize the loss function L. Then we fix the omics-specific GCN and update VCDN(·) to minimize L. Omics-specific
GCN and VCDN are updated alternatively until convergence.

Availability of data and materials
The ROSMAP dataset was obtained from AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.
org/). Omics data of LGG, KIPAN, and BRCA, as well as the grade information of LGG patients were obtained from The
Cancer Genome Atlas Program (TCGA) through Broad GDAC Firehose (https://gdac.broadinstitute.org/).
PAM50 breast cancer subtypes of TCGA BRCA patients were obtained through TCGAbiolinks R package (http://
bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html). The source code of this work
can be downloaded from GitHub (https://github.com/txWang/MORONET).
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