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ABSTRACT

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental
identification of viral-host protein interactions in cellular assays and measurement of host
response proteins in COVID-19 patients. Identification of genetic variants that influence the
level or activity of these proteins in the host could enable rapid ‘in silico” assessment in human
genetic studies of their causal relevance as molecular targets for new or repurposed drugs to
treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data
from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported
to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We
identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-
70.9% of the variance of 97 of these proteins, including 45 with no previously known protein
guantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization
of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral
interaction partners such as MARK3 affect immune response, and establish the first link
between a recently reported variant for respiratory failure of COVID-19 patients at the ABO
locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the
evaluation and prioritization of new drug development programmes and repurposing of trials to
prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed
interrogation  of  results is  facilitated through an interactive  webserver

(https://omicscience.org/apps/covidpgwas/).
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INTRODUCTION

The pandemic of the novel coronavirus SARS-CoV-2 infection, the cause of COVID-19, is causing
severe global disruption and excess mortality™?. Whilst ultimately strategies are required that
create vaccine-derived herd immunity, in the medium term there is a need to develop new
therapies or to repurpose existing drugs that are effective in treating patients with severe
complications of COVID-19, and also to identify agents that might protect vulnerable individuals
from becoming infected. The experimental characterization of 332 SARS-CoV-2-human protein-
protein interactions and their mapping to 69 existing FDA-approved drugs, drugs in clinical trials
and/or preclinical compounds3 points to new therapeutic strategies, some of which are
currently being tested. The measurement of circulating host proteins that associate with
COVID-19 severity or mortality also provides insight into potentially targetable maladaptive
host responses with current interest being focused on the innate immune response®,

coagulation5’6, and novel candidate proteins7.

Naturally-occurring sequence variation in or near a human gene encoding a drug target and
affecting its expression or activity can be used to provide direct support for drug mechanisms
and safety in humans. This approach is now used by major pharmaceutical companies for drug
target identification and validation for a wide range of non-communicable diseases, and to
guide drug repurposingg’g. Genetic evidence linking molecular targets to diseases relies on our
understanding of the genetic architecture of drug targets. Proteins are the most common
biological class of drug targets and advances in high-throughput proteomic technologies have
enabled systematic analysis of the “human druggable proteome” and genetic target validation
to rapidly accelerate the prioritization (or de-prioritisation) of therapeutic targets for new drug

development or repurposing trials.

Identification and in-depth genetic characterization of proteins utilized by SARS-CoV-2 for entry
and replication as well as those proteins involved in the maladaptive host response will help to
understand the systemic consequences of COVID-19. For example, if confirmed, the reported
protective effect of blood group O on COVID-19-induced respiratory failure™® might well be
mediated by the effect of genetically reduced activity of an ubiquitously expressed

glycosyltransferase on a diverse range of proteins.
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77 In this study we integrated large-scale genomic and aptamer-based plasma proteomic data
78  from a population-based study of 10,708 individuals to characterize the genetic architecture of
79 179 host proteins relevant to COVID-19. We identified genetic variants that regulate host
80  proteins that interact with SARS-CoV-2, or which may contribute to the maladaptive host
81 response. We deeply characterized protein quantitative trait loci (pQTLs) in close proximity to
82  protein encoding genes, cis-pQTLs, and used genetic score analysis and phenome-wide scans to
83  interrogate potential consequences for targeting those proteins by drugs. Our results enable
84  the use of genetic variants as instruments for drug target validation in emerging genome-wide

85  associations studies (GWAS) of SARS-CoV-2 infection and COVID-19.
86 RESULTS
87  Coverage of COVID-19-relevant proteins

88  We identified candidate proteins based on different layers of evidence to be involved in the
89  pathology of COVID-19: 1) two human proteins related to viral entry*’, 2) 332 human proteins
90 shown to interact with viral proteins3, 3) 26 proteomic markers of disease severity7, and 4) 54
91  protein biomarkers of adverse prognosis, complications, and disease deterioration*®*? (Fig. 1).
92  Of 409 proteins prioritised, 179 were detectable by an aptamer-based technology (SomaScan©),
93  including 28 recognised by more than 1 aptamer (i.e. 179 proteins recognised by 190 aptamers)
94  and 32 also measured using the 0link® proximity extension assay in a subset of 485 Fenland
95  study individuals (Supplemental Tab. S1). Of these 179 proteins, 111 (Supplemental Tab. S1)
96  were classified as druggable proteins, including 32 by existing or developmental drugs*®, and 22
97  highlighted by Gordon et al. as interacting with SARS-CoV-2 proteinss. To simplify the
98  presentation of results we introduce the following terminology: we define a protein as a unique
99  combination of UniProt entries, i.e. including single proteins and protein complexes. We further
100  define a protein target as the gene product recognised by a specific aptamer, and, finally, an

101  aptamer as a specific DNA-oligomer designed to bind to a specific protein target.

102
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Figure 1 Flowchart of the identification of candidate proteins and coverage by the SomaScan v4
platform within the Fenland cohort. More details for each protein targeted are given in
Supplemental Table S1.

Local genetic architecture of protein targets

We successfully identified 220 DNA sequence variants acting in cis for 97 proteins recognised by
106 aptamers (Fig. 2 and Supplemental Tab. S2). For 45 of these proteins, no pQTLs had
previously been reported. Of 9 proteins recognised by more than 1 aptamer, sentinel sequence
variants were concordant (identical or in high linkage disequilibrium (LD) r>>0.8) between
aptamer pairs or triplets for 7 proteins. Minor allele frequencies ranged from 0.01-49.9%, and
the variance explained ranged from 0.3-70.1% for all cis-acting sentinel variants and 0.3-70.9%

for cis-acting variants including 2-9 identified secondary signals at 57 targets, similar to what
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116  was observed considering all cis- and an additional 369 trans-acting variants identified for 98
117  aptamers (0.4-70.9%). Among the 97 proteins, 38 are targets of existing drugs, including 15
118  proteins (PLOD2, COMT, DCTPP1, GLA, ERO1LB, SDF2, MARK3, ERLEC1, FKBP7, PTGES2, EIF4E2,
119  MFGES8, IL17RA, COL6A1, and PLAT) (8 with no known pQTL) that were previously identified® as
120  interacting with structural or non-structural proteins encoded in the SARS-CoV-2 genome and
121 16 proteins (CD14, F2, F5, F8, F9, F10, FGB, IL1R1, IL2RA, IL2RB, IL6R, IL6ST, PLG, SERPINC1,
122 SERPINE1, and VWF) (7 with no known pQTL) that encode biomarkers related to COVID-19

123 severity7, prognosis, or outcome.
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127  Figure 2 Manhattan plot of cis-associations statistics (encoding gene +500kb) for 179 proteins.
128  The most significant regional sentinel protein quantitative trait loci (pQTL) acting in cis are
129  annotated by larger dots for 104 unique protein targets (dashed line; p<5x10®). Starred genes
130  indicate those targeted by multiple aptamers (n=9 genes).

131

132 Proteins are known to act in a cascade-like manner. To classify such ‘vertical’ pleiotropy, i.e.
133 associations within a pathway, as well as ‘horizontal’ pleiotropy where proteins are acting
134 through distinct pathways, we investigated associations of identified lead cis-pQTLs with all
135  measured aptamers (N=4,776 unique protein targets, see Methods). For 38 cis-pQTLs mapping
136 to druggable targets, we found evidence for a) protein specific effects for 23 regions, b)

137  possible vertical pleiotropy for 6, and c) horizontal pleiotropy for 9 lead cis-pQTLs. A similar
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138  distribution across those categories was seen for the remaining cis-pQTLs (Fishers exact test p-

139  value=0.49).

140  To test for dependencies between host proteins predicted to interact with the virus and those
141  related to the maladaptive host response we computed genetic correlations for all proteins
142 with at least one cis-pQTL and reliable heritability estimates (see Methods). Among 86
143 considered proteins, we identified a highly connected subgroup of 24 proteins including 19
144  SARS-CoV-2-human protein interaction partners (e.g. RAB1A, RAB2A, AP2A2, PLD3, KDEL2,
145  GDP/GTP exchange protein, PPT1, GT251 or PKP2 ) and 5 proteins related to cytokine storm (IL-
146  1Rrp2 and IL-1Ra), fibrinolysis (PAI-1), coagulation (coagulation factor X(a)), and severity of
147  COVID-19 (GSN (gelsolin)) (Fig. 3). The cluster persisted in different sensitivity analyses, such as
148  omitting highly pleiotropic genomic regions (associated with >20 aptamers) or lead cis-pQTLs
149  (Supplementary Fig. S1). Manual curation highlighted protein modification and vesicle
150 trafficking involving the endoplasmic reticulum as highly represented biological processes
151 related to this cluster. Among these proteins, nine are the targets of known drugs (e.g. COMT,
152  PGES2, PLOD2, ERO1B, XTP3B, FKBP7, or MARK3). The high genetic correlation between these
153  proteins indicates shared polygenic architecture acting in trans, which is unlikely to be driven by

154  selected pleiotropic loci identified in the present study.

155  Apart from this cluster, we identified strong genetic correlations (|r|>0.5) between smaller sets
156  of proteins related to COVID-19 severity, and host proteins relevant to viral replication such as

157  between IL-6 induced proteins (SAA1, SAA2, and CD14) and fibulin 5 (FBLN5).

158
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160  Figure 3 Genetic correlation matrix of 86 unique proteins targeted by 93 aptamers with reliable
161  heritability estimates (see Methods). Aptamers were clustered based on absolute genetic
162  correlations to take activation as well repression into account and protein encoding genes were
163 used as labels. The column on the far left indicates relevance to SARS-CoV-2 infection. Strong
164  correlations (|r[>0.5) are indicated by black frames.

165
166 A tiered system for trans-pQTLs

167  Inthe absence of an accepted gold standard for the characterization of trans-pQTLs, we created
168  a pragmatic, tiered system to guide selection of trans-pQTLs for downstream analyses. We

169 defined as a) ‘specific’ trans-pQTLs those solely associated with a single protein or protein


https://doi.org/10.1101/2020.07.01.182709
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.182709; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

170  targets creating a protein complex, b) ‘vertically’ pleiotropic trans-pQTLs those associated only
171  with aptamers belonging to the same common biological process (GO-term), and c) as
172 ‘horizontally’ pleiotropic trans-pQTLs all remaining ones, i.e. those associated with aptamers
173  across diverse biological processes. We used the entire set of aptamers available on the

174  SomaScan v4 platform, N=4,979, to establish those tiers.

175  Among 451 SNPs acting solely as trans-pQTLs, 114 (25.3%) were specific for a protein target, 29
176  (6.4%) showed evidence of vertical pleiotropy, and 308 (68.3%) evidence of horizontal
177  pleiotropy, indicating that trans-pQTLs exert their effects on the circulating proteome through
178  diverse mechanisms. As an extreme example, the most pleiotropic trans-pQTL (rs4648046,
179  minor allele frequency (MAF)=0.39) showed associations with over 2,000 aptamers and is in
180  high LD (r’=0.99) with a known missense variant at CFH (rs1061170). This missense variant was
181  shown, among others, to increase DNA-binding affinity of complement factor H'*, which may
182  introduce unspecific binding of complement factor H to a variety of aptamers, being small DNA-
183  fragments, and may therefore interfere with the method of measurement more generally,
184  rather than presenting a biological effect on these proteins. A similar example is the trans-pQTL
185  rs71674639 (MAF=0.21) associated with 789 aptamers and in high LD (r?=0.99) with a missense
186  variant in BCHE (rs1803274).

187  Sample handling is an important contributor to the identification of non-specific trans-pQTL
188  associations. Blood cells secrete a wide variety of biomolecules, including proteins, following
189  activation or release such as consequence of stress-induced apoptosis or lysis. Interindividual
190  genetic differences in blood cell composition can hence result in genetic differences in protein
191 profiles depending on sample handling or delays in time-to-spin. A prominent example seen in
192 our results and reported in a previous study15 is variant rs1354034 in ARHGEF3, associated with
193  over 1,000 aptamers (on the full SomaScan platform). ARHGEF3 is a known locus associated
194  with platelet counts®, albeit its exact function has yet to be determined, either genetically
195  determined higher platelet counts or higher susceptibility to platelet activation may result in
196 the secretion of proteins into plasma during sample preparation. While we report such
197  examples, the extremely standardised and well controlled sample handling of the

198  contemporary and large Fenland cohort has minimised the effects of delayed sample handling
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199  on proteomic assessment, as compared to historical cohorts or convenience samples such as
200 from blood donors, evidenced by the fact that previously reported and established sample

201  handling related loci, such as rs62143194 in NLRP12* are not significant in our study.

202  Finally, for 27 out of 98 aptamers with at least one cis- and trans-pQTL, we identified no or only
203  very weak evidence for horizontal pleiotropy, i.e. associations in trans for no more than 1
204  aptamer, suggesting that those might be used as additional instruments to genetically predict

205  protein levels in independent cohorts for causal assessment.
206  Host factors related to candidate proteins

207  We investigated host factors that may explain variance in the plasma abundances of aptamers
208  targeting high-priority candidate proteins using a variance decomposition approach (see
209  Methods). Genetic factors explained more variance compared to any other tested host factors
210  for 63 out of 106 aptamers with IL-6 sRa, collagen al(VI), or QSOX2 being the strongest
211  genetically determined examples (Fig. 4). The composition of non-genetic host factors
212 contributing most to the variance explained appeared to be protein specific (Fig. 4). For SMOC1
213 and Interleukin-1 receptor-like 1, for example, sex explained 23.8% and 17.9% of their variance,
214 respectively, indicating different distributions in men and women. Other examples for single
215  factors with large contributions included plasma ALT (15.4% in the variance of NADPH-P450
216  oxidoreductase) or age (14.2% in the variance of GDF-15/MIC-1). We observed a strong and
217  diverse contribution from different non-genetic factors for proteins such as LG3BP, SAA, IL-1Ra,
218  or HO-1 implicating multiple, in part modifiable, factors with independent contributions to

219  plasma levels of those proteins.
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221  Figure 4 Stacked bar chart showing the results from variance decomposition of plasma
222 abundances of 106 aptamers targeting candidate proteins. For each candidate protein a model
223 was fitted to decompose the variance in plasma levels including all 16 factors noted in the
224 legend. cis/trans-GRS = weighted genetic risk score based on all single nucleotide
225  polymorphisms associated with the aptamer of interest acting in cis and trans, respectively.
226  BMI (body mass index), WHR (waist-to-hip ratio), HDL (high-density lipoprotein), LDL (low-
227  density lipoprotein), eGFR (estimated glomerular filtration rate), ALT (alanine amino
228  transaminase), BP (blood pressure)

229

230  Patients with multiple chronic conditions are at higher risk of getting severe COVID-19
231 disease””*® and to investigate the influence of disease susceptibility on protein targets of
232 interest, we generated weighted genetic risk scores (GRS) for major metabolic (e.g. type 2
233  diabetes and body mass index (BMI)), respiratory (e.g. asthma), and cardiovascular (e.g.
234 coronary artery disease (CAD)) phenotypes to investigate the association with all COVID-19-

235  related proteins (Supplemental Fig. S2).

236  Plasma abundances of QSOX2 were positively associated with GRS for lung function and
237  coronary artery disease (CAD), however, as described below these disease score to protein
238  associations were likely driven by genetic confounding. Specifically, (cis) variants in proximity
239  (£500kb) to the protein encoding gene (QSOX2) were genome-wide significant for forced

240  expiratory volume (FEV1) and forced vital capacity (FVC) and exclusion of this region from the
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241  lung function genetic score abolished the score to QSOX2 association. None of the three lead
242  cis-pQTLs were in strong LD with the lead lung function variant (r’<0.4) and genetic
243 colocalization of QSOX2 plasma levels and lung function® showed strong evidence for distinct
244  genetic signals (posterior probability of near 100%). The association with the CAD-GRS was
245  attributed to the large contribution of the ABO locus to plasma levels of QSOX2, and exclusion

246  of this locus from the CAD score led to the loss of association with QSOX2.

247  The GRSs for BMI (N=10), estimated glomerular filtration rate (eGFR; N=7), and CAD (N=4) were
248  associated with higher as well as lower abundance of different aptamers, and the asthma-GRS
249  was specifically and positively associated with IL1RL1. Individuals with higher genetic
250  susceptibility to BMI had higher abundances of three putative viral interaction partners
251 (LMAN2, ETFA, and SELENOS), and lower levels of albumin, GSN, and ITIH3. Lower plasma
252  abundances of albumin and GSN have been associated with severity of COVID-19’. Plasma
253  abundance of LMAN2 (or VIP36) was associated with the BMI-GRS (positively) and the eGFR-
254 GRS (inversely). VIP36 is shed from the plasma membrane upon inflammatory stimuli and has
255  been shown to enhance phagocytosis by macrophages®’. The higher plasma levels among
256  individuals with genetically higher BMI and lower kidney function, however, do not reflect the

257  fact that both of these are considered to be risk factors for COVID-19.
258 Integration of gene expression data

259  We integrated gene expression data across five tissues of direct or indirect relevance to SARS-
260  Cov-2 infection and COVID-19 (lung, whole blood, heart - left ventricle, heart - atrial appendage,

2122 (yersion 8) to identify tissues and RNA expression traits

261  and liver) from the GTEx project
262  contributing to protein targets. Genetically-anchored gene expression models could be
263  established using PrediXcan®® for at least one of these tissues for 72 of the 102 high-priority
264  aptamers with at least one cis-pQTL located on the autosomes. Protein and gene expression
265  were significantly associated for 65 of those aptamers (p<0.05) with varying tissue specificity

1524 predicted gene expression (druggable targets in bold) of

266  (Fig. 5), similar to previous reports
267  ACADM, SERPINC1, EROLB1, POR, RAB2A, KDELC2, C1RL, AES, IL17RA, FKBP7, and EIF4E2, for

268  example, was consistently associated with corresponding protein levels in plasma across at
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least three tissues, whereas gene expression in lung only was associated with plasma levels of

SAA1, SAA2, and SERPINA10.

Plasma levels of proteins depend on multiple biological processes rather than solely on the
expression of the encoding genes. Testing for enriched biological terms? across all significantly
associated genes (p<10®°) in lung highlighted ‘signal peptide’ (false discovery rate
(FDR)=2.5x107), ‘glycoproteins’ (FDR=1.7x10"), or ‘disulfide bonds’ (FDR=2.8x10™) as relevant
processes. These are involved in the transport and posttranslational modification of proteins
before secretion and highlight the complexity of plasma proteins beyond a linear dose-response

relationship with tissue abundance of the corresponding mRNA.
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281

Figure 5 Results of predicted gene expression in each of five tissues and plasma abundances of

102 aptamers with at least one cis-pQTL on one of the autosomes using PrediXcan. Each panel

282
283

displays results for a tissue. Each column contains results across successful gene expression

models for the association with the aptamer listed on the x-axis. Red indicates nominally

284
285
286
287
288
289

significant (p<0.05) positive z-scores (y-axis) and blue nominally significant inverse z-scores for

associated aptamers. Protein encoding genes are highlighted by larger black circles. Orange
background indicates all examples of significant associations between the protein encoding
gene and protein abundance in plasma regardless if this was the most significant one. Top

genes were annotated if those differed from the protein encoding gene.

290
291

Cross-platform comparison

We tested cross-platform consistency of identified pQTLs using data on 33 protein targets also

292
293

captured across 12 Olink protein panels and available in a subset of 485 Fenland participants. In
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294 brief, Olink’s proximity extension assays use polyclonal antibodies and protein measurements
295  are therefore expected to be less affected by the presence of protein altering variants (PAVs)
296  and so-called epitope effects, since they are likely to affect epitope binding only for a subset of

297  the antibody populations, if any.

298  We compared effect estimates for 29 cis- and 96 trans-pQTLs based on a reciprocal look-up
299  across both platforms (see Methods, Supplemental Tab. S5). We observed strong correlation of
300 effect estimates among 29 cis-pQTLs (r=0.75, Fig. S3) and slightly lower correlation for trans-
301 pQTLs (r=0.54) indicating good agreement between platforms. In detail, 36 pQTLs (30%)
302  discovered using the far larger SOMAscan-based effort were replicated (p<0.05 and

303 directionally consistent) in the smaller subset of participants with overlapping measurements.

304  We identified evidence for inconsistent lead cis-pQTLs for two of these 33 protein targets. The
305 lead cis-pQTL for GDF-15 from SomaScan (rs75347775) was not significantly associated with
306 GDF-15 levels measured using the Olink assay despite a clear and established signal in cis for
307  the Olink measure®® (rs1227731, beta=0.59, p<6.5x10"16). However, rs1227731 was a secondary
308 signal for the SomaScan assay (beta=0.29, p<5.8x10°®) highlighting the value of conditional
309 analyses to recover true signals for cases where these are ‘overshadowed’ by potential false
310  positive lead signals caused by epitope effects. Another protein, the poliovirus receptor (PVR),
311 did not have a cis-pQTL in the SomaScan but in the Olink-based discovery (rs10419829,
312  beta=-0.84, p<2.9x10'33), which in the context of an observational correlation of r=0.02 suggests
313 that the two technologies target different protein targets or isoforms. A similar example is
314  ACE2, the entry receptor for SARS-CoV-2, with a correlation of r=0.05 between assays and for
315  which we identified only trans-pQTLs with evidence for horizontal pleiotropy (Supplemental
316 Tab. S3). The SCALLOP consortium investigates genetic association data focused on Olink
317  protein measures, and can be a useful and complementary resource for the subset of proteins

318  of interest that are captured (https://www.olink.com/scallop/).

319  Drug target analysis

320 We identified pQTLs for 105 proteins already the target of existing drugs or known to be

321  druggable which are implicated in the pathogenesis of COVID-19 either through interactions
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322  with SARS-CoV-2 proteins, untargeted proteomic analysis of plasma in affected patients, or as
323  candidate proteins in the potentially maladaptive host inflammatory and pro-coagulant
324  responses. Of these, 18 are targets of licensed or clinical phase compounds in the ChEMBL
325 database. Thirteen of these were targets of drugs affecting coagulation or fibrinolytic pathways
326  and five were targets of drugs influencing the inflammatory response. Drugs mapping to targets
327  in the coagulation system included inhibitors of factor 2 (e.g. dabigatran and bivalirudin), factor
328 5 (drotrecogin alfa), factor 10 (e.g. apixaban, rivaroxaban), von Willebrand factor
329  (caplacizumab), plasminogen activator inhibitor 1 (aleplasinin), and tissue plasminogen
330 activator. Drugs mapping to inflammation targets included toclizumab and satralizumab
331  (targeting the interleukin 6 receptor), brodalumab (targeting the soluble interleukin-17
332  receptor) and anakinra (targeting interleukin-1 receptor type 1). Two targets with pQTLs
333 (catechol O-methyltransferase and alpha-galactosidase-A) were identified as potential virus-
334  host interacting proteins. The former is the target for a drug for Parkinson’s disease
335 (entacapone) and the latter is deficient in Fabry’s disease, a lysosomal disorder for which

336  migalastat (a drug that stabilises certain mutant forms of alpha-galactosidase-A) is a treatment.

337  Out of the 105 proteins, 24 have no current licensed medicines but are deemed to be druggable
338 including multiple additional targets related to the inflammatory response, prioritised by
339  untargeted proteomics analysis of COVID-19 patient plasma samples. These included multiple
340 components of the complement cascade (e.g. Complement C2, Complement component C8,
341 Complement component C8 gamma chain, and Complement factor H). A number of inhibitors
342 of the complement cascade are licensed (e.g. the C5 inhibitor eculizumab) or in development,

343  although none target the specific complement components prioritised in the current analysis.

344 The effect of drug action on COVID-19 for the targets identified in this analysis requires careful
345  analysis. For example, one target identified through analysis of host-virus protein interactions is
346  prostaglandin E synthase 2 (PGES2) involved in prostaglandin biosynthesis. Non-steroidal anti-
347 inflammatory drugs (NSAIDs) are also known to suppress synthesis of prostaglandins and,
348 though the evidence is weak, concerns have been raised that NSAIDs may worsen outlook in
349  patients with COVID-19%7. The cis-pQTLs we identified for PGES2 might be useful to explore this
350  further.
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351 Linking cis-pQTLs to clinical outcomes

352  We first tested whether any of the 220 cis-pQTLs or proxies in high LD (r>>0.8) have been
353 reported in the GWAS catalogue and identified links between genetically verified drug targets
354  and corresponding indications for lead cis-pQTLs at F2 (rs1799963 associated with venous
355  thrombosis®®), IL6R (rs2228145 with rheumatoid arthritis®®), and PLG (rs4252185 associated
356  with coronary artery disease®).

357  To systematically evaluate whether higher plasma levels of candidate proteins are associated
358 with disease risk, we tested genetic risk scores (cis-GRS) for all 106 aptamers for their
359  associations with 633 ICD-10 coded outcomes in UK Biobank. We identified 9 significant
360 associations (false discovery rate <10%), including the druggable example of a thrombin-cis-GRS
361 (2 cis-pQTLs as instruments) and increased risk of pulmonary embolism (ICD-10 code: 126) as
362  well as phlebitis and thrombophlebitis (ICD-10 code: 180) (Supplemental Table S6).

363 To maximise power for disease outcomes, include clinically relevant risk factors, and allow for
364  variant-specific effects we complemented the phenome-wide strategy with a comprehensive
365  look-up for genome-wide significant associations in the MR-Base platform>".

366  Out of the 220 variants queried, 74 showed at least one genome-wide significant association,
367 20 of which were cis-pQTLs for established drug targets. We obtained high posterior
368  probabilities (PP>75%) for a shared genetic signals between 25 cis-pQTLs and at least one
369  phenotypic trait using statistical (conditional) colocalisation (Fig. 6 and Supplemental Tab. S7).
370  Among these was rs8022179, a novel cis-pQTL for microtubule affinity-regulating kinase 3
371  (MARK3), a regional lead signal for monocyte count and granulocyte percentage of myeloid
372 white cells'®. The variant showed associations with higher plasma levels of MARK3 and
373  monocyte count and therefore suppression of MARK3 expression with protein kinase inhibitors
374  such as midostaurin may affect the protein host response to the virus. The important role of
375  monocytes and macrophages in the pathology of COVID-19 has been recognised®, and a range
376  of immunomodulatory agents are currently evaluated in clinical trials, with a particular focus on
377  the blockade of IL-6 and IL-1B. Our findings indicate that proteins utilized by the virus itself,
378  such as MARK3, SMOC1, or IL-6 receptor, may increase the number of innate immune cells

379 circulating in the blood and thereby contribute to a hyperinflammatory or hypercoagulable
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380 state. Stratification of large COVID-19 patient populations by cis-pQTL genotypes that
381  contribute to stimulation/repression of a specific immune signalling pathway is one potential
382  application of our results. However, such investigations would need to be large, i.e. include
383 thousands of patients, and results need to be interpreted with caution as targeting those
384  proteins can have effects not anticipated by the genetic analysis, which cannot mimic short
385 term and dose-dependent ‘drug’ exposure.

386  We observed general consistency among phenotypic traits colocalising with cis-pQTLs, i.e. traits
387 were closely related and effect estimates were consistent with phenotypic presentations
388  (Supplemental Tab. S7 and Fig. 6). For instance, rs165656, a lead cis-pQTL increasing catechol
389  o-methyltransferase plasma abundances, is a regional lead variant for BMI*? and specifically
390 colocalised with adiposity related traits, i.e. inversely associated with overall measures of body
391  size such as BMI, weight, and fat-free mass. In general, phenotypic characterization of potential
392  genetic instruments to simulate targeting abundances or activities of proteins can help to
393  distinguish those with narrow and well-defined or target-specific from those with undesirable
394  or broad phenotypic effects. Notable exceptions included the IL-6 receptor variant rs2228145,
395  for which the protein increasing C allele was inversely associated with the risk of coronary heart

396 disease and rheumatoid arthritis but positively with the risk for allergic disease, such as asthma.

397 A variant at the ABO locus links susceptibility of respiratory failure in COVID-19 to protein
398  targets

399 A recent GWAS identified two independent genomic loci to be associated with an increased risk
400  of respiratory failure in COVID-19 patientslo. We observed six proteins to be associated
401  positively with the lead signal (rs657152) at the ABO locus (coagulation factor VIII, sulfhydryl
402  oxidase 2 (QSOX2), von Willebrand factor, SVEP1, and heme oxygenase 1) and one inverse
403  association (interleukin-6 receptor subunit beta), but did not observe significantly associated
404  proteins with the lead variant (rs11385942) at 3p21.31. We identified a cluster of ten aptamers
405  (targeting SVEP1, coagulation factor VIII, ferritin, heme oxygenase 1, van Willebrand factor,
406  plasminogen, PLOD2, and CD14) sharing a genetic signal (regional probability: 0.88; rs941137;
407  Supplemental Fig. S4), which was in high LD (r?=0.85) with the lead ABO signal associated with

408  a higher risk for respiratory failure among COVID-19 patients.
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411  Figure 6 Circos plot summarizing genome-wide significant associations between 74 cis-pQTLs
412 and 239 traits® in the inner ring and results from statistical colocalisation in the outer ring. The
413  dashed line in the outer ring indicates a posterior probability of 75% of shared genetic signal
414  between the protein and a phenotypic trait. Protein targets are classified on the basis of their
415  reported relation to SARS-CoV-2 and COVID-19. Each slice contains any cis-pQTLs associated
416  with the target protein annotated and effect estimates were aligned to the protein increasing
417  allele, i.e. bars with a positive —log10(p-values) indicate positive associations with a trait from
418 the database and vice versa. Clinical traits are grouped by higher-level categories and coloured
419  accordingly. GIT = gastrointestinal tract, Misc = Miscellaneous , No coloc. pos. = colocalisation

420  for secondary signals was not possible
421


https://doi.org/10.1101/2020.07.01.182709
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.182709; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

422 Webserver

423  To facilitate in-depth exploration of candidate proteins, i.e. those with at least one cis-pQTL, we
424  created an online resource (https://omicscience.org/apps/covidpgwas/). The webserver
425 provides an intuitive representation of genetic findings, including the opportunity of
426  customized look-ups and downloads of the summary statistics for specific genomic regions and
427  protein targets of interest. We further provide detailed information for each protein target,
428  including links to relevant databases, such as UniProt or Reactome, information on currently
429  available drugs or those in development as well as characterization of associated SNPs. The
430  webserver further enables the query of SNPs across proteins to assess specificity and to find co-

431  associated protein targets.
432 DISCUSSION

433  We present the largest and most systematic genetic investigation of host proteins reported to
434  interact with SARS-CoV-2 proteins, be related to virus entry, host hyperimmune or
435  procoagulant responses, or be associated with the severity of COVID-19. The integration of
436 large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals
437  improves our understanding of the genetic architecture of 97 of 179 investigated host proteins
438 by identifying 220 cis-acting variants that explain up to 70% of the variance in these proteins,
439  including 45 with no previously known pQTL and 38 encoding current drug targets. Our findings,

440  shared in an interactive webserver (https://omicscience.org/apps/covidpgwas/), enable rapid

441  ‘in silico’ follow-up of these variants and assessment of their causal relevance as molecular
442  targets for new or repurposed drugs in human genetic studies of SARS-CoV-2 and COVID-19,
443 such as the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/).

444  The contribution of identified genetic variants outweighed the variance explained by most of
445  the tested host factors for the majority of protein targets. Protein expression in plasma was
446  also frequently associated with expression of protein encoding genes in relevant tissues. We
447  demonstrate that a large number of genetic variants acting in trans are non-specific and show
448  evidence of substantial horizontal pleiotropy. Findings for these variants should be treated with

449  caution in follow-up studies focused on protein-specific genetic effects.


https://omicscience.org/apps/XXX/
https://omicscience.org/apps/XXX/
https://doi.org/10.1101/2020.07.01.182709
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.182709; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

450 The successful identification of druggable targets for COVID-19 provides an insight both on
451  potential therapies but also on medications that might worsen outlook, depending on the
452  direction of the genetic effect, and whether any associated compound inhibits or activates the
453  target. We also found genetic evidence that selected protein targets, such as for MARK3 and
454  monocyte count, have potential for adverse effects on other health outcomes, but note that
455 this was not a general characteristic of all tested ‘druggable’ targets. Further, in-depth
456  characterization of the targets identified will be required as a first step in gauging the likely

457  success of any new or repurposed drugs identified via this analysis33.

458  We exemplify the value of the data resource generated by being the first that links a genomic
459  risk variant for poor prognosis among COVID-19 patients, i.e. respiratory failure, at the ABO
460  locus™ to proteins related to the maladaptive response of the host, namely hypercoagulation,
461 as well as two putative viral interaction partners (heme oxygenase 1 and PLOD2). The risk
462  increasing A allele of rs657152 was consistently associated with higher plasma levels of
463  coagulation factor VIl and von Willebrand factor. Anticoagulation is associated with a better
464  outcome in patients with severe COVID-19%*, and randomised controlled trails are underway to

465  properly evaluate the benefit or harms of anticoagulant therapies.

466  Affinity-based proteomics techniques rely on conserved binding epitopes. Changes in the 3D-
467  conformational structure of target proteins introduced by protein altering variants (PAVs) might
468  change the binding affinity to the target, and hence measurements, without affecting biological
469  activity of the protein. We identified 52 cis-pQTLs which were in LD (r*>0.1) with a PAV.
470  However, 27 of those cis-pQTLs or a proxy in high LD (r?>>0.8) have been previously identified as
471  genome-wide significant signals for at least one trait in the GWAS catalogue (excluding any
472  entries of platforms used in the present study) and might therefore carry biologically

473  meaningful information.

474  This study is the largest genetic discovery of protein targets highly relevant to the current
475  COVID-19 pandemic and was designed to provide a rapid open access platform to help prioritise
476  drug discovery and repurposing efforts. However, important limitations apply. Firstly, protein
477  abundances have been measured in plasma, which may differ from the intracellular role of

478  proteins, and include purposefully secreted as well as leaked proteins. Secondly, while
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aptamer-based techniques provide the broadest coverage of the plasma proteome, specificity
can be compromised for specific protein targets and evidence using complementary techniques
such as Olink or mass spectrometry efforts is useful for validation of signals. Thirdly, in-depth
phenotypic characterization of the high-priority cis-pQTLs requires appropriate formal and
statistical follow-up, such as colocalisation, where the genomic architecture permits existing
approaches not yet optimised for multiple secondary signals and outcomes, and cis-GRS

evaluation in independent and adequately powered studies for the trait of interest.
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487 Materials and Methods
488  Study participants

489  The Fenland study is a population-based cohort of 12,435 participants born between 1950 and
490 1975 who underwent detailed phenotyping at the baseline visit from 2005-2015. Participants
491  were recruited from general practice surgeries in the Cambridgeshire region in the UK.
492  Exclusion criteria were: clinically diagnosed diabetes mellitus, inability to walk unaided,
493  terminal illness, clinically diagnosed psychotic disorder, pregnancy or lactation. The study was
494  approved by the Cambridge Local Research Ethics Committee (ref. 04/Q0108/19) and all
495  participants provided written informed consent. Population characteristics and proteomic

496  measures have previously been described in detail®.

497  Mapping of protein targets across platforms

498  We mapped each candidate protein to its UniProt-ID (https://www.uniprot.org/) and used

499  those to select mapping aptamers and Olink measures based on annotation files provided by

500 the vendors.
501  Proteomic profiling

502  Proteomic profiling of fasted EDTA plasma samples from 12,084 Fenland Study participants
503  collected at baseline was performed by Somalogic Inc. (Boulder, US) using an aptamer-based
504  technology (SOMAscan proteomic assay). Relative protein abundances of 4,775 human protein
505  targets were evaluated by 4,979 aptamers (Somalogic V4), as previously described®. To
506 account for variation in hybridization within runs, hybridization control probes are used to
507  generate a hybridization scale factor for each sample. To control for total signal differences
508 between samples due to variation in overall protein concentration or technical factors such as
509  reagent concentration, pipetting or assay timing, a ratio between each aptamer's measured
510 value and a reference value is computed, and the median of these ratios is computed for each
511  of the three dilution sets (40%, 1% and 0.005%) and applied to each dilution set. Samples were
512 removed if they were deemed by Somalogic to have failed or did not meet our acceptance
513  criteria of 0.25-4 for all scaling factors. In addition to passing Somalogic QC, only human

514  protein targets were taken forward for subsequent analysis (4,979 out of the 5284 aptamers).
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515  Aptamers’ target annotation and mapping to UniProt accession numbers as well as Entrez gene

516 identifiers were provided by Somalogic.

517  Plasma samples for a subset of 500 Fenland participants were additionally measured using 12
518  Olink 92-protein panels using proximity extension assays>°. Of the 1104 Olink proteins, 1069
519  were unique (n=35 on >1 panel, average correlation coefficient 0.90). We imputed values below
520  the detection limit of the assay using raw fluorescence values. Protein levels were normalized
521  (‘NPX’) and subsequently log,-transformed for statistical analysis. A total of 15 samples were

522  excluded based on quality thresholds recommended by Olink, leaving 485 samples for analysis.
523  Genotyping and imputation

524  Fenland participants were genotyped using three genotyping arrays: the Affymetrix UK Biobank
525  Axiom array (OMICs, N=8994), Illumina Infinium Core Exome 24v1 (Core-Exome, N=1060) and
526  Affymetrix SNP5.0 (GWAS, N=1402). Samples were excluded for the following reasons: 1) failed
527  channel contrast (DishQC <0.82); 2) low call rate (<95%); 3) gender mismatch between reported
528 and genetic sex; 4) heterozygosity outlier; 5) unusually high number of singleton genotypes or
529 6) impossible identity-by-descent values. Single nucleotide polymorphisms (SNPs) were
530 removed if: 1) call rate < 95%; 2) clusters failed Affymetrix SNPolisher standard tests and
531 thresholds; 3) MAF was significantly affected by plate; 4) SNP was a duplicate based on
532 chromosome, position and alleles (selecting the best probeset according to Affymetrix
533 SNPolisher); 5) Hardy-Weinberg equilibrium p<10®; 6) did not match the reference or 7)
534  MAF=0.

535  Autosomes for the OMICS and GWAS subsets were imputed to the HRC (rl) panel using
536 IMPUTE4®, and the Core-Exome subset and the X-chromosome (for all subsets) were imputed
537  to HRC.rl.1 using the Sanger imputation server (https://imputation.sanger.ac.uk/)ss. All three
538  arrays subsets were also imputed to the UK10K+1000Gphase3*® panel using the Sanger
539  imputation server in order to obtain additional variants that do not exist in the HRC reference
540  panel. Variants with MAF < 0.001, imputation quality (info) < 0.4 or Hardy Weinberg Equilibrium

541 p < 107 in any of the genotyping subsets were excluded from further analyses.

542  GWAS and meta-analysis
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543  After excluding ancestry outliers and related individuals, 10,708 Fenland participants had both
544  phenotypes and genetic data for the GWAS (OMICS=8,350, Core-Exome=1,026, GWAS=1,332).
545  Within each genotyping subset, aptamer abundances were transformed to follow a normal
546  distribution using the rank-based inverse normal transformation. Transformed aptamer
547 abundances were then adjusted for age, sex, sample collection site and 10 principal
548  components and the residuals used as input for the genetic association analyses. Test site was
549  omitted for protein abundances measured by Olink as those were all selected from the same
550 test site. Genome-wide association was performed under an additive model using BGENIE
551  (v1.3)*. Results for the three genotyping arrays were combined in a fixed-effects meta-analysis
552 in METAL™. Following the meta-analysis, 17,652,797 genetic variants also present in the largest

553  subset of the Fenland data (Fenland-OMICS) were taken forward for further analysis.

554 Definition of genomic regions (including cis/trans)

555  For each aptamer, we used a genome-wide significance threshold of 5x10® and defined non-
556  overlapping regions by merging overlapping or adjoining 1Mb intervals around all genome-wide
557  significant variants (500kb either side), treating the extended MHC region (chr6:25.5-34.0Mb)
558 as one region. For each region we defined a regional sentinel variant as the most significant
559  variant in the region. We defined genomic regions shared across aptamers if regional sentinels

560 of overlapping regions were in strong LD (r>>0.8).
561  Conditional analysis

562  We performed conditional analysis as implemented in the GCTA software using the sict option
563  for each genomic region - aptamer pair identified. We used a collinear cut-off of 0.1 and a p-
564  value below 5x10® to identify secondary signals in a given region. As a quality control step, we
565  fitted a final model including all identified variants for a given genomic region using individual
566 level data in the largest available data set (‘Fenland-OMICs’) and discarded all variants no

567 longer meeting genome-wide significance.

568  We performed a forward stepwise selection procedure to identify secondary signals at each
569 locus on the X-chromosome using SNPTEST v.2.5.2 to compute conditional GWAS based on

570  individual level data in the largest subset. Briefly, we defined conditionally independent signals
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571 as those emerging after conditioning on all previously selected signals in the locus until no

572  signal was genome-wide significant.
573  Explained variance

574  To compute the explained variance for plasma abundancies of protein targets we fitted linear
575  regression models with residual protein abundancies (see GWAS section) as outcome and 1)
576  only the lead cis-pQTL, 2) all cis-pQTLs, or 3) all identified pQTLs as exposure. We report the R?

577  from those models as explained variance.
578  Annotation of pQTLs

579  For each identified pQTL we first obtained all SNPs in at least moderate LD (r*>0.1) and queried
580 comprehensive annotations using the variant effect predictor software®® (version 98.3) using
581 the pick option. For each cis-pQTL we checked whether either the variant itself or a proxy in the
582  encoding gene (r*>>0.1) is predicted to induce a change in the amino acid sequence of the

583  associated protein, so-called protein altering variants (PAVs).
584  Mapping of cis-pQTLs to drug targets

585 To annotate druggable targets we merged the list of proteins targeted by the SomaScan V4
586  platform with the list of druggable genes from Finan at al.”> based on common gene entries. We

587  further added protein —drug combinations as recommended by Gordon et al.2.
588 Identification of relevant GWAS traits

589  To enable linkage to reported GWAS-variants we downloaded all SNPs reported in the GWAS

590 catalog (19/12/2019, https://www.ebi.ac.uk/gwas/) and pruned the list of variant-outcome

591  associations manually to omit previous protein-wide GWAS. For each SNP identified in the
592  present study (N=671) we tested whether the variant or a proxy in LD (r*>0.8) has been

593  reported to be associated with other outcomes previously.
594  Definition of novel pQTLs

595 To test whether any of the identified regional sentinel pQTLs has been reported previously, we
596  obtained a list of published pC)~TL515'24’26’42’43 and defined novel pQTLs as those not in LD (r?<0.1)

597  with any previously identified variant. We note that this approach is rather conservative, since
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598 it only asks whether or not any of the reported SNPs has ever been reported to be associated

599  with any protein measured with multiplex methods.
600  Assessment of pleiotropy

601 To evaluate possible protein-specific pleiotropy of pQTLs we computed association statistics for
602  each of the 671 unique SNPs across 4,979 aptamers (N=4,775 unique protein targets) with the
603  same adjustment set as in the GWAS. This resulted in a protein profile for each variant defined
604  as all aptamers significantly associated (p<5x10®). For all aptamers we retrieved all GO-terms
605 referring to biological processes from the UniProt database using all possible UniProt-IDs as a
606  query. GO-term annotation within the UniProt database has the advantage of being manually
607  curated while aiming to omit unspecific parent terms. We tested for each pQTL if the associated
608 aptamers fall into one of the following criteria: 1) solely associated with a specific protein, 2) all
609  associated aptamers belong to a single GO-term, 3) the majority (>50%) of associated aptamers
610  but at least two belong to a single GO-term, and 4) no single GO-term covers more than 50% of
611 the associated aptamers. We refer to category 1 as protein-specific association, categories 2

612  and 3 as vertical pleiotropy, and category 4 as horizontal pleiotropy.
613  Heritability estimates and genetic correlation

614 We used genome-wide genotype data from 8,350 Fenland participants (Fenland-OMICs) to
615 determine SNP-based heritability and genetic correlation estimates among the 102 protein
616 targets with at least one cis-pQTLs and excluding proteins encoded in the X-chromosome. We
617  generated a genetic relationship matrix (GRM) using GCTA v.1.90* from all variants with MAF >
618 1% to calculate SNP-based heritability as implemented by biMM™. Genetic correlations were
619 computed between all 4273 possible pairs among 93 protein targets with heritability estimates
620 larger than 1.5 times its standard error, using the generated GRM by a bivariate linear mixed
621  model as implemented by biMM. We further conducted two sensitivity analyses to evaluate
622  whether the estimated genetic correlation could be largely attributable to the top cis-pQTL or
623  to shared pleiotropic trans regions. To evaluate contribution of the top cis variant, each protein
624  target was regressed against its sentinel cis variant in addition to age, sex, sample collection

625  site, 10 principal components and the residuals were used as phenotypes to compute
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626  heritability and genetic correlation estimates. To assess the contribution of 29 pleiotropic trans
627 regions, we excluded 2Mb genomic regions around pleiotropic trans-pQTLs (associated with
628  >20 aptamers) from the GRM to compute heritability and genetic correlation estimates. Genetic
629  correlations could not be computed for pairs involving ILIRL1 in the main analysis and were
630 therefore excluded. However, upon regressing out the sentinel cis-variant, genetic correlations

631  with this protein could be computed probably due to its large contribution to heritability.
632  Variance decomposition

633  We used linear mixed models as implemented in the R package variancePartition to decompose
634  inverse rank-normal transformed plasma abundances of 106 aptamers with at least one cis-
635 pQTL. To this end, we computed weighted genetic scores for each aptamer separating SNPs
636  acting in cis (cis-GRS) and trans (trans-GRS). In addition to the GRS we used participants’ age,
637  sex, body mass index, waist-to-hip ratio, systolic and diastolic blood pressure, reported alcohol
638 intake, smoking consumption and fasting plasma levels of glucose, insulin, high-density
639 lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine aminotransaminase as well
640 as a creatinine-based estimated glomerular filtration rate as explanatory factors. We
641 implemented this analysis in the Fenland-OMICs data set leaving 8,004 participants without any

642  missing values in the factors considered.
643  Genetic risk scores associations

644  We computed weighted GRS for metabolic (Insulin resistance®®, type 2 diabetes*’ and BMI*®),
645  respiratory (forced expiratory volume, forced vital capacity™® and asthma®®) and cardiovascular
646  traits (eGFR, systolic blood pressure51, diastolic blood pressure51 and coronary artery
647  disease®) for Fenland-OMICs participants (N = 8,350) to evaluate their association with plasma
648  protein abundances. GRSs were computed from previously reported genome-wide significant
649  variants and weighted by their reported beta coefficients for continuous outcomes or log(OR)
650 for binary outcomes. Variants not available among Fenland genotypes, strand ambiguous or
651  with low imputation quality (INFO < 0.6) were excluded from the GRSs. Associations between
652  each scaled GRS and log10 transformed and scaled protein levels were computed by linear

653  regressions adjusted by age, sex, 10 genetic principal components and sample collection site.
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654 We implemented this analysis for the 186 proteins with at least one associated cis or trans-
655  pQTL. Associations with p-values < 0.05/186 were deemed significant according to Bonferroni

656  correction for multiple comparisons.
657  Incorporation of GTEx v8 data

658 We leveraged gene expression data in five human tissues (lung, whole blood, heart - left
659  ventricle, heart - atrial appendage, and liver), of relevance to COVID-19 and its potential

660  adverse effects and complications, from the Genotype-Tissue Expression (GTEx) project??*. F

or
661  the 102 Somamers with at least one cis-pQTL located on the autosomes and available gene
662  expression models trained in GTEx v8°2, we performed summary-statistics based PrediXcan®
663 analysis to identify tissue-dependent genetically determined gene expression traits that
664  significantly predict plasma protein levels. We used the standardized effect size (z-score) to
665 investigate the tissue specificity or the consistency of the association across the tissues
666 between the genetic component of the expression of the encoding gene and the corresponding
667  protein. We performed DAVID functional enrichment analyses on all the genes significantly
668  associated (Bonferroni-adjusted p<0.05) with plasma levels of the proteins to identify biological

669  processes (Benjamini-Hochberg adjusted p<0.05) that may explain the associations found

670  beyond the protein encoding genes.
671  Cross-platform comparison

672  We selected 24 cis- and 101 trans-pQTLs mapping to 33 protein targets overlapping with Olink
673  from the SomaScan-based discovery and obtained summary statistics from in-house genome-
674  wide association studies (GWAS) based on corresponding Olink measures. To enable a more
675  systematic reciprocal comparison, we further compared 13 pQTLs (for 11 proteins) only
676  apparent in an in-house Olink-based pGWAS (p<4.5x10'11) effort and obtained GWAS-summary
677  statistics from corresponding aptamer measurements. We pruned the list for variants in high LD

678  (r*>>0.8) and discarded SNPs not passing QC for both efforts (n=6).
679  Phenome-wide scan among UK Biobank and look-up

680  We obtained all ICD-10 codes-related genome-wide summary statistics from the most recent

681 release of the Neale lab (http://www.nealelab.is/uk-biobank) with at least 100 cases resulting
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682  in 633 distinct ICD-10 codes. Among the 220 cis-pQTLs identified in the present study, 215 were
683 included in the UK Biobank summary statistics (3 aptamers had to be excluded due to
684  unavailable lead cis-pQTLs or proxies in LD). We next aligned effect estimates between cis-
685  pQTLs and UK Biobank statistics and used the grs.summary() function from the ‘gtx’ R package
686 to compute the effect of a weighted cis-GRS for an aptamer across all 633 ICD-codes. We
687  applied a global testing correction across all cis-GRS — ICD-10 code combinations using the
688 Benjamini-Hochberg procedure and declared a false discovery rate of 10% as a significance

689  threshold.

690  We queried all 220 cis-pQTLs for genome-wide association results using the phewas() function
691  of the R package ‘ieugwasr’ linked to the IEU GWAS database. We selected all variants in strong
692 LD (r>>0.8) with any of the cis-pQTLs to incorporate information on proxies. We restricted the

693  search in the ieugwar tool to the batches "ebi-a", "ieu-a", and "ukb-b" to minimize redundant

694  phenotypes.
695  Colocalisation analysis

696  We used statistical colocalisation® to test for a shared genetic signal between a protein target
697 and a phenotype with evidence of a significant effect of the cis-pQTL (see above). We obtained
698  posterior probabilities (PP) of: HO — no signal; H1 — signal unique to the protein target; H2 —
699  signal unique to the trait; H3 — two distinct causal variants in the same locus and H4 — presence
700  of a shared causal variant between a protein target and a given trait. PPs above 75% were
701  considered highly likely. In case the cis-pQTL was a secondary signal we computed conditional
702  association statistics using the cond option from GCTA-cojo to align with the identification of
703  secondary signals. We conditioned on all other secondary signals in the locus. We note that
704  conditioning on all other secondary variants in the locus failed to produce the desired
705  conditional association statistics in a few cases probably due to moderate LD (r*>0.1) between

706  selected secondary variants and other putative secondary variants.
707  Multi-trait colocalization at the ABO locus

708  We used hypothesis prioritisation in multi-trait colocalization (HyPrColoc)>* at the ABO locus

709  (+x200kb) 1) to identify protein targets sharing a common causal variant over and above what
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710  could be identified in the meta-analysis to increase statistical power, and 2) to identify possible
711  multiple causal variants with distinct associated protein clusters. Briefly, HyPrColoc aims to test
712  the global hypothesis that multiple traits share a common genetic signal at a genomic location
713  and further uses a clustering algorithm to partition possible clusters of traits with distinct causal
714 variants within the same genomic region. HyPrColoc provides for each cluster three different
715  types of output: 1) a posterior probability (PP) that all traits in the cluster share a common
716  genetic signal, 2) a regional association probability, i.e. that all the metabolites share an
717  association with one or more variants in the region, and 3) the proportion of the PP explained
718 by the candidate variant. We considered a highly likely alignment of a genetic signal across
719  various traits if the regional association probability > 80%. This criterion takes to some extend
720 into account that metabolites may share multiple causal variants at the same locus and
721  provides some robustness against violation of the single causal variant assumption. We note
722 that several protein targets had multiple independent signals at the ABO locus (Supplementary
723  Tab. S4). We further filtered protein targets with no evidence of a likely genetic signal (p>10'5)
724 in the region before performing HyPrColoc, which improved clustering across traits due to

725  minimizing noise.

726
727
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